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1. Introduction

Activist shareholders—who seek to alter corporate policies and thereby affect share values—play

an important role in modern corporate governance. The Economist describes them as “capital-

ism’s unlikely heroes” and reports that between 2010 and 2014, half the companies in the S&P 500

index had an activist shareholder and one in seven was the target of an activist campaign (The

Economist, February 7th 2015). Activism comes in many forms. Perhaps the best known involves

hedge funds accumulating stakes in firms with the intention to create value by influencing manage-

ment.1 Existing shareholders can turn from being passive to being active when they recognize an

opportunity for enhancing the value of their holdings.2 And activist short-sellers can take actions

so as to reduce firm value to benefit their short positions.3 The profitability of activism for investors

hinges on their ability to trade before stock prices reflect their intention to become active. Thus,

there is a fundamental link between market conditions (liquidity), activism, and firm value.

Differing views have been expressed regarding the effect of market liquidity on activism. Coffee

(1991) and Bhide (1993) argue that higher liquidity should be associated with lower economic

efficiency, because liquid markets make it easy for large shareholders to ‘take the Wall Street walk’

(i.e., sell down their positions) rather than engage actively in a firm’s corporate governance when

intervention might increase firm value. A certain level of illiquidity might then be desirable, to ‘lock

in’ large shareholders. Maug (1998) argues the opposite, pointing out that greater market liquidity

enables a potential activist who does not already own a sizeable initial toehold to accumulate more

shares and eventually become active. Of course, both market liquidity and activism are endogenous.

Whether an exogenous shock moves the two in the same direction or in opposite directions depends

on the nature of the shock. It also depends, as we show, on the activism technology. The existing

literature considers only binary forms of activism, in which the activist’s action leads to a fixed

increase in firm value. In reality, there are many different types of activism, including those with

non-binary effort and those resulting in a non-binary effect on firm value. When an activist seeks

1Prominent examples include William Ackman, Carl Icahn, Daniel Loeb, and Nelson Peltz.
2CALPERS and the Norwegian sovereign wealth fund are well known examples of this form of activism.
3For an example, see Bloomberg Business on how “Hedge funds found a new way to attack drug companies and

short their stock” (March 20th 2015), describing how some activist hedge funds challenge pharmaceutical patents in
court to reduce the value of the firms owning these patents, presumably benefitting from previously established short
positions.
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to increase payouts (e.g., Carl Icahn and Apple), it arguably requires more effort to induce a

larger change in payout policy, which leads to a larger effect on firm value. When an activist

wants to influence whether an M&A deal is completed, the outcome is likely to be binary but the

effort expended by the activist is continuous (Jiang, Li and Mei, 2016). The probability that the

activist is successful is an increasing function of her continuous effort. Other examples (replacing a

CEO, replacing directors, changing governance rules) are similar. We find that there are significant

differences between the binary model and continuous models. For example, a key result of Maug

(1998)—an increase in noise trading increases activism if and only if the initial stake of the activist

lies below a certain threshold—is true in the binary model but not in continuous models. For

example, if the activism technology is such that the value the activist chooses to create depends

convexly on her block size, then an increase in noise trading always increases activism.

The link between liquidity and activism is bidirectional: just as market liquidity affects ac-

tivism, so also does the potential for activism affect market liquidity. The latter direction has

received little attention in the literature. One insight we obtain by studying the effect of activism

on liquidity is that increases in noise (liquidity) trading do not necessarily increase market liquidity.

This stands in contrast to the classic remark of Treynor (1971)—which is encapsulated in Kyle’s

lambda (Kyle, 1985)—that “the liquidity of a market . . . is inversely related to the average rate of

flow of new information . . . and directly related to the volume of liquidity motivated transactions.”

We show that an activist will generally trade in the opposite direction of noise traders, buying when

they depress the price by selling and selling when they inflate the price by buying. Consequently,

more noise trading produces more uncertainty about the size of the activist’s eventual blockholding,

increasing the ability of the activist to trade profitably before becoming active. This increase in

information asymmetry due to liquidity trading can more than offset the direct effect of liquidity

trading on market liquidity, causing market liquidity to fall.

We study liquidity and activism by generalizing the dynamic version of the Kyle (1985) model

to a strategic trader (the potential activist) who can affect the firm’s liquidation value by expending

costly effort, but who can also decide to walk away. We work in continuous time, because similar

to Back’s (1992) extension of the Kyle model to non-Gaussian distributions, it affords tractability.4

4In Appendix D, we study the one-period model. This yields explicit results only for simple special cases that are
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We are able to describe the equilibrium trading strategy in a way that is independent of the cost-

of-effort function. The equilibrium trade depends on the number of shares owned by the trader

as well as on the total number of shares bought by the trader and noise traders. The potential

activist is more likely to become active the more shares she owns, so the value of an additional

share is higher the more shares she already owns. Consequently, the number of shares she buys is

higher the more shares she already owns. This contrasts with the standard Kyle model, in which

the equilibrium trade is independent of the number of shares owned by the strategic trader, given

the total number of shares bought by the trader and noise traders.

2. Related Literature

DeMarzo and Urošević (2006) also analyze a dynamic market with a blockholder whose actions

affect corporate value. A key distinction between their paper and ours is that they assume a fully

revealing rational expectations equilibrium. In contrast, we follow Kyle (1985) by assuming there is

some additional uncertainty in the market (namely, noise trading) that provides camouflage for the

blockholder’s trading. This allows the market’s forecast of the blockholder’s plans to sometimes

deviate from what the blockholder herself regards as most likely, producing profitable trading

opportunities.

There are several papers, in addition to Maug (1998), that analyze single-period market mi-

crostructure models involving one or more strategic traders who may intervene in corporate gover-

nance. These include Kyle and Vila (1991), Admati et al. (1994), Bolton and von Thadden (1998),

Kahn and Winton (1998), Ravid and Spiegel (1999), Bris (2002), Noe (2002), and Faure-Grimaud

and Gromb (2004).5 The papers most closely related to ours are Kyle and Vila’s and Kahn and

Winton’s. Kahn and Winton’s model structure is quite similar to Maug’s. In their comparison of

their work with Maug’s, they state that they complement Maug by focusing on issues other than

the effect of liquidity on governance. Kyle and Vila’s conclusion regarding the effect of noise trad-

ing on activism (a value-enhancing takeover in their case) is similar to the result we obtain with a

binary value distribution (and similar to Maug’s result). Our paper contributes to this literature

by developing a model with a general activism technology. As our paper indicates, generalizing the

uninteresting for the main question we investigate.
5See Edmans (2014) for a survey of the literature.
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activism technology leads to fundamental changes in the relation between liquidity and economic

efficiency.

Another strand of the literature on trading and activism that is tangentially related to our

paper is the literature on “governance by exit,” which includes the papers by Admati and Pfleiderer

(2009), Edmans (2009), Edmans and Manso (2011), and Dasgupta and Piacentino (2015). In these

models, a blockholder has access to private information about firm value and may sell her block on

negative information. The blockholder’s ability to trade on negative information and the manager’s

concern with the short-term stock price cause the manager to be more concerned than he otherwise

would be about the impact of his actions on firm value and thereby improves governance. The

focus of these papers is on trading by an insider who has private information about firm value that

is exogenous to her trading. In contrast, in our model, the blockholder has no private information

about exogenous elements of corporate value. Instead, we study strategic trading by an investor

who can become active. Moreover, exit models all have a single round of trading, so they cannot

analyze feedback from prices to blockholder actions.

Our paper is also related to two papers that study the relation between investment effi-

ciency and information aggregation in large auctions (Atakan and Ekmekci (2014) and Axelson

and Makarov (2017)). In these papers, the fact that the payoff to the winner of the auction de-

pends on her future action can lead to equilibria where large auctions fail to aggregate the dispersed

information and prices become inefficient. The setup of these papers is quite different from ours

as in their model no investor possesses all relevant information regarding the action she is to take,

but instead investment efficiency depends on the information about the economic state revealed by

the auction. Further, these papers only consider a single round of trading.6

The relation between market liquidity and economic efficiency is related to the on-going debate

about the optimal duration of the pre-disclosure period for 13D filers (e.g., Bebchuk, Brav, Jackson

and Jiang, 2013). Specifically, shortening the period in which an activist can trade anonymously

has the effect of reducing cumulative noise trading during the period in which the activist can

trade anonymously. The relation is also central to the debate about insider trading rules and, more

6Rostek and Weretka (2012) also investigate how the size of the market affects how auctions aggregate dispersed
information and the consequences for market liquidity and price informativeness.
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generally, about required disclosure rules for the trading positions of significant blockholders (e.g.,

Fishman and Hagerty, 1992, 1995).

3. Model

We analyze a Kyle model in which the strategic trader is a potential activist who can undertake

costly effort to influence the management of a firm and hence affect the value of its stock. The trader

has no private information about the exogenous value of the stock but has private information about

her own position in the stock and thus is better informed about the value she will create.7 We assume

there is some fixed date T at which the trader must act in order to influence management (if she acts

at all). Naturally, any action quickly becomes public information, so we assume that the market

observes at T whether and to what extent the activist acts. Prior to T , the market is uncertain how

many shares the trader owns and hence is uncertain about the trader’s intentions. The uncertainty

about the trader’s intentions is resolved at T . Therefore, the trader has no private information

after T and cannot profitably trade after T . Consequently, we model trading as stopping at T .

Prior to T , the trader can profitably trade on her private information about the number of shares

she owns, as we will show. We assume trading is continuous during the time interval [0, T ].8 In

some applications, T might be a choice variable of the activist. That would be an interesting

extension, but it is beyond the scope of this paper.

After the activist does or does not exert effort at T , the stock trades at a share price v that

incorporates the market makers’ expected value of the activist’s effort. Of course, the activist’s

efforts may only affect the company’s operations with some lag, but we assume the market correctly

discounts the future cash flows into the share price v at date T . Denote by C(v) the cost to the

activist of achieving a share price of v.9 We assume C is lower semicontinuous and takes values in

7We assume the trader has no private information about aspects of the firm other than her own blockholding in
order to focus on the effect of activism on market liquidity. However, in one example (Example 1 in Section 6), other
private information can easily be incorporated (Collin-Dufresne and Fos, 2015b).

8Kyle (1985) shows that his discrete-time equilibrium converges to the equilibrium of his continuous-time model as
the time periods become shorter and the number of time periods grows. We have not checked this convergence result
for our model, but we conjecture that it would be true. Hence, we believe that our results are relevant in discrete
time as well. However, the continuous-time model is substantially more tractable than the discrete-time model, so
we work in continuous time.

9A generalization of our model would be to allow the cost to depend on the blockholding x as C(v, x). Such a
model was studied in one of our previous papers (Back, Li and Ljungqvist, 2015). In that model, the asset value is
binary with possible values vL < vH , the cost of generating the high value is c, and activism cannot be successful
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[0,∞]. We define C(v) =∞ when a value v is infeasible. Furthermore, we assume

lim
v→−∞,+∞

∣∣∣∣C(v)

v

∣∣∣∣ =∞ . (1)

Thus, C grows more than linearly at extreme values of v (or such values are infeasible). Given

XT = x, the activist chooses effort to maximize vx− C(v). The optimal value to the activist is

G(x)
def
= sup

v
{vx− C(v)} . (2)

Because G is the supremum of a collection of affine functions, G is convex. By assumption (1),

we can restrict attention to compact sets in the maximization problem in (2) and G is everywhere

finite. This fact and the lower semincontinuity of C imply that the supremum in (2) is attained at

some value of v. Let

V (x) ∈ argmaxv {vx− C(v)} . (3)

By a standard argument, V (x) is a subgradient of G at x.10 Because G is convex, it is differentiable

almost everywhere. Thus, V (x) = G′(x) almost everywhere. Given a blockholding of size x at the

end of trading, it is optimal for the activist to exert effort to move the stock value to V (x). Thus,

V (x) is the common value of shares to all traders after the activist’s optimal expenditure of effort.

Because V (x) is a subgradient of G at x, the common value of shares V (x) is also the marginal

value of shares for the activist.

Denote the number of shares owned by the strategic trader at each date t by Xt. We assume

that X0 is known only to the trader.11 Other market participants regard X0 as being normally

unless the block size is at least B, where B is exogenously given. So, C(vH , x) = ∞ if x < B and C(vH , x) = c if
x ≥ B. We found that the minimum block size B played only a minor role in the equilibrium. If the blockholder
desires to be active based on the block holding XT− just before T and the block is not large enough for activism,
then she will place a discrete order for B −XT− at T . In equilibrium, the market knows in this circumstance that
the blockholder will become active, so the block is priced at vH and there is no gain or loss on the trade at T . More
generally, when C depends on x, we conjecture that the activist will purchase enough shares via a block trade at T
to drive down the cost of activism as far as possible, meaning ∂C(v,XT )/∂x = 0.

10Because V (x) attains the supremum in (2), we have G(x) = xV (x) − C(V (x)), and by the definition of G,
G(a) ≥ aV (x)− C(V (x)) for all a. Combining these two facts yields G(x) ≤ xV (x) +G(a)− aV (x) for all a, which
is the definition of V (x) being a subgradient of G at x. This is an instance of the envelope theorem: ignoring the
possibility of nondifferentiability, we can differentiate the identity G(x) = V (x)x − C(V (x)) and use the first-order
condition x = C′(v) for the optimization problem in (2) to deduce that G′(x) = V (x).

11This assumption is consistent with U.S. rules on the disclosure of ownership stakes. Investors with activist
intentions are required to submit a Schedule 13D filing to the SEC only once their ownership reaches 5% of a targeted
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distributed with mean µx and standard deviation σx. In addition to the strategic trader, there

are noise traders in the market. Let Zt denote the cumulative number of shares purchased by

noise traders through date t, with Z0 = 0. Assume Z is a Brownian motion with zero drift and

instantaneous standard deviation σ. Aggregate purchases by the strategic trader and noise traders

are Yt = Xt −X0 + Zt. An important ‘signal to noise ratio’ parameter in the equilibrium is:

Λ
def
= 1 +

√
1 +

σ2
x

σ2T
. (4)

All orders are submitted to risk-neutral competitive market makers. The market makers

therefore observe Y . They compete to fill orders, pushing the price to the expected value of V (XT )

conditional on the history of orders. Let FYt denote the information conveyed by the history of

orders through date t. In principle, the price at each date could depend on the entire history of

orders up to that date, but, as in Kyle (1985), we search for an equilibrium in which the cumulative

order process Yt serves as a state variable. This means that the price at each date t is P (t, Yt)

for some function P . Also, we look for an equilibrium in which the strategic trader’s trades are of

order dt, meaning that dXt = θt dt for some stochastic process θ.12 Given P (·), the strategic trader

chooses the trading strategy θ to maximize

E

[
G(XT )−

∫ T

0
P (t, Yt)θt dt | X0

]
. (5)

We assume the trader’s information set at each date t consists of X0 and the history of noise trades

until date t. Of course, the trader knows her own trades, so she also knows the history of X until

date t. The assumption that the trader knows the history of noise trades is motivated by the

fact that the trader should be able to observe the price and, as we will show, price changes reveal

firm’s outstanding shares, though they may have to disclose their stakes earlier, to the extent that they are subject to
Section 13(f) of the Securities Exchange Act of 1934. Section 13(f) requires quarterly disclosures of long positions in
U.S. stocks and options held by institutional investment managers with more than $100m in assets under management.
In between these quarterly filings, only the investment managers themselves know their positions. Smaller investment
managers, and those holding short positions, do not have to disclose their positions at all.

12This assumption is without loss of generality, because, as shown by Back (1992), if there are jumps or nonzero
quadratic variation in the strategic trader’s holdings X, the trader pays bid-ask spread costs on these components of
the order flow of a size similar to those paid by noise traders. It is suboptimal for the strategic trader to pay these
costs, and they can be avoided by taking X to be continuous and of finite variation, that is, by submitting very small
trades dX (‘very small’ meaning of order dt).
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aggregate orders dY , from which the trader can infer dZ simply by subtracting dX. The strategic

trader’s value function is

J(t, x, y)
def
= sup

θ
E

[
G(XT )−

∫ T

t
P (u, Yu)θu du

∣∣∣∣ Xt = x, Yt = y

]
. (6)

Here, the supremum is taken over strategies θ that are adapted to the trader’s information and

that satisfy the mild ‘no-doubling’ strategies condition (9) stated below. We define an equilibrium

to be a pair (P, θ) such that the trading strategy θ maximizes (5) given P subject to (9) and such

that

P (t, Yt) = E
[
V (XT ) | FYt

]
(7)

for each t, given θ. This is the standard definition of equilibrium in a Kyle model, except for the

fact that the value V depends on XT in our model.

To ensure that there are no doubling-type strategies available (Back, 1992), we assume the

following regularity condition:

E

[
V

(
Λ(X0 − ZT )− µx

Λ− 1

)2
]
<∞ , (8)

where Λ is defined in (4), and we define a trading strategy θ to be admissible if and only if13

E

∫ T

0
V (µx + Λ(Xt −X0 + ZT ))2 dt <∞ . (9)

4. Equilibrium

Theorem 1. The pricing rule

P (t, y) = E [V (µx + ΛZT ) | Zt = y] (10)

13This condition is used in verifying the optimality of the potential activist’s trading strategy. It implies that the
local martingale

∫ t
0
P dZ is actually a martingale. For the connection to doubling strategies, see Back (1992), who

points out that the martingale property means that noise traders would not lose money on average if they could trade
“at the midpoint of the bid-ask spread.”
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and trading strategy

θt =
1

T − t

(
Xt − µx − ΛYt

Λ− 2

)
(11)

constitute an equilibrium. In this equilibrium, the distribution of Y given market makers’ in-

formation is that of a Brownian motion with zero drift and standard deviation σ. Moreover,

P (T, YT ) = V (XT ) with probability 1. The value function is

J(t, x, y) =
Λ− 1

Λ
E

[
G

(
Λ(x− ZT )− µx

Λ− 1

) ∣∣∣∣ Zt = y

]
+

1

Λ
E [G(µx + ΛZT ) | Zt = y] . (12)

The equilibrium price evolves as dP (t, Yt) = λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) =
∂P (t, y)

∂y
. (13)

Furthermore, λ(t, Yt) is a martingale on [0, T − δ] for every δ > 0, relative to the market makers’

information set. The strategic trader’s equilibrium position at time T is

XT = µx +
Λ

Λ− 1
(X0 − µx − ZT ) . (14)

It follows that XT is normally distributed with unconditional mean E[XT ] = µx and unconditional

variance V[XT ] = (σ
√
T +

√
σ2T + σ2

x)2.

We note the surprising finding that the strategic trader’s trading strategy can be fully specified

without specifying the cost function C. Thus, the trading strategy is independent of the cost

function, at least as expressed as a function of the cumulative noise trading and the trader’s

accumulated shares. The strategy (11) is in fact linear in Xt and Yt. We show in Appendix D that

the trading strategy in a single-period model is linear when V is linear but not when V is nonlinear.

Therefore, the trading strategy is not independent of the cost function in a single-period model. Of

course, local linearity in continuous time distinguishes continuous time from discrete time in other

contexts as well (e.g., the CCAPM). The cost function does affect the equilibrium pricing rule (10).

Thus, if the trading strategy in the continuous-time model is expressed as a function of the price

process, then it may depend on the cost function.

In the remainder of this section, we sketch the proof of Theorem 1 with the aim of providing
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some intuition for the results. The complete proof is in Appendix B. There are two standard features

of continuous-time Kyle models that we used to guess the form of the equilibrium in Theorem 1.

The first feature is that the strategic trader trades in such a way that the share price equals the

marginal value at the terminal date. Otherwise, she is clearly leaving money on the table. In our

model, the ‘price equals marginal value’ condition is that P (T, YT ) = V (XT ). The other feature is

that the strategic trader’s trades are not forecastable. On average, market makers do not expect the

trader to trade in one direction or the other. Cho (2003) calls this ‘inconspicuous insider trading.’14

Consequently, E[XT ] = µx. Furthermore, the unpredictability of informed orders means that the

drift of Y is zero on its own filtration; that is, Y is a martingale on its own filtration. Because Y

has the same quadratic variation as Z, this martingale property implies that Y must actually be a

Brownian motion with the same standard deviation as Z.

For convenience, let h(y) denote P (T, y). This is a function we need to find. The property

of inconspicuous strategic trading and the risk neutrality of market makers imply that the price

at all dates t < T is the expectation of P (T, YT ) treating Y as a Brownian motion with standard

deviation σ. Therefore, we know the equilibrium pricing rule if we know h.

In the basic continuous-time Kyle model, h(YT ) = v in equilibrium, where v is the exogenous

value of the asset. This equality occurs because the strategic trader in the Kyle model trades in

such a way that YT = h−1(v), or equivalently, XT = X0 + h−1(v) − ZT . Thus, the trader offsets

noise trades one-for-one and also purchases (or sells if negative) h−1(v) shares. This contrasts with

our expression (14), in which the coefficient on −ZT in the formula for XT is Λ/(Λ−1) > 1. In both

the standard Kyle model and in our model, the strategic trader responds to noise trades by, for

example, buying after they have sold and depressed the price. However, the trader buys more in our

model than in the standard Kyle model, because the more shares she owns the more likely she is to

become active and hence the more valuable are additional shares. This can be seen from the ‘price

equals marginal value’ condition. In the standard model, marginal value is the exogenous value v,

and ‘price equals marginal value’ takes the form h(XT −X0 + ZT ) = v. Thus, any change in ZT

must be offset by a one-for-one change in the opposite direction for XT , keeping price constant. In

14Inconspicuous insider trading is a consequence of the Hamilton-Jacobi-Bellman equation and is therefore a nec-
essary condition for equilibrium. See Back (1992). In Appendix D, we show that it is also a necessary condition in a
single-period model, when the strategic trader can condition her demand on the noise trades.
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our model, ‘price equals marginal value’ takes the form h(XT −X0 +ZT ) = V (XT ). If, for example,

we reduce ZT by 1 and increase XT by 1, then we will keep price constant, but the marginal value

V (XT ) will have increased, because owning an additional share will cause the activist to exert

more effort, increasing the value of shares. Thus, the activist has the incentive to buy more shares,

raising the price further.

The strategic trader achieves the equality h(YT ) = v in the standard Kyle model by causing

Y to be a Brownian bridge terminating at h−1(v). In our model, the ’price equals marginal value’

condition h(YT ) = V (XT ) implies a link between YT and ZT that does not occur in a Brownian

bridge. The following lemma generalizes the concept of a Brownian bridge and is key to our

equilibrium construction. The first term on the right-hand side of equation (15) below is the

strategic trader’s equilibrium order dXt = θt dt.

Lemma 1. Let ε be a standard normal random variable that is independent of Z. Let b be a

nonnegative constant, and set a = σ
√

(2b+ 1)T . Then, the solution Y of the stochastic differential

equation

dYt =
aε− bZt − (b+ 1)Yt

T − t
dt+ dZt (15)

on the time interval [0, T ) has the following properties: YT
def
= limt→T Yt exists a.s., Y is a

Brownian motion with zero drift and standard deviation σ on its own filtration on [0, T ], and, with

probability 1,

YT =
aε− bZT
b+ 1

. (16)

The proof of the lemma is provided in Appendix A. The stochastic differential equation of

a Brownian bridge is equation (15) with b = 0, so the process Y defined by equation (15) is a

generalization of a Brownian bridge. A Brownian bridge is a Brownian motion conditioned to end

at a particular point. With b = 0, the Brownian bridge Y in (15) ends at aε. Because (when

b = 0) the ending point is normally distributed with zero mean and variance equal to σ2T , the

unconditional distribution of Y is that of a Brownian motion with the same law as Z. In other

words, Y is a Brownian motion on its own filtration. The lemma states that this is also true when

b 6= 0. Thus, the property of inconspicuous strategic trading holds. Note that for the unconditional
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distribution to be the same as that of Z, the right-hand side of equation (16) must have variance

equal to σ2T . This is equivalent to the condition a = σ
√

(2b+ 1)T specified in the lemma.

In the standard Kyle model, the standard normal random variable ε in equation (15) is a

transformation of the exogenous asset value v. Assuming v is continuously distributed, we have

that ε = N−1(F (v)), where N is the standard normal distribution function and F is the distribution

function of v. In our model, the strategic trader’s private information concerns her initial position

X0. Set ε = (X0 − µx)/σx, which is a standard normal random variable. Substitute ZT = YT −

(XT −X0) and the definition of ε into equation (16) and rearrange to obtain

YT =
a(X0 − µx)/σx + b(XT −X0)

2b+ 1
. (17)

X0 vanishes from this equation if a = bσx. The two conditions on a are satisfied if and only if

b = 1/(Λ− 2). With this formula for b, we have

YT =
b(XT − µx)

2b+ 1
⇐⇒ XT = µx + ΛYT , (18)

Therefore, V (XT ) = V (µx + ΛYT ). This equals h(YT )—and hence price equals marginal value

at the end of trading—if we define h(y) = V (µx + Λ y) as in equation (10). From (18) and the

definition YT = XT −X0 + ZT , we obtain XT = µx + Λ(XT −X0 + ZT ), which can be rearranged

to yield (14).

As in Back (1992), the strategic trader’s value function can be interpreted as the expected profit

achieved by not trading until maturity T , at which time she trades along the residual supply curve of

the asset, buying or selling shares until price equals marginal value. We use that characterization in

the proof of the theorem to derive the formula (12) for the value function. We show in Appendix B

that the function J defined in (12) satisfies the Hamilton-Jacobi-Bellman equation:

0 = sup
θ

{
−Pθ + Jt + Jxθ + Jyθ +

1

2
σ2Jyy

}
. (19)
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In fact, we show that the following hold:

−P + Jx + Jy = 0 , (20a)

Jt +
1

2
σ2Jyy = 0 . (20b)

The first of these two equations states that the coefficient on θ in the optimization problem in (19)

is zero. Therefore, any θ achieves the optimum. There are in fact many optima to the trader’s

problem (taking the price process as given), as is also true in the basic continuous-time Kyle model

(Back, 1992). Any strategy is optimal provided only that the share price equals marginal value at

the terminal date.

To prove the theorem, all that remains is to verify that (11) is an optimal trading strategy.

That is straightforward to verify since any trading strategy is locally optimal and the strategy (11)

implies that price equals marginal value at T , as the lemma shows.

5. Liquidity and Activism

This section presents some general results regarding the effects of model parameters on eco-

nomic efficiency and market liquidity. The examples in the next section illustrate these results.

We measure economic efficiency by the initial price P (0, 0). As remarked before, we assume the

market correctly discounts the eventual effects on firm cash flows of the activist’s effort at T into

the date–T price V (XT ), and P (0, 0) is the expected value of V (XT ), so P (0, 0) incorporates the

value per share expected to be created by activism. Let P denote P (0, 0) as a function of the model

parameters. We calculate the value per share instead of the aggregate market value of shares out-

standing, because (as in Kyle (1985)) the number of shares outstanding is not a parameter of the

model. That is, given the per-share value function V (·), the number of shares outstanding does not

affect the equilibrium trading strategy or price process. On the other hand, the cost function C(·)

specifies the total cost to the activist, rather than the cost per share outstanding (which would be

irrelevant to the activist). Therefore, we have measures of value and cost that are in different units,

the former being per share and the latter being total. Hence, we cannot compute the benefit of

activism net of the activist’s costs. As a result, we will measure economic efficiency by the value per

share P (0, 0) rather than as value net of costs. Fortunately, this should do little damage, because
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costs per share should in practice be quite small compared to value. We base this argument on the

fact that activists recoup their costs from shareholdings that are typically small percentages of the

total number of shares outstanding.15

We generally measure market illiquidity by the expected average lambda:

1

T
E

∫ T

0
λ(t, Yt) dt .

Theorem 1 shows that λ is a martingale (up to times arbitrarily close to time T ), so the expected

average lambda is equal to the initial lambda λ(0, 0), which we denote λ as a function of the

parameters. Lambda measures the absolute price impact of trades. In examples in which absolute

price changes are stationary over time, λ(0, 0) is the natural measure of illiquidity. However, there

are other examples in which percentage price changes are stationary, and in those examples, some

measure of the percentage price impact of trades is more natural. Example 3 in the next section,

for instance, uses the percentage price impact at date 0 as the measure of illiquidity.

The following theorem shows that the effects of the model parameters on efficiency and liquidity

depend in several cases on whether V is convex or concave. Recall that, when G is differentiable,

V (x) = G′(x), so the convexity or concavity of V is determined by the third derivative of G. The

function G is convex, but we cannot in general sign its third derivative. However, because the

domain of V is the entire real line (the activist’s terminal block size XT can take any real value),

a convex V must be unbounded above, and a concave V must be unbounded below. In general,

convexity seems more reasonable than concavity, because concavity (unbounded below) implies

that the possible value destruction must be unlimited, not respecting limited liability.16 We give

several examples in Section 6 of a convex V . We also give some examples (including the binary

case) in which V is bounded both above and below and hence neither convex nor concave. The

proof of Theorem 2 is in Appendix C.

15Collin-Dufresne and Fos (2015a) report that the average activist holds 7.51% of the target’s outstanding shares
when making her first public disclosure through a Schedule 13D filing. Collin-Dufresne et al. (2107) show that when
Schedule 13D filers use derivatives to increase their overall economic exposure to the stock, their average exposure
increases to 8.70%. Given that after a 13D disclosure, stock prices incorporate the expected effects of activism on
firm value, the average Schedule 13D filer thus expects to recoup her costs of activism from a 7%-8% toehold.

16Of course, the standard Kyle (1985) model also implies a Gaussian distributed firm value which does not satisfy
limited liability either.
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Theorem 2.

1. An increase in the amount of noise trading increases economic efficiency (∂P/∂σ ≥ 0) if V

is convex and reduces economic efficiency (∂P/∂σ ≤ 0) if V is concave.

2. An increase in the expected initial block size

(a) increases economic efficiency (∂P/∂µx ≥ 0), and

(b) reduces market liquidity (∂λ/∂µx ≥ 0) if V is convex and increases market liquidity

(∂λ/∂µx ≤ 0) if V is concave.

3. An increase in uncertainty about the initial block size

(a) increases economic efficiency (∂P/∂σx ≥ 0) if V is convex and reduces economic effi-

ciency (∂P/∂σx ≤ 0) if V is concave, and

(b) reduces market liquidity (∂λ/∂σx ≥ 0) if the following regularity condition is satisfied:

lim
|ε|→∞

V ′
(
µx + Λσ

√
Tε
)
ε e−ε

2/2 = 0 . (∗)

To understand the role of convexity or concavity in Theorem 2, note that Theorem 1 implies

P = E[V (µx + ΛYT )] , (21)

and

λ = ΛE[V ′(µx + ΛYT )] , (22)

where we regard YT as normally distributed with mean zero and variance equal to σ2T . The

standard deviation of ΛYT is Λσ
√
T , which is an increasing function of both σ and σx. Thus,

increases in those parameters create mean-preserving spreads in the distribution of µx + ΛYT ,

which cause P to rise when V is convex and to fall when V is concave. Likewise, increases in those

parameters cause λ to rise when V ′ is convex.17 We can in fact say a bit more about how changes

in parameters affect the distribution of V (µx + ΛYT ). Because V is monotone, the distribution of

V (a + ΛYT ) first-order stochastically dominates the distribution of V (b + ΛYT ) when a > b. This

is a stronger statement than (2a) of Theorem 2. Also, when V is concave, a reduction in either σ

17Note that V ′ cannot be concave, because it is nonnegative and hence bounded below.
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or σx leads to second-order stochastic dominance.18

Theorem 2 does not provide a general result regarding the effect of a change in the volatility σ

of noise trading on market illiquidity λ, because a change in σ has two effects on λ, and they can be

in opposite directions. First, an increase in σ causes the factor Λ in equation (22) to fall. Second, an

increase in σ is a mean-preserving spread in the distribution of µx+ΛYT , so it causes the expectation

in equation (22) to rise when V ′ is convex. Depending on which of these two effects is stronger, an

increase in σ can cause λ either to fall (as in Kyle, 1985) or to rise. The latter occurs for certain

parameter values in Example 3 in Section 6. (However, as remarked before, it is more natural in

that example to measure liquidity by the percentage price impact.) An increase in noise trading

can also reduce market liquidity when neither V nor V ′ is convex. This occurs for some parameter

values in Examples 4 and 5 in Section 6. The reason that greater noise trading produces lower

market liquidity in those examples is that greater uncertainty about ZT implies greater uncertainty

about XT (see equation (14)) and hence increases information asymmetry about the ultimate asset

value. This phenomenon does not occur in the standard Kyle model in which the asset value is

independent of XT .

When V is convex—and satisfies the regularity condition (∗)—cross-sectional variation in

either µx or σx produces a negative cross-sectional relation between market liquidity and economic

efficiency: efficiency is higher in less liquid markets. The reason is that a greater likelihood for

activism (due to changes in µx or σx) increases the importance of asymmetric information regarding

the potential activist’s intentions and makes the market less liquid. This direction of causality

(activism → liquidity) is the opposite of that with which the literature has been concerned.

Cross-sectional variation in efficiency and liquidity can also be due to cross-sectional variation

in the cost function C. In the examples in the next section, each cost function depends on a produc-

tivity parameter. An increase in the activist’s productivity generally increases economic efficiency

and generally reduces market liquidity (because asymmetric information about the activist’s inten-

tions is more important when the activist is more productive). Thus, cross-sectional variation in

18This is a consequence of the following facts: (i) second-order stochastic dominance of ξA over ξB is equivalent
to E[u(ξA)] ≥ E[u(ξB)] for all monotone concave u, (ii) the composition u ◦ V is concave, when u is monotone and
concave and V is concave, and (iii) an increase in either σ or σx produces a mean-preserving spread in the distribution
of µx + ΛYT .
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productivity also generally leads to a negative cross-sectional relation between economic efficiency

and liquidity. Again, this is not the direction of causality emphasized in the literature.

6. Examples

We consider five examples. The equilibria are presented in Table 1 in terms of the functions C,

G, V , h, P , and λ and the parameters µx, σx, σ, and Λ defined in Sections 3 and 4. The examples

are distinguished by their cost functions C(v). The cost functions include an additional productivity

parameter ψ (and a second productivity parameter ∆ in Examples 4 and 5). Comparative statics

with respect to all parameters are presented in Tables 2 and 3.

In the first example, V is affine. In the second and third, V is bounded below and convex. In

the fourth and fifth, V is bounded both above and below and hence is neither convex nor concave.

Example 1 (Quadratic Cost). This example is from Collin-Dufresne and Fos (2015b). Effort is

continuous and cost is quadratic. The cost function is C(v) = (v − v0)2/(2ψ) for constants v0 and

ψ > 0. Thus, value can be either destroyed or created by the activist. The parameter ψ measures

the activist’s productivity (for either value creation or value destruction). The value V (x) is affine

in x, so it is both convex and concave. By Theorem 2, this implies that economic efficiency is

independent of the parameters σ and σx. Intuitively, it is independent because, whatever effects

those parameters have on possible value creation, they have the same effects on possible value

destruction. Also, market liquidity is independent of µx. Therefore, the only parameter that can

produce cross-sectional variation in both efficiency and liquidity in this example is the productivity

parameter ψ, and variation in it produces a negative cross-sectional relation between efficiency and

liquidity.

This symmetric quadratic example closely resembles the classic Kyle model in which the

terminal value is normally distributed. As in that model, the equilibrium price process is a Brownian

motion (on its own filtration) and Kyle’s lambda is constant and increasing in the signal-to-noise

ratio σx/σ. Kyle’s lambda is also increasing in the activist’s productivity ψ. In fact, and unlike in

the Kyle model, the limit of lambda when the signal-to-noise ratio goes to zero is strictly positive:

limσx/σ→0 λ = ψ. This illustrates the difference between the two models. Even if there is very

little private information at the start of the model, there is private information later in the model
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because only the activist knows her own trades, which determine her incentives for activism and so

ultimately determine the asset value. The importance of this private information depends on the

activist’s productivity ψ, which is the lower bound on lambda.

Example 2 (Asymmetric Quadratic Cost). In this example, value can be created (v > v0) but

cannot be destroyed. The cost function is

C(v) =


∞ if v < v0 ,

(v − v0)2/(2ψ) if v ≥ v0 ,

for constants v0 and ψ > 0. Again, ψ measures the activist’s productivity. The value V (x) is

convex in x, so Theorem 2 implies that economic efficiency is improved by increases in either σ

or σx. In this example, a change in the amount of noise trading causes economic efficiency and

liquidity (1/λ) to move in the same direction. However, changes in µx, σx, or ψ cause economic

efficiency and liquidity to move in opposite directions.

Even though the activist can only create and cannot destroy value in this example, the trading

strategy (expressed as a function of cumulative order flow and the strategic trader’s position) is

identical to that in Example 1 (and in fact is the same in all examples). The price and Kyle’s

lambda do, however, depend on the cost function. To illustrate the differences between Examples 1

and 2, we plot two (randomly generated) paths of noise trades and the corresponding activist

trades, equilibrium price, and Kyle’s lambda in Figures 1 and 2 below. Figure 1 shows a case where

the noise traders are net cumulative buyers of the stock, whereas Figure 2 shows a path where

cumulative trades by noise traders are sales.

Independent of the (symmetric or asymmetric) cost function, the strategic trader trades in

the opposite direction of the noise traders with an amplification as discussed before. The figures

illustrate the amplification. When the strategic trader accumulates a positive number of shares

(Figure 2), prices ultimately reflect the positive value creation; thus, the prices with symmetric and

asymmetric cost functions converge to the same value. Also, in that case, Kyle’s lambda in the

asymmetric model converges to the constant price impact that prevails throughout in the symmetric

cost function model.

However, when the strategic trader accumulates a large short position, the price and price
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Figure 1: Informed, uninformed and total order flow, prices and Kyle’s lambda in the
symmetric and asymmetric quadratic cost function examples: noise traders are net
buyers.

impact processes look very different in the two models. In the asymmetric model, the market infers

the short position from the net short order flow and price converges to v0 as the market correctly

expects the trader not to expend any effort. Correspondingly, Kyle’s lambda converges to zero,

because, given the large negative position the trader is anticipated to hold, a marginal increase in

her position would not be expected to lead to significant positive value creation. However, in the

symmetric model, the market infers from the net cumulative short position that the activist will
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Figure 2: Informed, uninformed and total order flow, prices and Kyle’s lambda in the
symmetric and asymmetric quadratic cost function examples: noise traders are net
sellers.

destroy value at maturity. The market impounds this negative value in the price. Kyle’s lambda

remains constant and strictly positive in the symmetric model.

Example 3 (Exponential). This is another example of a convex V in which value can be created
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but not destroyed. For parameters v0 > 0 and ψ > 0, the cost of effort is

C(v) =


1
ψv log

(
v
v0

)
− 1

ψ (v − v0) if v > v0 ,

∞ if v ≤ v0 .

This implies V (x) = v0eψx. Again, ψ measures the activist’s productivity. In general, when σx is

small, the partial derivative ∂Λ/∂σ is small. In this example, V ′ is convex, and when σx is small,

the effect of a change in σ on Λ is less than the effect of a change in σ on the expectation in

(22). Consequently, an increase in noise trading σ causes market liquidity (as measured by 1/λ) to

fall.19 However, as remarked in Section 5, it is more natural to measure market illiquidity in this

example by the percentage price impact, λ/P . In fact, the percentage price impact is constant in

this example, and it is a decreasing function of σ. Measuring liquidity in this way, cross-sectional

variation in σ produces a positive cross-sectional relation between efficiency and liquidity, and

cross-sectional variation in σx or ψ produces a negative cross-sectional relation between efficiency

and liquidity. Increases in µx increase efficiency but have no effect on liquidity.

Even though the prior uncertainty is normal and thus the strategic trader’s cumulative holdings

are normally distributed, the endogenous terminal value of the stock in this example is lognormally

distributed. The stock price follows a geometric Brownian motion process as in the Black and

Scholes (1973) model. The parameters of the process are endogenously determined by the primi-

tives of the model (the signal-to-noise ratio σx/σ, the noise trader volatility, and the productivity

parameter). This model is similar to the Kyle model with an exogenous lognormally distributed

terminal value presented in Back (1992). As with an exogenous lognormal value, the percentage

price impact is constant. However, the constant percentage price impact (‘return impact’) is not

the same as when the value is exogenous. Indeed, in our model, price impact depends not only

on the signal-to-noise ratio σx/σ but also on the activist’s productivity. As discussed for price

impact in Example 1, when the signal-to-noise ratio goes to zero, the percentage price impact in

19The precise condition for this to occur is that

σx < Λσ2T

√
ψ(Λ− 1)Λ

2(1 + ψΛ2σ2T )
.
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this example remains strictly greater than zero.

Example 4 (Binary). This example is from Back, Li and Ljungqvist (2015). The model of activism

is the same as that studied in the context of a single-period Kyle model by Maug (1998). The

outcome is binary (success or failure). Success comes at an effort cost of c. The value of the stock

is v0 in the absence of effort and v0 + ∆ for a constant ∆ > 0 if effort is exerted. It is optimal to

exert effort if XT∆ ≥ c. The value V (x) is a step function, equal to v0 for x < c/∆ and equal to

v0 + ∆ for x ≥ c/∆. Therefore, it is neither convex nor concave. In the equilibrium price and in

Kyle’s lambda, the parameter c appears only in the ratio c/∆. It is convenient to define ψ = ∆/c,

which is the value creation per unit cost. Then, ψ and ∆ measure the activist’s productivity.

In this example, cross-sectional variation in either of the productivity parameters ψ or ∆

produces a negative cross-sectional relation between efficiency and liquidity, because higher pro-

ductivity increases both efficiency and adverse selection. However, cross-sectional variation in either

µx or σx produces a negative cross-sectional relation between efficiency and liquidity if and only

if ∆µx < c. The condition ∆µx < c means that the expected initial stake µx is too small on

its own to justify the cost of activism. In this case, a marginal increase in µx increases adverse

selection, because it moves the probability of activism from below 50% towards 50%. Hence, it

reduces liquidity (while increasing economic efficiency). Also, when ∆µx < c, a marginal increase

in σx increases economic efficiency, because it makes the expected initial stake µx a less reliable

predictor of the actual initial stake X0. An increase in σx always reduces market liquidity in this

example, so it causes liquidity and efficiency to move in opposite directions when ∆µx < c.

Cross-sectional variation in σ can produce either a negative or a positive cross-sectional relation

between economic efficiency and market liquidity. There are four possible outcomes of a change in

noise trading volatility, depending on the inequalities shown in Tables 2 and 3. The four possibilities

are illustrated in Figure 3. An increase in the standard deviation σ of noise trading increases

economic efficiency if and only if ∆µx < c. In that case, the potential activist must on average

acquire shares in the market to make activism worthwhile. An increase in noise trading volatility

makes it easier to acquire the necessary shares. On the other hand, if the expected initial stake

is high, higher noise trading volatility makes it easier for the trader to unwind her stake and exit

rather than incurring the cost to become active, so an increase in noise trading reduces economic
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efficiency. These are the effects described by Maug (1998).

However, unlike in Maug’s one-period model, the effect of a change in noise trading volatility

on market liquidity depends on the absolute size of the expected initial stake relative to a threshold

(shown in Table 3) that depends on σ, σx, and T . When the absolute expected initial stake is large,

it is unlikely that the potential activist will trade enough to change the profitability of activism: if

µx− c/∆ is positive and large, it is unlikely that she will sell enough shares so that XT < c/∆; and

if µx − c/∆ is negative and large in absolute value, it is unlikely that she will buy enough shares

so that XT > c/∆. Thus, Kyle’s lambda is low—the market is highly liquid. In this circumstance,

if noise trading increases, the probability that the potential activist will trade out of an existing

position or into a new position increases, and it increases so much that market liquidity actually

falls.
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Figure 3: Effect of an Increase in Noise Trading in the Binary Example. The signs
indicate the effect of an increase in noise trading σ on P̄ (efficiency) and 1/λ̄ (liquidity). Increasing
noise trading increases economic efficiency when µx > c/∆ and reduces economic efficiency when
µx < c/∆. Increasing noise trading increases market liquidity when |µx− c/∆| is below a threshold
depending on σ that is specified in Table 3 and reduces market liquidity when |µx − c/∆| is above
the threshold. In this example, σx = 0.1 and T = 1.

The equilibrium price in this example is the base value v0 plus the value ∆ of activism multi-
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plied by the conditional probability that activism will occur. Activism occurs if and only if

YT ≥
c/∆− µx

Λ
.

Market makers compute the probability of activism at each date t based on YT being normally

distributed with mean Yt and standard deviation σ
√
T − t. Equations (14) and (17) imply

YT ≥
c/∆− µx

Λ
⇐⇒ XT ≥

c

∆

⇐⇒ ZT ≤ X0 − µx +
Λ− 1

Λ

(
µx −

c

∆

)
.

Of course, the condition XT ≥ c/∆ is necessary and sufficient for exerting effort to be optimal

for the strategic trader. The last condition shows that the trader exerts effort if and only if noise

traders sell enough shares (or do not buy too many shares). Selling by noise traders makes the

asset cheaper for the potential activist and hence induces her to buy shares and become active.

Example 5 (Probabilistic Binary). Many activist campaigns have a specific objective, and the

outcome can be expressed as success or failure. For example, activists may attempt to block

a merger, to force a company to be put up for sale, to oust a CEO, to remove anti-takeover

provisions, to initiate a dividend, etc. However, it may be unrealistic to assume, as in Example

4, that the amount of effort required to achieve success is known. To capture uncertainty about

the outcome, success is instead viewed as a random event in this example, the probability of which

depends on the activist’s effort. Because the activist is risk neutral, she cares about the expected

asset value, which is v0 + ∆p, where p denotes the probability of success and ∆ is the value created

by success. Thus, instead of modeling the stock value v as being either v0 or v0 + ∆, we model it

as being v0 + ∆p, where p ranges continuously between 0 and 1. Assume that the cost of achieving

a probability of success equal to p is

c[p+ (1− p) log(1− p)]
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for a constant c > 0. Therefore, the cost of achieving an expected asset value equal to v is

C(v) =


∞ if v < v0 ,

c
[
v−v0

∆ +
(
1− v−v0

∆

)
log
(
1− v−v0

∆

)]
if v0 ≤ v < v0 + ∆ ,

∞ if v ≥ v0 + ∆ .

The activist’s optimal effort implies a probability of success of 1− e−∆XT /c. Thus,

V (x) = v0 +
(

1− e−∆x/c
)

∆ .

The function V is bounded below (by v0) and bounded above (by v0 + ∆) and hence is neither

uniformly convex nor uniformly concave. As in Example 4, the cost parameter c appears in the

equilibrium price and in Kyle’s lambda only through the ratio c/∆. As in Example 4, define

ψ = ∆/c, so the activist’s productivity is measured by ψ and ∆.

The equilibrium is described in Table 1 in terms of

d1
def
=

µx + Λy

Λσ
√
T − t

and

d2
def
= d1 − ψΛσ

√
T − t .

The comparative statics are described in Tables 2 and 3 in terms of d1, which is d1 with t = y = 0

and d2 = d1 − ψΛσ
√
T , and in terms of µ∗x defined as follows. Set g(x) = N(x)/n(x). It is well

known that g is a strictly increasing function that maps the real line onto the positive reals. Define

µ∗x = ψΛ2σ2T + Λσ
√
Tg−1

(
1

ψΛσ
√
T

)
.

The comparative statics in this example are very similar to those in Example 4. There are only

three differences. First, the condition µx < c/∆ that determines some of the signs in Example 4

is replaced by µx < µ∗x. Second, the condition that determines when an increase in σ increases

market liquidity takes different forms in the two examples. Third, an increase in the productivity
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parameter ψ does not always reduce market liquidity in this example. The condition under which

it reduces market liquidity is shown in Table 3.

7. Discussion

There are many different types of activism technology, including binary forms of activism,

those with non-binary effort, and those resulting in a non-binary effect on firm value. For example,

when an activist seeks to increase payouts, it arguably requires more effort to induce a larger

change in payout policy, which leads to a larger effect on firm value. When an activist seeks to

influence whether an M&A deal is completed, the outcome is likely to be binary but the effort

expended by the activist is continuous. Agitating for the replacement of the CEO or the board

of directors has similar features. In these cases, the probability that the activist is successful

is an increasing function of her continuous effort. Large-sample evidence about heterogeneity in

activism technology is reported by Brav et al. (2008), who classify hedge-fund activism campaigns

by the activists’ stated goals. These goals could be used to identify the properties of the activism

technologies discussed in Theorem 2.

One implication of our model is that most of the comparative statics depend on these prop-

erties. This implication is important to regulators and empirical researchers alike. Consider, for

example, a change in uncertainty about the activist’s initial block size. The model shows that the

effect of this uncertainty on economic efficiency can switch from positive to negative, depending

on the activism technology. The model therefore suggests that regulators need to consider what

types of activism technologies would be affected by a proposed change (e.g., activists’ engagements

in M&A deals or activists’ campaigns to change payout policies). Moreover, the model shows that

empirical research that pools observations for different activism technologies when evaluating the

effects of changes in uncertainty about the initial block size could fail to find significant effects even

if uncertainty matters.

Another implication of the model is that the role of noise trading is more nuanced than

previously thought. Early models of corporate governance typically do not differentiate between

noise trading and market liquidity. Our model, however, shows that an increase in noise trading may

not lead to an increase in market liquidity (see Example 4). Similarly, the effect of noise trading on

economic efficiency can be either positive or negative, depending on the activism technology. This
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observation is important in assessing the impact of a regulatory change. The recent legal debate

about changing the length of the trading period during which activists can trade anonymously is

a case in point (e.g., Bebchuk et al. (2013)). Such a change can be viewed as a change in noise

trading because in our model, what matters is σ2T—the cumulative amount of noise trading over

the entire trading period. So from the perspective of a potential activist, reducing the trading

horizon T is isomorphic to reducing noise trading volatility and keeping T fixed. Similarly, a Tobin

tax on stock transactions might reduce the number of traders in the market and thus lead to a

reduction in noise trading.20

Finally, the model shows how changes in disclosure rules that lead to changes in the precision

of disclosed ownership information can affect economic efficiency and market liquidity. Consider, for

example, Section 13(f) of the Securities Exchange Act of 1934 which requires quarterly disclosures

of long (but not of short) positions in U.S. stocks and options held by institutional investment

managers with more than $100m in assets under management. In between these quarterly filings,

only the investment managers themselves know their precise positions. Form 13(f) filings thus

constitute at best noisy signals about an investment manager’s block size. Changes to Section

13(f)—say, to the frequency of 13(f) filings or the inclusion of short positions—could therefore

affect investors’ uncertainty about an activist investor’s initial toehold.

8. Conclusion

This paper revisits the classic question of the relation between liquidity and economic efficiency.

We develop a dynamic version of the Kyle model in which an activist trader can affect the liquidation

value of the firm by expending costly effort. Market liquidity affects activism, because it affects the

ease with which the potential activist can either accumulate a stake or ‘take the Wall Street walk.’

One result that contrasts with the previous literature is that the relation between market liquidity

and activism is independent of the activist’s initial stake for a broad set of activism technologies.

In our setup, activism also affects market liquidity, because the activist’s private information

about her own intentions (which arises in our model because of the activist’s private information

about the size of her blockholding) creates adverse selection for market makers. This second

20A Tobin tax on stock transactions would likely have other effects on financial markets, the investigation of which
is beyond the scope of our paper.
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direction of causality has received little if any attention in the prior literature. One effect of this

causality is that an increase in noise trading can reduce market liquidity, because it increases activist

trading and hence increases information asymmetry regarding the activist’s blockholding.
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Appendix A. Proof of the Lemma

Define Ut = aε − bZt. We use filtering to establish the proposition. As is customary, we use

the symbol ˆ to denote conditional expectations given FYt . We want to compute Ût. Let Σ(t)

denote the conditional variance of Ut given FYt . We have U0 = aε, Û0 = 0, and Σ(0) = a2. The

stochastic process U evolves as

dUt = −bdZt .

The observation process is Y , and

dYt =
1

T − t
Ut dt− b+ 1

T − t
Yt dt+ dZt .

The innovation process is W defined by W0 = 0 and

dWt =
1

σ

(
dYt −

1

T − t
Ût dt+

b+ 1

T − t
Yt dt

)
=

1

σ

(
1

T − t
(Ut − Ût) dt+ dZt

)
. (A.1)

From Kallianpur (1980, Equation 10.5.9), the filtering equation is

dÛt =
1

σ

(
Σ(t)

T − t
− bσ2

)
dWt . (A.2)

From Kallianpur (1980, Equation 10.5.10), the conditional variance evolves as

dΣ(t)

dt
= − Σ(t)2

(T − t)2σ2
+

2bΣ(t)

T − t
. (A.3)

The ODE (A.3) with initial condition Σ(0) = a2 is satisfied by Σ(t) = (T − t)a2/T . For this

function Σ(·), the left-hand side of (A.3) is −a2/T , and the right-hand side is

− a4

σ2T 2
+

2ba2

T
= −a

2

T

(
a2

σ2T
− 2b

)
= −a

2

T
,

using the definition a = σ
√

(2b+ 1)T for the last equality. Thus, the conditional variance of Ut is

(T − t)a2/T . Consequently, the filtering equation (A.2) simplifies to

dÛt =
1

σ

(
a2

T
− bσ2

)
dWt = (b+ 1)σdWt ,
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using the definition a = σ
√

(2b+ 1)T again for the last equality. Because Û0 = W0 = 0, this

equation implies that Û = (b+ 1)σW . Equation (A.1) for the innovation process now becomes

dWt =
1

σ

(
dYt +

b+ 1

T − t
(Yt − σWt) dt

)
.

This equation is satisfied by W = Y/σ. Thus, Y/σ is the innovation process. The innovation

process is a standard Brownian motion on FY , so Y is a Brownian motion with standard deviation

σ on FY . Moreover, we have

dÛt = (b+ 1)σdWt = (b+ 1)dYt ,

so Ût = (b+ 1)Yt. Because Y is a Brownian motion on FY , the limit YT = limt→T Yt exists almost

surely, and we have UT = (b+ 1)YT , which is the same as (16).
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Appendix B. Proof of Theorem 1

We need to verify the optimality of the trading strategy (11). As in Section 4, define h(z) =

V (µx + Λz). Define

g(x, y) = sup
y

∫ y

y
(V (x− y + z)− h(z)) dz .

Because y = y is feasible in this optimization problem, we have g(x, y) ≥ 0 for all (x, y). The

solution to the optimization problem is given by the first-order condition V (u+ y∗(u)) = h(y∗(u))

as

y∗(u) =
u− µx
Λ− 1

. (B.1)

Thus,

g(x, y) =

∫ y∗(x−y)

y
(V (x− y + z)− h(z)) dz . (B.2)

Substituting the definition of h and V = G′ in (B.2), it is straightforward to calculate that

g(x, y) =
Λ− 1

Λ
G

(
Λ(x− y)− µx

Λ− 1

)
+

1

Λ
G(µx + Λy)−G(x) . (B.3)

This implies that

gx(x, y) = V

(
Λ(x− y)− µx

Λ− 1

)
− V (x) ,

gy(x, y) = V (µx + Λy)− V
(

Λ(x− y)− µx
Λ− 1

)
.

Thus,

gx(x, y) + gy(x, y) = V (µx + Λy)− V (x) = h(y)− V (x) . (B.4)

Furthermore, the monotonicity of V implies that gx and gy are bounded on bounded rectangles.

The function J defined in (12) is given by

J(T, x, y) = G(x) + g(x, y)
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and, for t < T , set

J(t, x, y) = G(x) + E[g(x, y + ZT − Zt) | FZt ] . (B.5)

From this definition and (B.3), we see that J is as stated in (12). Because gx and gy are bounded

on bounded rectangles, we can use the bounded convergence theorem to justify interchanging

differentiation and expectation and thereby obtain

Jx(t, x, y) = E

[
V

(
Λ(x− y − ZT + Zt)− µx

Λ− 1

)∣∣∣∣FZt ] ,
Jy(t, x, y) = E

[
V (µx + Λ(y + ZT − Zt))| FZt

]
− E

[
V

(
Λ(x− y − ZT + Zt)− µx

Λ− 1

)∣∣∣∣FZt ]
= P (t, y)− E

[
V

(
Λ(x− y − ZT + Zt)− µx

Λ− 1

)∣∣∣∣FZt ] .
Thus,

Jx(t, x, y) + Jy(t, x, y) = P (t, y) . (B.6)

Furthermore,

J(t, x, Zt) = G(x) + E[g(x, ZT ) | FZt ] ,

which is an FZ martingale. Applying Itô’s formula and equating the drift to zero gives

Jt(t, x, y) +
1

2
σ2Jyy(t, x, y) = 0 . (B.7)

Consider an arbitrary trading strategy. Using Itô’s formula and substituting (B.6) and (B.7),

we obtain

J(T,XT , YT ) = J(0, X0, Y0) +

∫ T

0
dJ

= J(0, X0, Y0) +

∫ T

0
P (t, Yt)θt dt+

∫ T

0
Jy(t,Xt, Yt) dZt .

The no-doubling conditions (8) and (9) ensure that

E

∫ T

0
Jy(t,Xt, Yt) dZt = 0 .
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Therefore, rearranging and taking expectations yields

J(0, X0, 0) = E

[
J(T,XT , YT )−

∫ T

0
P (t, Yt)θt dt

]
.

Because g ≥ 0, we have J(T,XT , YT ) ≥ G(XT ). Hence,

J(0, X0, 0) ≥ E

[
G(XT )−

∫ T

0
P (t, Yt)θt dt

]
. (B.8)

This shows that J(0, X0, 0) is an upper bound on the strategic trader’s expected value. The bound

is achieved by a strategy if and only if g(XT , YT ) = 0.

Now consider the strategy (11). For this strategy, the lemma implies—see (18)— that XT =

µx + ΛYT , which implies from the definition of h that V (XT ) = h(YT ). In turn, this implies (from

the definition of y∗ in equation (B.1)) that y∗(XT − YT ) = YT and g(XT , YT ) = 0. Thus, the

strategy (11) is optimal.
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Appendix C. Proof of Theorem 2

First, we establish the comparative statics of economic efficiency. From (21), we have

P = E
[
V
(
µx + Λσ

√
Tε
)]
,

where ε is a standard normal variable. It follows (since V ′(x) ≥ 0 ∀x) that

∂P

µx
= E

[
V ′
(
µx + Λσ

√
Tε
)]
≥ 0 .

If V is convex, then, for all ε ∈ (−∞, ∞), we have

Λσ
√
TεV ′

(
µx + Λσ

√
Tε
)
≥ V

(
µx + Λσ

√
Tε
)
− V (µx) .

If V is concave, then we have the opposite inequality. Also, from the definition of Λ,

Λσ
√
T = σ

√
T +

√
σ2T + σ2

x ,

which is an increasing function of σ and also an increasing function of σx. Thus, when V is convex,

∂P

∂σ
= E

[
εV ′

(
µx + Λσ

√
Tε
)](∂(Λσ

√
T )

∂σ

)

≥ 1

Λσ
√
T
E
{[
V
(
µx + Λσ

√
Tε
)
− V (µx)

]}(∂(Λσ
√
T )

∂σ

)
≥ 0 ,

where the last inequality follows by Jensen’s inequality. When V is concave, we obtain the opposite

inequality. The same reasoning produces the results for ∂P/∂σx.

Now we establish the comparative statics of market liquidity. From (22),

λ = Λ

∫ +∞

−∞
V ′
(
µx + Λσ

√
Tε
)
n(ε) dε .

It follows that

∂λ

∂µx
= Λ

∫ +∞

−∞
V ′′
(
µx + Λσ

√
Tε
)
n(ε) dε
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So, ∂λ/∂µx ≥ 0 if V is convex, and the opposite inequality holds if V is concave. Furthermore,

∂λ

∂σx
=

∂Λ

∂σx

∫ +∞

−∞

{
V ′
(
µx + Λσ

√
Tε
)

+ V ′′
(
µx + Λσ

√
Tε
)

Λσ
√
Tε
}
n(ε) dε .

Note that

∫ +∞

−∞
V ′′
(
µx + Λσ

√
Tε
)

Λσ
√
Tεn(ε) dε =

∫ +∞

−∞
εn(ε)

dV ′
(
µx + Λσ

√
Tε
)

dε
dε .

Using this fact, integration by parts, and assumption (∗), we obtain

∫ +∞

−∞
V ′′
(
µx + Λσ

√
Tε
)

Λσ
√
Tεn(ε) dε = −

∫ +∞

−∞
V ′
(
µx + Λσ

√
Tε
) d[εn(ε)]

dε
dε

=

∫ +∞

−∞
V ′
(
µx + Λσ

√
Tε
)

[ε2 − 1]n(ε) dε.

Thus:

∂λ

∂σx
=

∂Λ

∂σx

∫ +∞

−∞
V ′
(
µx + Λσ

√
Tε
)
ε2n(ε) dε .

Since V ′(x) ≥ 0 ∀x and ∂Λ/∂σx > 0 it follows that

∂λ

∂σx
≥ 0 .
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Appendix D. The one-period model

Here, we consider the one-period model where the large trader starts with some position X0,

known only to her, and trades once to choose X1 = X0 +θ so as to maximize her objective function

E [G(X1)− θ P (Y ) |X0, Z] . (D.1)

Recall that

G(x)
def
= sup

v
{vx− C(v)} ,

and that the supremum on the right-hand side is attained by V (x) = C
′−1(x) = ∂G(x)/∂x.

Further, the competitive market makers have a prior that X0 ∼ N(µx, σx) and observe total order

flow Y = θ + Z where noise trading Z ∼ N(0, σ2). For simplicity, we assume that X0 and Z are

uncorrelated. The zero-profit condition for market makers implies that the price satisfies

P (Y ) = E[V (X1) |Y ].

Note that we assume that not only X0 but also Z is observed by the large trader when she chooses

her optimal trading decision. As pointed out by Rochet and Vila (1994), this simplifies the analysis

and is consistent with the continuous time model, where in equilibrium the large trader effectively

observes noise trades. We point out in an example below how making the alternative assumption,

that the large trader chooses her trades before observing Z, affects the equilibrium.

Assuming that the large trader conditions on both X0 and Z, her first-order condition is

simply:

V (X0 + θ)− P (θ + Z)− θP ′(θ + Z) = 0. (D.2)

The second-order condition is:

V ′(X0 + θ)− 2P ′(θ + Z)− θP ′′(θ + Z) ≤ 0. (D.3)

This FOC defines an optimal trading strategy for the large trader θ(X0, Z) given an equilibrium

pricing function P (·). In turn, given a conjectured optimal trading strategy of the form θ(X0, Z),
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the equilibrium pricing function is given by:

P (y) = E[V (X0 − Z + y) | θ(X0, Z) + Z = y]. (D.4)

An equilibrium is then a pair of functions (θ(x, z), P (y)) that satisfy the three equations (D.2)-(D.4).

By using (D.2) in (D.4), we see that a necessary condition for an equilibrium is that the trading

strategy be inconspicuous, that is,

0 = E[θ(X0, Z) |Y ] .

We now illustrate how to derive the equilibrium explicitly in the simplest case where V (x) is linear.

Appendix D.1. The Linear V (x) Case

Assume C(v) = v2

2ψ . Then, V (x) = ψx. To solve for an equilibrium in this case, we guess that

P (y) = ψ(p0 + Λy). Then the FOC gives:

θ = (X0 − p0 − ΛZ)/(2Λ− 1) .

Note that since θ is inconspicuous, we can restrict ourselves to p0 = µx. The SOC is satisfied if

2Λ− 1 > 0 .

Conversely, if we conjecture that the activist chooses a linear trading rule of the form θ =

βx(X0 − µx) + βzZ, we have

P (y) = ψy + ψE[X0 − Z |βx(X0 − µx) + (βz + 1)Z = y] = ψ(µx + Λy),

where Λ is given by

Λ = 1 +
βxσ

2
x − (βz + 1)σ2

z

β2
xσ

2
x + (βz + 1)2σ2

z

.

This follows from the linear projection theorem for Gaussian random variables:

E[X0 − Z |βx(X0 − µx) + (βz + 1)Z = y] = µx +
βxσ

2
x − (βz + 1)σ2

z

β2
xσ

2
x + (βz + 1)2σ2

z

y .
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It follows that an equilibrium exists if there is a solution Λ that satisfies the SOC and the

equation:

Λ = 1 +
βxσ

2
x − (βz + 1)σ2

z

β2
xσ

2
x + (βz + 1)2σ2

z

, (D.5)

where βx, βz are given by:

βx =
1

2Λ− 1
,

βz =
−Λ

2Λ− 1
.

There is one unique solution that satisfies the SOC, given by:

Λ =
1

2

(
1 +

√
1 + 4

σ2
x

σ2
v

)
.

Appendix D.2. The Linear V (x) Case When Z Is Not Known to the Activist

When the large trader cannot condition her trading decision on Z because it is unknown to

her at the time of trading, she chooses X1 = X0 + θ so as to maximize her objective function:

E [G(X1)− θ P (Y ) |X0] . (D.6)

Her first-order condition (D.2) is replaced by:

V (X0 + θ)− E[P (θ + Z)− θP ′(θ + Z) |X0] = 0, (D.7)

and the second-order condition becomes:

V ′(X0 + θ)− E[2P ′(θ + Z)− θP ′′(θ + Z) |X0] ≤ 0. (D.8)

Since the market makers’ zero-profit condition is unchanged, an equilibrium has to satisfy (D.4)

above as well. So, an equilibrium in this case will be a trading strategy θ(X0) that satisfies
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equation (D.7) given a pricing function P (y) that satisfies

P (y) = E[V (X0 − Z + y) | θ(X0) + Z = y].

Consider the linear case, where V (x) = ψx. As before, it is natural to conjecture that P (y) =

ψ(p0 + Λy). The FOC then gives:

θ =
X0 − p0

2Λ− 1
. (D.9)

Furthermore, because of the linearity of V (x), the FOC and equilibrium condition immediately

imply that the trading strategy should be inconspicuous, that is, p0 = µx. Note that for cost

functions where V (x) is not linear, the inconspicuousness of the trading strategy is no longer

implied by the FOC when Z is not observed by the large trader.

If θ = βx(X0 − µx), then the price function is:

P (y) = ψy + ψE[X0 − Z |β(X0 − µx) + Z = y] = ψΛy

with

Λ =
βxσ

2
x − σ2

z

β2
xσ

2
x + σ2

z

.

Thus, an equilibrium is a solution for Λ that satisfies this equation (and the SOC) with

βx =
1

2Λ− 1
.

There is a unique equilibrium given by:

Λ =
1

2
(1 +

σx
σv

). (D.10)

Appendix D.3. Discussion

In general, unlike in the continuous time model, we do not know how to solve for the equilibrium

explicitly for general cost functions outside the simple linear case. We can, however, prove that the

linear trading strategy is not optimal in general. That is, unlike in the continuous time model, it

is not optimal to adopt the same linear strategy of the form θ = βx(X0 − µx) + βzZ for all convex
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cost functions C(v). Indeed, suppose the activist adopts such a trading strategy. Then, the market

makers’ zero-profit condition implies that

P (y) = E[V (X0 − Z + y) |βx(X0 − µx) + (1 + βz)Z = y] =

∫
V (u+ y) n

(
u−M(y)√

Ω

)
du ,

where n(x) is the standard Gaussian density and

M(y) = E[X0 − Z |βx(X0 − µx) + (1 + βz)Z = y] = µx + (Λ− 1)y (D.11)

Ω = V[X0 − Z |βx(X0 − µx) + (1 + βz)Z = y]. (D.12)

For this to be an equilibrium, the FOC should be satisfied:

V (X0 + θ)− P (θ + Z)− θP ′(θ + Z) = 0. (D.13)

Consider, for example, the exponential case V (x) = v0e
ψx. Then P (y) = v0e

ψ(µx+Λy)+ψ2

2
Ω. In

order for the FOC to hold, we need:

eψ(X0+θ) − eψ(µx+Λ(θ+Z))+ψ2

2
Ω − θψΛeψ(µx+Λ(θ+Z))+ψ2

2
Ω = 0, (D.14)

or equivalently:

eψ(X0−µx−ψ2 Ω)+ψθ(1−Λ)−ψΛZ − 1− θψΛ = 0. (D.15)

Clearly, θ cannot be linear in X0 and Z.
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Table 2: Economic Efficiency Comparative Statics. The signs are the signs of the partial
derivatives of P with respect to the parameters. A 0 indicates that the partial derivative is 0.
The partial derivative ∂P/∂µx is positive in all cases, by Theorem 1, so that partial derivative is
omitted from the table. The value function V is affine in Example 1 and convex in Examples 2
and 3, so the signs of the partial derivatives of P with respect to σ and σx are given by Theorem 2
for those examples.

1. Quadratic Cost 2. Asymmetric Quadratic Cost
σ 0 +
σx 0 +

ψ

{
+ if µx > 0

− if µx < 0
+

3. Exponential
σ +
σx +
ψ +

4. Binary 4. Probabilistic Binary

σ

{
+ if ψµx < 1

− if ψµx > 1

{
+ if µx < µ∗x
− if µx > µ∗x

σx

{
+ if ψµx < 1

− if ψµx > 1

{
+ if µx < µ∗x
− if µx > µ∗x

ψ + +
∆ + +
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Table 3: Market Liquidity Comparative Statics. The signs are the signs of the partial deriva-
tives of λ with respect to the parameters, except for Example 3 (exponential). For Example 3, the
signs are the signs of the partial derivatives of λ/P with respect to the parameters.

1. Quadratic Cost 2. Asymmetric Quadratic Cost
µx 0 +
σ − −
σx + +
ψ + +

3. Exponential
µx 0
σ −
σx +
ψ +

4. Binary 5. Probabilistic Binary

µx

{
+ if ψµx < 1

− if ψµx > 1

{
+ if µx < µ∗x
− if µx > µ∗x

σ

{
+ if (µx − 1/ψ)2 > Tσ2Λ2(Λ− 1)

− if (µx − 1/ψ)2 < Tσ2Λ2(Λ− 1)

+ if
(

2− Λ + Λ2σ2T
c2

)
N(d2) >

(
d1 + Λσ

√
T

c

)
n(d2)

− if
(

2− Λ + Λ2σ2T
c2

)
N(d2) <

(
d1 + Λσ

√
T

c

)
n(d2)

σx + +

ψ +

+ if ψΛσ
√
Tn(d2) <

(
1− ψΛσ

√
T d2

)
N(d2)

− if ψΛσ
√
Tn(d2) >

(
1− ψΛσ

√
T d2

)
N(d2)

∆ + +
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