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Pricing Mortgages: An Interpretation of the Models and Results

Patric H. Hendershott and Robert Van Order

Twenty years ago, nearly all mortgages had long-term fixed rates and most

were originated and held for investment by heavily regulated housing-finance

institutions granted tax preferences for investing their cheap deposit dollars

in mortgages. Today, deposits are more expensive, tax preferences are
-

miniscule, and the regulations are eroding; most mortgages are not held by

their originators, and many are widely traded; many mortgages do not have fixed

rates; most new investment is in mortgage—backed securities (MBSs) rather than

whole loans; and MBSS are now being placed in collateralized mortgage

obligations (CMOs) or "stripped". The accurate pricing of various mortgage

loans, MBSs, and claims on parts of the MBSs has become a major concern.

It is by now widely recognized that debt securities can be viewed as

risk—free assets plus various contingent claims, which are frequently modeled

as options. This approach is applicable to mortgages (see Findley and Capozza,

1977, for an early discussion). For instance, prepayment is a call option

(i.e., an option to buy back or call the mortgage at par), and default is a put

option (i.e., an option to sell or put the house to the lender at a price equal

to the value of the mortgage). The application of the formal continuous—time

stock and bond option-pricing methodology (Black and Scholes, 1973; Brennan and

Schwartz, 1977; Cox, Ingersoll, and Ross (CI&R), 1976/1985ab; and Merton, 1973)

has been the centerpiece of most mortgage pricing research (early references

are Asay, 1978, and Dunn and McConnell, 1981). In recent years, this high-tech

literature has grown geometrically (as exemplified by the October 1984 issue of

the Housing Finance Review, the Fall 1985 issue of the AREUEA Journal, and a

recent stream of unpublished papers by Kau et al, 1985 and 1986ab)
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This paper interprets the growing body of formal pricing literature and

offers suggestions to make the technology more useful in pricing mortgages.

The great insight of the models comes from determining equilibrium prices by

imposing zero arbitrage profits; such models give exact, rather than simply

qualitative, predictions about mortgage prices. The models combine a carefully

chosen portfolio of nonmortgage assets (whose risk and cash flows are identical

to those of the mortgage contract being modelled) with mortgages to create a

synthetic investment that is instantaneously risk free. That the return on the

risk—free portfolio equal the instantaneous risk free rate gives the basic

equilibrium condition. In simple cases, specific borrower and lender

characteristics are irrelevant, and the number of parameters required for

pricing is small. When transaction costs are incorporated, specific

characteristics often matter, and pricing is more complex, but presumably more

accurate.

Our paper has four sections. The first considers a standard fixed—rate,

long—term mortgage assuming no default risk. Such a mortgage (which may be

viewed as a pool of individual mortgages) is portrayed as a riskiess annuity

plus the borrower's right to prepay (to buy the mortgage back at the remaining

book value). In Section II, the analysis is extended to other instruments:

parts of the fixed—rate mortgage's cash flows (tranches of a collateralized

mortgage obligation or strips of mortgage pools) and adjustable-rate mortgages

with rate caps and floors. Mortgage default is introduced in Section III,

first alone (a nonprepayable mortgage) and then in conjunction with the

prepayment option. The analysis is then extended to the valuation of mortgage

insurance contracts. The relatively few efforts to price mortgages

realistically and to test the models against market data are discussed in

Section IV, and an overview of future research opportunities is offered.
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The formal option pricing methodology requires some technical apparatus,

but it is not our major concern. Rather, we focus on intuitive interpretations

to underscore the economic logic underlying the analysis and to assess the

simulation experiments that have been undertaken because closed—form solutions

to the models do not exist. In this area, comparative static analysis must be

based on simulation results and intuition.

I. Default—Free Fixed-Rate Mortgages

A default-free assumable fixed-rate mortgage (FRM) can be viewed as a

continuous-payment annuity with a call option giving the borrower (seller) the

right to repurchase the annuity at a price equal to its par value at any time

before maturity (typically 30 years). Under our assumption of no default risk,

the value of a FRM depends on its coupon rate, time to maturity, other details

of the contract, and the pattern of market interest rates. Pricing models seek

to find and evaluate a function that explains observed prices of mortgages:

M(R,t), where R is a vector of interest rates and t is time. We begin by

describing the basic model and go on to extend it in a number of directions,

including introducing transaction costs. We conclude by discussing techniques

for solving the models.

Before turning to specific models, we note four points that apply to all

models:

(1) The basic equilibrium condition for any mortgage is that its
expected instantaneous yield equal the risk-free rate plus an appropriate
risk premium. The models that follow derive this equality, but because
this notion of equilibrium is so straightforward, we could start by
making it an initial assumption.

(2) The equilibrium condition turns out to be a second-order partial
differential equation in R and t and other variables (e.g., house prices
if default is possible). This sort of equation will apply to
contingent claim. Hence, an infinite number of functions satisfy the
equation. To determine the one function that applies to the mortgage
being priced, we incorporate boundary conditions specifying the details
of the contract such as the coupon rate, the term of the mortgage, and
the value of R at which the mortgage will be called (usually determined
via an optimal call strategy).
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(3) The solution for M(R,t), not surprisingly, has an expected-present—
value interpretation. M is the expected present value of the cash-flows
(including call and default) from the mortgage, discounted at the risk—
free rate, but where the expected value of R, upon which future cash
flows (e.g., because of prepayment) depends, is altered by a risk-
adjustment factor.

(4) The models determine mortgage price, not yield. Yield is usually
measured as the internal rate of return computed for a given assumption
about prepayment (e.g., prepayment in 12 years). Because expected
prepayment can vary greatly, depending on the mortgage coupon, whether
the mortgage is assumable, etc., conventional yield calculations can be

very misleading.

A. The Basic Model

Here we discuss a simple frictionless continuous—time model of mortgage

pricing, which draws on Dunn and McConnell (1981), Buser and Hendershott

(1984), Brennan and Schwartz (1985), and Kau, et al (1986a). We begin by

specifying the state variables and the arbitrage condition and then derive the

pricing equation.

1. State Variables

A default—free, fixed—rate mortgage is risky for two reasons. First,

interest-rate movements change the value of any fixed income security. Second,

mortgages can be refinanced when rates fall. This creates an asymmetry in

mortgage payoffs: when rates increase, the value of the security falls, as

with any fixed-income security, but when rates fall, the rise in value is

limited because of borrowers' refinancing opportunities. Thus interest rates

are natural exogenous or "state" variables in the model. Because a mortgage

can be outstanding for up to 30 years, all interest rates up to 30 years are

potential state variables; which is to say M could depend on a large number of

variables. The problem can only be managed if a small number of basic interest

rates determine the other rates.
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Like most authors, Cox, Ingersoll and Ross (CI&R, 1976/85) being the

first, we begin by assuming that all interest rates are driven by a single

exogenous rate, the instantaneous short rate, r. Changes in this rate are

taken to follow an "Ito process," the evolution of which is governed by the

following stochostic differential equation:

(1.1) dr= u(r,t)dt +(r,t)dz.

In (1.1), u(r,t)dt is the expected change in r over an infinitesimal interval

of time of length dt, and (r,t)dz is a disturbance made up of dz, which is

normally distributed with zero mean and unit variance, and 5(r,t), which allows

r and t to affect the disturbance. Equation (1.1) is a continuous—time version

of a standard difference equation. CI&R, Vasicek (1977), Dothan (1978), and

Richard (1978) have shown how (1.1) can be used to determine the entire

Treasury yield curve.2

A particular specification used in several mortgage pricing studies and

analyzed in detail by CI&R is

(1.1') dr = k(e-r)dt + cr½dz,

where k and a are positive constants. In this specification, r tends to revert

to its mean level, 8, at rate k; the variance of the disturbance decreases less

than proportionately as r falls (so that low interest rates are less volatile)

and goes to zero as r goes to zero (so that negative interest rates cannot

exist).

2. Perfect Markets Arbitrage Model

Pricing comes from arbitrage in complete markets.3 We begin by

constructing a portfolio of Treasury securities whose cash flows exactly mimic

those expected on the mortgage. Thus, the combination of the mortgage and a

short position in the Treasury portfolio (the hedge portfolio) absorbs zero
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wealth and has zero instantaneous risk. Dunn and McConnell, 1981, Buser and

Hendershott, 1984, and Brennan and Schwartz, 1977 and 1985, among others, show

how this portfolio is derived. Absence of arbitrage profits implies a zero

instantaneous return. From this zero return, the basic equilibrium condition

is deduced: the instantaneous expected yield on the mortgage must equal the

risk—free short rate plus a risk factor (see Brennan and Schwartz, 1985, for a

general derivation).

In the case of one state variable,

(1.2) uM(r,t) = rM + X(r,t)6(r,t)M,

where U is the expected yield of the mortgage, r the instantaneous risk—free

rate, A the market price of risk, and Mr the partial derivative of M with

respect to r. The risk-adjustment term becomes the product of three terms:

the "price" of the risk that r changes, A, the amount of risk, , and the

interest—rate sensitivity of the mortgage, M. If more state variables exist,

more risk—adjustment terms, each with its own A, come into being.

The arbitrage model does not derive the X'S; their derivation is a

general equilibrium problem (see CI&R l976/85b) that requires knowledge of such

market forces as traders' risk aversion. The model does imply that the x's are

objective prices which are the same for all traders. Thus the x's may be

viewed as competitive prices for insurance policies.4 An important pricing

issue is how to estimate the A's. It turns out that the A'S can be inferred

from market prices (see Section B) when the state variables are yields on or

prices of traded assets.

The perfect-market arbitrage model assumes no transaction costs are

incurred either in shorting the portfolio of Treasuries or in continuously

adjusting the portfolio as the expected cash flows from the mortgage change.

The existence of such costs implies that arbitrage will keep the mortgage price
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within a range, the width of which depends on the magnitude of the relevant

costs. We focus on the perfect—market arbitrage model as a first approximation

to pricing.

3. Pricing Equations

The next step is the derivation of U, the expected return on the

mortgage. This is a technical step that requires some knowledge of Stochastic

Calculus. Particularly heavy use is made of Ito's lemma, which is the

stochastic analogue of the chain rule of ordinary calculus.5 The result, which

we simply assert, has a fairly straightforward interpretation. The expected

instantaneous return consists of the coupon rate and expected percentage

capital gains. The coupon rate is simply the coupon payment, C, divided by M.

Expected percentage capital gains come from two sources. The first class of

gains occurs if t and r change as expected: we call these "certainty equivalent"

gains. These are given by Mt/N (amortization and capital gain from selling at a

discount) and u(r,t)M/M (expected change in r times the sensitivity of value to

interest rates). The second source flows from the stochastic nature of r.

Because M is, in general, not linear, random increases in r need not have the

same effect on M, in absolute value, as random decreases; thus the certainty

equivalent approach of assuming that r changes exactly by u will not reflect

expected capital gains.

Figure 1 depicts a hypothetical M(r,t) given t. The function is (tenta-

tively) assumed to be convex to the origin. Suppose the current interest rate is

r* and u(r*,t) = 0, i.e., r is as likely to go up as it is to go down. Suppose

further that next period's rate will be either r*+t or r*_!i, with equal probabil-

ity. Because of the convex shape of M, the expected level of M at r*, E[M(r*)],

will be greater than N at r*, M[E(r*)J; that is, a capital gain is expected, even

though r is not expected to change, because interest-rate declines raise M by more

than interest—rate increases lower M (the opposite would be the case if M were
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concave).6 Accounting for this "extra" capital gain requires using Ito's

lemma. Here we simply assert that expected capital gains from the dispersion

of r are given by that is, they depend on the volatility of r and the

shape of M, disappearing if Mr is linear or r is nonstochastic.7

Adding the returns from coupons and capital gains, we have

(1.3) uM(r,t) = C +
Mt

+ u(r,t)M +

Substituting from (1.2),

(1.4) C + Mt
+ [u(r,t) _X(r,tl6(r,t))Mr + rM.

This second-order partial differential equation is the basic equilibrium

condition for the one state variable model. An infinite number of functions of

r and t satisfy this condition (an infinite combination of coupon and capital

gains streams provide a "normal" or equilibrium return). Not surprisingly, we

need to incorporate details of the contract to obtain a unique function.

4. A Unique Function

Mathematically we need three boundary conditions to find the right

M(r,t), one for t and two for r (1.4 is second order in r). The t boundary is

the terminal condition that comes from the amortization schedule of the

mortgage. For a fully amortizing mortgage,

(1.5) M(r,T) = 0,

where T is the time at which the last payment is made. The other two

conditions relate to how M is valued when r takes on extreme values. The first

of these conditions incorporates the economic intuition that M becomes

worthless as r approaches infinity:8

(1.6) M(,t) = 0.
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The final condition specifies the interest rate at which the mortgage is

called.

But before turning to that, we consider the pricing of a benchmark

security, a noncallable mortgage M, that is equivalent to a portfolio of

Treasury securities with constant payout for T years. This is easy to price

because the value of M is just the present value of the known cash flows

discounted at the appropriate rate read off the yield curve determined by

(1.1). Hence M(r,t) looks like AM in Figure 2: i.e., it has the usual

downward sloping concave shape of a fixed-income security (see Brennan and

Schwartz, 1977, and CI&R, 1976/85, for a fuller discussion).

The curve for the callable mortgage, M(r,t), lies below M(r,t) by an

amount equal to the value of the call option. Because the mortgage can be

called when M equals PAR, we know that points in the region above the "PAR

line" cannot be points on M. For the third boundary condition for a callable

mortgage, we use a relationship describing the optimal call strategy for a

borrower. Because r is the only exogenous variable upon which decisions can be

based, the strategy is characterized by the level of r, r, at which the

mortgage is called. Rational borrowers (ignoring transaction costs) must

choose the call strategy that minimizes the value of M. This strategy

maximizes their net worth.9 Of all the M functions satisfying (1.4), (1.5),

and 1.6), the rational borrower chooses the function that has the smallest

value subject to touching the PAR line in the Figure. The curve that does this

(assuming an interior solution) must be tangent to the PAR line, and the level

of r at which it touches is the optimal call rate rc for a given t. Hence, the

final boundary condition is:

(1.7) M (r ,t) = 0 at M = PAR,
-

r c

which gives the minimum M(r,t), represented by the BCM curve in Figure 2.
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A few observations on this equilibrium model follow:

1. While M is convex throughout, M becomes concave as r approaches r.
Traders call this feature "negative convexity". It reflects the price
of the security anticipating the call option even when r is not
especially close to r.

2. Whereas volatility tends to produce capital gains on average for
noncallable mortgages (see Figure 1), negative convexity implies that
volatility produces capital losses on average for mortgages close to
being called. Hence, volatility makes callable mortgages less valuable
when they are near exercise. This is nothing more than a reflection of
the proposition that options increase in value as volatility increases.

3. Again, the solution has an expected—present—value interpretation. In
particular, M is the expected present value of future cash flows,
discounted at r, with the expected value of dr given by u — X6M rather
than just u (see CI&R, 1976/85b, lemma 4).

4. The coupon need not be constant. For example, the model is capable
of pricing graduated—payment mortgages, for which C is a rising
function of time, and price-level-adjusted mortgages, by putting the
analysis into "real" terms..

B. Extensions

1. Adding State Variables

a. Interest Rates

A logical extension of the model is to increase the number of interest

rate variables. Taken literally, the one-rate model above implies a constant

rate toward which the short rate reverts for all time. Given the obvious

importance of changing inflation on interest rates, this seems like a difficult

model to take seriously (although this may not be of empirical significance,

see section IV below). The nominal rate could be defined as the sum of the

real rate and the expected inflation rate, and these components could be viewed

as being governed by separate processes, requiring two state variables (CI&R

and Richards, 1978)

In their two state variable model, Brennan and Schwartz (1985) assume

different mean reverting processes for the short rate and the rate on a long-

term consol bond. Adding a state variable changes the equilibrium condition

(1.4) , as discussed in the previous section. The expected return on the
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mortgage now equals the risk—free rate plus adjustments for: (1) the risk of

the short rate changing as in (1.4), and (2) the risk of the long rate

changing. This leads to a generalization of (1.4). If we let c be the long—

term (consol) rate, and be the variances of changes in r and c, , be

their correlation coefficient, u1 and u2 be their means and and be their

risk prices, then a second—order Taylor series approximation to equilibrium is

given by

(1.8) M PS162 + M(u1 - A1S1)
+ M(u2 — A22) + Mt + C = rM.

What is interesting in this case is that the values of A2 and u2 can be

inferred. Because (1.8) applies to the value of a consol, by substituting the

value, 1/c, of a consol paying $1 into (1.8) and evaluating the derivatives (Mc

= -1/c2, M = 2/c3, and Mr = 0), we can solve for A22, and, by substituting

the result back into (1.8), produce an expression that contains neither nor

u2 (see Brennan and Schwartz, 1985). This insight comes directly from the

arbitrage approach and is directly analogous to the result in Black and Scholes

(1973) that we do not need to know the mean reverting value of a stock or its

risk price to price an option on the stock. The result, which holds for any

state variable that is a traded asset, is also useful in the analysis of

default (treated in Section lIlA). In the one state model, we could not

eliminate u or A because the instantaneous security is not a traded asset; it

does not have a price that we can plug back into (1.8)

b. Default on Fully-Insured FRMs

No default—free, assumable mortgages exist, but GNMA5, which are pools of

mortgages guaranteed by the Government National Mortgage Association, a branch

of the U.S. government, are a close approximation. GNMA5 are assumable by the

new homeowner should the house be sold, and they are fully insured. The major

difference between a GNMA and a default—free FRM is that the payoff from
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insurance in the event of default is the par, rather than market, value of the

security. Hence, default can still produce a gain or loss for investors. In

general, the possibility of defaults on fully—insured callable mortgages raises

their value; defaults that might occur when mortgages are above par, and thus

would generate capital losses, tend not to occur because the mortgages would

already have been prepaid but defaults that occur when mortgages are below par

give a windfall gain to the mortgage owners. The possibility of this windfall

will keep the mortgages close to par. Whether this effect is quantitatively

important is, of course, an empirical question.

Kau et al (l986a) and Rosenberg (1986) model mortgages with both default

and prepayment by adding a new state variable, house price, H, to the one—state

interest rate model (as explained in Section III). Both papers have a two

state variable model in r and H, with an equilibrium condition like (1.8) with

H replacing c, to simulate prices and values of the default option. In the

case where house price and interest rate variances are "high" relative to

recent experience and there is no covariance between r and H, Kau et al (1986a,

Table 8) compute that an insured but "defaultable" 80 percent loan-to—value

mortgage has a 6 basis point smaller coupon than a similarly priced default-

free mortgage.12 For 95 percent loan—to-value mortgages, the difference is 12

basis points. For moderate variances, the differences would probably be

negligible, so we might be comfortable applying the model in Section 4 to GNMA5.

c. Due on Sale

Many mortgages are not fully assumable. Major examples are the pass-

through securities guaranteed by the Federal National Mortgage Association

(FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC). In general, the

automatic repayment when a household moves raises the value of a below—par

nonassumable mortgage, and mortgages that would have been above par would have

already been called.
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Valuing nonassumable mortgages requires a potentially troublesome

analysis of household mobility (Cassidy, 1983), including recognition that the

potential forced prepayment when mortgages are far below par alters the

incentive to move (Hendershott and Hu, 1982). In principle, nonassumability

should be handled by introducing new state variables to govern the moving

13
decision.

2. Prepayment Models

a. Prepayment Functions

It is clear (see Foster and Van Order, 1985, and Green and Shoven, 1986)

that households do not exercise their options as ruthlessly as the models we

have elaborated imply. While prepayments accelerate when interest rates fall,

some high—coupon mortgages remain outstanding. Moreover, while prepayments

decelerate when interest rates rise, some low-coupon assumable mortgages

continue to prepay. For this reason many researchers have added ad hoc

prepayment functions that allow prepayments for reasons other than hitting the

boundary condition.

For instance, Dunn and McConnell (1981) and Brennan and Schwartz (1985)

add random prepayrnents, which they model as Poisson processes, to "rational"

prepaymerits given by the boundary condition (1.7). If p is the probability of

a random prepayment, then the expected cash flow (C in (1.4)) is increased by

p(M-PAR). Boundary conditions are as before.

Dale—Johnson and Langetieg (1986) and Dietrich et al (1983) model FRM5 in

a similar way. Whereas the Poisson approach assumes that the entire mortgage

pool pays off simultaneously, these papers assume gradual prepayment (half in

Dietrich et al) when call is optimal, which is especially important in the

analysis of instruments such as Collateralized Mortgage Obligations that
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allocate payments sequentially to different classes of security holders. Not

surprisingly, these "nonrational" prepaymerits make the borrowers' call option

less valuable and mortgages more valuable.

b. Transaction Costs

presumably borrowers do not exercise their option ruthlessly because of

implicit and explicit transaction costs. For instance, if a prepayment penalty

must be paid to the investor, then the model is the same as depicted in Figure

2 except that the tangency at r is with a horizontal line that exceeds PAR by

the amount of the penalty, PEN. Thus (1.7) becomes

(1.7') M(r,t) = 0 at M = PAR + PEN.

The mortgage value functions with and without the penalty are drawn in Figure

3. The value function without a prepayment penalty is given by AM; with the

penalty the function is given by BM. The level of r at which the mortgage is

called falls from r0 to r' when the penalty is introduced.

Another transaction cost is the cost of taking out a new mortgage. To

the borrower this is the same as the prepayment penalty model, a new tangency

with a higher exercise price. However, because this "refinancing wedge" is not

paid to the investor, the value to the investor is lower thanwhen the cost is

a prepayment penalty. The investor's boundary condition is now different from

the borrower's. For a refinancing wedge equal to PEN, the borrower determines

r' by the tangency condition depicted in Figure 3 by the curve BM. Given this,

the boundary condition determining value to the investor, i.e., the market

price, is that M(r,t) equal PAR, as depicted by CM. Not only do we have

negative convexity, but a range exists over which falling interest rates lower

mortgage value (and thus "duration" is negative). Intuitively, this is

because refinancing costs allow the mortgage value to exceed par, but the value

must come back to par when interest rates decline sufficiently to make
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refinancing very likely. Buser and Hendershott (1984) incorporate the

refinancing wedge into their simulations, and they do indeed (Table 5, p. 420)

obtain the "negative duration" results (find that falling interest rates lower

value) in some of their simulatjons)4

C. Solution Techniques

Because no closed-form solution to the model exists, numerical methods

are needed to obtain mortgage prices. Taking advantage of the expected present

value property discussed above, one might use a random number generating device

to generate numerous interest—rate scenarios, calculate present values for each

scenario, and average the results. Unfortunately, this Monte Carlo technique

won't work because the key element of cash flow, when prepayment occurs,

depends on the value of the mortgage, which is not known in the middle of the

simulation.

Numerical procedures exist for solving difference—equation approximations

to equations like (1.4). These are discussed in Brennan and Schwartz (1977),

Kau et al (l986a), and McDonald (1987). Here we discuss a simple technique

developed by Bartter and Rendleman (1979). The technique assumes risk

neutrality (A=0) and uses a simple binomial approximation to the interest-rate

process given by (1.11.15 The approximation is that the change in r can take

on two values, up or down, with known probability. This simple scheme is used

by Hall (1985) to price callable mortgages.

Figure 4 illustrates how the pricing techniques works in a simple 4-

period model, with and without transaction costs. The interest rate is

initially 10% and must either increase or decrease
by one percentage point with

equal probability; the distribution of interest rate levels at the beginning of

the four periods is depicted in Figure 4a. Now consider a bond that pays $10

in interest at the end of each
period plus $100 in principal at the end of the
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final period. Figure 4b depicts possible prices at the beginning of each

period (with some rounding error). At the beginning of the final period,

interest rates will be 13, 11, 9, or 7 percent, and the bonds will be worth

(approximately) 97.3 (110/1.13), 99.1 (110/1.11), 100.9 (110/1.09) or 102.8

(110/1.07). Moving backward one period, if rates were at 8 percent (the lower

path), then bond holders would get $10 in interest plus a fifty-fifty chance at

either a $100.9 bond or a $102.8 bond. Assuming traders are risk neutral, the

value of this lottery will be the expected present value: [10 +

102.8) J/l.08 = 103.6. Similarly, if rates were at 12 percent (the higher

path), the value of the bond at the beginning of period 3 would be about 96.6.

Going back to the initial period, the market price would be 100.1. The excess

over PAR comes from risk neutrality and the phenomenon depicted in Figure 1.

Suppose that the bond can be called at 100. The pricing is depicted in

Figure 4c. At the beginning of the last period we have a simple choice: pay

$110 in one period or pay $100 now (call the loan). If the interest rate is 9

or 7 percent, we call [110/(l+r) > 100]; if the rate is 13 or 11 percent, we

don't call. Moving back a period, we see that if the rate is 8 percent, we pay

either the $10 interest and accept a $100 liability at the end of the period

(the bond will be worth $100 next period whether r is 9 or 17 percent) or we

pay $100 now. Because llO/(l+r) > 100, we call and pay $100, which is the

value of the bond if r is 8 percent in the second period. If r is 12 percent,

the value is the same as in the noncallable case.

Working back to the first period, we see that the value at origination is

$98.8, so that the value of the call option is $1.2. This approach takes

advantage of the expected-present—value interpretation of the model and the

fact that we know the value at the end of the term. The model can be extended
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to as many periods as desirable and advantage can be taken of the property of

binomial distributions, that they approach the normal. Thus the simple

binomial process can be made into a good approximation to (1.1).

Note that this backward-solution technique incorporates all the

information used in the perfect-markets arbitrage model. In particular,

(1) requiring that the beginning of period price equal the expected
present value of "payout" at the end of the period, including end—
of-period value, is equivalent to requiring that the one period
expected return (a coupon plus expected capital gain) equal the
risk—free rate, which, with X = 0, captures (1.4)

(2) starting at the end automatically captures the terminal condition,
(1.5); because the mortgage in our example is nonamortizing, the
terminal value is par, not zero.

(3) given the limits on the variation in r, (1.6) is irrelevant; but if
we let the number of periods grow, r can become very large and
M(r,t) will approach zero.

(4) that the borrower prepays if the par value in less than the value of
the mortgage if held another period is another way of stating the

optimal prepayment strategy given by (1.7); the borrower chooses the
strategy that minimizes M.

Panels 4d and 4e show bond prices with transactions costs. A $2

prepayment penalty increases value (from $98.8 to $99.7) because borrowers do

not call when the interest rate declines to 9 percent, and when they do call,

lenders receive the $2. A $2 refinancing charge also increases bond value, but

by less than prepayment does because the "old" lender doesn't receive the $2

when call occurs.

While our description emphasizes the binomial model, the numerical

procedures for solving difference equation approximations use the same

principle, that of starting at the end of the term and working backward. With

this method, an interest-rate grid is searched over each period. The problem

with the Monte Carlo method is also clear here. One can't compute prices in

period n without knowing prices in period n+l because they determine whether
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call is optimal. Of course, if the call option is not important, as appears to

be the case in the pricing of adjustable-rate mortgages with rate caps, then

the Monte Carlo method works well.

II. Other Default—Free Claims

Numerous new mortgage instruments are now available and need to be

priced. Pools of fixed-rate mortgages are being partitioned, either by unequal

division of the interest and principal repayment components of the cashf lows

("strips") or by shifting the timing of the mortgage prepayments (CMOs). In

addition, large volumes of adjustable-rate mortgages have been issued since

1982, especially in 1984 and 1985. The pricing of these relatively new

instruments is analyzed in this Section.

While the tools of Section I can be used to price mortgage derivatives

(strips and CMOS) in the manner described below, the perfect-capital-market

assumption (zero costs of setting up the hedge portfolio) that underlies these

tools Suggests that mortgage derivatives should not exist. If costs are

incurred in creating the derivatives but no value is added (the parts sum to

the whole in perfect markets), then creating them is a negative net present

value endeavor. No value is added because the procedures used to set up the

GNMA-Treasury hedge portfolio and to derive the pricing function could be used

to generate expected cash flows identical to any derivative. However, if

setting up the hedge portfolio is expensive because of trading costs, then

scale economies might allow investment bankers to create derivatives less

expensively than individual investors could. Thus imperfect markets can be

used to rationalize the rapid growth ($80 billion in two years) of CMOs.'6

Another rationale for mortgage derivatives are accounting and/or tax advantages

(see footnotes 19 and 20). In any event, if derivatives add value (if slick

investment bankers aren't just fooling investors), then the pricing model

cannot be applied exactly.
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The discussion below explains strips and CMOs and describes how the

perfect—markets model can be used to price them. In the process, we suggest to

whom these new instruments might appeal if markets were imperfect.

A. Stripped Mortgage—Backed Securities17

Stripped mortgage—backed securities represent unequal proportions of the

cash flows from mortgage pools. For example, a pool could be split into two

parts, with each subpool entitled to half of the principal, but one receiving

only one-third of the interest and the other two-thirds. Assuming that the

underlying pool is valued near par, the first strip will sell at a discount and

the second at a premium. Earnings from the parts would respond differently to

declines in interest rates that might trigger prepayment, the discount part

reaping capital gains and the premium part suffering capital losses.

Pricing strips is a fairly straightforward extension of pricing the

underlying mortgage pools. Let us flesh out the previous example, setting

underlying pool coupon rate at 9 percent so that the two strips earn 6 and 12

percent, respectively, on half of the principal.18 The monthly payments based

on a 9% coupon are first divided into interest and principal and then

subdivided 1/3:2/3 (the interest) or 1/2:1/2 (the principal). Equation (1.4)

can be solved for each component, after replacing C with either C/3 or 2C/3.

The call condition which determines r, (1.8), is unchanged because call is

based upon the value of the underlying mortgages, not the individual strip,

reaching PAR. With no imperfections, every mortgage in the pool pays off at

the same moment; each strip receives half of PAR, so that the boundary

condition for each is M(rc,t) = PAR/2.

Figure 5 plots prices for the underlying mortgage pool and the two strips

for different values of r, assuming no transaction costs (or imperfections)

The value function for the underlying pool is identical to the DEM line in

Figure 2. The strips, M6 and M12, have values equal to half of PAR at call;
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M12 always lies above M6 prior to call, reflecting the difference in coupons;

and M6 + M12 = M at all r. Note the sharply different responses to interest—

rate declines as the interest rate approaches the call rate. As expectations

of the below—market 6 percent coupon being called increase, value rises

sharply; at the same time the far above-market 12 percent coupon declines in

value (the shorter expected life of the interest payments outweighs the

increase in present value coming from the lower rate at which the cash flows

are discounted).

Figure 6 plots the price curves for a more severe stripping and the

underlying mortgage pool. Here an 11 percent coupon is divided 4.95 and 6.05

between the two parts, and the principal is divided 99 and 1 percent. Thus the

first part pays a 5 percent coupon (4.95/.99) and the second a 605 percent

coupon (6.05/.01). The latter is close to an interest only security (an 10),

while the low-coupon strip is not far from a principal only (P0) security.

Pure lOs and POs are popular strips. The positive slope of the 605 percent

coupon strip over a wide range of r, and the extreme negative slope of the 5

percent coupon strip are startling.19 The 605 percent coupon could be

especially valuable to thrifts who could use it to offset their long positions

in mortgages; note that a portfolio split equally between 11 percent mortgages

and the 605 strip would appear to be insensitive to changes in interest rates

over a wide range. The 5 percent might appeal to pension funds with their

long—term fixed dollar liabilities.

20
B. Collateralized Mortgage Obligations

While CMOS take a wide variety of forms, the trick is to divide

amortizing mortgages into different maturities: a short one for investors such

as thrift institutions who dislike the "long" repricing period of FRMs, a

long-one for investors such as pension funds and life insurance companies who

dislike the "short" average life of FRM5, and a catch all in—between category
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for God knows whom, to account for the remaining cash flows. The classic CMO

slices the mortgage pool into four sections or portions (tranches from the

french trancher, to cut) by maturity. The shortest three receive interest as

they accrue. The last is often an accrual security "Z bond" with no interest

paid prior to repayment of the principal; until then the face principal rises

at the stated coupon rate for the tranche. The first tranche is repaid

entirely prior to any repayment of the other tranches (receives all distributed

principal repayments), the second prior to any repayment of the third and

fourth, etc.

What can complicate CMO structures is that the interest earned on the

underlying mortgage pool need not be allocated directly among the tranche

holders. Rather, each tranche usually earns a different coupon rate, such that

the pattern of tranche coupons at the time of issue matches that on Treasury

securities of comparable maturity. For example, with 2,7,10 and 20 year par—

value Treasuries paying 6,7,7.5 and 8 percent, the four tranches might pay 6.5,

7.75, 8.5 and 9.25 percent. If the pool has a coupon above those on all the

tranches, there is no problem. But what if the underlying mortgage coupon is

8.5 percent in our example? If the first three tranches prepay immediately, to

take an extreme example, only 8.5 percent interest will be available to pay

holders of the fourth tranche, although they have been promised 9.25 percent.

The conventional solution to this problem is overcollateralization.21

The CMO originator might issue only $90 million of CMOs for $100 million of

mortgage pools. Thus, when principal payments are made (scheduled or early),

not all is used to retire the first tranche. To achieve a triple-A credit

rating, a collateralization/payment rule must be followed to ensure that the

outstanding CMO tranches are small enough that the cash flows from the

remaining collateral prove sufficient to make all promised payments to the

remaining tranche holders. The rule is: if any tranche has a coupon greater
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than that on the underlying mortgage pool, then the outstanding CMO principal

must be less than the present value of the mortgage payments (1) assuming no

prepayment and (2) using the highest coupon paid on any of the tranches as the

discount rate.

In effect, a fifth or "residual" investor in the underlying mortgage pool

exists to "finance" the excess collateral. The difference between the cash

flow received from the underlying mortgage pool and the CMO payments (interest

and principal) goes to the residual holder. Moreover, even if the mortgage

isn't overcollateralized (it has a coupon greater than tranche coupons), the

tranches are generally paid quarterly or semiannually so that the residual

investor gets to use this "float" (and accepts some interest—rate risk). While

the residual claim is usually held by the CMO originator, this claim can be

sold and can be priced like the other parts of the CMO.

Pricing the tranches is similar to pricing mortgage strips. The cash

flows must be carefully identified, taking into account the timing of principal

payments as driven by the collateralization requirement (where relevant)

Further, the value of all tranches goes to par upon call, which is determined

by borrower behavior vis—a-vis the underlying mortgages.

Figure 7 illustrates the price behavior of a three—tranche CMO and its

underlying mortgage pool, assuming perfect arbitrage and no transaction costs.

To simplify the diagram, all tranches are assumed to place equal claims on the

mortgage principal and to have coupons below that on the underlying pool (no

overcollateralization). The value responses of the tranches (M1, M2 and M3) to

changes in interest rates are markedly different. The short tranche responds

little given its short life, while the accruing Z-bond drops off sharply (has a

far steeper slope than the underlying mortgage pool).

Again, the perfect-markets pricing model requires that the parts

(tranches in this case) sum to the whole. Just as with strips, the pure—

arbitrage assumption has to be relaxed for the origination of CMOs to have
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economic value. Further, with the optimal call model and no mortgage

transaction costs (or equal costs for all borrowers), all tranches prepay at

the same point in time. This clearly mitigates the point of CMOs (that the

first tranche prepays quickly while the last receives no payment for perhaps 10

years or longer). Sluggish prepayment, likely based on varying transaction

costs (Section IV), is needed for CMOs to make a lot of sense.

Recent CMOs have departed from the classic form (Roll, 1987). The

innovations are a planned—amortization class (PAC), a tranche whose

amortization follows a known schedule except under extreme prepayment

scenarios, and a floating—rate tranche (almost always with a fairly tight rate

cap). Such CMOs greatly complicate the collateralization issue and the pricing

of the other tranches and the residual. Analyzing these securities lies beyond

the scope of this paper.

C. Adjustable-Rate Mortgages

Another phenomenon of the 1980s is adjustable-rate mortgages (ARMs).

Over a third of the loans originated since 1983 have had adjustable rates, and

during 1984 and 1985 the percentage exceeded a half. Because pure adjustable-

rate mortgages with short adjustment intervals never vary significantly from

par, pricing them is trivial, but virtually no pure ARMs exist. Nearly all

have life—of—loan rate caps, and most have per—period adjustment caps.

The surge in ARM originations was due to an increased willingness of

households to accept interest rate risk, an increased desire of thrift

institutions to reduce interest rate risk, and relaxation of most governmental

restrictions impeding the issuance of ARMs. When high interest rates sharply

reduced the size of loans households could qualify for, ARMs, which had lower

initial coupon rates than FRMs owing to both an upward sloping yield curve and

the far lower value of call protection given by ARMs (see below), became
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relatively more valuable to households. Moreover, the desire to match asset

and liability repricing periods led thrifts to structure ARMs to address the

qualification problem (to offer initial teaser or below-market coupon rates).

Rate-capped ARMs are usefully viewed as loans with freely floating rates

combined with both an automatically exercised option to borrow at below—market

rates if interest rates rise too fast (adjustment caps) or too. far (life-of—

loan caps) and an option to refinance if interest rates fall either so fast

that rate floors bind or so far that lowering the base for the life-of-loan cap

is profitable. The ARM acts like an FRM both when interest rates get very low

and when they get very high. When rates are sufficiently low, either the ARM

is called or the interest-rate variance gets so low that the probability of

binding caps becomes zero. When rates are sufficiently high, the life—of-loan

cap binds so tightly that the probability of rates dropping enough for the ARM

coupon to decrease approaches zero. Figure 8 plots the value functions for a

noncallable mortgage AM, an FRM with the same coupon BM, and an ARM whose

coupon plus its life-of-loan cap equals the FRM coupon CM.

Because the rate caps are automatically exercised options, caps can be

valued by Monte Carlo methods (Asay, 1984 and Lea, 1985). However, more

complex valuation techniques are needed if call (which is an endogenously

exercised option) is an important consideration. With call, one has to solve

the pricing problem backward, as shown in Figure 4. But with per period

adjustment caps, a forward solution is also needed because the previous period

coupon rate must be known to determine if the adjustment cap/floor binds. Kau

et al (l986b) have solved this problem by introducing a second state variable

to keep track of the previous period coupon rate so that backward solution

techniques can be used. The importance or value of the call option is thus a

significant issue.
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Buser, Hendershott and Sanders (1985, PP. 257—58) argue that the call

option on a 5 percent life—of-loan rate capped ARM has trivial value. The

simulations of Kau et al (198Gb, Table I) confirm this. Even in a high rate—

volatility environment (a = 0.05, see note 11), the call value in a flat

interest—rate environment for a near-par ARM with a 5-point life-of-loan cap

and no per—period cap (an= /5 ARM) is 0.005 percent of value with no

transactions costs. The same values for ARMs with per-period rate caps/floors

of 1 and 2 percentage points along with the 5—point life-of—loan cap (1/5 and

2/5 ARMs) are 1.42 and 0.35 percent. If refinancing costs were added, as in

Section IB, the value of call on the 2/5 ARM, the most popular of all ARMs

originated, even in a high rate-volatility environment, would probably be

negligible.22 Thus, Monte Carlo methods that ignore the prepayment option are

likely sufficient for pricing 2/5 and =/5 ARMs in a high volatility environment

and even the 1/5 ARM in a low volatility environment.

III. Pricing Default Risk

The model of default risk is analogous to that of prepayment risk.

Default may be viewed either as a put option that gives the borrower the right

to sell the house to the lender at a price equal to the value of the mortgage

or a call option that gives the borrower the right to buy back the mortgage in

exchange for the house. As in Section I we first analyze a frictionless model,

where the lender's only recourse is to take over the house, and work our way up

to more complicated models that incorporate other costs. To keep matters

simple, we begin by assuming constant (or at least nonstochastic) interest

rates, so that we do not have to worry about interest—rate fluctuations and

prepayments made in response to them. In the extensions, this assumption is

relaxed and transaction costs are introduced. A discussion of mortgage default

insurance concludes the section.
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A. The Basic Model

The options approach to valuing default in mortgages began with Asay,

1978 (see also Masulis, 1982). Cunningham and Hendershott (1984), Epperson et.

al. (1985) and Kau et. al. (1986a) have studied similar models. The structure

of these models parallels that of the prepayment model in Section I.

The basic model has one state variable, house price. We assume that the

change in house prices (H) is given by

(3.1) dH = uH(H,t)dt + cS(H,t)dz,

which is interpreted as before. While this function can take on a variety of

forms, the most common is

(3.1') dH = hHdt +cHdz,

which implies that the percentage change in H has a constant mean and variance.

As in Section I, we view the mortgage as made up of a basic default—free

mortgage, M(r,t), minus an option, in this case to default on subsequent

payments, D(r,H,t). We assume that r is constant and supress it.

The papers cited above proceed by focusing on a portfolio of mortgages

and housing constructed to have no instantaneous risk. As was the case in

Section I, the zero arbitrage equilibrium condition implies that the expected

return on the mortgage must equal the risk free rate plus an adjustment for

risk. The analogue to equation (1.2) is

(3.2) uM(H,t) = rM +

where is the price of house price risk.
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As in the case of the two-state variable model in Section I-B (from

Brennan and Schwartz, 1977 and 1985), the value of the risk adjustment can be

inferred. Indeed in this case the inference is straightforward. We know that

the expected return on the house itself, composed of service flow ("dividend")

and expected capital gains, is given by

(3.3) RH = sH + UH(Hlt)f

where s is the per dollar service flow from the house. For reasons identical

to those behind (1.2), equilibrium in the market for holding houses requires

that:

(3.4) RH = rH + XHS(H,t)

Equating (3.3) and (3.4), can be inferred from
23

(3.5) AH6(H,t) = sH + UH - rH.

The expected yield on the mortgage, for the same reasons developed in

Section II for equation (1.3), is given by

(3.6) UM = C + Mt + uH(HEt)MH +

Substituting (3.5) and (3.6) into (3.2) yields

(3.7) C + Mt + (r-s)HMH + rM,

which is the basic equilibrium condition.

Note that both A and u. the expected growth rate in house prices, have

been eliminated, just as both the risk premium for and expected growth rate of

the long rate were eliminated in the Brennan—Schwartz two—state call model.
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unfortunately, the elimination is somewhat less valuable here because the

service flow or "rent" from the house is added as a determining variable. This

flow is not easily specified.

As before, an infinity of curves satisfies (3.7), and three boundary

conditions are needed (one for t and two for H) to determine the optimal one.

Again, the terminal condition reflects amortization:

(3.8) M(H,T) = 0,

as in (1.5). Also, the value of the default option goes to zero as H

approaches infinity. Equivalently, the mortgage's value approaches that of the

comparable default—free mortgage:

(3.9) M(cx,,t) = M or D(€,t) = 0.

As before, the final or free boundary condition comes from assuming

rational exercise of the option. Ignoring transaction costs or recourse that

reaches into owner resources beyond the house, the option will be exercised

when M = H. Figure 9 depicts the value of the mortgage (at a given t) as a

function of H. The value of the default-free mortgage is simply its par value

as represented by the horizontal line M. M lies below that line by the value

of the default option, D. M must also be on or below the 45 degree line along

which H = M. Finally, M approaches M (D goes to zero) as H goes to infinity.

The higher is the initial house value (H in the figure) and thus the lower the

loan-to-value ratio, the lower is D at that time.

As in Section I, an optimal exercise strategy exists. Because the option

is exercised along the 45-degree line, the problem is to find the critical H,

H, at which to put the house to the lender, subject to touching the 45-degree

line. Again the borrower chooses an H, determining a function M(H,t), that
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minimizes the value of the mortgage (his liability) for any value of H. The

lowest curve that satisfies (3.8) and (3.9) and still touches the 45-degree

line is the one that is just tangent to the 45 degree line. Again assuming an

interior solution, the condition that nails down the price function is:

(3.10) MH (H ,t) 1 [DH(H,t) = 1] at M = H.

This fully specifies a very simple model of the price of a defaultable

mortgage. While we analyze default insurance below, here we note that the up—

front premium, I, for 100 percent insurance when M = PAR is simply D in the

model.

Two observations on this model are:

(1) This model of default is entirely equity based; people default if
and only if they have no equity. But equity is measured by H-M, not H-M,
the usual measure of equity. The difference is that H—M includes the
value of the option to default in the future. Rational households with
house price only slightly less than mortgage balance do not default; the
gain from default is less than the cost of putting up equity on another
house purchase, equity that would be at risk. Households maintain the
option to default later on because they have an underpriced option.

(2) The value of M is independent of borrowers' characteristics, unless
they affect the equation for house price (e.g., slovenly individuals
might raise s) . Note, in particular, that "payment burden" has no place
in this model. A borrower who can't make the payments sells the house if
there is positive equity; if there is negative equity, default occurs in
any event. In extended versions with costs of exercising the option
(discussed below), personal characteristics are more likely to matter.

B. Extensions

Here we consider two extensions, similar to those in I—B, adding more

state variables and transaction costs.

1. Adding State Variables

Asay (1978), Epperson et al (1985), Kau, et al (l986a), Titman and Torous

(1986), and Rosenberg (1986) add the short rate to the model. The main reason

for the extra variable is that when r changes, the value of the mortgage
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changes, affecting equity and therefore default. For instance, a decline in H

that would otherwise trigger a default might not if r has risen because the

borrower would wish to maintain what is now a low-rate mortgage.

We want to specify a pricing function M(r,H,t). Formally, the analysis

proceeds along lines entirely analogous to the two state Brennan—Schwartz model

in Section I, where the subscript 2 now denotes house price and subscript 1

still denotes the spot rate of interest. Equilibrium requires that:

(3.11) PlS2MrH
+ M(u1

-
X161)

+ MH(r-s)
+

Mt
+ C = rM.

Note that, as above, we do not need to know the price of house—price risk or

the expected growth of house prices, but we cannot eliminate these terms for r.

We assume first that M is a fixed-rate mortgage with no prepayment

option. In that case, the five boundary conditions (one for t and two each for

r and H) resemble those of the one state variable model with call [equations

(1.5), (1.6) and (1.7)] but with default [(3.9) and (3.1O)).24 The difference

in boundary conditions is that default, not call, can now be triggered by an

interest-rate decline. Hence, we need to replace (1.7) with a condition for

default when r changes. The condition is illustrated by the BM curve in Figure

10. When r falls sufficiently, equity will be zero. For reasons entirely

analogous to those behind Figure 2 and equation (1.7), the new boundary

condition becomes:

(3.12) M(rd,t) = 0 at M = H.

where rd is the critical default interest rate. As before, we can view default

as a put on a house, or, in this case, a call on the mortgage where the

exercise price is the house value. Hence, the similarity between (3.12) and

(1.7).
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In this expanded model, intuition is complicated because two offsetting

effects exist. First, interest-rate variance raises the value of the default

option, and thus lowers the value of the mortgage, on the grounds that

increasing risk generally raises option values. Second, interest—rate variance

increases the value of the mortgage over its convex range because interest—rate

volatility raises prices of noncallable fixed—income securities (declines in r

raise value by more than increases lower it, as depicted in Figure 1). In the

Kau et al (1986a, Table 8) simulations, the second effect overcomes the first

except in the case of high values of house price variance or low down payment

(in which case D becomes very valuable and very sensitive to changes in r).

These simulations assume no correlation between r and H. One would

expect that high negative correlation between r and H (as would be expected

when real interest rates change) would make default less valuable because the

low house prices that trigger default would be associated with high interest

rates, which would make the existing low rate mortgage more valuable and thus

reduce the probability of default. Unfortunately, neither Epperson et al

(1985) nor Kau et al (l986a) considers simulations with a negative p.

2. Both Default and Prepayment for FRMs

Kau et al (l986a), Titrnan and Torous (1986) and Rosenberg (1986) consider

both default and prepayment. These models are similar to that just discussed,

but with both optimal prepayment and optimal default.25 The free boundary

condition becomes the minimum of (1.8) and (3.12). Introducing prepayment

should make default less valuable because the critical interest rate at which

prepayment will trigger r, can exceed that at which default will trigger call,

rd (PAR, the exercise price for the prepayment call, is less than H, the

exercise price for default call). This situation is illustrated by the CM

curve lying below the BM curve in Figure 10. This intuition is somewhat
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confirmed in the Kau et al simulations (their Table 8 comparing contracts III

and VI); however, the comparisons with and without prepayment are of mortgages

with different coupons, and hence they are not quite comparable.26

3. Transaction Costs

Not surprisingly, the frictionless default model does not explain FHA

default data very well. Foster and Van Order (1984) estimate an "option-based"

model of default and find that even when equity is quite negative, the

probability of default is under 10 percent. Nonetheless, they and others (see

Campbell and Dietrich, 1983, and Swan's 1982 survey of the literature) find

that equity is a major factor in explaining default. This suggests the

inclusion of default costs in a way similar to the inclusion of transaction

costs in Section I.

In their pricing of mortgage default insurance, Cunningham and

Hendershott (1984) consider two types of costs: (1) costs to the borrower

(moving costs, lower credit rating, and lender recourse to the borrower's other

assets less free rent) and (2) costs to the lender, which they divide into lost

interest plus administrative costs and the cost of selling the house. We

denote the borrower costs by CB and the lender costs by CL + aH, where is the

assumed proportional cost of selling the house, and incorporate these costs in

Figure 11, which is a modification of Figure 9 and thus is similar in purpose

to Figure 3 in which prepayment costs were added to the frictionless prepayment

model. To the borrower, the new exercise price is H + CBI and the solution is

the same as before, a tangency, but now with M = H +
CB.

This determines the

new, lower critical house price, H':

(3.10') M (H',t) = 1 at M = H + CH C B

In the Figure, the value of the mortgage to the borrower is given by AM,

compared with the curve in the frictionless case, BM.
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Again, a wedge exists between borrower and lender values. As in the

prepayment model, the lender's (and hence the market's) value is determined by

the borrower's tangency condition. In this case the boundary condition for the

lender becomes:

(3.10") M(H',t) =
(l—cz)H—CL.

As can be seen from the figure, if CL and are zero, then M(H,t) to the lender

is always greater if the borrower has transaction costs (curve CM), but if the

lender's costs are large enough, 4 may be worth less than in the frictionless

case (curve DM).27

This model is straightforward, but if we pursue the effects of costs more

thoroughly, we are forced to face up to some complications. Consider the cost

of selling a house and moving into a new one, and suppose that borrowers move

at random intervals. If a borrower is already moving, moving costs do not act

as a deterrent to default and the existence of selling costs acts as an

incentive. That is, default costs for movers, C, are significantly less than

costs for those who do not have to move, CB (Cunningham and Hendershott, 1984).

Thus, default is more likely for those who have to move. Moreover, default now

depends on a personal characteristic.

Foster and Van Order (1984) suggest that we might extend the model by

assuming that, for borrowers with positive H_M+CB, default is the intersection

of two events: (1) negative equity after selling costs, and (2) the occurrence

of some event (more than likely a bad one) that entails a move. A simple way

of modelling this is to introduce a new state variable similar to the random

prepayment variable in Dunn and McConnell (1981), which has a Poisson

distribution and takes on a unit value when people move. This also alters the

boundary conditions: when the random prepayment variable is zero, people will

only default if H =
M_CB;

but if the variable is unity, they will default if H
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=
M—C.

Note, however, that the extension really introduces additional state

variables (sickness, divorce, unemployment, etc.) and that the model should be

expanded to account for optimizing should these events take place.

Finally, we note that households should be expected to default ARMs more

frequently than FRM5 (and the value of D for ARMs should generally be greater

than that for FRMs). An increase in interest rates lowers defaults on FRNs,

because existing loans now have below-market rates, but raises defaults on

ARMs, because of the payment shock from the rate increases. Defaults on both

instruments are largely independent of interest—rate declines because both stay

at par (FRM5 are called).28

C. Mortgage Insurance Contracts

Currently FHA is charging a one—time upfront fee to insure (100%) FHA

mortgages. As noted above, in the absence of transaction costs, the "fair" fee

should equal the value of the default option in the simple (constant interest

rate) model. When interest rates are allowed to vary, when coverage is less

than 100 percent (and pays off at PAR rather than market), and especially when

transaction costs are introduced, the calculation is altered in significant

ways.

The basic partial-differential equation for an insurance contract is

essentially the same as (3.11), but with a fee paid to the insurer replacing

the coupon payment. The problem is to find the appropriate "upfront" premium,

given the fee payment (zero for FHA)
29

The difficulty in pricing insurance is

the complicated boundary condition describing the payout at default.

The critical house price at which default occurs is given by (3.10'). At

that price, the payoff to the borrower (D) and the cost to the insurer/lender (I)

are:
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D M - (H +
CB)

(3.13) —I M - [(1a)H -
CL].

CB and CL are the costs discussed above and a is the fractional cost of selling

the house. With 100 percent coverage on the PAR, not the market, value of the

mortgage, the insurer pays I = PAR -
[(l_a)H_CLI and the lender gains PAR -

Private mortgage insurance is more complicated in that insurers pay a

fraction, 8, of the claimable amount (principal balance, delinquent interest,

taxes and insurance paid, legal fees and miscellaneous expense). The insurers

loss is then 8(PAR + CL), and the lender loses M - (1 —cx)H + (l8)CL PAR.

One point of interest is whether a one state (house price) or two state

(house price and interest rate) model is needed to value insurance contracts.

Asay (1978) shows and Epperson et al (1985) confirm that the interest-rate state

variable may not be needed. When the interest-rate variance rises from a

moderate to a high level (Table 5, scenario II versus IV), the value of the up-

front insurance fee changes by less than one percent.

IV. Realistic Pricing and Testing: Suggestions for Future Research

Early research on pricing mortgages was triggered by an interest in

explaining changes in spreads between yields on mortgages traded in the rapidly

expanding secondary market and on Treasuries. The GNMA—Treasury spread fell

throughout the early and middle l970s, an observation attributed to increased

efficiency of the GNMA market. However, the spread rose in the late l970s and

early l980s, something which could not be attributed to increased efficiency. At

about that time (see Hendershott and Villani, 1981), attention shifted to the

call aspect of mortgages; yield spreads could increase because of changes in

interest rate volatility or the shape of the yield curve.
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HendershOtt, Shilling and Villani (1982) regressed the "true" GNMA—

Treasury spread (see Hendershott, Shilling and Villani, 1983) on a proxy for

the value of the call option (the spread between 20-year utility bonds, with 5—

years call protection, and industrial bonds, with 10-years call protection) and

the extra taxation of GNMAs at the state and local level. Both variables were

statistically significant. Brooks and Quick (1983) regressed conventionally—

measured GNMA yields on a set of variables that included interest rate

volatility and the slope of the yield curve. While that paper was not intended

as a test of option pricing models, it confirmed their propositions that

greater variance and a more downward sloping yield curve tend to raise GNMA

rates (relative to Treasuries).

This interest in explaining market prices and yields is largely

absent from the formal pricing literature; few studies attempt to obtain

realistic price estimates and even fewer compare estimates with market prices.

Buser, Hendershott, and Sanders (1985) obtain estimates of a five—percent

life—of-loan rate cap on ARNs for historically observed term structures and

measures of interest—rate volatility, but data on ARMs with this cap are not

available for comparison. Cunningham and Hendershott (1984) estimate fair

market fees for FHA default insurance for different maturity fixed—rate

mortgages over a range of loan-to—value ratios under various assumptions about

borrower transaction costs and realistic estimates of FHA losses if default

occurred. Because FHA has historically charged a single fee for all mortgages

and loan-to—value ratios, market fees could not be contrasted with the

estimates.

Only Hall (1985) and Titman and Torous (1986) compare price estimates

with market prices. Using a variant of the one-state models in Section I, Hall

claims some confirmation that the call option in GNMAs is priced properly, but

the data are too shaky to support rigorous inference. Using a variant of the
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two—state variable models in Section III, Titman and Torous loosely confirm

that the default option in commercial mortgages (an area where "ruthless"

exercise is more plausible) is priced properly, but uncertainty about the

variance of changes in property prices makes testing difficult. Dunn and

singleton (1986) attempt an indirect test of the efficiency of the GNMA market,

but they do not test specific option—based pricing models.

That some researchers seem more concerned with whether mortgages can

default during or only at the end of the month than with homeowner's obvious

reluctance to default when they have negative equity or with the large losses

insurers suffer when default occurs illustrates the sharp division of labor

that exists in modern economics, which permits one to distain interest in

weighing one's explanations against real—world phenomena. The time is ripe for

applied econometricians to turn to this field, and they are beginning to do so.

In this closing section, we first draw together the useful results of the work

to date and then suggest needed extensions of the models.

A. Structuring and Specifying the Pricing Model

Application of the pricing methodology requires specifying state

variables and parameters values. These two decisions are discussed in turn.

1. The Needed Number of State Variables

The computational complexities of the backward solving pricing methods

are such that minimizing the number of state variables is important. Indeed,

to the best of our knowledge, no one has yet worked with a three state variable

model. Nevertheless, our analysis suggests that possibly four state variables

are needed for pricing: two interest rate variables to model call, house price

to model default/insurance, and a fourth variable to model ARMs or CMOs where

keeping track of past interest rates (prepayments) is crucial. Fortunately,

this list can be pared.
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Analysis in process by Buser, Hendershott and Sanders (1987) indicates

that only one interest-rate state variable is needed because a one—state

interest—rate process can be specified that closely approximates prices from a

given two—state process. That is, even if the interest rate process were

"known" to be driven by two state variables, a one state process can be used in

computing prices for a wide range of parameters. Other economies follow from

the simulations of Epperson, Kau and their colleagues (1985, 1986 ab). Because

these were discussed earlier, they are just summarized here:

(1) one state variable is sufficient to price fully default-insured
mortgages (GNMAs); even though default raises value when the defaulted
mortgage is below—par, the impact is trivial,

(2) one state variable is sufficient to price default insurance; even
though interest—rate declines could raise the market value of mortgages
sufficiently to trigger default, the impact is trivial, and

(3) often a forward pricing (Monte Carlo) methodology is sufficient to
price default—free ARMs; only when interest—rate volatility is high and
floors of less than two percentage points per adjustment are being
analyzed does the call on ARMs have more than a trivial value.

2. Pararneterizing the Models

Brown and Dybvig (1986) use the CI&R term-structure model to estimate the

parameters of the underlying process [equation (1.1') above] for the short

rate. This is relatively easy to accomplish because the CI&R model (with one

state variable) yields a closed form solution for the price of a zero—coupon,

risk—free security, and the solution is a nonlinear function of three

parameters, r, and t. Using nonlinear least squares, these parameters can be

estimated on any date with that day's yield curve. From these estimates, the

variance parameter, c in (1.1') can be inferred. The remaining parameters

cannot be uniquely determined, but if we know one of them (e.g.,A), we can

determine the other two (9 and k).
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Titman and Torous exploit their model and end—of—month yield curve data

to estimate end-of-month mortgage prices.32 A key to using the yield curve

data is the observation (in Titman—Torous and Buser, Hendershott, and Sanders,

1985 and 1987) that for a given set of data the answer to the mortgage pricing

problem is invariant to the value of A in the sense that if we pick an

arbitrary x, say ' use A to infer 8 and k from the Brown-Dybvig model, and

then use that 8, k and X to estimate M, our answer is invariant to the choice

of . In fact, Buser, Hendershott and Sanders (1987) argue that

combination of 8, k and . which, along with an estimate of c, reproduces the

yield curve will give call values within a percent or two of any other (for

either one or two state variable models).

The reason for this can be seen from examining the equilibrium condition

(1.4) in the one state variable model in Section I. The expected growth in

interest rates (which is determined by 8, k and r) and the price of risk (A)

enter together and additively in the term multiplied by M. They do not enter

in any other term or in the boundary conditions. Hence, increasing one and

decreasing the other in the right proportion won't change the answer.

Intuitively, the pricing model arbitrages off the yield curve. Only the shape

of the yield curve matters; the specific contributions of expected interest

rate changes or risk aversion in forming this shape are irrelevant (Buser,

Hendershott and Sanders, 1985 and 1987).

In contrast, no analogue to the term structure exists from which we can

deduce the expected split of housing returns between appreciation and rental

flow. Thus house prices must be modelled explicitly. Data are a problem in

estimating such models because few sources exist of transaction prices on the

same houses over time at frequent intervals. Foster and Van Order (1984) use
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an indirect approach to infer the variance of house prices from a default

model. In any event, getting up—dated estimates of the growth rate (or rental

flow) and variance of house price changes will be difficult.

B. The Future for Option Pricing Models

Because of the large amounts of money involved in trading mortgages, a

competitive market exists in mortgage models. The market is on Wall Street,

and it is one with imperfect information in the sense that little is published

about the pricing models used by investment bankers. However, from what we can

infer from nontechnical publications and private discussions,

(1) an appreciation exists of the importance of the option aspects
discussed above. For instance, Askin et al (1987), discussing
Drexel—Burnham'S model, refer to the Cox, Ross, Rubenstein (1979)
approach to option pricing as the basis of this model, and the
Salomon Brother's model, apparently uses a Monte Carlo approach to
option pricing (Waldman and Gordon, 1986). The output of these
models is (see also Jacob and Toevs, 1987) either an option—based
price or an option-adjusted yield.

(2) however, the centerpiece of Wall Street research is the recognition
that prepayments are very complicated and need to be modelled as
more than a boundary condition. For instance, the Salomon Brothers
model downplays the rigor of the option model by making prepayment a
direct function of interest rates (rather than mortgage price, which
the strict model implies is the right variable) and in that way
Monte Carlo techniques in conjunction with their prepayment model
can be used without the endogeniety problem discussed in I-C above.
This approach is also followed at Goldman, Sachs & Co. and, we
expect, other Wall Street firms.

For obvious reasons we have nothing to report on the details of the

prepayment functions used by investment bankers. Preliminary work by Green and

Shoven (1986) and Foster and Van Order (1984, 1985) suggests that more is

involved in the sluggishness of exercising the prepayment or default option

than can be captured by simply adding transaction costs. In particular, a

simple transaction—costs model would imply that mortgage prepayments should be

closely clustered, which does not seem to be the case. While an additive

transaction costs term of the appropriate magnitude might yield accurate prices
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for GNMAs (although the market for models does not suggest this possibility is

taking seriously), the term would be unlikely to yield accurate prices for the

different tranches of CMOs. Even if "averag&t prepayment for the GNMA pool can

be made equivalent to gradual prepayment, with average prepayment the short

tranche would prepay too slowly and the long tranche too rapidly.

If the formal pricing models are to be successful in the competitive

market for models, far more serious treatment of prepayment will be necessary.

We have two alternative suggestions for researchers:

(1) estimate a probabilistic model of prepayment, along the lines of
Foster and Van Order (1985), assuming that the percent of mortgages which
prepay is a nonlinear function of the difference between market and/or
par values. Then add this function to the coupon, scrapping the boundary
condition (1.7) for frictionless call. The nonlinearity of the
prepayment function would generate the negative convexity depicted in
Figure 2.

(2) assume transaction costs as in Buser and Hendershott (1984) or
Cunningham and Hendershott (1984) but let the costs vary across
borrowers. Specifically, the mean and variance of the distribution of
transaction costs can be estimated from prepayment data via maximum—
likelihood techniques. These models could then be used to price
mortgages with different transaction costs, and the value of the pool of
mortgages would be the sum of the value of the individual mortgages.
This procedure would permit analysis of the effect of changes in
transaction costs.
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Footnotes

1
For a short survey of the published mortgage pricing research prior to 1986,

see Hendershott (1986). Of course, much research is also being conducted by

Wall Street firms (see Fabozzi, 1985 and 1987).

2
CI&R show how (1.1), (1.1'), or generalizations of them might arise in a

general equilibrium model.

By complete we mean that if there are n state variables (e.g., interest rates

upon which M depends), then there must be at least n independent securities

that depend on these state variables. This is necessary for the hedge

portfolio to be created.

The intuition is that the hedge portfolio is perfect insurance and can be

created with constant returns to scale. Hence the x's are the linear prices

that would be charged for a competitive insurance contract.

See Malliaris and Brock (1981) for a discussion and some applications.

6
The reader will probably note the similarity of this issue to the proposition

(Jensen's Inequality) that E[F(X)] F[E(X)] if F is nonlinear.

Technically, uncertainty requires keeping some of the second order effects in

the Taylor expansion used to approximate M. The "½" in (1.3) comes from this

second order term.

8
In the implementation of pricing models, prices are calculated over a finite

interest—rate grid, the highest value of which is far (infinity) short of

infinity. A reasonable boundary condition here is that the valuation function

is smooth (M = 0) at extreme r's.
rr
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The solutions to (1.4) that satisfy (1.5) and (1.6) can never intersect (in

Figure 2). Hence, a trajectory that minimizes the value of M for a single r

minimizes value for all r's.

10
This problem cannot be finessed by manipulating the choice of state variable

because the hedge portfolio used to eliminate instantaneous risk must contain

the instantaneous T-bill rate.

This possibility can become a probability for high coupon GNMAs on

nonperforming rental properties.

12
Kau et al (1986a) use interest rate uncertainty scale parameters [a in

equation (1.1')] of 0.05 and 0.15; over the last decade this parameter has

varied between roughly 0.015 and 0.05. Thus their low parameter value is at

the high end of historical experience. For the house price uncertainty scale

parameter [am (3.1') below], they use the same values; other authors have used

values ranging from 0.08 to 0.12. We interpret's of 0.05 (interest rate) and

0.15 (house price) as a high variance world.

13
Cassidy (1983) and Dietrich et al (1983) provide estimates of the value of

due on sale; Hendershott (1986) discusses the estimates.

14
For a fuller discussion of transaction costs, see Dunn and Spatt (1986).

15
Cox, Ross and Rubinstein (1979) discuss how risk can be handled.

16
Whether CMOs have lowered mortgage rates to borrowers is a separate

empirical question. Brooks and Quick (1983) find some evidence that a dummy

variable for CMOS has a negative effect on GNMA rates, but in the best

specified equations in the paper, the effect is small (10 to 20 basis points)

and of questionable significance.
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17
This discussion draws heavily on Roll (1986).

18
If current income is more important to some investors than is true economic

income, then strips with artificially high coupons have "extra" value.

19
A highly placed investment banker has suggested that investing in both the

10 and the P0 could be superior to investing in the underlying mortgage. If

interest rates rise, the capital loss on the P0 can be taken against current

income, while the capital gain on the 10 can be allowed to ride. If interest

rates fall, the 10 can be sold and the P0 retained.

20
This discussion draws heavily on Roll (l987a).

21
In addition, up to two percent overcollateralization seems to be required in

order to establish equity investment by the creator of the CMO. The new REMIC

vehicle introduced in the Tax Reform Act of 1986, which can be classified as an

asset sale rather than debt issue, removes this requirement.

22
With an 1½ point up—front fee, the 0.35% drops to 0.11% (Table II).

23
solving for s, s = r + - uH/H. Some might recognize this as the

rental cost equation for owner-occupied housing in the absence of taxes.

24
Epperson et al (1985) and Kau et al (1986a) modify the default model by

arguing that defaults will not happen until a payment is due, so that for a 30—

year mortgage there is a string of 360 European options instead of a boundary

condition that applies continuously.
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25
Kau et al (1986a) assume that default occurs only at the end of the month,

while prepayment can happen anytime. We presume, although no simulations

analyze the difference, that whether or not defaults occur at intervals or

"continuously" is of little consequence.

26
In particular, their experiments hold price constant and look at required

coupon.

27
Because the curves come from the same partial differential equation,

differing only by boundary conditions, they cannot cross (see footnote 9).

28
Note that if there are costs of refinancing, ARMs will default less than

FRMs when interest rates fall. Hence, it is possible that D will be worth more

for FRMs than ARMs when rates are expected to fall.

29
Insurers receive their income from borrowers as an annual fraction of the

remaining balance as long as the contract is in force plus a larger one—time

first year fee. The latter varies with the initial loan—to—value, the extent

of the coverage (fraction of claimable amount), and the type of mortgage (ARM

insurance is more expensive, as was argued above). For over 20% coverage, the

continuing fees are 30 basis points for FRMs with loan-to-values of 90% or

less, 35 basis points for loan-to—values above 90%, and 40 basis points for

"nonfixed-payment loans" (ARMS, short—term balloons, and GPMs). (These prices

are from Mortgage Guarantee Insurance Corporation's premium schedule dated May

1, 1985; MGIC's prices were constant for the 25 years prior to 1982 and since

then have been increased a number of times.)
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30
See Van Order (1987) for a synthesis and interpretation of the literature on

the appropriateness of FHA default insurance fees.

31
The analysis is further complicated by the possibility that the insurers

themselves may default (fail to perform). Thus the lender's potential loss is

I.

32
Note that the Titman-Torous procedure involves an internal inconsistency.

The pricing model assumes that k, e, and A are constant when making the

arbitrage argument, but the parameters are reestimated every month.
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Figure 1: Uncertainty and Expected Returns
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Figure 2: Mortgage Prices with One State Variable and No Transaction Costs
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Figure 3: Mortgage Pricing with Transaction Costs.
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Figure 4: Simple Binomial Model
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Figure 5: Values of 6 Percent and 12 Percent Strips and the Underlying MBS
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Figure 6: Values of 5 Percent and 605 Percent Strips and the Underlying MBS
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Figure 7: Values of CMO Tranches and the Underlying MBS



Figure 8: Value Functions for Callable and Noncallable FRMs and an ARM Whose
Coupon Plus Life of Loan Cap Equals the Coupon on the FRMs
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Figure 9: Price of a Defaultable FRM as a Function of House Value



—62—

Y(we.

i#- 4_
Figure 10: Price of Defaultable FRM as a Function of the Interest Rate
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Figure 11: Pricing Default with Transaction Costs

M H + C5

C
CL

k.5.Q




