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1. Introduction

We present a simple, tractable framework featuring informational asymmetries in a multi-

asset economy. By incorporating multiple assets and strategic behavior for a subset of

investors, our framework can dispense with the common assumption of “noise” traders, and

our results do not rely on a constant-abolute-risk-aversion (CARA)-normal setup. More-

over, the model is particularly tractable: We show that it is isomorphic to a symmetric-

information one featuring investor- and asset-class specific distortionary and re-distributive

taxes, reflecting investors’ abilities to distinguish between good- and bad-quality assets in

the original model. Conceptualizing the impact of asymmetric information in terms of this

tax equivalence makes it simpler to see how informational asymmetry can cause phenomena

such as non-participation by some investors in some markets and associated risk-sharing

imperfections.

To illustrate one possible application of this theoretical framework, we assess popular

approaches to performance evaluation. A distinctive feature of the model compared to the

literature is that it allows a natural and transparent modeling of pure selectivity skill, defined

as the ability to select the better yielding assets out of a class of seemingly identical assets. We

use this feature to show that Jensen’s alpha may fail to identify informational advantage even

though investors in our framework only have superior information about individual assets,

but do not possess superior information about the returns of the market portfolio. On the

positive side, we show how our model provides a theoretical basis for some simple, intuitive

approaches to performance evaluation that have proved popular with practitioners, such as

the “style” alpha methodology of W. Sharpe and the usage of fund-dependent benchmarks.

Specifically, we consider a model featuring different locations, or asset classes. A fraction

of investors in every location are regular investors and the complement are “swindlers.”

Regular investors are endowed with common stocks that pay random location-dependent

dividends at date one, while each swindler owns a “fraudulent” stock that pays nothing.

Investors obtain signals on the type of a given stock (regular or fraudulent) in every location.

Important, the quality of that signal depends on both the investor’s and the firm’s locations,
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allowing for significant heterogeneity in information quality across investors. However, to

highlight the differences from prior literature, we assume that no investor possesses any

superior information with respect to the realization of regular-firm dividends in a given

location.

Swindlers have a strong incentive to trade so as to equalize the price of their stock

with the prices of other stocks in their location. Moreover, the swindler can manipulate

the earnings of her company, which deters short selling. A pooling equilibrium emerges

with all common and fraudulent stocks in a given location trading at the same price. The

failure rate f of an investor’s signal to identify fraudulent stocks in a given location can

be equivalently viewed as a tax rate when investing in that location: A proportion f of

the stocks identified by the investor’s signals as regular pay nothing. Indeed, we prove an

equivalence between our model and a much simpler dual (Walrasian) economy populated

only with competitive investors faced with investor- and asset-specific capital taxation. The

market-clearing conditions in such a dual economy need to be carefully formulated to reflect

that these taxes are redistributive rather than “iceberg” costs, since trading does not destroy

resources but only redistributes them from investors with inaccurate signals to swindlers.

Our setup does not require noise traders in order to avoid information revelation through

prices. This is due to three assumptions: 1) the assumption of multiple asset classes intro-

duces a straightforward non-informational motivation to trade, namely the need to diversify

across locations; 2) the swindlers are not competitive, but rather take into account the effect

of their trade on the price of their company; and 3) there is no short selling in equilibrium,

due to an out-of-equilibrium threat of dividend manipulation by the swindlers. Taken to-

gether, these three assumptions allow us to dispense not only with noise traders, but also

with the restrictive preference and distributional assumptions of a CARA-normal setup.

The investors inside the model have an incentive to bias their portfolios towards the

locations where they enjoy an informational advantage, since those are the locations where

they perceive lower implicit taxes. In contrast to existing literature, which we summarize

below, these portfolio biases exist independently of the particular realization of the signals.
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In addition, the portfolio of any given investor is “sparse,” i.e., it involves zero holdings in

several individual assets (even in the locations where the investor is actively investing), and

may even involve zero allocations to entire asset classes, consistent with some features of

real-world portfolios.1

The combination of non-revealing prices (which leaves room for the better informed in-

vestors to earn superior returns) and portfolio heterogeneity makes ours a natural framework

to study the validity of different performance evaluation approaches from the perspective of

an uninformed econometrician. There is an established literature that has addressed this

issue in noisy rational expectations models. Our framework, however, provides a novel way

to capture situations where superior performance is associated purely with selectivity rather

than market timing, since assets inside a location look identical to an outside econometrician,

and no agent has superior information about the return distribution of the asset class itself.

We arrive at the following conclusions. When markets are informationally inefficient,

Jensen’s alpha may fail to identify informational advantage: passive strategies (i.e., returns

obtained by simply buying the portfolio of all firms in a location ignoring any signals)

generically may have alpha, and informed strategies may have negative alpha. We link these

phenomena to the heterogeneity of informational inefficiency across markets.

We then address the question of how to appropriately perform performance evaluation

in our setup. We show that the key feature of successful performance evaluation is to use a

criterion that assigns zero alphas to linear combinations of passive investments in the asset

classes in which the informed investor participates actively. Intuitively, this ensures that the

return obtained by an informed investor could not have been replicated by a passive investor

investing in the same asset classes.

This is the reason why the “style-alpha” approach, which was proposed by Sharpe (1992)

and has proved very popular among practitioners, has several theoretical merits in our frame-

work. Such an approach identifies skill with the alpha obtained from a regression of the

investor’s return on the passive returns obtained in the asset classes where the investor par-

ticipates actively. We show that the alpha of such a regression provides a clear mapping to

1See Koijen and Yogo (2016) for empirical evidence on portfolios held by institutional investors.
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the investor’s informational advantage.

We also discuss the implications of market segmentation (and more broadly portfolio

specialization) for performance evaluation. We argue that when informational asymmetries

result in portfolios that invest in a limited set of asset classes, the performance evaluation

criterion should be investor-dependent, and focused on assigning zero alphas only to passive

returns in the asset classes where the investor is actively participating. We illustrate this

point with an example of a non-exploitable arbitrage, whereby it is impossible to us one pric-

ing kernel to price all passive strategy returns, but it is still possible to evaluate performance

using investor-specific evaluation criteria.

The paper relates to various strands of the literature.

The literature on noisy rational expectations models is the most popular approach to

introduce informational asymmetries into finance models. This literature is too voluminous

to summarize, so we provide indicative examples only. Technically, our setup borrows ele-

ments from both Grossman and Stiglitz (1980) and Akerlof (1970). The extended version

of the model where all traders are strategic (analyzed in Appendix A) uses the same equi-

librium concept as Kyle (1989).2 Admati (1985) extends the noisy REE framework to a

multi-asset framework. This literature typically utilizes random supply shocks (“noise”) to

avoid revelation3 and a CARA-normal framework to obtain tractability, assumptions that

we can avoid.

A popular application of multi-asset REE models is the explanation of portfolio biases.4

Portfolio biases (in particular, the home bias) are especially prevalent issues in international

finance, but the insights of this literature apply to understanding portfolio concentration

and under-diversification more broadly. The common thread of that literature is that locals

receive a signal about the aggregate performance of the local stock market. The superior

signal quality makes domestic agents face lower variance when investing in local stocks,

2Strategic traders are considered by many other papers in the micro-structure literature, albeit in very
different contexts than the current paper. For an indicative example, see, e.g., Vayanos (2001).

3It is known, however, that (privately known) endowment shocks can achieve a similar outcome to random
supply. See, e.g., Wang (1993).

4Indicative examples are Gehrig (1993) and Brennan and Cao (1997). Related, Van Nieuwerburgh and
Veldkamp (2010) propose an approach relying on bounded information-processing capacity.
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leading to an unconditional home bias. A counterfactual implication is that conditional on

a bad signal, locals should short domestic stocks. This seems at odds with the fact that the

home bias is present for any given year, any given country, and for any sample period that

one may consider. In our model the portfolio bias towards asset classes where one is better

informed applies independently of any specific realization of the signals. The reason is that

the portfolio bias is not driven by having superior information about a given location, but

rather because of superior asset selection ability within the location.5 This superior selection

ability acts as a redistributive tax with obvious deterrence effects on investors who are not

as well informed as locals.6 We note in passing that the international finance literature

has on occasion modeled informational advantages as taxes or transactions costs in reduced

form.7 Our paper provides the theoretical underpinning of doing so, and draws attention to

the proper specification of market clearing condition to ensure the correct mapping between

redistributive taxes and asymmetric information frictions.

The paper also contributes to the literature that critiques CAPM alpha, estimated from

the perspective of an uninformed investor, as a measure of skill — see, e.g., Admati and Ross

(1985), Dybvig and Ross (1985), and Mayers and Rice (1979), Grinblatt and Titman (1989)

among many others. Our results in this vein are most closely related to those of Mayers and

Rice (1979) and Dybvig and Ross (1985), and we highlight two important differences. First,

these authors only evaluate portfolios that are ex-ante optimal for the informed investor in

the entire universe of assets. In contrast, we are interested in ascertaining whether a market

participant exhibits skill when investing in a given subset of asset classes and for any weights

that she may choose to assign to these asset classes. We are motivated by the real-world fact

that portfolio choice is routinely delegated to managers with mandates to pick good assets

within a narrow set of asset classes.8 Second, unlike in these papers, in our setting optimal

5Hatchondo (2008) is closer to the setup of the current model. An important difference to his model is
that we do not rely on noise trading, assuming instead the existence of strategic “swindlers.” Furthermore,
we can obtain the no-shorting outcome endogenously, although in the main body of the paper we impose
short selling restrictions directly for simplicity.

6See also Kurlat (2013) for the role of information asymmetry as taxation in a different example. Li et al.
(2012) discuss fraudulent assets but in a different context.

7See, e.g., Okawa and van Wincoop (2012) for a recent example.
8A voluminous literature studies how delegated portfolio choice may lead to portfolio weighting distor-
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informed portfolios are not interior with respect to the effective shorting constraints, and we

show that they may have negative alpha even when the information does not help predict

the market return (or reference return, more generally).

Sharpe (1992) proposed style analysis as a performance evaluation criterion. In some

ways our paper provides an explicit micro foundation for this criterion in an equilibrium

framework. We note, though, that the specific equilibrium return properties obtaining in

our model are not identical to the ones assumed by the statistical model of Sharpe (1992).

We also relate to a literature that analyzes general properties of evaluation criteria and

the use of stochastic discount factors for performance evaluation.9 We differ in focus from

that literature: Rather then considering any possible information structure, we make specific

assumptions, which in particular allow a conceptual separation between diversifiable asset-

selection risk (with agents being asymmetrically informed about it) and non-diversifiable

asset-class risk (with agents being symmetrically informed about it). Our framework results

in a tighter theoretical characterization of valid performance measures — indeed, in an

essentially unique performance evaluation criterion. With our assumptions, an essentially

sufficient condition for a valid performance evaluation criterion is to assign a zero value to

any linear combination of passive strategy returns in the asset classes where the investor is

actively participating.

We conclude with two caveats about our conclusions on performance evaluation: First,

we abstract from timing ability, i.e., superior information about the behavior of asset classes

as a whole. There is an extensive literature on timing ability, so we concentrate on the

stronger results that obtain when information pertains exclusively to the relative quality of

individual securities. Second, our focus is exclusively on identifying a market participant’s

stock-selection ability from the perspective of an econometrician. We therefore do not ad-

dress how an individual investor would allocate her investment among various (potentially

informed) managers, which is the central issue in the study of fund flows.10

tions. We do not attempt to summarize this literature, and simply refer to Bhattacharya and Pfleiderer
(1985) for an early and important contribution.

9See, e.g., Chen and Knez (1996), Glosten and Jagannathan (1994), for two indicative examples.
10For a discussion of these issues, see Berk and Green (2004), Ferson and Lin (2014), and Berk and van
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The paper is organized as follows. Section 2 contains the model and the tax equivalence

result. Section 3 contains the application of the model to performance evaluation. Section 4

concludes. Proofs and extensions are contained in the appendix.

2. Model

2.1. Locations, preferences, and firm and investor types

Time is discrete and there are two dates, t = 0 and t = 1. All trading takes place at time

t = 0, while at t = 1 all payments are made and contracts are settled. There are K different

locations, and each investor is located in one of the K locations. There is a continuum of

investors in each location and we index a representative investor in a given location by i.

Investors maximize expected utility of period-1 wealth, E [U (W )] , for some increasing and

concave U .

Investors’ time-zero endowments consist of shares in firms that are domiciled in their

location. Investors in every location i are of two types, common investors and swindlers,

while firms are of two types, regular and fraudulent. The number of shares in each firm is

normalized to one, as are the measures of investors and firms at each location.

Common investors in location i are a fraction κ ∈ (0, 1) of the population in that location.

They are identically endowed with an equal-weighted portfolio of all regular firms in location

i. All regular firms in location i produce the same random output Di, and pay it out as a

dividend. (Adding a firm-specific, idiosyncratic risk would be simple, but would offer no

additional insights). The total measure of regular firms is κ in each location.

Swindlers are a fraction 1 − κ of the population in each location. Each swindler is

endowed with the share of one fraudulent firm. Fraudulent firms produce no output or

dividend (Di = 0).

For every firm in every location, there is a market for shares where any investor can

submit a demand. Moreover, there exists a market for a riskless bond, available in zero net

Binsbergen (2015) among others.
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fij
1− fij

κ

κ

All firms
in location j

Regular
firms (κ)

Fraudulent
firms (1−κ)

Location j Location i

An investor
in location i

Firms identified as regular
to investor in location i.
A proportion fij are mis-identified.

Firms identified as fraudulent
to investor in location i.

Figure 1: The figure offers a schematic representation of the information structure of the
model. In location j, a fraction κ of the firms are regular and the complement 1 − κ are
fraudulent. A given investor in location i receives signals about the type of each of these
firms. A proportion fij of the firms identified as regular are actually fraudulent. All firms
identified as fraudulent are indeed fraudulent.

supply. The interest rate is denoted by r.

2.2. Signals

Each investor obtains a binary signal of the type — regular or fraudulent — of every firm in

every location. The precision of these signals depends on the locations of the investor and

the firm.

Specifically, an investor in location i obtains a signal ιijk ∈ {0, 1} about every firm k

in location j. (All investors in location i obtain the same signal about any given firm,

for simplicity.) This signal characterizes the firm as either regular (ιijk = 1) or fraudulent

(ιijk = 0). The signal is imperfect. It correctly identifies every regular firm as such. However,
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j

j′

i

i′

fij′

fij

fi′j
fi′j′

Figure 2: The figure illustrates the nature of the information network. In particular, infor-
mation quality, captured by the failure rate fij, depends both on the firms’ and investor’s
location. Agents in i and i′ may have signals of different qualities about location j. Similarly,
agents in i may have signals of different qualities about locations j and j′.

it fails to identify all fraudulent firms: it correctly identifies a fraudulent firm with probability

πij and misclassifies it as regular with probability 1− πij. For simplicity, we assume πii = 1,

so that investors are fully informed about their local markets. This assumption can be easily

relaxed.

Given this setup, Bayes’ rule implies that the probability that a firm in location j is

fraudulent given that investor i’s signal identifies it as regular is given by

fij ≡
(1− πij)(1− κ)

κ+ (1− πij)(1− κ)
. (1)

The law of large numbers implies then that fij can also be interpreted as the fraction of

fraudulent firms among all firms in location j identified by the signal of investor i as regular.

To summarize the information structure, Figure 1 illustrates the nature of the infor-

mation provided to a given agent in location i about all the firms in location j. Figure 2

emphasizes the bilateral nature of the information structure: information quality, captured
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by fij, depends on both the firms’ and investor’s locations.

2.3. Budget constraints

Letting Bci denote the amount that a common investor in location i invests in riskless bonds

and dXci
jk a univariate signed measure capturing the number of shares of firm k in location

j that she buys, the time-one wealth of a common investor located in i is given by

W ci
1 ≡ Bci (1 + r) +

K∑
j=1

∫
k∈[0,1]

DjkdX
ci
jk. (2)

The first term on the right-hand side of (2) is the amount that the investor receives from her

bond position in period 1, while the second term captures the portfolio-weighted dividends of

all the firms that the investor holds. The time-zero budget constraint of a common investor

in location i is given by

Bci +
K∑
j=1

∫
k∈[0,1]

PjkdX
ci
jk =

1

κ

∫
k∈[0,1]

Pi,kρ(i,k)dk, (3)

where ρ(i,k) is an indicator function taking the value one if the firm k in location i is a regular

firm and zero otherwise, and Pjk refers to the price of security k in location j. The left-hand

side of (3) corresponds to the sum of the investor’s bond and risky-security spending, while

the right-hand side reflects the value of the (equal-weighted) portfolio of regular firms the

investor is endowed with.

The budget constraint of a swindler owning firm l in location i is similar to (3), except

that the value of the agent’s endowment is given by Pil:

Bsil +
K∑
j=1

∫
k∈[0,1]

PjkdX
sil
jk = Pil. (4)

Note that the notation dX allows investors’ portfolios to have atoms, which is actually

important here because, in equilibrium, swindlers optimally hold a non-infinitesimal quantity

of shares of their own firms. We denote the post-trade number of shares of fraudulent firm

l in location i retained by the original owner by Sil = dXsil
il .
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Finally, the time-1 wealth of a swindler is

W sil
1 ≡ Bsil +

K∑
j=1

∫
k∈[0,1]

DjkdX
sil
jk . (5)

2.4. Optimization problem

Common investors are price-takers. Taking a set of prices for risky assets as given for all

firms in all locations and an interest rate, a common investor maximizes

max
Bci,dXci

jk

E
[
U(W ci

1 )|Fi, Pjk, r
]

(6)

subject to (3) and a short-selling constraint: dXci
jk ≥ 0. Here we impose the short-selling

restriction exogenously, but in the appendix we consider a simple extension in which agents

endogenously refrain from selling short. Specifically, we allow the swindler to manipulate

earnings — in particular, to report higher earnings than actual — which exposes anyone

shorting a fraudulent firm to the risk of large losses. We relegate the details to Appendix A,

and for the rest of the paper we simply exclude short sales.

The investor conditions on her own information set Fi (i.e., on her signals about every

security), as well as on the prices of all securities in all markets.

The problem of the swindler is similar to the one of the common investor with the

exception that the swindler takes into account the impact of her trading on the price of her

stock.11 Similar to a common investor, the swindler who owns firm l in location i solves

max
Bsil,dXsil

jk

E
[
U(W sil

1 )|Fil, Pjk, r
]

(7)

subject to the budget constraint (4) and dXsil
jk ≥ 0.

2.5. Equilibrium

An equilibrium is an interest rate r and a collection of prices Pi,k for all risky assets, asset

demands and bond holdings expressed by all investors in all locations, such that: 1) Markets

11In the extension presented in Appendix A, the swindler also has the ability to manipulate the dividends
of her fraudulent stock.
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for all securities clear; 2) Risky-asset and bond holdings,
{
Xci
jk, B

ci
}

, are optimal for regular

investors in all locations given prices and the investors’ expectations; 3) Bond holdings Bsil

and asset holdings for all securities Xsil
jk (including a swindler’s own holdings of her own firm

Sil) are optimal for swindlers given their expectations; 4) All investors update their beliefs

about the type of stock k in location j by using all available information to them — prices,

interest rate, and private signals — and Bayes’ rule, whenever possible.

Our equilibrium concept contains elements of both a rational expectations equilibrium

and a Bayes-Nash equilibrium. All investors make rational inferences about the type of

each security based on their signals, the equilibrium prices, and the interest rate, by using

Bayes’ rule and taking the optimal actions of all other investors (regular and swindlers) in

all locations as given. The continuum of regular investors are price takers in all markets.

Swindlers, however, are endowed with the shares of a fraudulent company and take into

account the impact of their trades on the share price. In formulating a demand for their

security, swindlers have to consider how different prices might affect the perceptions of other

investors about the type of their security. As is standard, Bayes’ rule disciplines investors’

beliefs only for demand realizations that are observed in equilibrium. As is usual in a Bayes-

Nash equilibrium, there is freedom in specifying how out-of-equilibrium prices affect investor

posterior distributions of security types.

We note that the distinction between regular investors who are price takers and swindlers

who are strategic about the impact of their actions on the price of their firm is helpful for

expediting the presentation of results, but not crucial. In Appendix A we show that our

equilibrium obtains in the limit (as the number of traders approaches infinity) of a sequence

of economies with finite numbers of traders — both regular and swindlers — who are strategic

about their price impact, as in Kyle (1989).

By Walras’ law, we need to normalize the price in one market. Since we abstract from

consumption at time zero for parsimony, we normalize the price of the bond to be unity

(r = 0).
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2.6. Tax equivalence

While our economy is seemingly complex, its equilibrium outcomes coincide with those of

a much simpler Walrasian economy featuring distortionary and redistributive taxes. The

intuition behind this result is quite straightforward: Conditional on investing in a location,

investors optimally invest equal amounts in all assets for which they have positive signals

and in no others (the only exception is the swindler investing in her firm), but the signal

is imperfect. The failure rate of the signal translates into a lower payoff relative to that

obtained by a local, perfectly informed investor; the proportional loss can be thought of as

a tax rate, which depends on both the investor and the target location of the investment. In

addition, swindlers have strict incentives to invest in their own firms so as to render them

indistinguishable from regular firms, by submitting elastic demands at the prevailing price of

all other assets in the location. This ensures a pooling equilibrium that justifies the behavior

of the other investors. We record this result formally:

Theorem 1 There exists an equilibrium of the original economy in which the prices of all

assets in each location are equal. Furthermore, the prices Pj and aggregate positions X i
j taken

by investors located in market i when investing in market j, excluding swindlers’ positions

in their own firms, are given as a solution to the problem:12

X i ∈ arg max
X≥0

EU

(
K∑
j=1

((1− fij)Dj − Pj)Xj +Pi

)
(8)

κ =
K∑
i=1

(1− fij)X i
j. (9)

Equation (8) formalizes the decision problem of an investor facing taxes fij, as explained

above. Equation (9) is the market-clearing equation for regular firms. The left-hand side, κ,

equals the supply of firms: only κ of the firms are regular. The right-hand side represents the

demand for regular firms, and it depends on the tax rates: a proportion fij of the demand

X i
j is directed to fraudulent firms, leaving only the remainder to acquire regular firms. (We

12In the interest of concision, we plugged in the investor’s budget constraint in the objective.
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Figure 3: This figure illustrates the portfolio choice of a common investor in location i0 = 20
under three alternative correlation structures. We assume N = 39 locations in which a
proportion κ = 0.99 of assets are regular and pay normally distributed dividends with mean
1 and standard deviation 0.25; the pairwise correlation is the same for all pairs (j, j′) with
j 6= j′, and given by the parameter ρ. Agents have CARA utilities with parameter γ = 2.
We set πij = 1−1⁄2(1− cos(2πd(i, j))) with d(i, j) = min{|i− j|, N − |i− j|}/N , which yields
fij as a decreasing function of the circular distance d(i, j) between i and j. In the benchmark
case ρ = 0.5, the expected excess passive return on an asset is 6.08%, and the lowest tax
dissuading investor i from investing in location j is fij = 0.52%.

note that in a pooling equilibrium the swindler submits an elastic demand for her own firm,

i.e., absorbs the residual demand for her own firm at the price Pj, so that the market for

fraudulent firms clears by construction.)

An obvious implication of Theorem 1 is that investors have an incentive to place a

larger fraction of their wealth in locations where they are faced with lower taxes. Indeed,

if the effective taxes are sufficiently severe compared to the diversification benefit, then the

investors may choose to concentrate their portfolio in a subset of locations, placing zero

weights in the others. A distinctive feature of the model compared to noisy REE models is

that these biases apply for any realization of the signals about which firms in a location are
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fraudulent and which are not. By contrast, in the typical noisy REE model a signal applies

to the level of an asset class, and hence the direction of the portfolio bias depends on the

realization of the signals.

Figure 3 provides an illustration of the tradeoff between diversification and information-

tax avoidance. In a symmetric set-up, the higher the correlation between any two locations,

the lower the threshold for fij above which agent i does not wish to invest in market j, and

therefore the fewer markets the investor participates in. The precise model assumptions are

listed in the caption to the figure.

The market clearing condition (9) highlights that the implicit taxes in our setup are

redistributive, rather than “iceberg costs.” Indeed, if we multiply both sides of equation (9)

by Dj, we obtain

κDj =
K∑
i=1

(1− fij)DjX
i
j.

In words, the aggregate dividends κDj in location j are all paid to investors in proportion

to their holdings of regular firms in this location, and no dividend gets lost.

Proposition 1 provides a micro-foundation to the common practice (especially in inter-

national economics, but also more broadly) of using taxes (or “wedges”) as a reduced-form

way of modeling informational frictions, as long as these taxes are redistributive, rather than

iceberg costs.

For the purposes of the analysis that follows, Proposition 1 makes the description of

an equilibrium relatively easy, as we illustrate in the following section. In addition, it pro-

vides one with an intuitive language to talk about the degree to which any investor is at a

disadvantage when investing in any given market.

3. Informationally Inefficient Markets: Implications

In this section we exploit the equivalence formalized in Proposition 1 between informational

frictions and taxes to study the ability of popular performance-evaluation approaches to
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appropriately identify investors with “skill,” i.e., investors who select stocks based on infor-

mative signals. Throughout we envisage an econometrician, by definition uninformed, who

observes the return obtained by an investor on her portfolio and is trying to infer if that

investor had valuable signals in choosing her portfolio.

The first question we address (Section 3.1.–3.2.) is whether CAPM alphas provide an

appropriate measure of an investor’s informational advantage. Specifically, in Section 3.1.

we make assumptions to ensure that the CAPM would hold in the absence of informational

asymmetries, and we solve for equilibrium prices. Using these equilibrium prices, in Section

3.2. we obtain an explicit expression for equilibrium alphas inside the model and conclude

that they are problematic: investors with no skill may have positive alpha, while investors

with skill may have negative alpha. This shows that even though in our model the only

skill is a stock-selection skill, the CAPM alphas do not provide an appropriate measure of

this skill. Sections 3.3. and 3.4., on the other hand, analyze what is essentially the unique

meaningful such measure in our model, and discuss it in the context of the literature.

3.1. Equilibrium prices

To ensure that the CAPM would hold in the absence of informational frictions, we assume in

sections 3.1. and 3.2. that the dividends Dj are jointly normal. For simplicity we also assume

that they have the same mean, which we normalize to unity. To obtain explicit expressions

for equilibrium prices, we endow investors with CARA utilities, U(W ) = −e−γW .

We let λij ≥ 0 denote the Lagrange multiplier associated with X i
j ≥ 0, and pij := 1− fij

be the effective payoff to investing in assets of location j. Note that pij is the probability

that security j is regular given that the signal of investor i identifies it as such. Clearly,

pij ≥ κ, with strict inequality if the investor’s signal is valuable. Given the CARA-normal

setup, the first-order condition of an investor in location i faced with problem (8) is

γcov

(
pijDj,

K∑
k=1

pikDkX
i
k

)
= pij − Pj + λij. (10)
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Dividing this equation by pij and summing over all agents i yields

γcov (Dj, κD
a) = 1− Pj

K

K∑
i=1

p−1ij +
1

K

K∑
i=1

p−1ij λij, (11)

where we introduced the notation Da for the average dividend Da = 1
K

∑K
j=1Dj.

We note that, by (9) and exchanging the order of the summation,

K∑
i=1

K∑
k=1

pikDkX
i
k =

K∑
k=1

Dk

K∑
i=1

pikX
i
k = κKDa. (12)

The price Pj is consequently expressed as

Pj =

(
1

K

K∑
i=1

p−1ij

)−1
×

(
1− γcov (Dj, κD

a) +
1

K

K∑
i=1

λijp
−1
ij

)
(13)

=

(
1

K

K∑
i=1

pij

)
×

(
1− γcov (Dj, κD

a) +
1

K

K∑
i=1

λijp
−1
ij

)
×

(
1
K

∑K
i=1 p

−1
ij

)−1(
1
K

∑K
i=1 pij

) ,

which provides a natural formula. The first term captures the average post-tax payoff to

investors, the second the risk adjustment and the effect of the shorting constraint, while the

third measures dispersion in pij across agents. Equation (13) shows that two asset classes

may be priced differently even when containing the same amount of aggregate risk (i.e.,

cov(Dj, D
a) is the same for all j) and being held in positive amounts by all agents (λij = 0).

As long as pij 6= pij′ for some i for two asset classes j and j′, it is possible that Pj 6= Pj′ .

This observation will prove useful in the next section.

3.2. Alpha does not measure skill

We next obtain some implications of the model for CAPM alphas. By CAPM alphas we

mean the estimates of the constant in a regression of the excess return obtained by an

investment strategy on the excess return of the market portfolio. Throughout the paper, we

do not concern ourselves with estimation issues. We focus exclusively on the implications of
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our theory for the moments of such regressions.

To start, we define Rp
j as the gross return of a passive (or index) return in location j.

This is the gross return obtained by simply buying all the firms in location j. (This would

be the return of an uninformed investor, who doesn’t have access to any private signals).

Given the assumption of the model this return is given by Rp
j =

κDj

Pj
, with expectation κ

Pj
.

Similarly, define average price P a = 1
K

∑K
k=1 Pk and the return on an index replicating the

market portfolio is Rp = κDa

Pa . Using these observations, and recalling that the interest rate

is normalized to zero, the regression of the observed (passive) return of the index in location

j on the market portfolio return yields a constant (“alpha”) of

αj =
κ

Pj
− 1−

cov
(
κDj

Pj
, (P a)−1 κDa

)
(P a)−2 κ2σ2

a

( κ

P a
− 1
)

=

(
βDj

P a

Pj
− 1

)
+

κ

Pj

(
1− βDj

)
, (14)

where βDj is the “cash-flow beta”

βDj =
cov(Dj, D

a)

var(Da)
. (15)

In the special case in which there is no asymmetric information (pij = κ) equations (13)

and (14) imply the usual CAPM relation (αj = 0).13

However, in the presence of informational asymmetries, αj 6= 0 in general, even for passive

strategies. To see this in the simplest possible case, consider a world with βDj = 1 for all j.

Accordingly, αj = Pa

Pj
−1. In addition, equation (13) implies that some asset classes may still

exhibit lower (or higher) than average prices, despite all assets having the same exposure

to aggregate risk and the same expected dividend. For instance, a lower overall quality of

information in asset class j (low values of pij compared to other asset classes) translates into

a lower than average price for that class; since αj = Pa

Pj
− 1, even an index investment in

13To see this, notice that equation (13) implies that Pj = κ − γκ2βDj σ2
a. Then it follows from (14) that

α =
(
βDj

κ−γκ2σ2
a

Pj
− 1
)

+ κ
Pj

(
1− βDj

)
=

κ−γκ2βD
j σ

2
a

Pj
− 1 = 0.
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such a class has positive alpha.14

If uninformed (passive) strategies command alphas, then alphas cannot be an accurate

measure of an investor’s skill. Indeed, continuing with the assumption that βDj = 1 for all j,

the alpha resulting from a regression of the return that an investor i obtains when investing

in location j on the return of the market portfolio is given by

αij =
pij
κ

P a

Pj
− 1. (16)

Hence, even an investor who has an informational advantage pij > κ might exhibit a negative

alpha when that informational advantage happens to be in an asset class that is compara-

tively more expensive than the average asset class, i.e., P a < Pj.

The reason why the CAPM fails to assign zero alpha even to passive strategies is qualita-

tively different from the arguments that have been proposed so far. Unlike elsewhere in the

literature, in our setup investors don’t possess any signals on the realization of Dj, so they

are on equal footing about predicting the return of an asset class. It is tempting to attribute

the failure of the CAPM in our model to the fact that different investors hold different mean-

variance efficient portfolios, so that the market portfolio is not mean-variance efficient for

any investor. This fact, however, is not sufficient to render CAPM alpha an inaccurate mea-

sure of skill: Suppose, for instance that all prices across all asset classes are equal (Pj = P ),

which would occur for instance if the informational advantages are symmetric (pij = p for

all i 6= j and some positive p < 1), and all betas are unity. In that case investors still choose

different mean-variance efficient portfolios, depending on their locations. Yet, equation (14)

shows that alphas are zero for passive strategies, while equation (16) shows that informed

investors have positive alphas.

What makes alpha a valid measure of performance in this special case? As we show in

more generality in Section 3.4., the key feature is that the market portfolio is mean-variance

14An additional, less interesting observation is that mispricing is not related to the amount of risk. Consider
for instance the case pij = p. All indexes, including the market, earn negative excess returns κ−p (compared
to an informed strategy) before the risk adjustments, but a high βDj index is benchmarked against a leveraged
market index, thus one with even higher negative returns, and therefore has positive alpha. Conversely, low
βDj is associated with negative alpha. We shut down this channel by assuming βDk = 1 for all k.
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efficient from the perspective of an uninformed investor. However, this property is special

to this example. In general the market portfolio is not mean-variance efficient even from the

perspective of an uninformed agent.

It is worth comparing our results to those of Mayers and Rice (1979) and Dybvig and Ross

(1985), who show that a mean-variance efficient portfolio utilizing private information has a

positive alpha as long as the moments of the market portfolio (more generally, of the reference

portfolio) do not depend on the information (they refer to this as “pure selectivity”). There

are two notable differences with our work. First, we place emphasis on the return obtained

by an investor when investing in a given asset class, rather than the return of an informed

investor’s mean-variance efficient portfolio. We are interested in the former return because

in real life investors routinely delegate portfolio choice to managers with the mandate to find

good investment opportunities within a pre-specfied set of asset classes, which may well be

a subset of the investment universe.

Second, even the returns obtained by an investor on her entire mean-variance efficient

portfolio may have negative alpha with respect to an uninformed reference portfolio in our

model;15 the reason is that the Dybvig and Ross (1985) result is predicated on an interior,

unconstrained choice of all assets, whereas in our model investors are effectively bound by

shorting constraints for the stocks that their signal identifies as fraudulent.

3.3. General properties of evaluation measures and style alphas

The previous section shows that the CAPM fails to assign zero alpha to passive strategies.

We show here that assigning zero alpha to passive strategies is actually a sufficient condition

for a performance measure to be valid. As a practical illustration of the results, we show

that the style alpha measure proposed by W. Sharpe is a valid performance measure.

To start, we let g be a functional mapping random variables into the space of real numbers.

Let Re,p
j the excess passive return in location j. We assume that g is a linear functional and

that g(Re,p
j ) = 0 for all j. We also require g(1) > 0, that is, a riskless, positive excess return

15Such examples are available from the authors upon request.
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is assigned a positive value.

Assuming the existence of such a functional g, we next show that it is a valid performance

measure, in the sense that it correctly identifies an investor’s informational advantage. To

see this, note that the excess return of an informed investor i in our model can be written as

Re,i =
K∑
j=1

(qijRj − 1)wij,

where qij ≡ pij
κ
≥ 1. Hence

g
(
Re,i
)

= g

(
K∑
j=1

qij (Rj − 1)wij +
K∑
j=1

(qij − 1)wij

)

= 0 + g (1)
K∑
j=1

(qij − 1)wij (17)

≥ 0.

We note that this derivation also shows that the measure g is essentially unique — any

two measures g and g′ differ at most by a multiplicative constant.

One way to construct the measure g is the so-called style analysis, proposed by Sharpe

(1992). According to this approach, the return of each manager is regressed on the passive

returns of all possible asset classes. Moreover, to interpret the betas as portfolio weights,

one additionally requires that the betas on the passive strategies add up to one. (They are

also restricted to be positive, to satisfy the no-shorting constraints faced by mutual-fund

managers.) The constant (alpha) of such a regression is interpreted as a manager’s skill.

Viewing style analysis as mapping the (excess) return of a manager to a value of alpha, it

is straightforward to show that it satisfies all the aforementioned properties of the functional

g. We record the result formally:

Proposition 2 Let wij =
PjX

i
j

W ci
0

be the portfolio weight of the investment in location j by an

investor in location i. Consider the style regression of the gross return obtained by such an

investor on the passive returns, including the risk-free one. The constant αsi in this regression
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is the portfolio-weighted informational advantage of investor i across all markets in which

she invests:

αsi =
K∑
j=1

(
pij
κ
− 1

)
wij. (18)

An alternative way of formulating the functional g is as follows. Let Σ denote the

covariance matrix of passive excess returns Re,p
j , E (Re,p) the vector of expected excess passive

returns, w = Σ−1E (Re,p) a mean-variance efficient portfolio from the perspective of an

uninformed econometrician, and RMVE = w>Re,p the excess return of the portfolio. Then

the functional g(Re) ≡ E(Re)−cov(Re, RMVE) satisfies all the requirements of the functional

g, since it is linear, satisfies g(1) = 1, and most importantly assigns the value zero to all

passive excess returns. This observation formalizes the claim we made in Section 3.2.: The

reason for the inadequacy of CAPM alphas is that the market portfolio is not mean-variance

efficient even from the perspective of an uninformed econometrician.16

Our analysis in this section is related to Chen and Knez (1996), who characterize perfor-

mance measures satisfying a reasonable minimal set of requirements in a general payoff-and-

information environment. Our special model structure implies a tighter characterization —

essentially, our performance measure is unique, assigns positive alpha to informed strategies,

and it can be thought of as a style alpha.

3.4. Investor-specific performance evaluation

A key requirement for a valid functional g is that it assign zero alpha to passive strategies.

An issue that we did not address in the previous section is that the requirement need only

apply with respect to the locations in which a given investor i participates. Indeed, equation

(17) continues to hold even if the values g(Re,p
j ) are set arbitrarily whenever the investor

chooses wij = 0.

16See also Ferson and Siegel (2001) for the properties of unconditionally efficient portfolios for the purposes
of performance evaluation.
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This observation is of practical importance because in the real world many portfolios

are concentrated in only a few asset classes, and virtually all shun some asset classes. It

also helps explain the widespread use of heterogeneous benchmarks. Thus, if the goal is

to evaluate the stock-picking skills of an asset manager who only invests in Finnish stocks,

then our analysis provides a justification for regressing her return only on the Finnish stock

market index rather than some global index, or a set of indices from several countries. We

also note that adding more classes not only does not help, but in fact hurts by deteriorating

the quality of inference with finite data.

The above discussion helps us illustrate an additional point of some theoretical interest:

One can find valid, investor-specific gi even when a functional g pricing all passive strategies

does not. The easiest way to illustrate this point is by using a minimal example whereby an

equilibrium features an unexploitable arbitrage. For instance, consider an economy in which

(i) the passive portfolios in two locations (say, locations j and j′) have the same dividends

from the perspective of a passive investor (κDj = κDj′) but different prices (Pj 6= Pj′);
17 (ii)

investor j invests only in market j, because
pjj
Pj
>

pj′

Pj′
and similarly investor j′ only invests in

market j′. The prohibitive risks of shorting make this arbitrage opportunity compatible with

equilibrium. A global measure g applying simultaneously to Re,p
j and Re,p

j′ does not exist,

yet individual measures gj and gj′ are easy to construct, e.g., by regressing each investor’s

return on the passive returns in the asset classes in which she invests.

3.5. Summing up alphas

Here we take a closer look at the cross-section of portfolio performance in our model. The

starting point is the general observation that, relative to the market, the average alpha must

be zero by construction. However, in our model all the investors have some information,

which should allow them to improve on the market portfolio and consequently display into

positive alphas.

To discuss this issue, we revisit Section 3.2. and concentrate on an economy that is

17This could occur in equilibrium, for instance, because the investors in a third location j′′ are better
informed about one of these two locations, resulting in a higher price for its securities.
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symmetric with respect to the various locations. In this economy, Pj = P = P a, and equation

(16) gives αij =
pij
κ
−1 > 0. Since all individual alphas are positive, it would appear that the

portfolio-weighted average of alphas (across investors) is strictly positive. This conclusion

is not correct, though, because the analysis so far has ignored the swindlers’ investment in

their own firms. Indeed, these agents invest a non-zero fraction of their portfolio in an asset

costing P > 0 and paying back zero, i.e., offering a net return of −100%.

One can see explicitly the negative return to the swindlers’ retained holdings in their

own firms in the market-clearing equation from Theorem 1. Focusing on a single market,

recalling that 1− fij = pij, and summing across investors i expresses equation (9) as

0 =
K∑
i=1

(pij
κ
− 1
)
X i
j + (−1)×

(
1−

K∑
i=1

X i
j

)
. (19)

The right-hand side of equation (19) contains two terms. The first term is positive and

captures the intuition of aggregate positive alphas. The second term, though, is negative,

because
∑K

i=1X
i
j < 1: the difference 1−

∑K
i=1X

i
j represents the swindlers’ position in their

own firms in location j, and −1 is the associated net return.

The alphas realized by the swindlers combine the −100% on their own firms with the

positive values on the rest of their portfolios, but are negative in the aggregate. This is

despite the fact that the swindlers possess superior information. Given their endowment

of worthless stock, swindlers are actually better off retaining some of their shares in their

effort to pool with the regular stock. The reason for their negative alpha is not suboptimal

behavior, but rather the nature of their initial endowment.

This observation illustrates an additional caveat to using alpha, namely that it depends on

endowments, or initial positions. An investor’s return may appear inferior simply because

her initial position is overvalued, and disposing of it would deteriorate (mark-to-market)

wealth. In such situations, one would obtain a better measure of the investor’s information

from the return on the change in the investor’s portfolio, under the implicit assumption that

this change would have been zero absent any information. Implementing such a procedure,

24



though, requires knowledge of portfolios (trades), which is far harder to come by.

4. Conclusion

We develop a multiple-market, multiple-investor model, whereby informational asymmetries

act as distortionary and redistributive capital taxes. By explicitly modeling the incentive

to diversify across asset classes, and introducing strategic-trading considerations for some

traders, we can dispense with noise trading, yet keep prices non-revealing. Moreover, the

duality between the model and a tax economy makes the model quite tractable to analyze,

without requiring CARA utilities and normal dividends.

By drawing a distinction between asset classes (sets of stocks that seem identical from

the perspective of an uninformed agent) and individual assets within asset classes, the model

can account for portfolio biases towards specific asset classes for any realization of the signals

about the quality of individual assets. Hence the model provides a simple and analytically

convenient framework to model persistent portfolio biases toward a set of asset classes,

under-diversification, and portfolios with non-interior (zero) holdings of individual assets.

To illustrate the analytical tractability of the model we revisit an established literature

that analyzes the properties of popular performance evaluation measures. Our framework

allows a particularly clean distinction between pure selection and timing abilities. Without

trivializing the possible importance of timing information, we show that the specific infor-

mational assumptions we adopt provide a simple and intuitive theoretical basis for portfolio

evaluation criteria such as style analysis and fund-dependent choice of benchmarks, which

have proved popular amongst practitioners.
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Appendix

A Strategic Agents and Dividend Manipulation

Here we build a model extension designed to capture two desired phenomena. First, we model

a finite economy populated by agents who behave strategically and show that the equilibrium

approaches the one in the benchmark (continuum) economy as the number of agents grows

without bound. Second, we also obtain no shorting as an endogenous consequence of allowing

swindlers to manipulate the cash flows from their firms, in a sense made precise below.

In order to illustrate the point as quickly and easily to convey as possible, we make a

number of (dispensable) simplifying assumptions.

Consider two locations, L = {1, 2}, each populated by N agents and hosting N firms.

A number κN of the agents18 in each location are common, the others being swindlers.

Similarly, there are κN regular and N − κN fraudulent firms per location. Agents have

CARA preferences with risk-aversion parameter γN , and each regular firm in location j has

output and dividend Dj/N , where E[Dj] = 1 and Var(Dj) = σ2. Let Ω denote the variance

of (D1, D2). Dividends in different locations are assumed to be independent. Fraudulent

firms have output equal to zero. All agents are endowed with an equal number of shares of

regular firms in their locations. Each swindler also owns entirely a fraudulent firm.

The information structure is as in the main text, with some simplifications. As in the

text, we maintain that pii = 1, and also impose symmetry, i.e., p12 = p21 ≡ p. We also

impose that some quantities, such as the proportion of fraudulent firms mis-identified as

regular equal their ex-ante averages. More precisely, agent 1 receives p−1κN good signals

for the firms in location 2, of which exactly κN correspond to the regular firms and the

remainder to fraudulent firms. The set of (p−1− 1)κN of mis-identified firms is chosen from

a uniform distribution on the set of cardinality-(p−1 − 1)κN subsets of the set of fraudulent

18The number of agents must be an integer, of course. We therefore adopt the convention that all necessary
quantities are rounded in some reasonable fashion. Alternatively, we restrict κ to be rational and N to an
appropriate (unbounded) set. The same for p−1κN .
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firms.

The action space for common investors consists of demand functions X(P̄ ) that give the

numbers of shares in the 2N securities that a given investor is willing to purchase given

the 2N -dimensional price vector P̄ . Swindlers must take an additional action, which is the

amount L that they borrow and divert into the firm to increase its liquidation value.

Specifically, we assume that each swindler has the ability to borrow any amount L of her

choosing at time 0, divert these funds into the firm, and report earnings equal to L (1 + r) = L

in period 1. (Equivalently, we could assume that the swindler can take an action to produce

earnings L by incurring a personal non-pecuniary cost of effort, which would have a value

L in monetary terms.) Given the possibility of such a diversion, equation (5), giving the

swindler’s time-1 wealth, becomes

W sil
1 ≡ Bsil +

K∑
j=1

∫
k∈[0,1]

DjkdX
sil
jk + Lil

(
Sil − 1

)
. (A.1)

We note that the difference to (5) is the term Lil
(
Sil − 1

)
, which is intuitive. If Sil−1 <

0, i.e., if the swindler reduces her ownership of shares by being a net seller, then she has

no incentive to perform earnings diversion, since she will recover only a fraction of the

funds she diverted into the company. If, however, the swindler is a net buyer of her own

security
(
Sil − 1 > 0

)
, then the ability to manipulate earnings becomes infinitely valuable,

since Lil can be chosen to be an arbitrarily large number. Intuitively, the swindler can report

arbitrarily large profits at the expense of outside investors who hold negative positions (short

sellers) in the fraudulent firm. This feature discourages any other agent from shorting: with

non-zero probability all other agents know that the firm is fraudulent and don’t buy any

shares, so that any shorting results in Sil > 1.

Given that we are considering a sequential game — the swindler’s decision to manipulate

is taken after the asset market clears — of incomplete information, we are looking for a

perfect Bayesian Nash equilibrium. Loosely speaking, this concept requires that all actions

— demands and manipulation decisions — be optimal given beliefs, while beliefs be updated

according to Bayes’ rule wherever possible. Note that, unlike in the main body of the paper,
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all agents take into account their potential impact on the price, and on the other agents’

beliefs, when submitting their demand functions.

We concentrate on the sub-class of symmetric equilibria, in which all agents in a given

market behave identically conditional on their type and signals, while the differences in

behavior between market-1 and market-2 agents come down to index permutations in the

natural way. Important, we are interested in the existence of pooling equilibria, in which all

securities in a given location, and therefore in the entire economy by symmetry, have the

same price.

Proposition 3 A perfect Bayesian Nash equilibrium exists with the following properties.

(i) The equilibrium is symmetric.

(ii) All security prices are equal.

(iii) Common investors and swindlers have the same portfolios in equilibrium, with the

exception of the swindler’s holding of her own firm.

(iv) There is no shorting.

(v) There is no dividend manipulation.

Furthermore, as N increases, equilibrium prices and aggregate holdings of agents in any loca-

tion i of all assets in location j converge to the competitive-strategic equilibrium in Theorem

1.

B Proofs

Proof of Theorem 1. The proof proceeds in a number of steps. We start with an

equilibrium in the simplified competitive tax economy, and use it to construct demands in

the original economy. Second, we specify out-of-equilibrium beliefs in the original economy

that support the equilibrium. In a third step, we verify that all agents, regular as well as

swindlers, find it optimal to submit the demands specified given prices and their beliefs.

Finally, we verify that markets clear.
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Consider a solution to the simplified problem (8)–(9). The demands in the original

economy are defined naturally based on this solution:

dXci
jk = (1− fij)κ−1X i

j1ιijk1(Pjk=Pj)dk (B.1)

dXsil
jk = (1− fij)κ−1X i

j1ιijk1(Pjk=Pj)dk, (i, l) 6= (j, k) (B.2)

dXsil
il =

 [0,∞) if Pil = Pi

0 if Pil 6= Pi
. (B.3)

The conjectured prices are Pjk = Pj for all j and k. Note that dXci
jk and dXsil

jk are themselves

demand curves, i.e., functions of the prices {Pj}j.

In words, all investors buy the same number of shares in each market as in the tax

economy, but they split this position (equally) only among the firms about which they

receive a good signal — note that the multiplicative factor (1− fij)κ−1 equals the reciprocal

of the probability that a given signal is good. Another proviso is that the price equal the

pooling price Pj; for any other price, the agents shun the asset. The only exception to this

behavior is provided by the insiders of fraudulent firms, who submit an elastic demand at

Pjl = Pj.

In equilibrium, only prices Pj are realized, and therefore prices are not informative. We

postulate that all agents believe that any firm k in market j that has price Pjk 6= Pj is

fraudulent with probability one.

To see that Xci
jk is optimal, start by writing the expected utility for the agent as

E

[
U

(
K∑
j=1

∫
k

(Djk − Pj) dXci
jk + Pi

)
|ιi
]

= E

[
U

(
K∑
j=1

∫
k

(
ρ(jk)Dj − Pj

)
dXci

jk + Pi

)
|ιi
]

(B.4)

and note that, by Jensen’s inequality, this utility is maximized by choosing dXci
jk, for fixed

j, to be measurable with respect to ιijk — in words the agent invests identically in all assets

in market j in which she received the same signal. Furthermore, the portfolio of assets with
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higher signals (ιijk = 1) strictly dominates the portfolio with low signals (ιijk = 0). Let

X̂ci
j =

dXci
jk

dk
denote the mass of shares in each asset in market j in which the investor has a

positive signal. Consequently, (B.4) is equal to

E

[
U

(
K∑
j=1

∫
k

(
ρ(jk)Dj − Pj

)
1(ιijk=1)dkX̂

ci
j + Pi

)
|ιi
]

(B.5)

= E
[
U
(∑K

j=1 ((1− fij)Dj − Pj)Pr
(
ιijk = 1

)
X̂ci
j + Pi

)]
.

It follows that the optimal position is

X̂ci
j = Pr

(
ιijk = 1

)−1
X i
j = (1− fij)κ−1X i

j. (B.6)

Equation (B.1) is immediate.

The same argument holds for the choice that a swindler makes with respect to all assets

but her own. When choosing the position in her own asset, the only consideration is the time-

zero revenue (1 − dXsil
il )Pil, since the asset pays zero. Given the other investors’ demands,

the insider must ensure that Pil = Pi. To that end she submits a demand that fails to clear

the market at Pil 6= Pi, and is willing to take any position at Pil = Pi.

To see that markets clear at prices Pj, start from (9) and a consider a regular firm k in

market j. Since by assumption we have ιijk = 1, the total demand follows from adding (B.1)

and (B.2) over all i, which gives

κ

K∑
i=1

dXci
jk + (1− κ)

K∑
i=1

dXsil
jk =

K∑
i=1

(1− fij)κ−1X i
jdk = dk (B.7)

by (9). The markets for fraudulent assets clear due to the elastic demands submitted by

insiders.

The final observation to make is that X i
j is indeed equal to the aggregate positions taken

by investors located in market i when investing in market j, excluding swindlers’ positions
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in their own firms, i.e.,

X i
j =

(
κ

∫
dXci

jk + (1− κ)

∫
1((i,l)6=(j,k)) dX

sil
jk

)
Pr
(
ιijk = 1

)
. (B.8)

Proof of Proposition 2. The result follows immediately from the fact that any informed

excess return is given by a linear combination of passive excess returns plus an additive

constant which is given by (18). Alternatively, one can also check directly that the style

alpha satisfies the properties required of a measure g, with g(1) = 1.

Proof of Proposition 3.

To construct an equilibrium, we proceed in a number of steps. We first construct demand

functions under the postulate, later verified, that all assets in the same location have the

same price, shorting is prohibited, and there is no dividend manipulation. In a second step we

extend the demand functions to cover all other price configurations, while in subsequent steps

we address out-of-equilibrium beliefs, dividend manipulation, and, in a final step, shorting.

We focus on a particular investor 1 and use symmetry throughout.

Step 1: Two-asset equilibrium. Suppose that Pj exists such that Pjk = Pj for all firms

jk. Consider the investment problem of any agent 1, common investor or swindler. We note

that, given her signals on any location j, the agent (i) excludes from consideration all firms

with bad signals — these have zero payoff — and (ii) invests equally in all the others, thus

minimizing idiosyncratic risk.19 At this stage, we also assume that the beliefs about the

asset qualities are given by the signals, and are not updated based on the price. We address

out-of-equilibrium beliefs in a later step.

This problem is a relatively standard, perfect-information one, featuring mean-variance

investors facing differential taxes who invest strategically in multiple assets in the presence

19The agent is perfectly informed about location 1, and thus does not face any idiosyncratic risk, but equal
weighting is, of course, still optimal, albeit only weakly.
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of shorting constraints. For the sake of completeness, we sketch proofs of both existence and

convergence towards the competitive outcome as the number of agents grows to infinity.

Given that the asset payoffs in the two locations are independent and preferences are

CARA, investments in the two assets do not interact. Market clearing, however, involves

the demands of both agents, so we choose to write the problem in matrix form, even if all

endogenous matrices are diagonal.

Let Π be diagonal with Πjj = p1j. Agent 1 faces a two-asset universe with expected

payoffs diag(Π) and variance-covariance matrix of payoffs ΠΩΠ. With X the portfolio choice

of the agent, it is convenient to focus on the quantity Y = ΠX . We are looking for an

equilibrium in which all demands, as functions of the two prices, are piece-wise linear —

in fact, linear truncated at zero. Relying on symmetry, we need to parameterize only the

demand of agent 1, as

Y = (A−BP )+ = Z (A−BP ) , (B.9)

where P ∈ R2 denotes the vector of prices per share in the two markets, and Z is a diagonal

matrix with Zjj = 1 if entry j of A−BP is positive and Zjj = 0 otherwise. Z is a function of

P . A requirement of the equilibrium is that, taking all other demand schedules as given, an

agent 1’s optimal portfolio choice, denoted X̂ (respectively Ŷ ), and therefore P , is optimal

subject to the restriction X̂ ≥ 0. The type of equilibrium we are looking for requires that

Ŷ = Z(A−BP ).

Consider price setting for a regular firm. We note that if an agent 1 demands X (∈ R2)

total shares in each location, the total demand for regular-firm shares is only ΠX = Y . The

reason is that, in market j, a proportion 1− p1j of the demand flows to fraudulent firms.

Given (B.9), it follows that the residual demand faced by an agent 1 for the aggregate

regular asset in each location is also linear, given as

Y (r) = A(r) −B(r)P, (B.10)
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with A(r) = (N − 1)ZA+NRZA and B(r) = (N − 1)ZB +NRZBR, where the matrix R

implements the permutation 1 ↔ 2 applied to all indices to capture the demand of agents

in location 2; that is,

R =

 0 1

1 0

 .
An agent 1 maximizes

Ŷ >
(
1− Π−1P

)
+
κ

N
e>1 P −

γN

2
Ŷ >ΩŶ , (B.11)

where e1 = (1, 0)> is a vector that selects market 1, to capture the agent’s endowment,

and 1 = (1, 1)>. Note that the agent’s endowment represents a fraction 1/N of the total

endowment in market 1, and his risk tolerance a fraction 1/N of the aggregate risk tolerance

of agents in location 1. The agent takes into account that the price depends on her demand

through the market-clearing condition

Ŷ + Y (r)(P ) = κ1. (B.12)

The logic of the argument is familiar. The agent can be thought of as choosing the

quantity Ŷ and via (B.12) the price vector P , taking the residual demand as given. Before

we compute the optimal demand, we remark, based on (B.11), that (i) if P1 < 1, then Ŷ1 > 0

, and (ii) Ŷ2 > 0 if and only if P2 < p. Since the market for asset 1 must clear, Y1 > 0 in

equilibrium, while Y2 may or not be positive.

The first-order condition for the Lagrangean associated with (B.11) is

0 = 1− Π−1P − (DŶ P )Π−1Ŷ + (DŶ P )e1
κ

N
− γNΩŶ + λ, (B.13)

where λ is the Lagrange-multiplier vector attached to the no-shorting condition, while dif-
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ferentiating (B.12) with respect to Ŷ gives

0 = 1 +DPY
(r)DŶ P

= 1−B(r)DŶ P. (B.14)

Note that, via Z, A(r) and B(r) are actually functions of P . Since they are step functions,

though, we may treat them as constants when evaluating first-order conditions. We verify

later that the first-order approach generates an equilibrium in our context.

Putting (B.13) and (B.14) together provides a candidate demand schedule for agent 1:

Ŷ = Ẑ
((
B(r)

)−1
Π−1 + γNΩ

)−1 (
1− Π−1P +

(
B(r)

)−1
e1
κ

N

)
. (B.15)

We’ll define the coefficients of the linear demand of the agent 1 under consideration based

on (B.15), but we first determine the value that the matrix Z, and therefore Ẑ, takes in

equilibrium. Let P ∗ denote the equilibrium price and suppose that P ∗1 > p, so that agent 1

is the only one investing in market 1. Then, from (B.15) market clearing implies

κ = NŶ =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)−1(
1− P ∗1 +N−1

(
B

(r)
11

)−1
κ

)
, (B.16)

which gives upon rearrangement

P ∗1 = 1− γκσ2. (B.17)

Thus, if p < 1− γκσ2 and the equilibrium satisfies (B.15), then agent 1 doesn’t invest in

market 2.

Suppose now that the agent invests in both markets. We use again market clearing from
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(B.15),

κ =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)−1(
1− P ∗1 +N−1

(
B

(r)
11

)−1
κ

)
+ (B.18)(

N−1
(
B

(r)
22

)−1
p−1 + γσ2

)−1 (
1− p−1P ∗2

)
,

which, using P ∗1 = P ∗2 , leads to

P ∗1 = 1− γκσ2 +

(
N−1

(
B

(r)
11

)−1
+ γσ2

)
(
N−1

(
B

(r)
22

)−1
p−1 + γσ2

) (1− p−1P ∗1 ) , (B.19)

further rewritten as

(p− P ∗1 ) (1 + a0) = p−
(
1− γκσ2

)
(B.20)

with

a0 =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)
(
N−1

(
B

(r)
22

)−1
+ pγσ2

) > 0.

Thus p > P ∗1 , implying active participation of agent 2 in market 1 if and only if p > 1−γκσ2.

We have therefore shown that Z22(P
∗) = 1(p>1−γκσ2), should an equilibrium exist.

Let Z∗ ≡ Z(P ∗). We define the demand of agent 1 under consideration based on the

coefficients

φ (B) = Z∗
((
B(r)

)−1
+ γNΩ

)−1
Π−1 (B.21)

ψ (B) = φ (B) Π
(
1 +

(
B(r)

)−1
e1
κ

N

)
. (B.22)

Note that we used the known value of Z∗ in this definition, as defined above.

Suppose that the mapping φ : R2 → R2 admitted a non-zero, positive fixed point. Then
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let A = ψ(B) and compute the price from the market-clearing condition. It follows from

equation (B.15) that Ŷ = ψ(B) − φ(B)P ∗ as long as Ẑ(P ∗) = Z∗, i.e., as long as (i)

(ψ(B)− φ(B)P ∗)11 = (A−BP ∗)11 is positive, and (ii) (ψ(B)− φ(B)P ∗)22 = (A−BP ∗)22
is positive if and only if Z∗22 = 0, thus p > 1− γκσ2.

Note, however, that Z∗22 = 0 implies B22 = A2 = 0, and therefore Ẑ22(P
∗) = 0. Given

symmetry and market clearing, it follows that A1−B11P
∗
1 > 0. If Z∗22 = 1 and both investors

invest in both markets, then we saw above that market clearing leads to (B.20), which implies

P ∗1 < p. From the definitions,

A−BP ∗ =
((
B(r)

)−1
+ γNΩ

)−1 (
1 +

(
B(r)

)−1
e1
κ

N
− Π−1P ∗

)
. (B.23)

Since P ∗1 < p, 1− Π−1P ∗ > 0, and therefore (A−BP ∗)jj > 0, thus Ẑ∗jj > 0, for j ∈ {1, 2}.

One can use Brouwer’s theorem to show that φ has a strictly positive fixed point, as

follows. It is convenient to concentrate on the mapping φN(NB) ≡ Nφ(B). To invoke this

theorem, we restrict attention to B1 > 0 (and B2 ≥ 0) and note that, as a consequence, the

image of φN is bounded above (in the operator sense) — uniformly in N , in fact. We also

see that δ > 0 exists such that, if NB1 ≥ δ, then (φN(NB))1 > δ. Specifically, from (B.21)

it follows that δ must obey

N
(
(2N − 1)−1 δ−1 + γNσ2

)−1 ≥ δ, (B.24)

which holds, for instance, for

δ =
1

2

(
γσ2
)−1

. (B.25)

Thus, we have verified that the continuous mapping φN maps a compact set into itself, and

therefore has a fixed point B characterized by B1 > δ > 0, B2 ≥ 0.

The last fact that must be established before concluding that we have an equilibrium is

that the agents’ portfolios are, indeed, optimal. We constructed them to satisfy first-order

conditions, but the agents’ objectives (B.11) are not concave in general. Given equilibrium
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residual demands, though, they are concave.

To make the matters clear, we rewrite (B.11) as

Ŷ >1−
(
Ŷ >Π−1 − κ

N
e>1

)
P − γN

2
Ŷ >ΩŶ , (B.26)

Since P is not a constant, this function is not quadratic in Ŷ . The implicit function P (Ŷ ),

though, defined via (B.12), is (piece-wise linear and) convex. To obtain concavity, it is

sufficient that P (Ŷ ) be linear whenever Ŷ >Π−1 − κ
N
e>1 < 0. Differently put, that for Ŷ <

κ
N

Πe1 = κ
N
e1, both agents are long in both markets given equilibrium demands and P (Ŷ ).

Obviously, there is no problem concerning asset 2 (since e12 = 0: agent 1 has no endow-

ment of asset 2). For asset 1, consider first the case in which agents only participate in their

home markets in equilibrium. Since we defined A2 = B22 = 0, i.e., constant, in this case,

there is no issue. In the other case, suppose that the agent increases Ŷ1 until agents 2 drop

out of the market, i.e., the price becomes P1 = p. Each other agent 1, at this price, holds

A1 −B11p =
(

(B
(r)
11 )−1 + γNσ2

)−1 (
1 + (B

(r)
11 )−1

κ

N
− p
)

(B.27)

<
(

(B
(r)
11 )−1 + γNσ2

)−1 (
(B

(r)
11 )−1

κ

N
+ γκσ2

)
(B.28)

=
κ

N
, (B.29)

where we used p > 1 − γκσ2. The residual demand is therefore linear until a point where

Ŷ1 = κ− (N − 1)(A1 −B11p) >
κ
N

.

Let’s turn now to the behavior of this equilibrium as N grows large. Since NB is bounded

below by δ > 0 (independently of N), (B.21) implies

B̄ = Z∗ (γΩ)−1 Π−1, (B.30)

with B̄ denoting the limit of NB.
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We note that limN→∞B
(r) = B̄+RB̄R. It follows, using (B.22), that the limit of NA is

Ā = B̄Π1 = Z∗ (γΩ)−1 1 (B.31)

and that the limit price per share is

P̄ =
(
B̄ +RB̄R

)−1
(Ā+RĀ− κ1). (B.32)

The quantities Ā and B̄ also correspond to the solution to (B.11) taking the price as

given. The price P̄ is therefore the competitive price in the two-asset, short-sale constrained

equilibrium. The term
(
B̄ +RB̄R

)−1
(Ā+RĀ) captures the aggregate expected payoff from

an asset one invests in. The remaining term is the risk adjustment, with κ1 the supply of

the asset, and
(
B̄ +RB̄R

)−1
accounting for the covariance between one asset the aggregate

investor purchases and one unit of the total supply.

Step 2: The other demands. Returning to the finite-N case, we consider now the demand

of a swindler in her own firm. Given that the only way to generate a positive demand in

her firm — given the other agents’ equilibrium strategies, described below — is to ensure

that its price is P1, the swindler submits a perfectly elastic demand at the price P1 at which

all other firms clear, as long as the demand is a quantity that does not exceed one. At all

other prices, the swindler submits a demand (1,∞), i.e., stands ready to clear the market as

long as she takes a gross position higher than one. This case can only obtain when another

agent is willing to short at the respective price, and the optimal reaction of the swindler is

to accommodate the shorter and manipulate dividends, as we describe below.

Formally, the demand of the swindler for her own firm l is

Xsl(P1l) =

 (−∞,∞) if ∃P1 & P1l = P1

(1,∞) if @P1 or P1l 6= P1

. (B.33)

We also note that, in equilibrium, the swindler never shorts her own firm, since the demand

for it is lower than the demand for a regular firm, about which the signals are better.
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All agents demand a zero amount of shares in firms in which they have bad signals.

Local agents know precisely all regular firms. If the set of prices of regular firms in market

1 is not a singleton, then we specify the demand of agent 1 as Ŷ1j = ∞ for all j such that

P1j < maxk P1k, and Ŷ1j = −∞ for all j such that P1j = maxk P1k. If all positive-signal firms

in market 2 do not have the same price, then agent 1 maximizes utility conditional on his

out-of-equilibrium beliefs, stated below. The important feature to note is that no deviation

by a swindler can prevent the regular firms having the same price — this is ensured by the

demands of the local common investors — and therefore the only relevant belief concerns

the case in which the price P2j of a fraudulent firm is not equal to that of at least κN other

firms in location 2.20

Step 3: Out-of-equilibrium beliefs. Investor 1 knows all types in market 1. Suppose

that she observes prices P2k. Given κ > 1
2
, there are only two possibilities. First, at least

κN firms of the p−1κN ones about which the investor has positive signals have the same

price (there is only one price level for which this statement is true). Then the agent assigns

probability one that all firms with different price are fraudulent. Second, there is no such

subset of firms. Then the agent believes that the prices are entirely uninformative.

As remarked above, given the prescribed strategies, no swindler can bring about the

second case, and it is optimal for each swindler to induce the pooling outcome, as it carries

zero cost and unilateral deviation exposes the firm as certainly fraudulent.

Finally, common agents do not have an incentive to adjust demand for the regular stocks

in market 1 in the hope of signaling, given the swindlers’ equilibrium demand (which ensures

the same price for the fraudulent firm as for the regular ones).

Step 4: Dividend manipulation. The swindler’s action also includes the amount of div-

idend manipulation she engages in, subsequent to asset-market clearing. If the swindler

borrows the amount F ≥ 0 that she diverts in the firm, then she makes profit

Xsl (F − P1l)− F + Pil = Pil
(
1−Xsl

)
+ F

(
Xsl − 1

)
. (B.34)

20To simplify exposition, we make the parametric assumption κ > 1
2 , which excludes the possibility that

there are two or more disjoint sets of firms of size κN , which may have the same price.
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Clearly, if Xsl > 1, the swindler benefits from borrowing an arbitrarily large amount L

to divert in the firm, pushing its liquidating price arbitrarily high and making arbitrarily

high profits. As long as there is no shorting, however, there is no manipulation.

Step 5: Shorting. Agent 1 is perfectly informed about assets in market 1, and does not

short regular assets in market 1, as discussed in Step 1. She also does not short fraudulent

assets in market 1 because agent 2 may also know that they are fraudulent, and therefore

the swindler would be the only buyer, would end up being a net buyer of the asset and

manipulate the dividends to an arbitrary extent. Agent 1 does not short an asset in market

2 that is fraudulent, for everyone knows that it is fraudulent. Finally, she may consider

shorting an asset in market 2 about which she has a positive signal. If the equilibrium

demand for market 2 by agent 1 in the shorting-constrained economy without manipulation

is zero, then there is a positive probability that the asset is fraudulent and no one else invests

in it. If this demand is actually strictly positive, then taking a negative position would be

suboptimal even in the absence of the manipulation threat.
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