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1 Introduction

Economists have long recognized the crucial role of innovation for economic growth. A key

feature of research and development (R&D) investments is their public-good nature, which

generates under-investment in innovation relative to the socially optimal level (Arrow, 1962;

Bloom et al., 2013). How to avoid such under-investment and how to provide greater innovation

incentives are central questions in the macroeconomic and public policy literatures.

To increase R&D incentives, governments typically implement a variety of policies - such

as patents and subsidies - directly targeted at innovation investments. To assess and quantify

the effects of these policies is a key focus of the innovation literature. Only recently, econo-

mists have recognized that policies not directly targeted at innovation investments may also

have large impacts on R&D incentives and the direction of technological progress (Finkelstein,

2004). Documenting and quantifying these indirect and dynamic effects is crucial not only to

understanding the determinants of innovation activities, but also to evaluating the costs and

benefits of policy reforms. The objective of this paper is to examine the innovation investment

response to a prominently debated public policy: tort reform.

Torts are actions that injure someone and are recognized by law as grounds for a lawsuit.

The role of the tort system is to deter people from injuring others. An important class of

torts related to professional negligence is medical malpractice. A danger prominently voiced

in public debates is that large settlements arising from medical malpractice litigation lead

doctors to practice “defensive medicine” -i.e., to perform excessive tests and procedures because

of concerns about malpractice liability. Policy debates typically contrast the high costs of

defensive medicine procedures with their low expected benefits to patients. A number of studies

have investigated the relationship between the tort system and treatment intensity or medical

expenditures, and they provide evidence of the practice of defensive medicine (inter alia see

Kessler and McClellan, 1996; and Avraham and Schanzenbach, 2015).

In addition to their effects on procedure use and malpractice claims, tort reforms may

also impact R&D investments and technological change. In particular, a number of law scholars

have warned about a possible “chilling effect” of the current tort system on innovation; that is,

high damage awards and the court’s reliance on custom may reduce physicians’ willingness to

adopt new, but riskier technologies, even if they are potentially superior to customary treat-
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ments (e.g., Parchomovsky and Stein, 2008; Greenberg, 2009; and Priest, 2011). This idea that

‘liability retards innovation’ has become a key argument for tort reform advocates, and has

gained substantial ground over the years in courts and Congress. A typical counter-argument

is that high liabilities may also encourage innovation because they induce physicians to ‘de-

fensively adopt’ innovative technologies that are themselves safer or help physicians manage

risks. Despite these claims, the empirical literature on the relationship between liability risk

and innovation is scarce. We aim to address this gap by studying the impact of tort reform

on innovation in the medical device sector, a field of technology closely linked to malpractice

litigation.

To illustrate the channels through which tort reforms may affect innovation incentives,

we begin our analysis with a simple theoretical model. In our framework, physicians adopt

medical technologies considering both their expected benefits to patients and their “riskiness”

-i.e., the likelihood that adoption will lead to malpractice liability. A tort reform, such as the

introduction of caps on malpractice damages, will affect physicians’ adoption decisions. Consis-

tent with the idea that high liabilities chills innovation, our model predicts that a reduction in

the cost associated with malpractice litigation will increase physicians’ propensity to use riskier

technologies with high patient benefits. However, our analysis also shows an additional effect

of tort reforms -i.e., they reduce the propensity of physicians to “defensively adopt” low-risk

technologies with limited benefits to patients in order to avoid suits. These shifts in technology

adoption affect upstream R&D investments, and the overall impact on the development of new

devices depends on the relative strengths of the two effects.

While our theoretical framework shows that the overall effect of tort reforms on inno-

vation is ambiguous, it provides a testable prediction. Tort reforms are more likely to reduce

innovation incentives in technology fields characterized by high risk of malpractice claims. In-

tuitively, in these fields, it is likely that physicians adopt new technologies mainly for defensive

reasons. Thus, if the expected liability cost is reduced, the incentives to use these technologies

decrease, resulting in an overall decline in innovation incentives.

To test these predictions, we combine standard measures of innovation, based on US

patent data, with data on state tort reforms from the American Tort Reform Association for

the period 1985-2005. We use the inventor address information provided by the United States

Patent and Trademark Office (USPTO) and the application year of a patent to link patents

with U.S. state-years. We also exploit the USPTO 3-digit technology classification to identify
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medical instrument patents. The class of tort reform central to our empirical analysis is the

introduction of caps on non-economic damages -that is, damages other than monetary losses,

such as pain and suffering. These damages typically comprise a substantial fraction of total

awards and represent the main focus of tort reform advocates.

Our main result shows that patenting in medical instruments is reduced by roughly 14

percent in the presence of caps on non-economic damages. This negative effect suggests that,

on average, the demand for new technologies that high liabilities generate through defensive-

adoption exceeds their negative chilling effect on medical device innovation. This finding is

robust to a wide variety of alternative specifications and controls. In particular, the synthetic

control method by Abadie et al. (2010) provides clear graphical evidence that medical instru-

ment patenting responds to tort reforms, mostly after five years. Results are similar if we

exclude from the sample states for which caps on non-economic damages affect only medical

malpractice rather than general torts. Moreover, we show that our findings are not driven by

the largest states or by the largest medical device producers. Finally, we run a placebo test

that indicates no effect of tort reforms in the sample of non-medical, measuring and testing

instruments.

Because innovation activities may respond to demand changes beyond the local level,

we also examine whether medical device patenting in a state is affected by policy changes

in other states. We construct measures of economic linkages across states exploiting proxies

for the relative demand and supply of medical device innovation and find that the effect is

predominantly driven by local reforms. We show that such a local nature of the policy impact is

related to a key feature of the medical device industry: the involvement of practicing physicians.

Indeed, a sizable fraction of the negative impact of tort reforms appears to be driven by the

patenting activity of physician innovators located in the state.

We extend these baseline results in several direction. First, to confirm the prediction of

our theoretical model, we show that the effect of tort reforms is much more pronounced for

patenting related to specialities with a high frequency of malpractice claims (such as surgery

and orthopedics). Conversely, caps on damages have a small and statistically insignificant effect

on patenting in medical fields with few malpractice claims (such as dental and optics). Second,

exploiting patent citations as a proxy for technological value, we document a non-monotonic U-

shaped relationship between the effect of tort reforms and innovation quality. Caps on damages

have no statistically significant effect on innovation at the lowest and highest quality quintiles.
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The effect is negative, statistically significant and of large magnitudes at intermediate quality

levels.

Taken together, our findings indicate that tort reforms can have an impact on the level

and direction of innovation and that an effective assessment of these policies should consider

both their static impact on patients and their dynamic effects on medical technologies. While,

on average, caps on damages appear to reduce the propensity to innovate, our analysis shows

that this effect is highly heterogeneous and depends on the characteristics of both the devices

and the medical fields.

The paper is organized as follows. Section 2 summarizes the related literature. In Section

3, we present a simple model that links tort reforms with innovation incentives. Section 4

describes the data and the econometric specification. Section 5 presents the baseline estimates

of the average effect of tort reforms on medical device patenting. In Section 6, we show that

the impact of tort reform is heterogeneous and depends on the characteristics of the field and

the innovation. We conclude with a brief summary of the findings.

2 Related literature

Our paper is related to studies that investigate the determinants and direction of innovation,

in line with the induced-innovation and directed technical change literatures. In the context

of pharmaceuticals, a number of papers have investigated the impact of variations in poten-

tial market size, exploiting shifts in population demographics (Acemoglu and Linn, 2004), the

introduction of Medicare Part D (Blume-Kohout and Sood, 2013), and variations in effective

patent life (Budish et al., 2015). More specifically, our paper is related to studies that examine

how public policies focusing on achieving some social goal other than innovation affect innova-

tion. In the health sector, Finkelstein (2004) exploits three different policy changes designed

to increase the usage of preexisting vaccines and finds that these policies are associated with

a 2.5-fold increase in clinical trials for new vaccines. Acemoglu et al. (2006) find that the

introduction of Medicare was not associated with an increase in drug consumption among the

elderly; and consistent with this, they find no evidence of an increase in the approval of new

drugs targeting diseases that affect the elderly. In the energy and environment sector, Jaffe

and Palmer (1997) conclude that environmental compliance standards increase R&D spending

at the firm level.

Our analysis draws on the literature studying the relationship between legal liabilities
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and medical practice.1 Most studies in this literature exploit the variations provided by state

tort reforms. Kessler and McClellan (1996) examine Medicare beneficiaries treated for serious

heart diseases and find that tort reforms lead to reductions in medical expenditures of five

to nine percent without substantial effects on mortality or medical complications. Similarly,

Avraham and Schanzenbach (2015) find that the probability of heart patients receiving a major

intervention drops by five percent after a state implements non-economic damage caps. These

results provide evidence for the practice of defensive medicine when liability risks are high.

Other papers provide more-nuanced evidence on the influence of liability risks on physician

behaviors. Currie and MacLeod (2008) find that caps on non-economic damages increase, while

the joint and several liability rule decreases the use of cesarean sections. Shurtz (2014) shows

that the effects of tort reforms may depend on physicians’ financial incentives. Frakes (2013)

shows that states’ utilization rates of various treatments and diagnostic procedures changed

substantially following the adoption of a rule requiring physicians to follow national, as opposed

to local, malpractice standards of care. Frakes and Jena (2016) show that changes in clinical

standards can induce higher levels of health care quality.

The only empirical study that we are aware of linking liability and innovation is by

Viscusi and Moore (1993), who show that, on average, liability costs increase firms’ R&D

intensity. Their paper differs from ours in a number of dimensions. Theoretically, they study

the direct effect of product liability on firms’ R&D investment, whereas, in our model, changes

in liability risks affect innovation indirectly, as they first influence physicians’ demand for new

technologies. Empirically, they study the impacts of the cost of product-liability insurance

using a cross-industry dataset covering large firms in the period 1984-1987. We focus on the

effects of state tort reforms on medical device patenting for all firms in the period 1985-2005.

Our paper relates to the literature on innovation and technology diffusion in the medical

device industry. Clemens (2013) finds that the introduction of Medicare and Medicaid had a

positive effect on U.S.-based medical equipment patenting. Chatterji and Fabrizio (2014) study

the role of users in medical device innovation. Grennan and Town (2015) examine the impact

of regulatory testing requirements for medical devices on innovation diffusion. Stern (2015)

shows that medical device innovation incentives are shaped by the regulatory approval process.

1Another stream of studies examines the effects of tort reforms on malpractice claims such as the frequency

and severity (e.g., Danzon, 1984; and Avraham, 2007), and malpractice insurance-related outcomes, such as

insurers’ reported losses, mean payments, and insurance premiums (e.g., Barker,1992; and Viscusi and Born,

1995). For an overview of the malpractice system and the effects of tort reforms, see the survey by Kessler

(2011).

5



Nistor and Tucker (2015) show that the Food and Drug Administration’s (FDA) decision to

allow for third-party certification of medical devices led to more adverse medical events.

Finally, our work is related to the literature on the determinants of state and regional

innovation. For example, Agrawal and Cockburn (2003) report evidence in support of the

anchor tenant hypothesis that large, local, R&D-intensive firms have a positive impact on

regional innovation. Marx et al. (2009) show that regional non-compete regulations affect

inventor mobility and knowledge spillovers. Galasso et al. (2013) show that state-level taxes

strongly impact knowledge diffusion through the decision to trade patent rights. Vakili and

Zhang (2015) show that liberalization policies are associated with an increase in the level of

state innovation.

3 Theoretical model

In this section, we develop a simple theoretical model to explore the effects of tort reforms

on innovation incentives. In our framework, innovations are characterized by multidimen-

sional heterogeneity, as in Weyl and Tirole (2012). Policy reforms affect technological progress

through their impact on downstream technology adoption, which, in turn, shapes upstream

R&D investments, as in Aghion et al. (2015).

3.1 Basic framework

We consider a medical field with a representative (consumer) physician. We assume that

the physician’s utility from adopting a medical technology includes the patient’s expected

benefits and the expected cost of medical malpractice liability, as in Schurtz (2014). A medical

technology, , is thus characterized by two parameters:  ∈ [0 1] and  ∈ [0 1], where  is the
expected benefit to the patient, and  is the technology-specific malpractice liability risk (e.g.,

the probability of a bad patient outcome). The expected liability cost is  which captures the

probability that a bad patient outcome would result in a malpractice claim (or even a suit)

and the costs that the physician expects to face if involved in such a dispute. The literature

on medical malpractice points out that even when physicians are insured against claims for

monetary damages, they still suffer from malpractice disputes due to additional costs such as

time loss, stress, and damage to the physician’s reputation.2 We model a tort reform as a

2As discussed in Currie and MacLeod (2008), payments made on behalf of a physician to settle malpractice

claims are registered in the National Practitioners’ Data Bank (NPDB), which hospitals, health care professionals

and lawyers often access. Seabury et al. (2013) analyze data from 40,916 physicians covered by a nationwide
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decrease in , which may operate through two channels: (i) a reduction in the frequency of

malpractice claims given bad patient outcomes;3 and (ii) a reduction in the expected costs

associated with malpractice disputes.

The physician’s utility, when she adopts technology  is

 =  −  (1)

For a simple micro-foundation of our setting, consider an environment in which each innovation

 is characterized by a distribution of potential patient outcomes  ∼ , with mean  and

support [0 1] . If a dispute between the patient and the physician arises when the realized

outcome is below a certain threshold , the utility of the physician is  = −(), which

is equivalent to equation (1) once we set  =  and  = ().

There is an innovator with an idea for a new patentable technology, which we denote as

 . The medical field is characterized by a dominant standard technology , which is freely

available to physicians. We model the idea-generation process following Scotchmer (1999) and

assume that  and  are independent draws from the uniform distribution over the interval

[0 1] . We assume that  and  are exogenously given and that   0 and   1 −.

These assumptions rule out extreme outcomes and ensure that there are no regions in which

the old technology is dominated or dominant for all values of  .

An idea can be developed into a new technology through an R&D process. Successful

development takes place with probability () =  if the innovator incurs a research cost

() = 22 As in Aghion et al. (2015), we refer to  as the “innovation intensity,” which

captures the likelihood of successfully developing a new technology.

The timing of the game is as follows. The innovator draws the idea, observes  and 

and decides whether and how much to invest in R&D to develop the new technology. If the

new technology is developed, the innovator makes a take-it-or-leave-it offer to the physician,

who then decides whether to adopt  or . If  is not developed, the physician adopts .

For an illustrative example of how liability risks influence the physician’s choice between

alternative technologies, consider the case of heart-attack patients. Avraham and Schanzenbach

(2015) show that the probability of receiving a major intervention in the form of either an

insurer and find that the average physician spends 50.7 months (about 11% of a forty-year career) with an

unresolved, open malpractice claim.

3For example, Avraham (2007) finds that caps on non-economic damages enacted in a state significantly

decrease the number of cases per 1,000 doctors by 10-15 percent.
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angioplasty or a bypass, instead of drug management and monitoring, declines by 1.25 to two

percentage points after non-economic damage caps are enacted. This provides evidence that

damage limitations can reduce treatment intensity. Furthermore, they also find evidence of

substitution between major interventions. Angioplasty declines by roughly two percentage

points after caps are imposed, while bypass surgery, which is more invasive and remunerative

than angioplasty, rises by 0.5-0.6 percentage points.

More broadly, we can also interpret the two technologies as complements. When bundled

together, the new technologies help the physician improve the patient outcome and/or better

manage the risk. In other words,  is the utility of the bundle combining the old and the new

technologies, and the innovator is rewarded with the extra utility generated to the physician

when the new technology is included in the bundle. Examples include a surgical device allowing

for an easy delivery of the fetus during a cesarean section when fetal head is deeply wedged

in the pelvic cavity; an apparatus and method that position a patient for rapid and effective

endotracheal intubation; and a device delivering bioactive materials that help wound recovery

after surgeries.

3.2 Tort reforms and innovation incentives

If technology  is developed, the innovator makes a take-it-or-leave-it offer to the physician

for a transfer, . The physician decides whether to accept the offer, which yields a payoff of

 −  or to adopt the old technology, which yields . This implies that the payoff of the

innovator will be either  − or zero, depending on whether the new technology offers the

physician lower utility than the old technology.4

The physician will adopt the new technology if  ≥  which occurs when  is above

the following threshold:

∗ =  −( − ) (2)

Figure 1 illustrates the parameter region in which the new technology is adopted and

the shift associated with tort reforms (i.e., a decrease in ). For a fixed level of liability, ,

physicians trade off technology quality with the risk of malpractice litigation. Riskier tech-

nologies (  ) are adopted as long as their quality ( − ) is large enough. Conversely,

safer technologies are adopted only if their quality is not too low. A decrease in  rotates the

4Our results are robust to replacing the take-it-or-leave it offer with a Nash bargaining protocol in which the

surplus is split between the innovator and the physician.
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adoption threshold clockwise. The result highlights that a tort reform has different effects on

adoption, depending on the characteristics of the new technology. First, there is an increase

in the adoption of high-quality but riskier technologies. This is consistent with tort reforms

mitigating the concern that high liability exposure makes physicians reluctant to adopt new

technologies (i.e., the ‘chilling effect’ of the current tort system on innovation suggested by

Parchomovsky and Stein, 2008). Second, in contrast, there is a reduction in the adoption of

low quality and safer technologies. This is consistent with the argument that high liability

exposure motivates physicians to use low-risk technologies even if their benefits to patients are

limited, and that tort reforms help mitigate this ‘defensive-adoption’ incentive. Finally, there

is no effect on the adoption of high-quality/low-risk or low-quality/high-risk technologies.

0

1

1

ALWAYS ADOPT 

NEVER ADOPT 

Adopt if low H

Adopt if high H

decrease in H 

Figure 1: Tort reform (reduction in ) and technology adoption

The overall effect of a tort reform on technology adoption is, therefore, ambiguous. The

following proposition shows that when the old technology is sufficiently risky, in the absence of

tort reforms, the incentive to avoid malpractice claims by defensively adopting safer technologies

dominates the chilling effect of high liabilities. As a result, a tort reform would result in an

overall decrease in the propensity to adopt new technologies. That is,

Proposition 1 A decrease in  generates an overall decrease in the propensity to adopt new

technologies if and only if the old technology is sufficiently risky (i.e.,   12).

Proof. See Appendix.
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So far, our analysis has focused on the effect of tort reform on technology adoption. The

overall impact of a tort reform on innovation combines its impact on adoption with the effects

on the incentives to invest in R&D. For technologies that are going to be adopted ( ≥ ),

the profits from a successful innovation are  −, and the innovator will invest in R&D, ,

to the point at which the marginal cost of R&D equals its marginal benefits.

Generally speaking, tort reforms may have a positive or a negative effect on innovation

incentives, depending on the type of the new technology. At the extensive margin, because

tort reforms affect the physician’s adoption decisions, some technologies become profitable

after the reform while others are no longer profitable. The former experience an increase

in the innovation intensity while the latter experience a drop. At the intensive margin, for

technologies that are adopted regardless of the liability regime, tort reforms affect their profit

incentives. Recall that the profit from a successful innovation is equal to  −−(− ).
Therefore, a reduction in  increases innovation intensity for technologies with    and

decreases innovation intensity for those with   . Finally, the relative magnitudes of the

opposing effects (extensive and intensive margins combined) on innovation incentives would

depend on how the patient benefit of the new technology compares to the old technology, as

the relative importance of safety consideration is different. The characterization of the optimal

R&D intensity shows that the overall effect of a tort reform on innovation incentives depends

on the risk level of the existing technology.

Proposition 2 The impact of a decrease in  on innovation intensity is negative when the

old technology is sufficiently risky (  12) and ambiguous otherwise (i.e., when  ≤ 12).

Proof. See Appendix.

In the proof of Proposition 2, we show that, when   12, the negative impact of tort

reform on innovation dominates regardless of the level of patient benefit and, hence, the overall

net effect is negative. Intuitively, when the risk level of the old technology is high enough, a

large number of new technologies are developed and generate high profits mainly for defensive

reasons. Thus, if a reduction in  is implemented, the profitability of these technologies

declines and this reduces innovation incentives. When the risk level of the existing technology

is relatively low (  12), we show that the positive impact of tort reform on innovation

intensity dominates for technologies that convey high enough patient benefit, rendering the

overall net effect of tort reform ambiguous.
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To summarize, our simple model shows that tort reforms have an ambiguous effect on

innovation. Moreover, it generates a testable prediction: the effect of tort reform on innovation

is more likely to be negative in technology fields characterized by a higher risk of malpractice

litigation.

3.3 Discussion of the main modeling assumptions

The model builds on a number of assumptions that warrant additional discussion. First, in

describing the idea-generation process, we assume that parameters are drawn from uniform

distributions. Uniform distribution is a common assumption when modeling ideas, given the

abstract nature of the creative process (Scotchmer, 1999). An important feature of our model

is that, even though ideas are uniformly drawn, the distribution of ideas developed into tech-

nologies is not restricted to being uniform. The innovator chooses endogenously how much to

invest in development, and she invests more when ideas are more profitable.

Second, our framework assumes that  and  are independently distributed. A priori,

there is no reason to impose correlation between  and  in the idea space. Under the interpre-

tation of  and  as features of a distribution of patient outcomes, correlation between  and 

requires restricting the shapes of the outcome distributions across ideas. For developed ideas,

correlation between  and  arises endogenously in our model and depends on .5

Third, for simplicity - and different from Schurtz (2014) - our model does not include

physicians’ financial incentives. Therefore, the parameter  should be interpreted as a combina-

tion of the utility that the physician attaches to patients’ benefits and the financial incentives

associated with the adoption of the medical technology. These financial incentives typically

depend on patients’ insurance plans, and in our empirical analysis, we will show that our esti-

mates do not change when we control for the extent of public and private insurance coverage

by a state.

Finally, in our model, physicians act as users of medical devices, not as inventors. Our

theoretical results generalize to the case in which physicians are also innovators, as long as they

can appropriate in part or fully the rents from commercialization.

5 If we extend the model by imposing a negative correlation between  and , we would expect a lower impact

of a tort reform on innovation incentives. This is because negative correlation renders more likely ideas with

high benefit and low risk (which are developed independently of the malpractice regime) and ideas with high

risk and low benefits (which are not developed even in the presence of caps on damages). Conversely, we would

expect positive correlation between  and  to amplify the impact of tort reforms.
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4 Data and methods

We begin with a U.S. state-year panel dataset measuring tort reforms during the period 1985-

2005. The main source of data on tort reforms is the American Tort Reform Association

(ATRA), which lists information on reforms implemented since 1986. We complement these

data with additional information collected by Currie and MacLeod (2008) on the pre-1986

status quo and on laws overlooked by ATRA because they were overturned.

We merge this panel with the United States Patent and Trademark Office (USPTO)

patent dataset to measure patenting activity across U.S. states during our sample period.

We use the address information of the first inventor and the application year of a patent to

aggregate patents to the state-year level. Each patent is classified by the USPTO using 3-

digit technology classes, and we exploit this detailed classification system to identify medical

instrument patents.6 We also obtain data on the gross product, the population and the number

of physicians in a state.7

USPTO patents offer a unique source of data for large-scale studies on innovation.

Nonetheless, certain qualifications should be kept in mind. First, not all inventions are patented,

but the innovation literature has shown that technologies with greater impact on social welfare

and economic growth are more likely to be patented (Pakes and Griliches, 1980). Second,

innovation is a process for which it is impossible to measure the origin. Relative to alternative

measures, such as an FDA-approved device and the location information of its manufacturer,

the application date of a patent and the location of the inventors are probably the best available

measures to capture the timing and location of the origin of the invention.

It is unlikely that the tort law changes that we exploit in the paper are driven by, or

systematically correlated with, trends in medical device innovation for the following reasons.

First, most of the law changes in the ATRA sample are modifications of the general tort statutes

and are not aimed directly at medical malpractice. As described in Currie and MacLeod (2008),

there is little evidence that tort laws were passed in response to specific developments in the

health sector, and most laws apply to all torts. Priest (1987) argues that an important driver

of early tort reforms was a doctrinal change in the interpretation of tort law, leading some

6Specifically, we follow a list provided by the USPTO indicating patent classes related to medical devices:

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/meddev.htm.

7These data are obtained from the US Census and the BEA. Information on the number of physicians is not

reported in the US Census Statistical Series for the years 89, 91 and 93 and are imputed by interpolation.
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courts to increase injury compensations substantially. Moreover, a number of more recent tort

reforms were influenced by the extensive media coverage of the 1992 Liebeck v. McDonald’s

Restaurants case, in which a woman was awarded more than two million dollars when she

accidentally spilled hot coffee in her lap. Finally, it is important to note that our data also

include instances in which state courts overturned laws because of constitutionality issues. As

we show later, analysis focusing on these reforms alone provides results that are consistent with

our baseline results.8

Our paper focuses on the demand channel of liability risks (that is, changes in mal-

practice liability risks affect physicians’ demand for new technologies) instead of on the direct

effect of product liability risk on manufacturers for the following reasons. First, different from

many other sectors, medical devices are subject to national regulation. Specifically, manufac-

turers of medical devices reviewed by the FDA are subject to the Medical Device Amendments

to the Federal Food and Drug and Cosmetic Act passed in 1976, which preempts state tort

claims (Bivans, 1995). This implies that changes in state tort laws exploited in this paper are

likely to affect manufacturers through their impact on downstream users rather than through

product liability costs. Second, the product-liability risk channel seems too narrow to capture

the phenomenon in our context. For example, technologies that are demanded for defensive

reasons (e.g., diagnostic and monitoring technologies; devices that aid smooth delivery of ba-

bies during cesarean sections; or a small diameter steerable guidewire for use in procedures in

narrow arteries) are unlikely to be targets of liability claims, rendering the product-liability

channel irrelevant.

The class of tort reforms central to our empirical analysis is the introduction of caps on

non-economic damages -i.e., damages other than monetary losses, such as pain and sufferings.

As discussed in Avraham et al. (2012), these damages comprise a substantial fraction of total

awards and have often been the main focus of tort reform advocates. Consistent with the

literature, we capture tort reforms using a dummy variable, Damage Caps, which equals one if

caps on non-economic damages are in place. In our setting an indicator variable is preferable

to the actual level of caps for two reasons. First, for some of the reforms, it is difficult to

identify a precise dollar amount (i.e., they do not impose a cap of a fixed dollar amount and

8Moreover, Deng and Zanjani (2015) do not find evidence of an influence of private interest groups - such

as doctors or insurance industry professionals - on tort reform adoption. Similarly, Avraham and Schanzenbach

(2015) exploit a detailed dataset of patients experiencing heart attacks and show that passages of tort reforms

do not appear correlated with pre-existing trends in treatment intensity.
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use a multiplier of the economic damages). Second, and more importantly, with fixed-effects

models, changes in the presence of a cap within a state provide more meaningful identification

variations than cross-state variations in the level of caps. While caps on non-economic damages

are a common state-level tort reform, we also control for other (less common) tort reforms,

such as caps on punitive damages or changes in the joint-and-several liability rules.

During our sample period, 25 states experienced changes in caps on non-economic dam-

ages. Of these states, 16 switched from no caps to a cap, whereas the remaining nine states

experienced multiple shifts (e.g., caps were instituted and then rescinded, and in some cases,

reinstated). About half of the reforms took place in the late 1980s. In terms of 1985 medical

device patenting, population and gross state product, the states in which caps on damages

were not implemented for the entire sample period are not statistically different from states in

which caps were present in some years.

Table 1 provides summary statistics. Caps on non-economic damages were present in

about 34 percent of the state-year observations of our sample. On average, inventors in a state

applied for roughly 1,700 patents (eventually granted), and about 100 of these patents were

classified by the USPTO in one of the medical device technology classes.

4.1 Econometric specification

Our main econometric model focuses on the relationship between measures of innovative activity

 in state  and period  and the indicator for the presence of caps on non-economic damages

in state  and period . Our baseline specification is:

log  = Damage Caps + 0 +  +  +  (3)

where  is a vector of control variables, and  and  are, respectively, the state and year

fixed effects. The coefficient  captures the effect of tort reforms on patenting in the state: for

example,   0 means that innovators located in a state reduce their patent applications when

damage caps are in place. We cluster the standard errors at the state level.

Our identification comes primarily from changes in damage caps over time within a state.

The controls  and state effects  , therefore, play an important role in our analysis. As

discussed previously, there is little evidence that the tort reforms used in our analysis are driven

by, or systematically correlated with, trends in medical device innovation. Nonetheless, we

perform several robustness checks designed to placate remaining endogeneity concerns and to
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isolate confounding factors. For example, we construct better controls to each of the states

affected by a tort reform using the synthetic control method developed by Abadie et al. (2010).

We also exclude large states and large device companies to confirm that the results are not

driven by states that may have implemented pro-innovation policies or by large companies that

were particularly innovative during the sample period.

Because innovation activities may respond to changes in demand beyond the local level,

we also examine whether innovative activity  in state  and period  is affected by tort

reforms in other states. This requires extending the baseline model to include non-local effects

log = Damage Caps + Non-Local Reforms + 0 +  +  +  (4)

where Non-Local Reforms is a weighted average of tort reforms in other states

Non-Local Reforms =
X
6=

Damage Caps (5)

5 Baseline empirical results

In this section, we report the overall effects of the presence of non-economic damage caps on

patent applications in the medical device fields. In the next section, we explore the heterogeneity

in the data to further test the predictions of our model. The regressions in Table 2 show a

strong negative correlation between medical device patenting by innovators located in the state

and the presence of caps on non-economic damages. All the specifications include year and

state effects. These results are consistent with the idea that, in the absence of tort reforms,

the defensive-adoption effect of high liabilies dominates the chilling effect, on average.

Column 1 presents the estimates of an OLS regression with the number of medical patents

as the dependent variable. The coefficient implies an average reduction of roughly 30 patents

in years in which damage caps are present. Column 2 shows that the results are similar with an

OLS regression with log of patents as the dependent variable. Exponentiation of the coefficient

implies that in periods when caps on damages are in place, innovation is reduced by roughly 14

percent. Evaluated at the median level of patenting for state-years without damage caps (i.e.,

28 patents), this effect is equivalent to a reduction of roughly four medical device patents per

year.9

9The difference between the average effect presented in column 1 and the effect evaluated at the median is

due to the skeweness in the distribution of patenting across state-years. In Section 5.2, we report the estimated

effects separately for each treated state.
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In column 3, we show that results are not affected if we introduce a variety of controls:

lagged total patenting; population; and the number of physicians in the state.10 Column 4

controls for other changes in tort law: cap on punitive damages; modifications of the collateral-

source rule; and modifications of the joint-and-several liability rule. The coefficients on these

dummies are all statistically insignificant and small in magnitude, confirming the predominance

of non-economic damages. Finally, column 5 shows that results are robust to excluding from the

sample states for which caps on non-economic damages pertained only to medical malpractice

rather than to torts more generally. This helps to address the concern that the effects might

be driven by legislation passed in response to specific incidents of malpractice.11

We perform a variety of robustness tests to confirm our main finding. First, there is the

concern that our regressions ignore the count nature of our dependent variable. To address this

issue, we show that our results are robust to estimating the effect of caps on damages using a

Poisson regression model with fixed effects (column 1 in Appendix Table A1).

A second series of extensions demonstrates that our main results are robust to including

extra covariates. First, Table A1 shows that the results are similar when we allow for dynamics

and use a multiplicative feedback model that controls for the logarithm of lagged patenting in

medical instruments. Also in Table A1, we extend our baseline model to include additional

controls for gross state products (GSP), the percentage of the state’s population with med-

ical insurance coverage, and the percentage of the population with private medical insurance.

These variables are proxies for the demand for new medical technologies in the state, and their

inclusion reduces the concern that tort reforms are correlated with other unobservable demand

shocks affecting innovation. The coefficient on tort reform is stable, and the coefficients on the

insurance variables are small and statistically insignificant.12 In unreported regressions, we also

confirm that our results are robust to including a control, constructed by Frakes (2013), for

the adoption of rules requiring physicians to follow national, as opposed to local, standards.13

10As an alternative approach, instead of controlling for the population and the number of physicians in the

state, we run a weighted regression with weights constructed from the pre-sample (year 1981) population in

each state. The estimated coefficient on Damage Caps is equal to -0.116 with p-value below 0.01. We find a

very similar coefficient when weights are constructed from the pre-sample number of practicing physicians in the

state. For both coefficients we cannot reject equality with the estimate in column 3 of Table 2.

11Currie and Macleod (2008) identify these states as Montana, Nevada and Alaska.

12The insurance variables are obtained from the US census, which only reports data for the period 1987-2005.

We extrapolate the time series to construct the data for the two missing years.

13The coefficient on tort reform is stable, whereas the dummy on national standardization is negative, small
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We also examine whether our results are robust to: (i) excluding the five states with the

largest number of medical device patents in 1984; and (ii) dropping the ten largest patentees

over our sample period. The regressions reported in Table A1 indicate that the estimated

effect is not driven by the largest states or the largest firms. These findings mitigate a number

of concerns over confounding factors (e.g., that large patenting firms happen to be located in

control states or that large control states happen to have implemented pro-innovation policies).

Finally, in the last column of Table A1, we present a placebo test that estimates our base-

line model using the sample of non-medical measuring and testing instruments (USPTO class

073). The estimated coefficient is statistically insignificant and small in magnitude, suggesting

that tort reforms have not affected patenting in this technological field. This finding help to

address the concern that the impact of cap-on-damages on medical device patenting may reflect

omitted variables (e.g., pro-innovation policies) or pre-trends in patenting correlated with tort

reforms.

We turn next to two extensions that are of independent interest.

5.1 Non-local effects of tort reforms

Our empirical analysis thus far has assumed that the impact of tort reforms on innovation

is localized -i.e., it affects innovators only in states with policy changes. In this section, we

extend our baseline model and examine the effects that tort reforms have outside the state in

which they are implemented. There are a number of possible channels through which a cap on

damages imposed by one state can impact innovation incentives in other states. For example,

if caps on damages in one state substantially reduce the demand for certain technologies in the

state, they may decrease R&D investments in these technologies by local innovators, as well

as by innovators located in other states. This would lead us to underestimate the impact of

tort reform on innovation. More complex spillover effects may also arise through competitive

interaction between medical device firms in treated states and those in control states.

To examine whether market forces generate effects of tort reforms beyond the focal

state, we extend our baseline model including a new variable Non-Local Reforms, which

is a weighted average of tort reforms in other states. The first set of weights we construct

aims to be a proxy for the relative demand of medical instruments in each state  6= . To

and insignificant. A priori, it is not clear how standardization of physician practice may impact innovation

incentives, because it may combine a positive demand effect for devices used in national standard procedures,

and a negative impact for devices employed in local procedures which deviates from the standard.
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this end, we exploit the American Medical Association (AMA) publication titled “Physician

characteristics and distribution in the U.S.” that provides detailed information on the number

of practicing physicians in the US by state and compute the share of physicians in each state

 in the pre-sample year 1981, which we label . We then generate weights  =  to

use in the construction of Non-Local Reforms as defined in equation (5). This approach gives

higher weights to tort reforms in bigger states and, at the same time, allows us to compare the

magnitudes of the estimated effects of reforms in the focal state and other states. We add this

new control to our baseline in column 1 of Table 3. The result is striking, we find no evidence

of a significant effect of tort reform in other states on medical device patenting in the focal

state.

Our second approach constructs weights which take into account both the demand for

specific categories of medical devices in each state and the innovation supply of the focal

state across these categories. Exploiting the AMA’s data, we construct a vector with the pre-

sample (year 1981) number of practicing physicians in each state across three main speciality

groups: surgery, orthopedics and others. We then use the USPTO patent classification system

to identify pre-sample (years 1980-82) medical instrument patents in three technology areas

which parallel these speciality groups: surgery, orthopedics and others. We exploit these data

to construct

 =
X




where  ∈ {surgery, orthopedics, others} captures specialities/technology areas,  is the
fraction of US patenting in technology area  accounted by state  and  is the fraction of

US physicians in speciality area  accounted by state . The construction of this variable is

consistent with a simple supply/demand model for medical instruments innovation. Intuitively,

the number of doctors in each state  and speciality area  is a proxy of its demand for innovation

in technology area . Similarly, the level of patenting in state  and technology area  is a proxy

of its supply of medical innovation to doctors in speciality area . The Non-Local Reforms

variable is then constructed using  =  as weights. Column 2 of Table 3 shows that

adding this, more sophisticated, control does not change our conclusion. Also in this case the

coefficient is very small in magnitude and statistically insignificant, suggesting that non-local

effects do not play a central role.14

14 In unreported regressions, we also considered a weighted average of the tort reforms in other states, in which

weights are constructed from the state-to-state migration flows data in the 2005 American Community Survey
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The above two sets of weights do not take into account the geographic distance between

demand and supply, which may influence factors such as shipping costs and regional scale ef-

fect of sales force. We next investigate the effects of tort reforms in other states by geographic

distance directly. First, in column 3 of Table 3, we extend our baseline model by adding a

dummy for damage caps implemented in bordering states. The result shows that a tort reform

in a bordering state does not have a significant impact on the focal state’s innovation incen-

tives, with an estimated coefficient being negative but statistically insignificant. Column 4 of

Table 3 introduces a flexible specification that allows for non-linear effects of distance. Specifi-

cally, we employ five dummy variables for reforms within 500Kms, 500-750Kms, 750-1,000Kms,

1,000-1,250Kms and 1,250-1,500Kms from the focal state. The distance is constructed from

the latitude and longitude coordinates of states’ population centroids provided by the Census

Bureau. The only coefficient statistically significant (at the 0.1 level) and with magnitude

substantially larger than the others is the one for reforms within 500Km. In all regressions,

the coefficient of the direct effect of a tort reform within the focal state is stable and similar

in magnitude to the baseline regression. Overall, the data suggest that geographical spillover

effects appear to be small and concentrated within 500Kms of the focal state.

Explaining the local nature of the effect

We showed that the effect of tort reforms on medical device innovation is concentrated

among local innovators. Various features of the medical device industry may explain this find-

ing. Specifically, the medical device innovation process is characterized by the substantial

involvement of practicing physicians. Chatterji et al. (2008) find that roughly 20 percent of

medical device patents list a licensed physician among their inventors. This occurs because

physicians often develop new technologies and either patent them directly or collaborate with

manufacturing firms to protect and commercialize the technologies (Chatterji and Fabrizio,

2014). This widespread user-innovation paradigm suggests that the local nature of the effect

of tort reforms on innovation may be explained by changes in patenting by local physicians

who are directly affected by the policy change. On top of doctors’ involvement in patenting,

the local effect of tort reforms can also be explained by an informational advantage of local

innovators. Medical device innovators geographically located closer to physicians affected by

of the US Census Bureau as in Moretti and Wilson (2014). The larger the population flow from state  to state

, the greater is the weight of a reform in state  for state . The coefficient on this variable is also small and

statistically insignificant.
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tort reforms may be better suited to understand and address doctors’ technological needs.15

It is hard to observe feedback from physicians systematically. We can, however, examine

the user-patenting channel more directly. We exploit data from Chatterji et al. (2008) and

identify the patents in our sample that list a licensed physician as inventor for the period

1990-1996. We find that 19.1 percent of the 1990-96 medical device patents in our sample are

classified as invented by doctors or with the participation of doctors, a figure very similar to

that in Chatterji et al. (2008). In column 1 of Table 4, we show that our main finding is

robust to focusing on the 1990-96 sub-period. In columns 2 and 3, we contrast the effect of tort

reforms for patents involving practicing physicians and other patents. The negative impact

of tort reforms appears statistically significant only for patents involving physicians, with a

coefficient twice as large as that for the other patents. This result supports the idea that a

sizable fraction of the tort reform effect is driven by local physician innovators who are directly

affected by tort law in a state.16

5.2 Synthetic control method

Our analysis so far has focused on the average effect (across treated states and over time). In

this section, we use the synthetic control method (Abadie et al., 2010) to obtain a clear graphical

representation of the effect of adopting the damage cap. By investigating each treated state

separately, this method also allows us to see which states drive the average results and the

timing and magnitude of the effect for each state.

Specifically, for each of the 16 states that transitioned from no cap to adopting a cap, we

construct a synthetic control using the 23 states that did not have a cap throughout our sample

period (donor states). The predictor variables used to construct the synthetic controls are the

number of medical patents, the total number of patents, population, GSP, and physicians per

population. The weights on the donor states are reported in Table A2 for the top six treated

15Thomas Fogarty, inventor of the embolectomy balloon catheter, states: “Physicians are the ones who recog-

nize the need, and very often, the physician is capable of conceiving what may satisfy that need. . . .. The physician

plays a key role, followed by the engineer and other specialties who have knowledge in the development of tech-

nology related to the medical field” (in Endovascular Today, March 2013). This idea is also confirmed by Shaw

(1985). In a study of British medical innovations he finds that, for half of the devices in his sample, a prototype

was developed and produced by a user. In another third of the cases, the idea was transferred directly from the

user to the manufacturer at the user’s initiative.

16As we discuss in Section 3.3, in our model, physicians act as users of medical devices, not as inventors. Our

theoretical results generalize to the case in which physicians are also innovators, as long as they can appropriate

in part or fully the rents from commercialization. For Table 4, we control only for state and year effects because

of the smaller size of this sample.
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states (as explained below).17

The treated states vary substantially in their inventive activities. For example, the total

number of medical patents applied for between 1974 and 1986 ranges from three to 416. We

report, in Figure 2, the results for the top six treated states (according to their pre-1987 patent

stock).18 Before adopting the cap, the number of medical patents in the treated state is similar

to the corresponding synthetic control state, while patenting decreases relatively after the tort

reform. The treatment effect, defined as ( treated,after −  treated,before) − ( control,after −
 control,before) where  is the yearly average, ranges from -51.7 to -22.4 patents per year for

these six states. The mean and the median are, respectively, -36.7 and -36.1. Visual inspection

shows that, when tort reforms make a difference, the magnitude increases over time and starts

to become meaningful after five or six years.

The treatment effects for the other ten smaller states that switched from no cap to a cap

(not reported graphically) are small, ranging from -7.8 to 4.1 patents per year, with the mean

and median being both about -1. We confirm robustness of these results to excluding large

patenting states, top ten assignees, or states that are less than 500Kms from the control.

We use the placebo tests suggested by Abadie et al. (2010) for inference. For each

treated state, we iteratively apply the synthetic control method to every state in the donor

pool. Specifically, we reassign the adoption of the cap to each of the 23 donor states and

shift the treated state to the donor pool. This iterative procedure provides a distribution of

estimated treatment effects for states in which no intervention took place. The results for

the top six treated states, presented in Figure A1, show that the estimated effect for the true

treated state is among the most negative in this distribution.

Exploiting this methodology, we also examine two large states, Texas and Ohio, which

eliminated their damage caps off during the sample period. The estimated treatment effects of

eliminating the cap are positive, and equal to 48.2 and 62.7, respectively, for Texas and Ohio.

These results are consistent with our theoretical model, confirming that the negative effect of

the presence of a cap on patenting activities is unlikely to be caused by the general trend of

17Because the method requires a relatively long pre-treatment period, we extend the sample back to 1977. We

obtain the weights on the donor states by minimizing the distance between the average values of the predictor

variables in the pre-treatment period for a treated state and those for its synthetic control, subject to: (i) all

weights must be non-negative, and (ii) they sum to one.

18The top six treated states are Colorado, Maryland, Michigan, Missouri, Utah and Wisconsin. There is a

discrete drop in the pre-1987 patent stock between the sixth and the seventh states: the number is 221 for the

former and 89 for the latter.

21



increasing inventive activities in the control state.19

6 Heterogeneous effects

Our baseline analysis has documented an average negative effect of tort reforms on medical

device patenting. In this section, we examine the heterogeneity in the impact of tort reforms:

(1) by the extent of malpractice risk of a particular medical field; and (2) by the quality of an

invention.

6.1 Malpractice risk and innovation incentives

The model predicts that the impact of tort reforms is more likely to be negative in technology

fields characterized by frequent malpractice risk (i.e., high ). Intuitively, in these fields, it

is likely that physicians adopt new technologies mainly to manage liability risk. Thus, if caps

on damages are implemented, the incentives to use these technologies decline and, thus, reduce

the overall innovation incentives.

Jena et al. (2011) study US malpractice data from 1991 through 2005. They show that

the proportion of physicians facing litigation risk varies substantially across medical specialities.

The likelihood of facing a malpractice claim is the largest in surgery (especially in neurosurgery

and thoracic-cardiovascular surgery) and orthopedics, where the annual probability of facing a

claim is about 20 percent. Conversely, malpractice claims are not frequent in specialities such

as psychiatry, optics or dentistry, where the annual probability of a claim is below 3 percent.

Building on these findings, we exploit the detailed USPTO patent classification system and

identify medical instrument patents related to four technology fields: surgical, orthopedics,

optics, and dental.20

Table 5 provides the estimates for the effect of tort reforms on patenting in each of

these four fields. As our model predicts, there is a large negative effect for medical instrument

patenting related to specialities in which the frequency of malpractice claims is high (surgery

and orthopedics). Conversely, the effect is small and statistically insignificant for devices as-

sociated with specialities with fewer malpractice claims (dental and optics). While we cannot

reject that the effects on surgical and orthopedic devices have the same magnitude ( = 097),

19Both Texas and Ohio reinstated the cap in 2004, and we do not use 2004 and years after that in our analysis.

Ohio also had a brief one-year reinstatement in 1999, which we ignore in the analysis.

20We use the following 3-digit classes: 128 and 600-607 for surgical; 433 for dental; 351 and 356 for optics;

and various sub-classes of class 623 for orthopedics.
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we can strongly reject that the effect for surgery is equal to the effect for optics (  001) or

to the effect for dental (  001).

6.2 Tort reform and innovation quality

Our baseline regressions indicate a negative effect of tort reforms on medical device patenting.

Such a reduction in the number of patent applications may have very different impacts on

welfare depending on whether it affects high-quality patents or marginal patents with limited

impact on the technology field. To unbundle the heterogeneous effect of tort reforms across

different quality levels, we exploit information on the citations received by each patent. Patent

citations identify prior knowledge upon which a patent builds. USPTO patent examiners are

responsible for insuring that all appropriate prior art has been cited, and this delimits the

scope of property rights granted to the patentee. Because of this important legal function, the

economics of innovation literature has often employed the number of citations received by a

patent as an indirect measure of patent value (Pakes and Griliches, 1980). Since citation counts

are inherently truncated, and levels may differ across technology areas, we filter citations by

removing grant-year and 3-digit technology class effects. We then identify the (filtered) citation

quintile in which each patent belongs.

In Table 6 we present the estimates of our baseline model for each of the quality quin-

tiles. The estimates show a non-monotonic relation between damage caps and patenting across

patents of different quintiles. The effect is not statistically significant for innovations in the

lowest quintile of innovation quality. The effect becomes negative and significant in the second

quintile, and the magnitude of the negative effect is larger as innovation quality increases (with

the largest being in the fourth quintile). The effect, again, becomes small and insignificant for

innovations in the top quality quintile.

We perform a variety of tests to confirm robustness of this finding. First, we re-estimate

the relationship between damage caps and patenting disaggregating at the finer level of citation

deciles. The (unreported) estimates are in line with those from the quintile analysis and show

a U-shaped relationship between tort reform and innovation. There is a statically significant

negative impact only for patents from the 4th to the 9th deciles, with the largest effects on

the 7th decile of the distribution. Second, we confirm that the pattern is robust to using

alternative measures of patent quality. In Appendix Table A3, we construct quintile bins

exploiting residuals obtained from regressing citations against year effects, technology effects

and the number of claims. This alternative measure - which captures normalized citations per
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patent claim — yields results very similar to those obtained in Table 6.21

Explaining the U-shaped effect

The non-monotonic impact of tort reforms illustrated in Table 6 is predicted by our

model when we perform comparative statics in  , which is the expected benefit to the patient

from the new technology. This result is formally proved when we derive the main result of

Proposition 2, and it is illustrated in Appendix Figure A2. Intuitively, physicians do not

adopt low-quality technologies independent of the malpractice liability regime and, hence, tort

reforms have little impact in that quality bin. As the value of a new technology increases and

gets closer to the value of the old technology, adoption becomes more likely mainly to manage

risk. In this quality bin, the effect of tort reforms on innovation incentives is negative because

the physician’s willingness to pay for a safer technology decreases after the reform. For new

technologies with value greater than the old technology, tort reform has two opposing effects: It

decreases innovation incentives for safer devices, but increases innovation incentives for riskier

devices. Furthermore, the positive effect of the reform gets stronger than its negative effect as

the value of the new technologies becomes higher. This explains why the negative effect of tort

reform is mitigated at higher quality bins and we find an insignificant effect for patents of the

highest quality.

Note that the model generates a non-monotonic relationship between tort reform and

 , which is the expected benefit to the patient from the new technology. In performing this

comparative statics, we let  (the expected risk level of the new technology) vary endogenously

for each level of  . To empirically disentangle  from  is very challenging with our data,

and citations are a measure of quality available for a variety of different medical technologies.

While it is likely that the lowest quintile of the citation distribution captures innovations with

very low  and that patents in the top quintile capture technologies with very large  ,

intermediate quintiles may contain technologies with mixed levels of  and  . Despite the

presence of such measurement error, the estimates are consistent with the model’s predictions,

suggesting that citations may be a reasonable proxy for  .

We perform an additional test of the prediction of the model exploiting the fact that

in the U.S. medical devices are subject to the FDA regulatory process. One of the FDA’s

regulatory pathways to bring a device to market is the Pre-market Approval (PMA) process,

21We also obtain similar results: (i) filtering citations removing only the grant year effects; and (ii) measuring

quality with the number of patent claims filtered by 3-digit technology effects.
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which requires detailed product information and evidence of safety from clinical trials (Stern,

2015). The FDA requests PMAs for “high-risk” devices that are used to support or sustain

human life, and the expenditure required to complete PMAs is substantial (75 million dollar

per device according to survey evidence in Makower et al., 2010). This high cost, combined

with the “high-risk” nature of the medical devices involved in PMAs, suggests that data on

PMAs may provide a reasonable window on technologies with high  and  . Our theoretical

framework suggests that tort reforms will not strongly affect innovation incentives for these

devices. The model predicts an ambiguous effect for these technologies, with a magnitude

(positive or negative) lower than the one for devices with lower  .

Exploiting the data released by the FDA for PMA requests as a measure of innovation,

we run a variety of (unreported) regressions estimating the impact of tort reforms. Coefficients

are small and statistically insignificant across the various specifications. While this insignificant

effect is in line with our theory, two key qualifications should be kept in mind. First, FDA

applicants are often manufacturers that are not necessarily the innovators. Second, there is

evidence of strategic delays in the introduction of medical devices in the U.S. market relative

to the European markets (Grennan and Town, 2015). Both of these issues may generate

substantial measurement errors for innovative activities and geographic locations and, hence,

bias the coefficients toward zero.

7 Conclusions

This paper investigates how tort reforms affect the development of new medical device tech-

nologies by exploiting state tort reforms and patent data for the period 1985-2005. We develop

a theoretical model in which tort reforms increase physicians’ propensity to adopt riskier tech-

nologies by mitigating the “chilling effect” of high liabilities emphasized by legal scholars. At

the same time, we show that tort reforms also reduce physicians’ propensity to defensively

adopt low-risk technologies in order to avoid malpractice liability, even when their benefits to

patients are limited. These shifts in technology adoption affect upstream R&D investments,

and the overall impact on the development of new devices depends on the relative strengths of

the two effects.

Our empirical analysis shows that the introduction of caps on non-economic damages

is associated with an average decline in patenting for medical instrument technologies. This

suggests that, on average, the demand for new technologies generated by high liabilities exceeds
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the negative chilling effect that damages have on medical device innovation. Consistent with

the model’s predictions, we find that tort reforms have a greater negative effect in specialities

with a high frequency of malpractice claims (and, hence, stronger defensive-adoption effects

when damages are high). Moreover, we find that the effect is the most negative for patenting

at intermediate quality levels, while it is insignificant for patenting at the top and the bottom

of the quality distribution. For the most valuable medical technologies, the insignificant effect

of tort reforms indicates that, empirically, the positive effect of caps on damages on medical

innovation counterbalances their negative effect.

More broadly, our paper provides empirical evidence that tort reforms can affect the

rate of technological change, indicating that these policies have dynamic effects on innovation

incentives that go beyond their short-term impact on patients and health costs. As Finkelstein

(2004) stresses, recognizing and estimating these dynamic effects is crucial to evaluating the

costs and benefits of tort reforms.

There are several useful directions for further research. Our paper infers the differential

effects of tort reforms on different types of technologies without directly categorizing the tech-

nologies. With patent textual analysis, it may be possible to more precisely measure the impact

of tort reforms across finer classes of medical devices. Second, our paper does not evaluate the

welfare effect of tort reforms on innovations. This would require a more structural analysis

of the value of safer technologies versus riskier, but potentially more effective, technologies to

physicians and to patients, as well as the spillover effects of these technologies to other sectors

of the economy.
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Appendix

Proof of Proposition 1

The area in the (   ) space in which technology is adopted is equal to

 =

1Z
0

(1−  +( − ))

= 1−  +( − 1
2
)

with derivative



=  − 1

2
which is positive if   12
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Proof of Proposition 2

The optimal innovation intensity for an innovator with idea (  ) solves

max


 ( −  −( − ))− 2

2

which is equal to ∗ =  −. Consider an innovator with an idea with expected benefit  .

She will invest in R&D as long as

 −  −( − ) ≥ 0

or

 ≤  − 


+  ≡ .

The innovation intensity for firms at  is

Z 

0

 −  −(− ) =
2

2
 (6)

Considering the corner solutions when  is outside the unit interval in (6), we obtain the

expected innovation intensity for a fixed level of  :

( ) =

⎧⎪⎨⎪⎩
0 if   0 −0



2

 − 


+ 2 if 0 −0     + 0 −0

 −  +( − 1
2
) if  ≥  + 0 −0.

(7)

We exploit formula (7) to study the impact of tort reforms on innovation as well as the hetero-

geneity in the impact across technologies with different levels of expected benefits. To compute

the total expected innovation investment we integrate ( ) for each value of  . The total

effect comprises three parts. The first part isZ −0

0

0 = 0

The second part is
+−Z
−



2

 − 


+ 2  =

1

6
2

The third part of the innovation intensity is

Z 1

+−

µ
 −  +( − 1

2
)

¶


=
1

2
22 −

1

2
2 − +

1

2
 + − 1

2
 +

1

2
2 −  +

1

2
.
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Which implies that the expected innovation intensity as function of ( ) is equal to

(  ) =
1

2
22 −

1

2
2 +

1

6
2 − +

1

2
 + − 1

2
 +

1

2
2 −  +

1

2

The following derivative captures the impact of a tort reform:




=
1

3
 +

1

2
 +  − −  +2 −

1

2
.

When  = 05 we have that  = 12  0 Moreover,
2


= 1 − −  + 2

which is increasing in  for every value of  if  ≥ 12 We now look at the effect across
various levels of  . When    −, we have that




= 0 and

2


= 0. When

 − ≤  ≤  +  − we have that




=

2
2
− ( − )

2

22
≥ 0

The positive inequality follows because  −    implies  −    which in

turn implies ( − )
2  ()

2. Moreover
2


= − − 

2
which is increasing when

 −   0 and decreasing when  −   0 Thus the derivative is maximized at  = .

Finally, when  ≥  +  −, we have that



= (− 1

2
) and

2


= 0 Notice that

the maximum value that



can take is

2
2
because

2
2

  − 1
2
for any  ≤ 1 Figure A2

illustrates these findings.
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Figure 2.  Medical patenting in treated states and synthetic controls 

       

               

             

            

        

 

NOTES: This figure plots the number of medical patents by the application year for a treated state and its synthetic 

control. These six states had the  largest pre‐1987 medical‐patent stock among the 16 states that switched  from 

having no cap  to  imposing a  cap on non‐economic damages between 1977 and 2005. The control  is generated 

using the same 23 states that did not impose a cap throughout the sample period.  Vertical lines separate the pre‐ 

and post‐cap periods.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obs. Mean Std. Dev. Min Max

Total Patents 1071 1697.8 3110.4 21 28383

Medical Device Patents 1071 98.8 210.4 0 2070

Damage Caps 1071 0.3 0.5 0 1

Year 1071 1995 6.1 1985 2005

Population (1,000) 1071 5189.2 5753.1 453.5 35827.9

Physicians per 1,000 population 1071 2.3 0.9 1.2 7.9

Table 1. Summary statistics 

NOTES: Unit of observation is U.S. state‐year. Total Patents is the total number of patents applied for (and eventually granted)

in a year in the state. Medical Device Patents are applications classified by the USPTO in one of the medical device patent

classes. Damage Caps is equal to one if the state has a cap on non‐economic damages. Data on population and physicians are

from the US Census  and the Bureau of Economic Analysis  (BEA).



 

 

(1) (2) (3) (4) (5)

Dependent Variable Med Patst log(Med Patst) log(Med Patst) log(Med Patst) log(Med Patst)

Damage Capst ‐29.708** ‐0.150** ‐0.159*** ‐0.152*** ‐0.162** 

(12.52) (0.06) (0.06) (0.06) (0.07)

log(Population) 1.134*** 1.400*** 1.094**

(0.44) (0.43) (0.42)

Physicians per 1,000 population 0.130 0.119 0.112

(0.16) (0.162) (0.17)

log(Total Patentst‐1) 0.045 0.030 0.083

(0.13) (0.13) (0.14)

Punitive Damage Cap ‐0.084

(0.07)

Collateral‐source rule  0.053

(0.09)

Joint and Separate Liability ‐0.030
(0.07)

Year Effects YES YES YES YES YES
State Effects YES YES YES YES YES

Drop states with malpractice‐

focused reform
YES

Observations  1071 1071 1071 1071 1008

Table 2. Damage caps and medical device patenting 

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med Pats =

number of patent applications in medical device fields in the state. Damage Caps =1 if a cap on non‐economic damages is

present in the state. Total Patents = total patent applications in the state. Other reform dummies are indicator variables for

cap on punitive damages, modifications of the collateral‐source rule and modifications of the joint‐and‐several l iability rule.

Robust standard errors clustered at the state level. In columns 2‐5, we add 1 to Med Pats and include a dummy that equals  one 

for state‐years without patenting. 



 

Table 3. Non‐local effects of tort reforms 

(1) (2) (3) (4)

Dependent Variable log(Med Patst) log(Med Patst) log(Med Patst) log(Med Patst)

Damage Capst ‐0.161*** ‐0.161*** ‐0.161*** ‐0.147*** 

(0.06) (0.06) (0.06) (0.05)

Non‐Local Reforms                    

(Demand)
‐0.002

(0.01)

Non‐Local Reforms                  

(Demand‐Supply)
‐0.001

(0.01)

Cap in border state ‐0.086

(0.06)

Cap within 500 Km ‐0.119*  

(0.07)

Cap in 500 to 750 Km 0.093

(0.07)

Cap in 750 to 1000 Km ‐0.001

(0.06)

Cap in 1000 to 1250 Km ‐0.003

(0.09)

Cap in 1250 to 1500 Km 0.093

(0.06)

Control variables YES YES YES YES

Year Effects YES YES YES YES

State Effects YES YES YES YES

Observations  1071 1071 1071 1071

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med Pats =

number of patent applications in medical device fields in the state. Damage Caps =1 if a cap on non‐economic damages is

present in the state. We add 1 to Med Pats and include a dummy that equals one for state‐years without patenting. Non‐Local

Reform (Demand) = weighted average of Damage Caps in other states with weights constructed from pre‐sample distributions

of practicing physicians. Non‐Local Reform (Demand‐Supply) = weighted average of Damage Caps in other states with weights

constructed exploiting both pre‐sample distributions of practicing physicians across special ities and pre‐sample patenting

across technology fields. Cap in border state = 1 if caps are present in border state. Other dummies =1 if caps are present

within geographical distance. Control variables include log(Population), Physicians per 1,000 population, and lagged

log(TotalPatents).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Damage caps and physicians' patents 

(1) (2) (3)

Dependent Variable log(Med Patst)
log(Med Patst) 

by physicians

log(Med Patst) 

by other 

inventors

Damage Capst ‐0.268* ‐0.426*** ‐0.210

(0.13) (0.15) (0.13)

Year Effects YES YES YES

State Effects YES YES YES

Observations  357 357 357

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and ***

significant at 1 percent. Med Pats = number of patent applications in medical device

fields in the state. Damage Caps =1 if a cap on non‐economic damages is present in the

state. Robust standard errors clustered at the state level. Data on medical patenting by

physicians  are from Chatterji  et al. (2008). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Damage caps and litigation risk 

(1) (2) (3) (4)

Dependent Variable
log(Med Patst) 

in surgery

log(Med Patst) 

in orthopedics

log(Med Patst) 

in optics

log(Med Patst) 

in dentistry 

Damage Capst ‐0.190*** ‐0.192** ‐0.013 0.058

(0.05) (0.08) (0.04) (0.06)

Control variables YES YES YES YES

Year Effects YES YES YES YES

State Effects YES YES YES YES

Observations  1071 1071 1071 1071

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med

Pats = number of patent applications in medical device fields in the state. Damage Caps =1 if a cap on non‐

economic damages is present in the state. Robust standard errors clustered at the state level. We add 1 to Med

Pats to include state‐years with no patenting. Regressions control for lagged total patenting, log(Population),

Physicians  per 1,000 population, and a dummy that equals  one for state‐year without patenting. 



 

 

 

 

 

 

 

 

 

 

Table 6. Damage caps and patent quality 

(1) (2) (3) (4) (5)

Dependent Variable

log(Med Patst) in 

1st citation 

quintile

log(Med Patst) in 

2nd citation 

quintile

log(Med Patst) in 

3rd citation 

quintile

log(Med Patst) in 

4th citation 

quintile

log(Med Patst) in 

5th citation 

quintile

Damage Capst 0.312 ‐0.399** ‐0.603*** ‐0.810*** ‐0.177

(0.21) (0.16) (0.18) (0.16) (0.14)

Control variables YES YES YES YES YES

Year Effects YES YES YES YES YES

State Effects YES YES YES YES YES

Observations  1071 1071 1071 1071 1071

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med Pats = number of patent

applications in medical device fields in the state. Damage Caps =1 if a cap on non‐economic damages is present in the state. Citations

quintiles constructed from citations fi ltered by grant‐year and technology‐class effects. Robust standard errors clustered at the state level.

We add 1 to Med Pats to include state‐years with no patenting. Regressions control for lagged total patenting, log(Population), Physicians

per 1,000 population, and a dummy that equals  one for state‐years without patenting. 



Figure A1. Effect of damage caps in treated and placebo states  

 

       

        

        

 

NOTES: For each of the six largest states switching from no caps on non-economic damages to a cap, we apply the 
same synthetic control method to each of the same 23 donor states (i.e., states that do not impose a cap 
throughout the sample period). During each iteration, this particular treated group is allocated to the donor pool. 
We follow Abadie et al. (2010) and exclude the placebo states for which the pre-intervention MSPE is more than 
twice as large as that of the treated state.    



Figure A2. Effect of a reduction in H on innovation intensity for different levels 
of bN and rO. 

 

 



 

 

  

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

Dependent Variable Med Patst log(Med Patst) log(Med Patst) log(Med Patst)
log(Med Patst) 

dropping largest 
assignees

log(Mesurement 
Patst)

Estimation Method Poisson OLS OLS OLS OLS OLS

Sample
full full full

drop largest 
states

full full

Damage Capst -0.097** -0.132*** -0.186** -0.154***  -0.163*** -0.027
(0.04) (0.05) (0.09) (0.06) (0.06) (0.06)

log(MedPatst-1) 0.231***
(0.06)

-0.008
(0.01)

-0.002
(0.01)

log(GSP) 0.255
(0.312)

Control variables YES YES YES YES YES YES
Year Effects YES YES YES YES YES YES
State Effects YES YES YES YES YES YES

Observations 1071 1071 1071 966 1071 1071

Table A1. Robustness of baseline specification 

Percentage of population 
with insurance coverage

Percentage of population 
with private insurance 

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med Pats = number of patent
applications in medical device fields in State. Damage Caps =1 if a cap on non-economic damages is present in the state. GSP= Gross State
product. Robust standard errors clustered at the state level. We include a dummy that equals one for state-years with zero patenting. In
column 4, we drop states with the largest patenting in medical devices in 1984 (CA, DE, NY, NJ and FL). In column 5, we drop the ten largest
patentees in medical instruments over our sample period. In Column 6, we conduct a placebo test using the measuring and testing (patent
class 73). Columns 2-6 also control for lagged total patenting, log(Population), and Physicians per 1,000 population. 



              

Table A2. Weights of donor states used to contruct the synthetic controls 

       Donor 
States CO MD MI MO UT WI 

       AZ 0.005 0 0 0.011 0 0.009 
AR 0 0 0 0.006 0.023 0.006 
CT 0.007 0 0 0.008 0 0.009 
DE 0.004 0 0.015 0.003 0 0.002 
DC 0.124 0.2 0 0.021 0 0.013 
GA 0.144 0.467 0 0.53 0 0.153 
IN 0.139 0 0 0.017 0 0.417 
IA 0.36 0 0 0.001 0 0.008 
KY 0.008 0 0 0.008 0 0.01 
ME 0 0 0 0.003 0.657 0.004 
MA 0.005 0.01 0 0.007 0 0.006 
MN 0.143 0.154 0 0.112 0.246 0.228 
NE 0.002 0 0 0.004 0 0.005 
NJ 0.006 0 0 0.006 0 0.005 
NY 0.003 0.116 0 0.003 0 0.001 
NC 0.007 0 0.537 0.193 0 0.075 
PA 0.004 0 0.447 0.004 0 0.003 
RI 0.002 0 0 0.004 0 0.004 
SC 0.001 0 0 0.011 0 0.009 
TN 0.005 0.053 0 0.03 0 0.016 
VT 0.001 0 0 0.003 0 0.003 
VA 0.01 0 0 0.014 0 0.009 
WY 0.02 0 0 0.002 0.074 0.003 
              

       NOTES: This table reports the weights of the 23 donor states used to construct the synthetic controls for the largest 
six states that changed from having no non-economic damage cap to having one. See Figure 3 for the estimates of 
the synthetic control method.  

 

 

 

 

 

 



 

 

Table A3. Damage caps and patent quality - Robustness to extra-filtering

(1) (2) (3) (4) (5)

Dependent Variable
log(Med Patst) 
in 1st citation 

quintile

log(Med Patst) 
in 2nd citation 

quintile

log(Med Patst) 
in 3rd citation 

quintile

log(Med Patst) 
in 4th citation 

quintile

log(Med Patst) 
in 5th citation 

quintile

Damage Capst 0.234 -0.404** -0.678*** -0.733*** -0.193
(0.18) (0.19) (0.18) (0.17) (0.13)

Control variables YES YES YES YES YES
Year Effects YES YES YES YES YES
State Effects YES YES YES YES YES

Observations 1071 1071 1071 1071 1071

NOTES: OLS estimation. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Med Pats =
number of patent applications in medical device fields in the state. Damage Caps =1 if a cap on non-economic damages is
present in the state. Citations quintiles constructed from citations filtered by grant-year effects, technology-class effects and
number of claims. Robust standard errors clustered at the state level. We add 1 to Med Pats to include state-years with no
patenting. Regressions also control for lagged total patenting, log(Population), and Physicians per 1,000 population.


	malpractice_27sept2016
	Tables and Figures_Sept16
	Appendix_Sept16



