
NBER WORKING PAPER SERIES

SELF-FULFILLING DEBT CRISES:
A QUANTITATIVE ANALYSIS

Luigi Bocola
Alessandro Dovis

Working Paper 22694
http://www.nber.org/papers/w22694

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2016

We thank Mark Aguiar, Pooyan Ahmadi, Manuel Amador, Cristina Arellano, Juliane Begenau, 
David Berger, Anmol Bhandari, Javier Bianchi, Hal Cole, Russell Cooper, Satyajit Chatterjee, 
V.V. Chari, Cosmin Ilut, Patrick Kehoe, Thibaut Lamadon, Ellen McGrattan, Gaston Navarro, 
Monika Piazzesi, Jesse Schreger, Cédric Tille, Mark Wright, and seminar participants at 
Berkeley, Board of Governors, Columbia University, CREI, Duke University, Federal Reserve 
Bank of Chicago, Federal Reserve Bank of Minneapolis, McGill University, North Carolina 
State, Penn State University, University of Cambridge, University of Maryland, University of 
Notre Dame, University of Pennsylvania, University of Western Ontario, University of 
Wisconsin Madison, Chicago Booth junior International Macro conference, SCIEA 2015, 
University of Rochester conference on the European Sovereign Debt Crisis, Konstanz Seminar 
for Monetary Theory and Policy, Rome Junior conference on Macroeconomics, University of 
Zurich conference on the Economics of Sovereign Debt, SED 2015, NBER Summer Institute 
2015, ITAM-Pier 2015, NBER within and across border meeting (fall 2015), ASSA 2016, 
Sciences Po Summer Workshop in International Finance and Macro Finance. Gaston Chaumont, 
Parisa Kamali, and Tommy Khouang provided excellent research assistance. All errors are our 
own. The views expressed herein are those of the authors and do not necessarily reflect the views 
of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Luigi Bocola and Alessandro Dovis. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Self-Fulfilling Debt Crises: A Quantitative Analysis
Luigi Bocola and Alessandro Dovis
NBER Working Paper No. 22694
September 2016
JEL No. E44,F34,G12,G15

ABSTRACT

This paper uses the information contained in the joint dynamics of government’s debt maturity 
choices and interest rate spreads to quantify the importance of self-fulfilling expectations in 
sovereign bond markets. We consider a model of sovereign borrowing featuring endogenous debt 
maturity, risk averse lenders and self-fulfilling rollover crises á la Cole and Kehoe (2000). In this 
environment, interest rate spreads are driven by economic fundamentals and by  expectations of 
future self-fulfilling defaults. These two sources of default risk have contrasting implications for 
the debt maturity choices of the government. Therefore, they can be indirectly inferred by 
tracking the evolution of the maturity structure of debt during a crisis. We fit the model to the 
Italian debt crisis of 2008-2012, finding that 12% of the spreads over this episode were due to 
rollover risk. Our results have implications for the effects of the liquidity provisions established 
by the European Central Bank during the summer of 2012.

Luigi Bocola
Department of Economics
Northwestern University
2001 Sheridan Road
Evanston, IL 60208
and NBER
luigi.bocola@northwestern.edu

Alessandro Dovis
Department of Economics
University of Pennsylvania
445 McNeil Building
3718 Locust Walk
Philadelphia, PA 19104
and NBER
adovis@upenn.edu



1 Introduction

The idea that lenders’ pessimistic beliefs about the solvency of a government can be self-
fulfilling has been often used by economists to explain fluctuations in sovereign bond yields.
For example, it has been a common explanation for the sharp increase in interest rate spreads
of southern European economies in 2011, and for their subsequent decline upon the intro-
duction of the Outright Monetary Transactions (OMT) bond-purchasing program by the
European Central Bank (ECB).1 According to this view, the policy intervention of the ECB
was desirable because it eliminated non fundamental fluctuations in bond yields, protecting
members of the euro-area from inefficient self-fulfilling crises.

However, assessing whether movements in interest rate spreads are self-fulfilling is chal-
lenging in practice, and this makes the interpretation of these “lender of last resort" types of
policies difficult. The observed widening in interest rates spreads may have been due purely
to the bad economic fundamentals of these economies, and their decline following the estab-
lishment of the OMT program may have reflected heightened expectations of future bailouts
by the European authorities. Clearly, this alternative interpretation of the events may lead to
a less favorable assessment of the program, as bailout guarantees can induce governments
to overborrow and they can introduce balance sheet risk for the ECB.

The contribution of this paper is to provide the first quantitative analysis of a benchmark
model of self-fulfilling debt crises, and to use it to measure fundamental and non fundamen-
tal fluctuations in interest rate spreads during the Eurozone crisis. In the model, the maturity
structure of debt chosen by the government responds differently to these two sources of de-
fault risk. Our measurement strategy consists in using this restriction, along with observed
maturity choices, to infer the likelihood of a self-fulfilling crisis. After fitting the model to
Italian data, we find that 12% of the interest rate spreads during the 2008-2012 period were
due, on average, to rollover risk. We then use this decomposition to assess the implications
of the OMT program.

We consider the canonical model of sovereign borrowing in the tradition of Eaton and
Gersovitz (1981), Aguiar and Gopinath (2006) and Arellano (2008). In our environment, a
government issues debt of multiple maturities in order to smooth the effect of fluctuations in
tax revenues on government expenditures. The government lacks commitment over future
policies and, as in Cole and Kehoe (2000), it raises new debt before deciding whether to
default or not. This last assumption leads to the possibility of self-fulfilling debt crises.
Lenders, in fact, have no incentives to buy new bonds when they expect the government to
default. As the debt market shuts down, the government may find it too costly to service

1The program, introduced in September 2012, allowed the ECB to purchases of sovereign bonds in sec-
ondary markets without explicit quantity limits. See Section 6.
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the maturing debt exclusively out of its tax revenues, and it may thus decide to default,
validating the lenders’ pessimistic expectations. These rollover crises can arise in the model
when the stock of debt coming due is sufficiently large and economic fundamentals weak.

In this set up, interest rate spreads vary over time because of “non-fundamental" and
“fundamental" risk. Specifically, they may reflect the self-fulfilling expectations that lenders
will not roll-over government debt in the near future, or they may be high because investors
fear that the government will default purely because of its poor economic conditions. Our
approach consists in indirectly inferring these sources of risk from observed changes in the
maturity structure of government debt. The reason why the debt maturity choices made
by the government provide information on these sources of default risk builds on basic
properties of the model.

Consider first a scenario where high interest rates reflect mostly the possibility that
lenders will not roll-over the debt in the near future. In this situation, the government
lengthens debt maturity: by back-loading payments, the government lowers the stock of
debt that needs to be rolled over, reducing in this fashion the possibility of a “run". This
incentive to lengthen debt maturity in presence of rollover risk was originally emphasized
in Cole and Kehoe (2000).

Consider now a scenario where high interest rates are not due to the fear of a rollover
crisis, but rather reflect bad economic fundamentals. In the model, the government finds
optimal to shorten debt maturity in this situation. By doing so, the government improves
the terms at which it borrows from the lenders, and this is valuable in bad times because
it allows the government to better smooth its consumption. As emphasized in Arellano
and Ramanarayanan (2012) and Aguiar and Amador (2014b), short term debt is a better
instrument than long term debt for disciplining the borrowing behavior of the government
in the future. Therefore, by shortening debt maturity, the government can marginally reduce
the risk of default going forward, and the associated default premia charged by the lenders.
As shown in Dovis (2014), these gains are not necessarily offset by losses due to a decrease
in the insurance provided by long term debt.

Because of these properties, changes in the maturity structure of government debt can
be used to gauge the importance of rollover risk. Observing a government that lengthens
maturity during a crisis is interpreted by the model as evidence of a quantitatively sizable
role for rollover risk, while a shortening would suggest that the underlying sources are
fundamental. In practice, however, debt maturity also depends on the compensation that
lenders require to hold risky long term debt. These risk premia may vary over time and they
may increase during a debt crisis,2 thus confounding our measurement: rollover risk could

2Broner, Lorenzoni, and Schmukler (2013) document that risk premia on long term bonds increase system-
atically during sovereign crises in emerging markets.
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be driving interest rate spreads and yet we could observe a shortening of debt maturity
simply because lenders are not willing to hold long term assets. To address this issue, we
allow for time-varying risk premia on long term bonds in the model by introducing shocks
to the lenders’ stochastic discount factor as in Ang and Piazzesi (2003).

After calibrating the model using Italian data and assessing its fit, we turn to our main
quantitative experiment, which consists in measuring the rollover risk component of ob-
served interest rate spreads during the 2008-2012 debt crisis. For this purpose, we apply
a nonlinear filter to the model and extract the sequence of structural shocks that can ex-
plain the behavior of several data series over the sample. Equipped with this path, we
construct the counterfactual interest rate spreads that would have emerged if the likelihood
of a rollover crisis was zero throughout the episode. The rollover risk component is then the
difference between the observed interest rate spreads and the counterfactual ones. We find
that this component represents, on average, 12% of the interest rate spreads observed during
the episode. We reach this conclusion because the Italian government predominantly issued
short term securities at the height of the debt crisis, a behavior that led to a reduction of 0.5
years in the average life of outstanding debt.

We next proceed to an evaluation of the OMT program. We model this policy as a bond
price floor schedule implemented by a deep pocketed central bank. When appropriately
designed, this instrument eliminates the possibility of future rollover crises without the ne-
cessity to carry out bond purchases on the equilibrium path. This design, which results in
a Pareto improvement, is our normative benchmark. We use our framework to test whether
the OMT program is implementing this benchmark. Specifically, we construct the interest
rate spread that would emerge in a world without rollover crises, and we compare it with
the actual Italian spread observed after the OMT announcements. We find that this coun-
terfactual spread is roughly 100 basis points above the observed one, this being consistent
with the hypothesis that the policy may have fostered expectations of future bailouts on the
equilibrium path.

There is a long literature on multiplicity of equilibria in models of sovereign debt. While
the Eaton and Gersovitz (1981) model tends to generate a unique equilibrium,3 the seminal
papers of Alesina, Prati, and Tabellini (1989) and Cole and Kehoe (2000) show that the
government’s inability to commit to current repayments can lead to self-fulfilling rollover
crises. Starting with Conesa and Kehoe (2012), Chatterjee and Eyigungor (2012) and Roch
and Uhlig (2014), recent papers have introduced this feature in models with income shocks.
In contemporaneous work, Aguiar, Chatterjee, Cole, and Stangebye (2016) show that the

3See Auclert and Rognlie (2014) for a proof of a unique equilibrium in the Eaton and Gersovitz (1981)
model when the government can issue only short term debt. Multiple equilibria in that model may arise when
the government issues long term debt, see Stangebye (2014) and Aguiar and Amador (2016).
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introduction of time varying rollover risk allows models of sovereign debt to better capture
the behavior of spreads and debt for emerging economies. Our paper is complementary
to their analysis. Rather than studying the effect of rollover risk on average, we ask the
question of how one can quantify its importance during a particular historical event, such
as the European debt crisis. For this purpose, we enrich the workhorse model with maturity
choices, and propose a measurement strategy based on the joint dynamics of interest rate
spreads and debt maturity.

The idea of using agents’ choices to learn about the types of risk they are facing has a
long tradition in the literature. A classic example is the use of consumption data along with
the logic of the permanent income hypothesis to separate between permanent and transitory
income shocks. See Cochrane (1994) for an application on U.S. aggregate data, Aguiar and
Gopinath (2007) for emerging markets, and Guvenen and Smith (2014) for a recent study
using micro data. As it is the case for these approaches, our analysis relies heavily on
the assumptions underlying the structural model, and it is not robust to misspecifications
of the trade-offs that governs the maturity choices. Unfortunately, the literature is scant
on systematic studies documenting the motives driving the management of public debt in
practice. However, documents produced by Treasury departments around the world and
historical episodes support the idea that governments actively manage debt maturity to
prevent rollover crises, this being consistent with our key identifying restriction.4

More generally, our research is related to papers that study the quantitative properties of
sovereign debt models. Closely related works include Arellano and Ramanarayanan (2012),
Bianchi, Hatchondo, and Martinez (2014), Hatchondo, Martinez, and Sosa Padilla (2015),
and Borri and Verdhelan (2013). Relative to the existing literature, we are the first to analyze
a sovereign debt model with rollover risk, endogenous debt maturity, and risk aversion on
the side of the lenders.5 A second departure from the literature lies in the calibration. When
applied to emerging markets, researchers have emphasized the role of impatience (a low
discount factor) as a major rationale for government’s borrowing. These calibrations tend to
generate high average interest rate spreads because the government gravitates most of the
time around the borrowing limits defined by default risk. Moreover, they lead to procyclical
debt issuances because the implicit borrowing limits are laxer in high income states. Both

4For instance, the OECD discusses practical issues related to public debt management in its “Sovereign
Borrowing Outlook". This is published yearly since 2009, and it can be downloaded at http://www.oecd.org/
finance/financial-markets/oecdsovereignborrowingoutlook.htm. In Appendix E we detail an historical
example of a Treasury department that extended the life of its debt in the face of a mounting rollover problem.

5Our modeling of the maturity choices differs from the formulation of Arellano and Ramanarayanan (2012)
and builds on recent work by Sanchez, Sapriza, and Yurdagul (2015) and Bai, Kim, and Mihalache (2014).
Specifically, we allow the government to issues portfolios of zero coupon bonds restricted to have an exponen-
tially decaying repayment profile. The maturity choice is discrete, and it consists on the choice of the decaying
factor. This feature simplifies the numerical analysis of the model.
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of these predictions are inconsistent with the behavior of public finances in Europe over
the period of analysis. We document that a simple modification of the government’s utility
function, namely the introduction of a consumption commitment, allows the model to fit the
behavior of interest rate spreads and debt issuances in our sample.

From an econometric viewpoint, the environment we consider is an example of an incom-
plete model (Tamer, 2003), in which multiple equilibria leads to a region of the state space
where outcomes are not unique. There are several approaches developed in the applied
literature to deal with this complication. One could conduct inference by characterizing the
predictions for outcome variables that are consistent with the full set of equilibria.6 Alterna-
tively, one could “complete" the model by introducing a rule that selects among the potential
outcomes, and study the model predictions conditional on this selection device. We follow
this second avenue. Our selection rule builds on Cole and Kehoe (2000), and it has been used
extensively in subsequent studies: when outcomes are not unique, a sunspot determines
(period by period) whether lenders desert the auction or not. This allows us to evaluate a
likelihood function, and to filter the unobserved state variables using techniques routinely
applied to models with a unique equilibrium (Fernández-Villaverde, Rubio-Ramírez, and
Schorfheide, 2015). To best of our knowledge, we are the first in the macroeconomic litera-
ture to apply these tools to a model of this sort.7

Finally, our paper is an attempt to quantify the importance of a particular form of self-
fulfilling expectations to the volatility of interest rate spreads. Multiple equilibria in sovereign
debt models can arise through alternative mechanisms, such as the one emphasized in Calvo
(1988) and recently studied by Lorenzoni and Werning (2013) and Navarro, Nicolini, and
Teles (2015), or the one in Broner, Erce, Martin, and Ventura (2014). Our analysis is silent on
whether these forces contributed to variation in bond yields during the European debt crisis.

Layout. The paper is organized as follows. We present the model in Section 2, and discuss
our key identifying restriction in Section 3. We next turn in Section 4 to the calibration
of the model, and a discussion of its properties. In Section 5 we use the calibrated model
to measure the importance of rollover risk during the Italian sovereign debt crisis, and we
assess the robustness of our results. We analyze the OMT program in Section 6. Section 7
concludes.

6See Lubik and Schorfheide (2004) for a general treatment of this approach in New Keynesian linear ra-
tional expectation models. Passadore and Xandri (2015) pursue this approach in the context of the Eaton and
Gersovitz (1981) model.

7Aruoba, Cuba-Borda, and Schorfheide (2016) also consider a nonlinear macroeconomic model featuring
multiple equilibria. In their New Keynesian model, however, indeterminacy is not confined to a particular
region of the state space. Hence, the switch between “good" and “bad" outcomes is driven exclusively by the
realization of the sunspot.
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2 Model

2.1 Environment and recursive equilibrium

Preferences and endowments. Time is discrete and indexed by t = 0, 1, 2, . . .. The exogenous
state of the world is st ∈ S. We assume that st follows a Markov process with transition
matrix µ (·|st−1). It is convenient to split the state into two components, st = (s1,t, s2,t)

where s1,t is the fundamental component and s2,t is the non-fundamental component. The
fundamental component affects endowments and preferences while the non-fundamental
component collects coordination devices orthogonal to the fundamentals.

The economy is populated by a large number of lenders and a government. The govern-
ment receives tax revenues every period and decides the path of spending Gt. Tax revenues
are a constant share τ of the output produced in the economy, Yt = Y(s1,t). The government
values a stochastic stream of spending {Gt}∞

t=0 according to

E0

∞

∑
t=0

βtU (Gt) , (1)

where the period utility function U is strictly increasing and concave.

The lenders value flows using the stochastic discount factor M(s1,t, s1,t+1). Hence the
value of a stochastic stream of payments {dt}∞

t=0 from time zero perspective is given by

E0

∞

∑
t=0

M0,tdt, (2)

where M0,t = ∏t
j=0 Mj−1,j.

Market structure. The government can issue a portfolio of non-contingent defaultable
bonds. For computational convenience, we restrict the government to issue portfolios of
zero-coupon bonds (ZCB) indexed by (Bt+1, λt+1) for λt+1 ∈ [0, 1]. A portfolio (Bt+1, λt+1)

at the end of period t corresponds to a stock of (1− λt+1)
n−1Bt+1 ZCB that matures at t + n.

The variable λt+1 captures the maturity of the stock of debt: higher λt+1 implies that the
repayment profile is concentrated at shorter maturities. For instance, if λt+1 = 1, then all the
debt is due next period. The variable Bt+1 controls the face value of debt, which is equal to
Bt+1/λt+1. We let qt,n be the price of a ZCB of maturity n issued at time t.

The timing of events within the period follows Cole and Kehoe (2000): the government
first issues new debt, lenders choose the price of newly issued debt, and finally the gov-
ernment decides to default or not, δt = 0 or δt = 1 respectively. We assume that if the
government defaults, it is excluded from financial markets and it suffers losses in output.
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We denote by V (s1,t) the value for the government conditional on a default. Lenders that
hold inherited debt and newly issued debt do not receive any repayment.8 Differently from
the timing in Eaton and Gersovitz (1981), the government does not have the ability to com-
mit not to default within the current period. As we will see, this assumption allows for the
possibility of self-fulfilling debt crises.

The budget constraint for the government when it does not default is

Gt + Bt ≤ τYt + ∆t, (3)

where ∆t is the net amount of resources that the government raises in the period,

∆t =
∞

∑
n=1

qt,n

[
(1− λt+1)

n−1Bt+1 − (1− λt)
nBt

]
. (4)

In the above expression, if a government enters the period with a portfolio (Bt, λt) and wants
to exit it with a portfolio (Bt+1, λt+1), then it must issue additional (1− λt+1)

n−1Bt+1− (1−
λt)nBt ZCB of maturity n. When (1− λt+1)

n−1Bt+1 − (1− λt)nBt is negative, the govern-
ment is buying back the ZCB of maturity n. Importantly, these are the only trades that the
government executes, so our formulation does not require that the government buys back
its entire portfolio and re-issues it every period.

Recursive equilibrium. We consider a recursive formulation of the equilibrium. Let S =

(B, λ, s) be the state today and S′ be the state tomorrow. The problem for the government
that has not defaulted yet can be written as

V (S) = max
B′,λ′,G,δ∈{0,1}

δ
{

U(G) + βE[V
(
S′
)
|S]
}
+ (1− δ)V (s1) (5)

subject to

G + B ≤ τY(s1) + ∆
(
S, B′, λ′

)
,

∆
(
S, B′, λ′

)
=

∞

∑
n=1

qn
(
S, B′, λ′

) [
(1− λ′)n−1B′ − (1− λ)nB

]
,

where qn (S, B′, λ′) is the price of a defaultable ZCB of maturity n given the state S and the
government’s choices for the new portfolio (B′, λ′).

8The assumption of a zero recovery rate is made for tractability. One could obtain a non-zero recovery rate
by modeling the debt restructuring process along the lines of Benjamin and Wright (2009) and Yue (2010). Note
that, differently from Cole and Kehoe (2000), the government cannot use the funds raised in the issuance stage
if it defaults. Our formulation simplifies the problem and it does not change its qualitative features. The same
formulation has been adopted in other works, for instance Aguiar and Amador (2014b).
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The lender’s no-arbitrage conditions require that

qn
(
S, B′, λ′

)
= δ (S)E

{
M
(
s1, s′1

)
δ
(
S′
)

qn−1
(
S′, B′′, λ′′

)
|S
}

for n ≥ 1, (6)

where B′′ and λ′′ are optimal debt and maturity choices given the state (B′, λ′, s′), and
q0(S, B′, λ′) = 1. The presence of δ (S) in equation (6) implies that new lenders receive a
payout of zero in the event of a default today. Differently from the Eaton and Gersovitz
(1981) timing convention, the pricing schedule does not only depend on the exogenous state
s and on the end of the period debt portfolio (B′, λ′), but it depends also on (B, λ). This
is because the initial debt portfolio affects the current default decision δ (S), which is a key
determinant of the price of newly issued debt in our formulation.

A recursive equilibrium is a value function for the borrower V, associated decision rules
{δ, B′, λ′, G} and a pricing function q = {qn}n≥1 such that {V, δ, B′, λ′, G} are a solution of
the government problem (5) and q satisfies the no-arbitrage conditions (6).

2.2 Multiplicity of equilibria and Markov selection

This economy features multiple recursive equilibria, with outcomes not entirely determined
by the fundamental state variables. As in Cole and Kehoe (2000), there are states of the
world in which lenders’ expectations of a default are self-fulfilling: if lenders expects the
government to default today, and do not buy new bonds, the government finds it optimal
to default while if lenders believe that the government will repay, and they roll-over the
maturing debt, the government will indeed repay.

To understand how this situation can arise, it is convenient to define the price at which
debt would be traded if in state (s, B, λ) the government would repay and issue (B′, λ′). We
refer to this price as the fundamental price,

qfund
n

(
s, B′, λ′

)
= E

{
M
(
s1, s′1

)
δ
(
S′
)

qn−1
(
s′, B′′, λ′′

)
|S
}

. (7)

We also let

∆fund (S, B′, λ′
)
=

∞

∑
n=1

qfund
n

(
s, B′, λ′

) [
(1− λ′)n−1B′ − (1− λ)nB

]
be the amount of resources that the government can raise from lenders at such prices.

Consider now a state S where it is optimal for the government to repay if lenders expect
that the government will not default in the current period. For this expectations to be valid,

9



it must be that the government prefers repaying over defaulting,

max
B′,λ′

{
U
(

τY (s1)− B + ∆fund (S, B′, λ′
))

+ βE
[
V
(

B′, λ′, s′
)
|S
]}
≥ V (s1) . (8)

Let’s examine now this alternative scenario: at S the government tries to raise resources
from the market, but lenders expect a default today, and they set the price of newly issued
debt to zero. These expectations of the lenders are validated if the government prefers
defaulting when it cannot issue new debt,9

V (s1) > U (τY (s1)− B) + βE
[
V
(
(1− λ)B, λ, s′

)
|S
]

. (9)

For these beliefs to trigger a default along the equilibrium path, it must also be the case that
the government prefers to default rather than buying back part of its debt at the fundamental
prices. That is,

V (s1) > maxB′,λ′
{

U
(
τY (s1)− B + ∆fund (S, B′, λ′)

)
+ βE [V (B′, λ′, s′) |S]

}
subject to ∆fund (S, B′, λ′) ≤ 0.

(10)

As we discuss in Appendix A, condition (10) implies condition (9).

For all λ and s there are intermediate values of B such that both (8) and (10) hold, see
Proposition 1 in Aguiar and Amador (2014a) for a formal proof. When this happens, the
default decisions of the government are indeterminate, and they depend on lenders’ beliefs:
lenders may extend credit to the government and there will be repayment, or they may
not roll-over because they expect a default, in which case the government will not repay,
validating lenders’ expectations.

We follow most of the literature and use a parametric rule that selects among these possi-
ble outcomes. In order to explain the selection mechanism, it is useful to partition the state
space in three regions. Following the terminology in Cole and Kehoe (2000), we say that the
government is in the safe zone, Ssafe, if it does not default even if lenders are not willing to
roll-over its debt. That is,

Ssafe =
{

S : (10) does not hold
}

.

We say that the government is in the crisis zone, Scrisis, if (B, λ, s) are such that it is not

9If condition (9) is not satisfied, instead, lenders’ expectations cannot trigger a default. This is because it is
optimal for the government to repay its debt even if it cannot raise additional resources in the market. Because
of that, an individual lender has an incentive to buy government bonds at a positive price, this ruling out q = 0
as an equilibrium price.

10



optimal for the government to repay debt during a rollover crisis but it is optimal to repay if
the lenders roll it over. That is,

Scrisis =
{

S : (8) and (10) hold
}

.

Finally, the default zone, Sdefault, is the region of the state space in which the government
defaults on its debt irrespective of lenders expectations,

Sdefault =
{

S : (8) does not hold
}

.

Indeterminacy in outcomes arises only when the economy is in the crisis zone.10

We consider the following selection mechanism: let the non-fundamental state be s2 =

(π, ξ). The variable π is the probability that there will be a rollover crisis in the next period
conditional on the economy being in the crisis zone. We assume that π follows a first
order Markov process. The variable ξ indicates whether a rollover crisis takes place in the
current period. Whenever the economy is in the crisis zone, if ξ = 0 then lenders roll-
over and there is no default. If ξ = 1, instead, the lenders do not roll-over and there is
a default. Conditional on this selection rule, the outcome of the debt auctions are unique
in the crisis zone. However, we cannot ensure that the equilibrium value function, decision
rules and pricing functions are unique because the operator that implicitly defines a recursive
equilibrium may have multiple fixed points, see Aguiar and Amador (2016). In the numerical
analysis of the model, we iterate starting from the risk-free price schedule until we find a
fixed point.

The equilibrium outcome is a stochastic process

y = {λ′(B0, λ0, st), B′(B0, λ0, st), δ(B0, λ0, st), G(B0, λ0, st), q(B0, λ0, st)}∞
t=0

naturally induced by the recursive equilibrium objects. The outcome path depends on prop-
erties of the selection, i.e. the process for {πt}, and on the realization of the non-fundamental
state {s2,t}.

10It is in principle possible that outcomes are indeterminate in the safe zone too. This can happen when
condition (9) holds while condition (10) does not. In such a case, two outcomes may arise in the safe zone. In
the first, the government borrows at the fundamental prices. In the second, the government is prevented from
borrowing at the fundamental prices, but it prefers to buy back some of its debt rather than defaulting. In our
analysis, we abstract from this second scenario.
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3 Measuring rollover risk: the role of maturity choices

In the environment presented in the previous section, interest rate spreads are driven by both
fundamental and non-fundamental risk. The goal of our analysis is to measure the relative
importance of these two forces. In this section, we discuss more formally this inference
problem and explain our approach.

Rearranging equation (6), we can express the difference between the yield of an n = 1
bond issued by the government, r1,t, and the risk-free rate, r∗t = 1/Et[Mt,t+1], as

sprt ≡
r1,t − r∗t

r1,t
= Prt{δt+1 = 0}+ Covt

(
− Mt,t+1

Et[Mt,t+1]
, δt+1

)
. (11)

Interest rate spreads reflect both the probability of a future default by the government and
the compensation that lenders demand for being exposed to such default risk. In the model,
this risk arises because of two reasons. First, the government may be next period in the
default zone, an event that occurs with probability Prt{St+1 ∈ Sdefault}. Second, there is a
chance of a self-fulfilling rollover crisis at t + 1, an event that occurs with probability πt if
the economy is in the crisis zone at t + 1, Prt{St+1 ∈ Scrisis} × πt.

Ultimately, the goal of our analysis is to isolate the component of interest rate spreads
that is due to the risk of a rollover crisis. We define this component as

sprroll
t ≡ sprt − spr|πt=0.

That is, the rollover risk component of interest rate spreads represents the difference between
the actual spread sprt, and the one that would arise if the likelihood of a rollover crisis next
period was set to zero, spr|πt=0. The latter can be interpreted as the fundamental component
of interest rate spreads.

The measurement problem arises because the counterfactual spreads spr|πt=0 and sprroll
t

have no direct empirical counterpart. Our approach to overcome this issue consists in in-
directly inferring these components by studying, through the lens of the model, the joint
dynamics of interest rate spreads and debt maturity. As we will discuss next, the model
suggests that the government has incentives to lengthen its debt maturity in the face of
heightened rollover risk, while it should shorten it when default risk is mostly due to the
fundamental component. Because of this property, changes in the maturity structure of
government debt provide information on the relative importance of spr|πt=0 and sprroll

t in
accounting for observed interest rate spreads: observing a government that extends the ma-
turity of its debt while facing high interest rates is evidence of heightened rollover risk, while
the opposite would point toward a more limited role for this component. In what follows,
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we review the trade-offs that the government faces when choosing debt maturity. Appendix
B provides a more formal analysis within the context of a three-period version of the model.

Maturity choices and rollover risk. To understand how debt maturity responds to rollover
risk in the model, it is important to note that the government can partly control the risk of
facing a rollover crisis in the future, Prt{St+1 ∈ Scrisis} × πt. By managing its public debt,
the government can alter the boundaries of the crisis zone defined by conditions (8) and (10),
affecting in this fashion Prt{St+1 ∈ Scrisis}. Because rollover crises are costly, the government
will respond to an increase in πt by taking actions that reduce the risk of being in the crisis
zone at t + 1. As originally emphasized in Cole and Kehoe (2000), this can be achieved by
lengthening the maturity structure of government debt.

To understand why lengthening debt maturity reduces the government exposure to future
rollover crises, consider the condition defining the safe zone at t + 1,11

U(τYt+1 − Bt+1) + βEt+1[V((1− λt+1)Bt+1, λt+1, st+2)] ≥ V (st+1) . (12)

Suppose that at time t the government extends the maturity of its debt while keeping con-
stant the amount of resources that it raises. This is achieved by decreasing λt+1 and reducing
Bt+1 by the appropriate amount. In this fashion, the government reduces the payments com-
ing due in the next period at the cost of higher future payments. As a result, U(τYt+1− Bt+1)

increases while the continuation value Et+1[V((1− λt+1)Bt+1, λt+1, st+2)] reduces. However,
the increase in current utility exceeds the reduction in the continuation value because the
government is, by definition, credit constrained in the crisis zone and the marginal utility
of current consumption is higher than the marginal reduction in expected future utility.12

Because of that, the left hand side of (12) increases when the government lengthens debt
maturity, enlarging the set of states for which the inequality is satisfied at t + 1. From time t
perspective, this implies an increase in Prt{St+1 ∈ Ssafe}.

Extending debt maturity is thus a way for the government to reduce its exposure to
rollover risk. In Appendix B, we formally isolate this incentive in a three-period version
of the model. Proposition 2 shows that the government issues only long term debt in this
economy when default risk arises exclusively because of the rollover problem (π > 0 and
the set Sdefault is empty).

11For simplicity, we focus on condition (9) instead of (10), under the assumption that the government does
not want to buy back its debt.

12To see this, note that condition (8) states that the government prefers to repay if it can freely choose a
portfolio under fundamental prices. Conditions (9) and (10) state that the government prefers to default when
facing fundamental prices under the restriction that ∆fund ≤ 0. Hence it must be that the maximum in the left
side of (8) is attained for a portfolio with ∆fund > 0, else the value of repaying would be the same in the two
circumstances.
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Maturity choices and fundamental risk. To understand how debt maturity responds to
fundamental risk, we assume away rollover risk by considering a version of the model with
πt = 0 for all t and st. This is equivalent to adopting the timing convention in Eaton
and Gersovitz (1981). The behavior of debt maturity in this environment has been previ-
ously studied theoretically by Aguiar and Amador (2014b), Dovis (2014) and Niepelt (2014),
and quantitatively by Arellano and Ramanarayanan (2012), Sanchez, Sapriza, and Yurdagul
(2015) and Hatchondo, Martinez, and Sosa Padilla (2015) among others. These papers have
emphasized two channels as the main determinants of the maturity composition of debt: the
incentive and the insurance channel.

The incentive channel makes short term debt desirable. In order to understand why,
consider the price of a ZCB that matures in n > 1 periods in equation (6). The price depends
not only on the possibility of a default tomorrow, but also on the issuance decisions of
future governments: a higher B′′ increases default risk going forward, and it depresses
the reselling value of the long term bond today. This feature creates a time inconsistency
problem. The future governments do not internalize the negative effects that new issuances
have on the price of debt today, and they will tend to borrow more than what is optimal
from the perspective of the current government. Importantly, short term debt is immune
from this problem because, conditional on repayment, its value does not depend on future
debt issuances, see equation (6) for n = 1. Therefore, by shortening debt maturity, the
government is able to align the actions of future governments to its preferred spending path.
In Appendix B we isolate this mechanism by considering a three period-version of the model
without rollover risk and hedging motives. Proposition 3 shows that the government would
issue only short term debt in such environment.

An alternative way of thinking about the incentive channel is to consider the effects that
a change in the maturity structure has on the interest rates at which the government bor-
rows today. Shortening debt maturity is, in fact, a way to discipline the borrowing behavior
of future governments, and it allows the current government to reduce the interest rates at
which it is borrowing. To understand why the maturity structure affects the borrowing in-
centives of future governments, consider a situation where one of such government inherits
only short term debt. The government understands that any increase in interest rates will
significantly reduce its consumption because the entire stock of debt will have to be refi-
nanced at these higher interest rates. Hence, it will have less incentives to borrow and to be
exposed to default risk. With a long term maturity structure, instead, these incentives are
muted because the future government needs to refinance only a fraction of the stock of debt
at the higher interest rates. Therefore, it will tend to borrow more, and this will be reflected
into higher interest rates ex-ante.

While the incentive channel generates a motive to issue short term debt, the insurance
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channel makes long term debt desirable because it is a better instrument to provide insurance
against shocks. To illustrate this point, consider a situation in which the government is hit by
a negative shock to its tax revenues. Typically, the shock increases the likelihood of a default
going forward and the interest rates on new issuances. If all inherited debt is short term,
the government will have to refinance its stock of debt at the new high interest rates, and so
either its current consumption or its continuation value must decline. If instead part of the
inherited debt is long term, only a fraction of the stock of debt has to be refinanced at higher
interest rates, and the government will be able to keep its current consumption relatively
high without reducing its continuation value. The opposite happens in response to a positive
shock to tax revenues. Therefore, a risk averse government would prefer issuing long term
debt because this instrument reduces the volatility of its consumption. In Appendix B,
proposition 4, we isolate this channel by showing that the government would issue only
long term debt in this economy if the incentive channel was not operative (if the time 0
government could choose future debt issuances).

The relative strength of the incentive and of the insurance channel shapes the portfolio
choices of the government. For our purposes, it is important to understand how the relative
attractiveness of these instruments varies in response to adverse shocks that push the govern-
ment closer to the default zone. While we are not aware of an analytical characterization of
this comparative static exercise in the literature, typical calibrations of this model imply that
the government shortens its debt maturity, see for example Arellano and Ramanarayanan
(2012).13 This result can be justified as follows.

First, when default risk increases, the incentive role of short term debt becomes more
valuable from the government’s perspective. High default risk states are, in fact, states in
which the government would like to issue more debt for consumption smoothing motives.
By shortening the maturity structure of its debt, the government can reduce at the mar-
gin future default probabilities and the interest rates that it faces when borrowing because
lenders today price in the disciplining role that the new maturity structure exerts on future
borrowing. This allows the government to raise more resources today and to better smooth
consumption. Second, this shortening of debt maturity does not necessarily come at a cost
of less insurance for the government. As discussed in Dovis (2014), the need to issue long
term debt for insurance reasons falls when default risk increases.14

13In our model the government has to buy back some debt in order to shorten its debt maturity. This
may seem at odds with the finding in Aguiar and Amador (2014b) that buy backs are never optimal. Our
environment differs from theirs in two dimensions. First, our restriction of feasible portfolios requires that the
government must buy back some debt to shorten the maturity. Second, insurance considerations play a role in
our model while Aguiar and Amador (2014b) abstract from those.

14This is due to the fact that pricing functions in this class of models are more sensitive to shocks when the
economy approaches the default region. The larger ex-post volatility of the price of long-term debt allows for
more insurance because the market value of long term debt falls more in future bad states, making consumption
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Summary and quantitative analysis. So far, we have argued that the dynamics of debt
maturity provide information on the sources of default risk. In what follows, we will build
on this insight and we will use the joint dynamics of interest rate spreads and debt maturity
along with a calibrated version of the model to quantify the importance of rollover risk
during the Italian debt crisis of 2008-2012.

Before proceeding further, though, it is important to discuss a potential pitfall in our
strategy. While our approach emphasizes government incentives, the observed maturity
choices also depend on lenders’ preferences for the maturity of the bonds that they are
purchasing. These preferences may vary over time, and they may be a confounding factor for
our measurement strategy. For example, a government that is facing a rollover crisis may not
be willing to lengthen debt maturity if at the same time lenders demand high compensation
for holding long term bonds. Hence, rather than reflecting little rollover risk, a shortening of
debt maturity may be the optimal response of a government that finds increasingly expensive
to issue long term debt. This view finds support in the data, as previous research by Broner,
Lorenzoni, and Schmukler (2013) has documented that risk premia on long term bonds
systematically increase during debt crises. In our quantitative analysis we are going to
control for these confounding factors by considering a stochastic discount factor for the
lenders that can generate time variation in the risk premium on long term bonds.

4 Quantitative analysis

We now fit the model to Italian data during the pre-OMT period, 1999:Q1-2012:Q2. This
section proceeds in four steps. Section 4.1 describes the parametrization and the calibration
strategy. Section 4.2 reports the results of the calibration. Section 4.3 studies the fit of the
model. Finally, Section 4.4 discusses the behavior of interest rate spreads and debt maturity
in the calibrated model.

4.1 Parametrization and calibration strategy

We model the lenders’ stochastic discount factor, Mt,t+1 = exp{mt,t+1}, following Ang and
Piazzesi (2003),

mt,t+1 = −(φ0 + φ1χt)−
1
2

κ2
t σ2

χ − κtεχ,t+1,

χt+1 = µχ(1− ρχ) + ρχχt + εχ,t+1 εχ,t+1 ∼ N (0, σ2
χ), (13)

κt = κ0 + κ1χt.

in the next period less sensitive to shocks.
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In this formulation, expected excess returns on long term bonds are proportional to χt

(see Appendix F), implying that shocks to this factor induce movements in risk premia on
long term assets. For future reference, we index the parameters of the stochastic discount
factor with θ1 = [φ0, φ1, κ0, κ1, µχ, ρχ, σχ].

The government discounts future flow utility at the rate β. The utility function is

U(Gt) =
(Gt − G)1−σ − 1

1− σ
,

where G is the non-discretionary level of public spending. We interpret G as capturing the
components of public spending that are hardly modifiable by the government in the short
run, such us wages of public employees and pensions. As we will discuss in Section 4.3, this
specification helps our model matching the cyclicality of public debt.

We introduce a utility cost for adjusting debt maturity,

α

(
1

4λ′
− d
)2

.

This adjustment cost serves two purposes. First, it leads to well defined maturity choices in
regions of the state space where the government would have been otherwise indifferent over
λ′. This ameliorates the convergence properties of the algorithm we use to numerically solve
the model.15 Second, it gives the model enough flexibility to match the level and volatility
of debt maturity in the sample.

The output process, Yt = exp{yt}, depends on the factor χt and on its innovations as
follow,

yt+1 = µy(1− ρy) + ρyyt + ρyχ(χt − µχ) + σyεy,t+1 + σyχεχ,t+1, εy,t+1 ∼ N (0, 1). (14)

We allow for correlation between χt and yt in order to capture the cyclicality of risk premia.

If the government enters a default state, it is excluded from international capital markets
for a random period, and it has a probability of re-entering capital markets equal to ψ. While
in default, the government suffers a loss in tax revenues equal to dt. This is motivated by
evidence that sovereign defaults lead to severe financial and output disruptions (Hebert and
Schreger, 2015; Bocola, 2016), and they should therefore imply a loss in fiscal revenues for
the government. These costs are parametrized following Chatterjee and Eyigungor (2012),

dt = max{0, d0τYt + d1(τYt)
2}. (15)

15Maturity choices in the model are not determined absent default risk and with risk neutral lenders, see
Arellano and Ramanarayanan (2012).
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The convexity of dt gives the model more flexibility to match the volatility of interest rate
spreads, see Chatterjee and Eyigungor (2012). Mendoza and Yue (2012) offer a rationale for
this assumption.

The probability of lenders not rolling over the debt in the crisis zone next period follows
the stochastic process πt =

exp{π̃t}
1+exp{π̃t} , with π̃t given by

π̃t+1 = π∗ + σπεπ,t+1, επ,t+1 ∼ N (0, 1). (16)

We let θ2 = [σ, τ, G, ψ, µy, ρy, ρyχ, σy, σyχ, β, d0, d1, π∗, σπ, d, α] denote the parameters associ-
ated to the decision problem of the government.

Our strategy consists in calibrating θ = [θ1, θ2] in two steps. In the first step, we choose
θ1 to match the behavior of risk premia on non-defaultable long term bonds, measured using
the term structure of German’s treasuries. In the second step, and conditional on θ1, we
calibrate θ2 by matching key facts about Italian public finances over the sample. Implicit
in the first step is the assumption that the lenders in the model are the marginal investors
for these assets as well: thus, we can measure their preferences for short versus long term
bonds by studying the behavior of the term structure of German interest rates. We focus on
bonds that are arguably not subject to default risk over the sample because of two reasons.
First, the absence of a default during the event under analysis makes the measurement
of risk premia on Italian bonds more challenging because of a “peso problem". Second,
this approach allows us to calibrate θ1 without solving the government decision problem,
which is numerically complex. In Section 5.2 we assess the robustness of our results to this
approach of modeling and measuring risk premia on long term bonds.

4.2 Calibration

We start by setting the parameters of the lenders’ stochastic discount factor to fit the behavior
of expected excess returns on long term German ZCB following the procedure developed by
Cochrane and Piazzesi (2005). Let q∗,nt be the log price on a non-defaultable ZCB maturing
in n quarters, rxn

t+1 = q∗,n−1
t+1 − q∗,nt + q∗,1t the associated realized excess log returns, f n

t =

q∗,n−1
t − q∗,nt the time t log forward rate for loans between t + n− 1 and t + n, and y1

t = −q∗,1t

the log yield on a ZCB maturing next quarter. We denote by rxt+1 and ft vectors collecting,
respectively, excess log returns and log forward rates for different maturities. Quarterly
data (1973-2013) on the term structure of ZCB for German federal government securities is
obtained from the Bundesbank online database, see Appendix D.

We proceed in two stages. In the first stage, we estimate by OLS a regression of the
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realized log excess returns averaged across maturities on all the forward rates in ft,

rxt+1 = γ0 + γ′ft + ηt. (17)

In the second stage, we estimate the regressions

rxn
t+1 = an + bn(γ̂0 + γ̂′ft) + ηn

t , (18)

where [γ̂0, γ̂] is the OLS estimator derived in the first stage. Expected excess returns on a
ZCB maturing in n period can then be measured using the fitted values of this second stage
regression. Indeed, from equation (18) we have that Et[rxn

t+1] = αn + βn(γ̂0 + γ̂′ft).

We choose θ1 so that the pricing model defined by the equations in (2) and (13) fits key
properties of short term real interest rates and expected excess returns on a bond with
residual maturity of five years (n = 20). Specifically, we select φ0 and φ1 to match the sample
mean and standard deviation of the yields on the German bonds with a residual maturity
of three months. The remaining parameters are chosen to match, in model simulated data,
the coefficients of an AR(1) model estimated on xt = γ̂0 + γ̂′ft, and the OLS point estimates
of the parameters in equation (18), [â20, b̂20, σ̂η20 ]. Appendix F reports the results of the
Cochrane and Piazzesi (2005) regressions and it describes in more details the calibration of
θ1. Panel A of Table 1 reports the numerical values of the calibrated parameters.

We can also use the model’s restrictions to construct an empirical counterpart to χt. Ex-
pected excess returns on long term bonds are affine in χt, implying that

χt =
Et[rxn

t+1]− Ãn(θ1)

B̃n(θ1)
, (19)

with Ãn(.) and B̃n(.) defined in Appendix F. We can therefore construct the time path of χt

by substituting in the right hand side of equation (19) the fitted values of equation (18).

We next turn to the calibration of θ2. We fix σ to 2, and we set ψ = 0.05, a value that
implies an average exclusion from capital markets of 5.1 years following a default, in line
with the evidence in Cruces and Trebesch (2013). The tax rate is set to 0.41, equal to the
sample mean of tax revenues over GDP. We normalize µy to 0.89, so that tax revenues equal
to 1 in a deterministic steady state. The spending requirement G is set to 0.68. This number
replicates the sample mean of the ratio of wages of public employes and transfers to tax
revenues during the 1999-2012 period, our measure of non-discretionary spending.

We map ŷt = (yt − µy) to the deviations of Italian log real GDP from a linear trend.
The real GDP series is obtained from OECD Quarterly National Accounts. We estimate the
process in equation (14) for the 1999:Q1-2012:Q2 period using this series and the series for
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Table 1: Model calibration

Panel A: Pricing model
Parameter Value Targets

φ0 0.002 Mean of risk-free rate
φ1 1.473 Standard deviation of risk-free rate

κ0 × σχ -0.053 Method of Simulated Moments
κ1 × σχ -95.125 Method of Simulated Moments

µχ 0.002 Method of Simulated Moments
ρχ 0.449 Method of Simulated Moments
σχ 0.003 Method of Simulated Moments

Panel B: Government’s decision problem
σ 2.00 Conventional value
ψ 0.050 Cruces and Trebesch (2013)
τ 0.410 Tax revenues over GDP
G 0.680 Non discretionary spending over tax revenues
µy 0.892 Normalization
ρy 0.970 Estimates of equation (14)
σy 0.008 Estimates of equation (14)
σyχ -0.002 Estimates of equation (14)

exp{π∗}
1+exp{π∗} × 400 1.628 Method of Simulated Moments

σπ 1.350 Method of Simulated Moments
β 0.970 Method of Simulated Moments
d0 0.045 Method of Simulated Moments
d1 0.082 Method of Simulated Moments
α 0.400 Method of Simulated Moments
d 6.750 Method of Simulated Moments

Notes: We reparametrize the d(.) function in equation (15) in order to make our calibration comparable with previous
research. The parameter d0 stands for the percentage loss in output after a default when output is three standard
deviations below its average value. The parameter d1 represents the percentage loss in output when the latter is at
its average value.

χt obtained earlier. As ρyχ is not significantly different from zero, we impose the restriction
ρyχ = 0. The point estimates of this restricted model are ρy = 0.970, σyχ = −0.002 and
σy = 0.008.

The remaining parameters, [β, d0, d1, π∗, σπ, d, α], are chosen to match key features of the
behavior of Italian public finances. We include in the set of empirical targets statistics that
summarize the behavior of outstanding debt, interest rate spreads, and debt maturity. See
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Appendix D for a detailed description of the data series.16 Specifically, we consider the
sample mean of the debt to output ratio, the correlation between the government deficit
and detrended real GDP, and the mean, standard deviation and skewness of interest rate
spreads on Italian ZCB with a residual maturity of five years. We also incorporate in the
targets the sample mean and the standard deviation of an indicator of debt maturity, the
weighted average life of Italian outstanding bonds.17 These moments provide information
on the parameters of the adjustment cost function.

There is, instead, little guidance in the literature on the choice of variables that provide in-
formation on π∗ and σπ. Our approach consists in targeting the adjusted R2 of the following
regression,

sprt = a0 + a1gdpt + a2debtt + a3χ̂t + a4durt + a5(gdpt × debtt) + a6(gdpt × χ̂t)

(20)

+a7(gdpt × durt) + a8(debtt × χ̂t) + a9(debtt × durt) + a10(χ̂t × durt) + et.

The residual et measures variation in interest rate spreads that is orthogonal to the funda-
mental state variables in the model, and it should therefore provide information about the
volatility of πt. We estimate equation (20) by OLS, obtaining an adjusted R2 of 82%.18

Because the numerical solution of the model is computationally costly, we first experiment
with these seven parameters to obtain a range of values that is empirically relevant. We fix
π∗ to -5.5, a value that implies a 1.6% annualized probability of a rollover crisis conditional
on the economy being in the crisis zone next period. We next solve the model on a grid
of points for [β, d0, d1, σπ, α, d], and select the parametrization that minimizes a weighted
distance between sample moments and their model implied counterparts. Model implied
moments are computed on a long simulations (T = 20000), and we weight the distance
between a sample moment and its model counterpart by the inverse of the sample moment
absolute value. Appendix G presents the algorithm used for the numerical solution and
for model simulations. Panel B of Table 1 reports the calibrated values for the model’s
parameters.

16Public debt is defined as the face value of outstanding bonds of the Italian central government. We use
this indicator rather than the face value of outstanding debt because the latter includes components (such as
direct loans by intermediaries) that are less subject to the rollover problem studied in this paper. We scale this
indicator by annualized GDP at current prices.

17We use data from the Italian Treasury and construct the weighted average of the times of principal and
coupon payments for outstanding bonds issued by the Italian central government. This indicator maps to 1/λ′

in our model.
18The high explanatory power is mostly due to output, debt, and to their interaction. When including only

these three terms in the regression, we obtain an adjusted R2 of 68%.
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4.3 Model fit

The first and second columns of Table 2 show that the model has good in sample fit. The
face value of debt is 82% of annual GDP on average, close to the 88% in the sample. As in
the data, the government deficit is negatively correlated with output. Interest rate spreads
are typically close to zero in model simulations, with an annualized average value of 0.96%
relative to the 0.59% observed in the sample. However, they can experience large spikes.
Indeed, the distribution of interest rate spreads is right skewed, with a standard deviation
that is in line with what observed in the Italian data. The model generates an empirically
plausible relation between interest rate spreads and economic fundamentals, as captured by
the R2 of equation (20): 0.61 in the model relative to 0.82 in the data. Finally, debt maturity
in model simulations is on average 6.79 years, with a standard deviation of 0.29. In the data,
they are, respectively, 6.81 years and 0.16.

Table 2: Calibration targets

Statistic Data Baseline G = 0, β = 0.90
Average debt-to-output ratio 88.38 81.58 58.11

Correlation deficit and output -0.25 -0.19 0.21
Average spread 0.59 0.96 10.23
Stdev of spread 1.16 1.68 8.29

Skewness of spread 2.53 8.52 1.96
Adj. R2 of regression (20) 0.82 0.61 0.30

Average debt maturity 6.81 6.79 6.75
Stdev of debt maturity 0.16 0.29 0.05

Notes: See Appendix D for data definitions and sources. Sample moments are computed over the 1999:Q1-2012:Q2
period. Moments in the model are computed as described in Appendix G.1.

It is important to stress that our calibration differs substantially from the one typically
pursued in the literature. Earlier studies that have fit this class of models to emerging
markets produce pro-cyclical government deficits, with the government borrowing more
when hit by positive yt shocks. Moreover, in those calibrations the government is most of
the times at risk of a default, with interest rate spreads being far away from zero even when
output is above average. For example, in Chatterjee and Eyigungor (2012) the correlation
between net exports (equal to the government surplus) and output is -0.44, while annualized
interest rate spreads are on average 8%.19 While consistent with the experience of emerging
market economies, this pattern would be inconsistent with the Italian data, as interest rate

19The sovereign debt literature typically calibrates the model to match properties of total external debt, not
public debt as in our case. The procyclicality of government’s deficit is then essential to match, in a model
without investment, the countercyclicality of net exports observed in the data.
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spreads averaged few basis points prior to 2008, and debt increased by 20% during the
2008-2012 recession.

The main point of departure between our calibration and the one pursued in the literature
lies in the parametrization of β and G. Figure 1 illustrates this point by plotting the revenues
from debt issuances net of coupon payments, ∆(S, B′, λ′)− B, as a function of the face value
of debt, B̃′ = B′/λ′. The figure plots this schedule for two output levels, “high" and “low",
keeping the remaining state variables at their ergodic mean. For comparison, we also report
the net revenues constructed under the assumption that the government can borrow at the
risk-free rate.

Figure 1: The cyclicality of debt issuances
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Notes: The figure reports ∆(S, B′, λ′∗)− B as a function of B̃′/λ′∗. The solid blue line plots this schedule for y = 0.04,
while the dotted red line for y = −0.04. In both cases, we set the remaining state variables at their ergodic mean. The
filled dots reports the net revenues associated to optimal debt and maturity choices for the government at S. The dashed
black line reports the net revenues under the assumption that the government can borrow at the risk-free rate. The left
panel of the figure reports this information for a calibration that sets β = 0.90 and G = 0.00. The right panel reports it
for the baseline calibration of Table 1.

The left panel of the figure reports this information for a calibration that sets β = 0.90
and G = 0.00. This mimics the typical calibration in the literature which sets a low discount
factor for the government and a utility function that features constant relative risk aversion.
We can observe that the net revenue schedule defines a “Laffer curve" for debt issuances. At
low levels of B̃′, the government is able to increase the revenues he obtains from the lenders
by issuing more debt. However, as B̃′ increases, the government becomes more at risk of
a default in the future: lenders demand higher yields for holding government bonds, and
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the price of newly issued debt declines. This explains why net revenues increase in B̃′ at
a decreasing rate. Eventually, the decline in bond prices dominates any increase in issued
debt, and the net revenue schedule decreases with B̃′. Importantly, the figure also shows that
the government can raise less revenues when income is low. This latter property is due to the
persistence of the income process, and to the fact that the government defaults when income
is low enough. Therefore, low income states are associated with a higher risk of a default in
the future, lower prices for newly issued debt, and lower revenues for the government.

The filled circles in Figure 1 represent the face value of debt chosen by the government,
B̃′∗, along with the associated net revenues, ∆(S, B′∗, λ′∗) − B. In the calibration typically
pursued in the literature, the government is extremely impatient relative to the risk-free rate.
Thus, it behaves myopically, and it uses the debt market to frontload consumption rather
than to smooth it across states of the world. Because of this feature, the cyclicality of debt
issuances mirrors that of the pricing schedule. In high income states, the risk of a default
is small, and the government is able and willing to issue debt. Conversely, low income
states are associated with tighter pricing and revenues schedules, and to less borrowing by
the government. Hence, the impatience of the government coupled with the endogenous
borrowing limits implied by default risk leads to procyclical debt issuances. Importantly,
this behavior has implications for the interest rate spreads too. Because the government has
strong incentives to borrow, it is always at risk of a default, and interest rate spreads are well
above zero even in good times. One can verify that by noting that the slope of the “high
income" Laffer curve evaluated at the optimal choices lies below the risk-free rate.

The right panel of Figure 1 reports the same information in our baseline calibration. The
revenue schedules are qualitatively similar in the two parametrizations: they both define a
Laffer curve for debt issuances, and they both shift out when the economy is hit by positive
income shocks. The key difference is on the debt choices made by the government. In our
parametrization, the government uses the debt markets mostly for consumption smoothing
because it is more patient, and because the non-homotheticity in the utility function leads
to stronger precautionary motives. Thus, the government pays back its debt in high income
states, while it borrows in the face of bad income shocks. This behavior has two implications.
First, and consistent with the Italian data, debt issuances are countercyclical. Second, the
model generates interest rate spreads that are on average close to zero, and they jump to
positive values only conditional on sufficiently low income realizations.

This latter implication can be better appreciated by looking at Figure 2. The solid line
in the left panel reports the average relation between interest rate spreads and output in
our baseline calibration while the dots report combinations of these two variables in the
data. The model implied elasticity of interest rate spreads to output is highly nonlinear:
in good times, interest rate spreads are close to zero and a decline in output in this region
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has essentially no effects on interest rate spreads. However, this elasticity achieves a value
of -6 when output is one standard deviation below its mean. This elasticity is empirically
plausible in terms of shape and magnitude. The right panel of the figure plots the same
information for debt. Again, the implied elasticity of interest rate spreads to the debt-to-
output ratio is highly nonlinear, and it well captures the relation between these two variables
in the data. This state dependence in interest rate elasticities is what generates the right
skewness of the interest rate spreads distribution documented in Table 2.

Figure 2: Interest rate spreads sensitivity to output and debt
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Notes: The left panel is constructed as follows. We simulate a T = 20000 realization from the model. After standardizing
the output series, we fit on the model simulated data a Chebyshev regression of polynomials up to the 7th order. The red
solid line represents the fitting curve of this regression. The dots are combinations of interest rate spreads and linearly
detrended GDP (standardized) in the data. The right panel reports the same experiment, this time for the debt-to-output
ratio.

4.4 Sources of default risk and maturity choices

We now use impulse response analysis to discuss the behavior of interest rate spreads and
debt maturity in the calibrated model. We start by studying how these two variables respond
to shocks that increase the risk of a government default. We consider two scenarios. In the
first scenario, given by the solid lines in Figure 3, we study the effects of a three standard
deviations decline in output while setting πt = 0 for all t. This first experiment captures
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the behavior of interest rate spreads and debt maturity conditional on an increase in fun-
damental default risk. In the second scenario, instead, we consider a persistent increase in
πt when the economy is currently in the crisis zone. This second experiment approximates
the behavior of interest rate spreads and debt maturity conditional on an increase in rollover
risk.

Figure 3: The dynamics of interest rate spreads and debt maturity
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These two shocks increase the risk of a government default: in both cases, interest rate
spreads on government bonds increase. However, the two impulses have different impli-
cations for the maturity structure of government debt. In the first experiment, where the
increase in the risk of a government default is purely due to bad economic fundamentals,
the government shortens the maturity of its debt. This is because the incentive benefits of
short term debt becomes more valuable when the economy approaches the default zone: in
our simulations, the average life of outstanding debt drops by 0.5 years on impact following
the negative output shock.

In the second experiment, instead, the increase in the risk of a default occurs because
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of an increase in πt. The government responds to this increase in the risk of a rollover
crisis by lengthening its debt maturity: the average life of outstanding debt increases by 1.3
years in our simulations. As explained earlier, lengthening debt maturity is optimal in this
circumstance because it reduces the exposure of the government to a future rollover crisis.
These results confirms, in the calibrated model, the discussion of Section 3. Debt maturity
responds differently depending on whether the increase in interest rate spreads is due to
bad economic fundamentals or whether it is due to heightened rollover risk.

It is important to stress that these simulations reflect the average response of debt maturity
to an increase in πt. This response, however, is state dependent in the model. This could be
problematic for our measurement strategy because there could be states under which debt
maturity responds little to changes in πt, making it difficult to detect rollover risk based on
observed maturity choices.

Figure 4 explores this state dependency. In the left panel we report the (impact) response
of debt maturity to a 3 standard deviations increase in πt, as a function of the face value
of inherited debt and output. Warmer colors in the heat map means that debt maturity
responds more to an increase in πt. We can see how this elasticity varies substantially with
the level of inherited debt and output. In particular, the government does not respond to the
increase in πt when y is large enough and/or debt is sufficiently small. As we move toward
a low output/high debt region, though, the government reacts more to the change in πt,
increasing its debt maturity up to 1.8 years. For sufficiently low output levels, however, the
government changes little its debt maturity after the πt shock.

To understand this non-monotonicity, the right panels of Figure 4 report Prt(St+1 ∈ Scrisis)

and Prt(St+1 ∈ Sdefault) just before the πt shock hits. In high output/low debt states, the
government is unlikely to be in the crisis zone in the future. Hence, it has limited benefits
from managing debt maturity after the increase in πt. The same happens when the gov-
ernment has very low tax revenues or if it inherits a very large amount of debt. In those
situations, the government ends up being at risk of a rollover crisis even when it issues the
longest maturity in our grid. Moreover, in those states the government approaches the de-
fault zone, and lengthening debt maturity worsens the time inconsistency problem discussed
in Section 3. Both of these forces curb the government’s incentives to extend debt maturity
after the increase in πt.

For intermediate values of inherited debt and y, the response is the highest because the
probability of being in the crisis zone is sensitive to changes in debt maturity, and the time
inconsistency problem is not a concern as the government is far from the default boundary.
Importantly, those are also the states where rollover risk accounts for a large share of interest
rate spreads. Therefore, we should expect maturity choices to be more informative, and our

27



Figure 4: The sensitivity of debt maturity to πt across the state space
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measurement more precise, when rollover risk matters the most.

We finally discuss how debt maturity choices are affected by a change in the compensa-
tion that lenders demand to hold long term bonds. The dashed lines in Figure 3 plots the
response of interest rate spreads and debt maturity conditional on a 3 standard deviations
increase in χt. As explained earlier, this shock increase the risk premium on long term as-
sets. Accordingly, the government responds to this impulse by decreasing the average life of
its outstanding debt. If not properly accounted for, these changes in χt may be problematic
for our measurement strategy: debt maturity may change little, or even go down, after an
increase in πt if at the same time risk premia on long term assets increase. Therefore, an
integral part of our measurement strategy consists in making sure that the model correctly
reproduces the path of risk premia on long term bonds in the episode under analysis.

5 Decomposing Italian spreads

We now turn to the main quantitative experiment of the paper, and measure the importance
of rollover risk during the debt crisis of 2008-2012. In Section 5.1 we combine the calibrated
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model with the data in order to retrieve the path for the exogenous shocks {yt, χt, πt}. We
use this path to measure the rollover risk component of interest rate spreads. Section 5.2
performs a robustness analysis.

5.1 Measuring rollover risk

The model defines the nonlinear state-space system

Yt = g(St) + ηt

(21)

St = f(St−1, εt),

with Yt being a vector of observable variables, St = [Bt, λt, yt, χt, πt] the state vector, and
εt the vector collecting the structural shocks. The vector ηt contains uncorrelated Gaussian
errors. The functions g(.) and f (.) are obtained using the model’s numerical solution.

The vector of observables includes detrended real GDP, the data counterpart to χt con-
structed using equation (19), the interest rate spread series, and the data counterpart to λ′.
Given the time path of these variables over the 2008:Q1-2012:Q2 period, we estimate the re-
alization of the state vector using the relation between states and observables implied by the
system in (21). Technically, we carry out this step by applying the auxiliary particle filter to
the above state-space model, see Appendix H for a description. It is important to stress that
the inference on [yt, χt] in our approach is disciplined by actual observations because the
measurement equation incorporates the empirical counterparts of these shocks. The truly
unobservable process is πt.

Equipped with the path for the exogenous shocks, we next measure the contribution of
rollover risk to interest rate spreads as defined in Section 3. We do so by feeding the model
with a realization for the structural shocks equal to the one obtained earlier, with the excep-
tion that πt is set to 0 throughout the sample. Therefore, rollover risk in this counterfactual
is by construction zero, and the implied interest rate spreads reflect exclusively the impact
of economic fundamentals. We label this the fundamental component of interest rate spreads.
The difference between the filtered interest rate spread series and the counterfactual one
nets out the impact of rollover risk. Accordingly, we label this difference the rollover risk
component of interest rate spreads. Importantly, the model implied interest rate spreads are
not necessarily equal to the one in the data because the system in (21) has more observables
than structural shocks. Any difference between the observed interest rate spreads and the
one produced by the model is captured by the errors ηspread,t.

Figure 5 reports the results of this experiment. The solid lines in the left panels report
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the data series for output, χt, and debt maturity, while the circled lines the trajectories
filtered with the structural model. The model replicates the time path of these observables
accurately. We can also see that the model generates a trajectory for the debt-to-output ratio
that tracks closely the one in the data, even though we did not include this variable in the set
of observables. The right panel of Figure 5 reports observed interest rate spreads (solid line)
along with their decomposition: the fundamental component (blue area), the rollover risk
component (red area), and the residual component that we attribute to ηspread,t (light gray
area). Overall, the model fits well Italian interest rate spreads during the event, although it
cannot account for their sharp increase during the second half of 2011.

Figure 5: Decomposition of interest rate spreads
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Most of the increase in interest rate spreads during the episode is attributed to funda-
mental shocks. The fundamental component was essentially zero in 2008:Q2, while it was
roughly 90% of observed interest rate spreads at the end of the episode. This pattern is the
result of two main developments. First, the Italian economy experienced a major recession
during this period: output went from being 5% above trend in 2008:Q1 to being 3% below
trend at the end of the sample. Second, Italian debt increased by 20% of GDP over the
2008:Q1-2012:Q2 period, a fact that is captured by our model. Both of these developments
push the government closer to the default zone, increasing in this fashion the fundamental

30



component of interest rate spreads. Importantly, the increase in debt explains why output
shocks have larger effects toward the end of the sample: the innovations to y in 2008:Q3 and
2012:Q2 are comparable in size, but their impact on interest rate spreads is higher in the
latter period because the government was more levered at that point in time.

The model assigns a more limited role to rollover risk, on average 12% of the model
implied interest rate spreads. This despite the fact that πt is unobservable in our experiment,
and it could be used in principle to fit variation in interest rate spreads that cannot be
explained by the observable fundamental shocks. For example, the model has hard time
fitting the increase in spreads observed in 2011 with fundamental shocks because output
was recovering at the time. However, it attributes it to ηspread,t rather than to rollover risk.

In principle, there are two different explanations for this latter result. First, it might be
that the Italian economy was far from the crisis zone in 2011, in which case changes in πt

would have limited effects on interest rate spreads. Second, it might be that the increase in πt

necessary to fit interest rate spreads would have counterfactual implications for other vari-
ables in Yt, specifically debt maturity. To further explore this issue, we repeat the experiment
excluding debt maturity from the set of observable variables.

Figure 6: Decomposition of interest rate spreads: no debt maturity
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Figure 6 reports the results. The left panel of the figure plots interest rate spreads along
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with their decomposition. Not surprisingly, the model now tracks more closely interest rate
spreads, especially in 2011. Most of this improvement in fit is due to rollover risk. The right
panel of the figure plots the model implied behavior for debt maturity in this experiment
(circled line), along with the data counterpart (solid line). We can observe that heightened
rollover risk in 2011 is associated to an increase in the average life of outstanding debt of 1
year, which is counterfactual because this indicator declined by 0.2 years in the data during
the same period.

This experiment further clarifies the role of maturity choices in our measurement strategy.
Absent data on debt maturity, the model has limited identifying restrictions to discipline the
time path of πt, and it attributes to this term variation in interest rate spreads that cannot
be accounted by the fundamental shocks. By conditioning on observed maturity choices,
instead, we impose discipline on the rollover risk component. Realizations of the state vector
for which rollover risk accounts for a sizable fraction of spreads in 2011 imply an increase in
the maturity of Italian debt. This variable, however, follows the opposite pattern in the data.
Because of that, our measurement assigns a more limited role to this component.

5.2 Robustness

A major concern one could have at this stage is that of misspecification. The model we
studied may miss potentially important determinants for debt maturity. Our approach could
be understating the role of rollover risk if these omitted forces generated an incentive for the
government to shorten debt maturity at the height of the debt crisis. In what follows, we
perform a suggestive calculation and ask how sizable these omitted factors should be to
overturn our findings.

To this end, we identify in the model a set of states St and debt choices Bt that replicate key
features of the Italian economy in 2011:Q4 and generate a sizable role for rollover risk. We
then quantify the welfare gains of extending debt maturity in such a scenario. Small gains
would indicate that our result could be easily overturned by omitting factors, while large
gains would imply that our results are more robust to misspecification. This experiment is
carried out as follows. We set yt, χt, λt, and λt+1 to their data counterpart, and we consider
pairs of (Bt+1, πt) that replicate the observed Italian spreads in 2011:Q4. We then select the
pair with lowest Bt+1 and the highest πt. This combination guarantees that rollover risk
is the major driver of interest rate spreads in this experiment. Finally, we set Bt so that
government deficit in the model equals to 3.5% of GDP, the Italian deficit in 2011:Q4. We
then measure the net gains/losses that the government derives from a pure change in debt
maturity - a variation in λt+1 while adjusting Bt+1 to keep current government spending
constant.
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In Panel A of Table 3 we report the certainty equivalent consumption associated with
three portfolios of ZCB: an average maturity of 6.7 years (the actual choice in 2011:Q4),
5.5 years (the lower bound in our grid), and 8 years (the upper bound in our grid).20 We
can verify that welfare is increasing in the maturity of the debt portfolio. By lengthening
the maturity of the stock of debt from 6.7 years to 8, the government would increase its
certainty equivalent consumption by 0.80%. Hence, our baseline calibration suggests large
welfare gains from increasing debt maturity when the government faces a substantial risk
of a rollover crisis. This result indicates that omitted forces must be large for the observed
decline in debt maturity to be consistent with a sizable role for rollover risk.

The reason why the model produces welfare gains of this magnitude can be explained
as follows. First, in our experiment π equals 0.21. Thus, a government falling in the crisis
zone next period faces a substantial risk of a rollover crisis. Second, in our calibration a
default induces large output losses (roughly 8% of GDP), this making rollover crises costly
from the perspective of the government. Third, lengthening debt maturity from 6.7 years to
8 years reduces the probability of falling in the crisis zone next quarter (from 71% to 0% in
this experiment), thus having a first order effect on welfare.

A related concern is that our result could be sensitive to the way we modeled the pricing
of risky long-term debt. In our approach, we posit a stochastic discount factor which is
calibrated to match the behavior of the German (default-free) term structure. One may
argue that the pricing of German long term bonds is not informative about risk premia
on Italian securities, either because markets are segmented or because interest rate risk is
fundamentally different than default risk. If this was the case, our approach could understate
the costs of lengthening the debt maturity if issuing long term bonds was more costly than
what implied by our stochastic discount factor, and it would bias upward the calculation for
the net gains in Panel A of Table 3.

We can address this concern by performing a similar calculation to the one discussed
above. Specifically, we can ask how sizable premia on long term bonds needed to be in
2011:Q4 to make the government not willing to lengthen debt maturity in presence of high
rollover risk. To this end, we consider the following variant of the pricing equation (6):

qn
(
S, B′, λ′

)
= δ(S)

M
1 + αnM

E
[
δ(S′)q′n−1

]
(22)

20The certainty equivalent for a portfolio λ̃ is computed as follows. Given St and (B′(λ̃), λ̃), we first compute
the value for the government, VB′(λ̃),λ̃. The certainty equivalent is G∗ solving

1
1− β

(G∗ − G)1−σ

1− σ
= VB′(λ̃),λ̃.
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Table 3: Gains from lengthening debt maturity in presence of high rollover risk

Panel A: Baseline Model
Debt Maturity

5.5 years 6.7 years 8 years
Baseline 0.9114 0.9144 0.9217

Panel B: Pricing Function (22)
γ1 = 0.00% 0.9192 0.9178 0.9222
γ1 = 0.50% 0.9119 0.9111 0.9174
γ1 = 1.00% 0.9059 0.9054 0.9075
γ1 = 1.50% 0.9034 0.9025 0.9055
γ1 = 1.75% 0.9040 0.9006 0.8967

Notes: The table reports the certainty equivalent consumption for the government as a function of debt maturity in
states of the world characterized by high rollover risk. See the text and footnote 20 for the details of the calculation.
Panel A reports this information for the baseline model. Panel B reports this information for the model with the
alternative pricing function defined in equation (22).

where M is the inverse of the risk-free rate, assumed constant, and the parameter αn controls
the excess returns on a ZCB that matures in n periods relative to the risk-free rate. In fact,
conditional on not having a default today, the expected return for holding this bond equals

E
[
δ(S′)q′n−1

]
qn (S, B′, λ′)

=
1
M

+ αn.

Rather than parametrizing {αn}n≥1, we let γ(λ) be the expected excess return on a portfolio
of ZCB with weighted average life equals to 1/λ quarters,

γ(λ) = λ

(
∞

∑
j=1

(1− λ)j−1αj

)
,

and express it as a linear function of λ,

γ(λ) = γ0 +
γ1

400
(4× λ)−1.

The parameter γ1 represents the slope of the expected excess return curves. If the govern-
ment lengthens the maturity of its outstanding debt by one year, it must pay an additional
return of γ1 percentage points in annualized terms. Our objective is to measure how large
γ1 should be in order to counteract the gains from lengthening debt maturity reported in
panel A of Table 3.

Panel B of Table 3 replicates the previous exercise with this alternative lenders’ discount
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factor. As a baseline, we set γ0 so that the excess return for the portfolio with the lowest
maturity on the grid equals zero. All the parameters not connected to the pricing functions
are set in the same way as in the baseline, while we set 1/M to the average risk-free rate
implied by our calibration. We solve the model for different values of γ1, select states and
portfolio choices as we described earlier for the γ1 = 0.00% case, and we finally calculate the
certainty equivalent consumption for portfolios with an average life of 5.5, 6.7, and 8 years.

Our results show that it is advantageous for the government to choose the highest matu-
rity on the grid (8 years) as long as γ1 is smaller than 1.75%. That is, in order to rationalize
a shortening of debt maturity in presence of high rollover risk, the expected return on the 8
years portfolio must be at least 4% higher than the one for the 5.5 years portfolio.

To understand whether these values of γ1 are empirically plausible, we follow Broner,
Lorenzoni, and Schmukler (2013) and calculate realized holding period returns for Italian
government bonds of maturities up to 10 years for the period 1999:M1-2011:M9.21 We then
calculate the empirical counterpart to γ(λ) as

γλ,data = λ

[
39

∑
j=1

(1− λ)j−1Rj +
(1− λ)40−1

λ
R40

]
, (23)

where Rj is the average holding period return for a bond with a residual maturity of j quar-
ters relative to the one period risk-free return, approximated with the yields on a German
government bond with a residual maturity of one quarter.

Figure 7 plots γλ,data as a function of the maturity of the debt portfolio (expressed in years)
for two different sub-periods: a pre-crisis period (1999-2007), and a crisis period (2008-2011).
The figure shows that the level and the slope of average realized excess returns increase in the
second sub-period.22 Therefore, the concern that an increase in term premia may invalidate
our result finds support in the data. However, it is evident that the minimal slope necessary
to justify a shortening of debt maturity in presence of high rollover risk is substantially larger
than the one observed in the data. In the crisis period, the average realized excess returns on
the 8 years portfolio are only 1% higher than the one on the 5.5 years portfolio, four times
smaller than the one implied by γ1 = 1.75%. We interpret this result as suggesting that risk
premia on long term bonds must be implausibly large to curb the incentives to lengthen debt
maturity in the presence of a sizable role for rollover risk.

21We end the crisis period in 2011:M9 in order to minimize the impact of the extremely low excess returns
observed during the summer of 2011 on the sample averages.

22Interestingly, the measured average realized excess returns on Italian bonds during the crisis period are
of the same order of magnitude than the ones documented by Broner, Lorenzoni, and Schmukler (2013) for
emerging market economies.
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Figure 7: Term structure of holding period returns for Italian government debt
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Notes: We compute holding period returns for zero-coupon equivalent Italian government securities with residual matu-
rities between one and forty quarters. We then take the difference between these holding period returns and the yields on
a German government security with a residual maturity of one quarter. We average over time these excess holding period
returns and use equation (23) to construct the empirical counterpart of γ(λ). The figure plots the implied γ as a function
of debt maturity, expressed in years. The circled line report this information for the 1999-2007 period, while the solid line
reports the same information for the 2008-2011 period. See Appendix D for data definitions and sources.

6 Evaluating OMT announcements

We now turn to analyze the effects of the Outright Monetary Transaction (OMT) program
through the lens of our model. As a response to soaring interest rate spreads in the euro-area
periphery, the Governing Council of the European Central Bank (ECB) announced during
the summer of 2012 that it would consider outright bond purchases in secondary sovereign
bond markets. The technical framework of these operations was formulated on September
6 of the same year. The OMT program replaced the Security Market Program as a mean
through which the ECB could intervene in sovereign bond markets.23

Even though the ECB never purchased government bonds within the OMT framework,
the mere announcement of the program had significant effects on interest rate spreads of

23OMTs consist in direct purchases of sovereign bonds of members of the euro-area in secondary markets.
These operations are considered by the ECB once a member state asks for financial assistance, and upon the
fulfillment of a set of conditions. There are two main characteristics of these purchases. First, no ex ante quan-
titative limits are set on their size. Second, OMTs are conditional on the country being in a European Financial
Stability Facility/European Stability Mechanism macroeconomic adjustment or precautionary program.
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peripheral countries. Altavilla, Giannone, and Lenza (2014) estimate that OMT announce-
ments decreased the Italian and Spanish 2 years government bonds by 200 basis points. This
decline in interest rate spreads was widely interpreted by economists and policy makers
as a reflection of the success of this program in reducing belief-driven inefficient fluctua-
tions in sovereign bond markets of euro-area peripheral countries. Here we evaluate this
interpretation in our calibrated model given the recovered path of exogenous shocks.

We model OMT as follows. At the beginning of each period, after all uncertainty is
realized, the government can ask for assistance. In such case, the Central Bank (CB) commits
to buy government bonds in secondary markets at a price qn,CB (S) that may depend on the
state of the economy, S. The CB assistance is conditional on the face value of government
debt at the end of the period, B′, being below a limit B̄CB (S, λ′) < ∞, also set by the CB.
The limit can depend on the state of the economy and on the maturity of the stock of the
debt portfolio, and it captures the conditionality of the assistance in the secondary markets.
OMT is therefore fully characterized by a policy rule (qn,CB (S) , B̄CB(S,λ′)). We assume that
the CB finances bond purchases with a lump sum tax levied on the lenders, and that such
transfers are small enough that they do not affect the stochastic discount factor Mt,t+1.

The problem for the government described in (5) changes as follows. Letting a ∈ {0, 1} be
the decision to request CB assistance, with a = 1 for the case in which assistance is requested,
the government problem is:

V (S) = max
δ∈{0,1},B′,λ′,G,a∈{0,1}

δ
{

U(G) + βE[V
(
S′
)
|S]
}
+ (1− δ)V (s1) (24)

subject to

G + B ≤ τY(s1) + ∆
(
S, a, B′, λ′

)
,

∆
(
S, a, B′, λ′

)
=

∞

∑
n=1

qn
(
S, a, B′, λ′

)
[(1− λ′)n−1B′ − (1− λ)nB]

B′ ≤ B̄CB
(
S,λ′

)
if a = 1.

The lenders no-arbitrage condition requires that for n ≥ 1

qn
(
S, a, B′, λ′

)
= max{aqn,CB (S) I{B′≤B̄CB(S,λ′)}; δ (S)E

{
M
(
s1, s′1

)
δ
(
S′
)

q′n−1|S
}

(25)

where q′n−1 = qn−1 (s′, B′′, λ′′) with B′′ = B′ (s′, B′, λ′), λ′′ = λ′ (s′, B′, λ′), a′ = a (s′, B′, λ′),
and the convention q′0 = 1. The max operator on the right hand side of equation (25)
reflects the option that lenders now have to sell the bond to CB at the price qn,CB in case
the government asks for assistance (a = 1). Because of that, pricing schedules now depend
on current and future decisions of the government to activate OMTs. Given a policy rule
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(qCB, B̄CB), the recursive competitive equilibrium with OMT is defined as in Section 2.

We now turn to show that an appropriately designed policy rule can uniquely implement
the equilibrium outcome that would arise in absence of rollover risk, that is, if πt = 0 for
all possible histories. We refer to such outcome as the fundamental equilibrium outcome and
denote the objects of a recursive competitive equilibrium associated with it with a superscript
“∗". The fundamental equilibrium outcome is our normative benchmark.24

Proposition 1. The OMT rule can be chosen such that the fundamental equilibrium outcome is
uniquely implemented and assistance is never activated along the path. In such case, the equilibrium
with OMT is a weak Pareto improvement relative to the equilibrium without it, strict if the equilibrium
outcome without OMT does not coincide with the fundamental equilibrium.

The proof for the proposition is provided in Appendix C. Intuitively, by setting a floor on
bond prices, the CB allows the government to access financial markets even when lenders
are not rolling over the debt. This access to credit market allows the government to repay the
maturing debt, and it eliminates the self-fulfilling aspect of rollover crises. Quantity limits
on debt issuances guarantee that the government does not choose a B′ that is higher than the
one arising in the fundamental equilibrium.25 In this fashion, the CB can achieve a Pareto
improvement without actually carrying out bond purchases on the equilibrium path.

The drop in interest rate spreads of Southern European economies observed after the in-
troduction of OMT is consistent with this interpretation. However it does not provide by
itself evidence that the policy operated only through this channel. In fact, a decline in inter-
est rate spreads following the OMT announcements is also consistent with the interpretation
that the policy raised bondholders’ expectations of future bailouts for euro-area peripheral
countries. To understand this point, suppose that in a given state in the future the funda-
mental price for the portfolio of debt is q∗′. Assume now that the CB sets an assistance price
q′CB > q∗′. From equation (25), the announcement of this policy leads to an increase in the
price today (equivalently, a reduction in interest rate spreads) even if the CB is not currently
purchasing bonds (a = 0). In this second interpretation, OMT announcements would have
different welfare implications relative to the ones described in Proposition 1 because the
policy would entail a redistribution of resources from the lenders to the government.

We now propose a procedure to evaluate whether the reduction in interest rate spreads
observed after the OMT announcements reflects solely the elimination of rollover crises. Sup-

24We abstract from policy interventions that aim to ameliorate inefficiencies arising from incomplete markets
and consider OMT rules targeted at eliminating “bad" equilibria. Such features will also survive in models with
complete markets or in environment where some notion of constrained efficiency can be achieved as in Dovis
(2014).

25Under OMT the government acts as a price taker and it has an incentive to borrow more relative to the
fundamental equilibrium outcome.
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pose that the CB credibly commits to a policy that implements the fundamental equilibrium.
The announcement of this intervention eliminates rollover risk in every state of the world,
and interest rate spreads jump to their value in the fundamental equilibrium. This funda-
mental spread represents a lower bound on the post-OMT spread under the hypothesis that
the program was directed exclusively to prevent rollover crises. We can then compare the
spreads observed in the data after the OMT announcements to their fundamental value: if
the latter are higher than the observed ones, it would be evidence against the hypothesis
that the policy operated exclusively through a reduction in rollover risk.

Table 4: Actual and fundamental interest rate spreads in Italy

Actual spreads Fundamental spread
2012:Q3 354.13 386.76
2012:Q4 285.03 386.97

Notes: The fundamental spreads are constructed as follows. We first obtain the decision rules from the fundamental
equilibrium by solving the model with πt identically equal to zero. We then obtain the counterfactual fundamental
spread for 2012:Q3 and 2012:Q4 by feeding in these decision rules the empirical counterparts to χt and yt. We
initialize the endogenous state variables at their filtered value in 2012:Q2.

Table 4 reports the results for this test using the calibrated model. In the first column we
have the Italian spreads observed after the OMT announcements, while the second column
reports the fundamental spread constructed from the model.26 We can see that the observed
spreads are below their fundamental value. In particular, in 2012:Q4, the observed spread
was 285 basis points, while our model suggests that the spread should have been 386 basis
points if the program was exclusively eliminating rollover risk. Hence, our calculations
suggest that the decline in the spreads observed after the OMT announcements partly reflects
the anticipation of a future intervention of the ECB in secondary sovereign debt markets, over
and beyond the potential reduction of rollover risk.

7 Conclusion

This paper has proposed a strategy to bring to the data the sovereign debt model of Eaton
and Gersovitz (1981) modified to allow for self-fulfilling debt crises as in Cole and Kehoe
(2000). In this class of models, the observed maturity choices of the government helps dis-
tinguishing between fundamental and non-fundamental sources of variation in interest rate
spreads. We apply this identification strategy to Italian data during the debt crisis of 2008-
2012. Our results indicate that fluctuations in rollover risk accounted for a modest fraction of
the increase in sovereign borrowing costs. This finding suggests that the sharp reduction in

26See the note in Table 4 for a precise description of the exercise.
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spreads observed upon the establishment of the OMT program partly reflects the expectation
of future bailouts by European authorities.

Our approach is not limited to sovereign bond markets, and it could be applied in other
environments where self-fulfilling expectations may be important drivers of default risk. For
example, one could use changes in the liability and asset structure of financial intermediaries
in periods like the Great Depression to assess whether bankruptcies of these institutions were
driven by insolvency, or whether they were due to “bank runs” á la Diamond and Dybvig
(1983) or Gertler and Kiyotaki (2015).
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Appendix to “Self-Fulfilling Debt Crises: A Quantitative

Analysis"

by Luigi Bocola and Alessandro Dovis

A Timing, rollover risk, and crisis zone

In this section, we carefully define the crisis zone in the model. Recall that the timing within
the period is as follows:

• Enter with state S = (B, λ, s);

• Taking as given the pricing schedule, q (S, B′, λ′) = {qn (S, B′, λ′)}∞
n=1, the government

chooses its new portfolio of debt, (B′, λ′)

• Lenders choose the price for the government bonds, q (S, B′, λ′), according to the no-
arbitrage conditions (6).

• Finally, the government decides whether to default on its debt or not. The default
decision is given by δ (S, B′, λ′, {qn}) ∈ {0, 1},27 with δ = 1 if

U

(
τY (s1)− B +

∞

∑
n=1

qn

[
(1− λ′)n−1B′ − (1− λ)nB

])
+ βE[V

(
B′, λ′, s′

)
|S] ≥ V(s1),

and δ = 0 otherwise.

For notational convenience, it is useful to define the price of one unit of an arbitrary
portfolio of maturity λ given that the government’s portfolio is (B′, λ′) as

Q
(
S, B′, λ′|λ

)
=

∞

∑
n=1

(1− λ)n−1qn
(
S, B′, λ′

)
.

We denote by Smax the largest region of the state space for which a default is possible.
We can think of Smax as the collection of states in which the government defaults if lenders
choose the worst possible price from the government’s perspective conditional on satisfying
the lenders’ no-arbitrage condition. The next lemma characterizes the set Smax. To this end,
define

27We allow δ to depend on arbitrary {qn} to have the notation to think about off-path situation. The problem
in (5) is enough to determine default decision along the equilibrium path given pricing functions.
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Ω (S) ≡ max
B′,λ′

U
(

τY (s1)− B + ∆fund (S, B′, λ′
))

+ βE[V
(

B′, λ′, s′
)
|S]

(A.1)

subject to ∆fund (S, B′, λ′
)
≤ 0

Lemma 1. Given V (B, λ, s) and Q (S, B′, λ′), S ∈ Smax if and only if

V (s) > Ω(S) (A.2)

Proof. For the necessity part, note that if condition (A.2) does not hold, then the government
will never default when the inherited state is S because it has the option to buy back part of
the debt. Imposing the fundamental pricing function - the highest possible prices - in (A.1)
is without loss of generality: because the government is buying-back debt, a lower price will
only increase the value of Ω.

Consider now the sufficiency part. First note that S ∈ Smax if for all (B′, λ′) such that
∆fund (S, B′, λ′) ≥ 0 we have

U (τY (s1)− B) + βE[V
(

B′, λ′, s′
)
|S] < V(s1), (A.3)

and for all (B′, λ′) such that ∆fund (S, B′, λ′) < 0 we have

U
(

τY (s1)− B + ∆fund (S, B′, λ′
))

+ βE[V
(

B′, λ′, s′
)
|S] < V(s1). (A.4)

In condition (A.3) we use the fact that when net issuances are positive, ∆fund (S, B′, λ′) ≥ 0,
the worst price for the government’s perspective is zero and in condition (A.4) we use the
fact that when net issuances are negative, ∆fund (S, B′, λ′) < 0, the worst price for the gov-
ernment’s perspective is the fundamental price. If conditions (A.3) and (A.4) are satisfied,
it is then rational for lenders to expect a default and it is optimal for the government to
default. We can further simplify condition (A.3) by noticing that it is sufficient to check
such condition only for (B′, λ′) such that ∆fund (S, B′, λ′) = 0 because the continuation value
E[V (B′, λ′, s′) |S] is decreasing in B′. Combining this simplified condition (A.3) with condi-
tion (A.4) implies that S ∈ Smax if (A.2) holds, proving the claim. Q.E.D.

We can then define the crisis zone as S crisis = Smax \ S f und.
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B Three-period model

To illustrate in the most transparent way the key trade-offs that govern the optimal matu-
rity composition of debt we consider a three-period version of the economy. At t = 0 the
government can issue two types of securities: a zero coupon bond maturing in period 1,
b01 ≥ 0, and a zero coupon bond maturing in period 2, b02 ≥ 0. In period 1, the government
decides whether to default or not. If there is no default, the government can issue a bond
maturing in period 2, b12. We allow for negative values of b12 and interpret these as buy-back
of outstanding long-term bonds.

It is convenient to present the model starting from the last period. At t = 2, inheriting
a state (b02, b12, s2)

28 the government chooses whether to default on the previously issued
debt (δ2 = 0) or not (δ2 = 1) to maximize

V2 (b02 + b12, s2) = max
δ2

δ2U (τY2 − b02 − b12) + (1− δ2)V2.

At t = 1, inheriting a state (b01, b02, s1), the government issues b12 and it decides whether to
default (δ1 = 0). The decision problem at t = 1 is

V1 (b01, b02, s1) = max
δ1,G1,b12

δ1 {U (G1) + βE1[V2 (b02 + b12, Y2)]}+ (1− δ1)V1

subject to
G1 + b01 ≤ τY1 + q12 (b01, b02, s1, b12) b12

Finally at t = 0 the government issues both short and long term debt to solve

V0 (s0) = max
G0,b01,b02

U (G0) + βE0[V1 (b01, b02, s1)]

subject to
G0 + D0 ≤ τY0 + q01 (s0, b01, b02) b01 + q02 (s0, b01, b02) b02,

with D0 being the debt inherited from the past. To avoid issues associated with dilution of
legacy debt, we assume that the government does not inherit long-term debt. We further
assume that D0 is sufficiently small that the government does not default at t = 0. Price

28In this appendix, a subscript on s denotes time.
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schedules q01, q02, and q12 must be consistent with lenders no-arbitrage condition

q01 (s0, b01, b02) = E0 [mδ1 (s1, b01, b02)]

q02 (s0, b01, b02) = E0

[
m2δ1 (s1, b01, b02) δ2 (s2, b02 + b01)

]
q12 (b01, b02, s1, b12) = δ1(s1, b01, b02)E1 [mδ2 (s2, b02 + b01)]

where for simplicity we assume that lenders are risk neutral: M(s0, s1) = M(s1, s2) = m.

B.1 Maturity choices and rollover risk

We next show that expectations of rollover crisis generate a preference for the government to
issue long term bonds at t = 0. In the extreme case in which all default risk at t = 0 reflects
rollover risk, the government at t = 0 issues only long term debt.

To illustrate the relation between maturity choices and rollover risk, we assume that a
rollover crisis occurs with probability π if the government is in the crisis zone at t = 1.

Proposition 2. In the three period economy, if there is only rollover risk and fundamental defaults
never happen at t = 1, 2 then b01 = 0 and all debt is long term.

Proof. The proof is by contradiction. Suppose that a rollover crisis can arise, in that there are
states s1 with associated output level Y1 such that

U(τY1 − b01) + βE1[V2(b02, s2)] < V1, (A.5)

hold and b01 > 0. Consider then the following variation: increase b02 by ε/q02 > 0, and
decrease b01 by ε/q01 > 0 so that G0 in unchanged at the original price.

We next show that under the assumption that there is no fundamental default risk, the
variation can replicate the consumption pattern (G1, G2) prescribed by the original allocation
conditional on not having a rollover crisis. In fact, since there is no default risk between t = 1
and t = 2, conditional not having a rollover crisis at t = 1, we have that q12 = m. Hence
optimality implies that at the original allocation the following Euler equation is satisfied:

mU′(G1) = βE1[U′(G2)]. (A.6)

Hence achieving same the G1 and G2 is optimal and budget feasible if the government
inherits (b01 − ε/q01, b02 + ε/q02) because the government can just decrease b12 by ε/q02 and

Y1 − (b01 − ε/q01) + m(b12 − ε/q01) = Y1 − b01 + mb12 = G1
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where we used the fact that under our assumptions q02 = mq12.

Finally, we turn to show that the proposed variation reduces the crisis zone and so it
increases the prices of debt in period zero and in turn it increases consumption in period 0.
To this end, note that under the original allocation condition (A.5) holds for some states s1

and there is no fundamental default risk, so for all s1

U(τY1 − b01 + mb12) + βE1[V2 (b02 + b12, Y2)] ≤ V1.

Condition (A.5) and the equation above imply that the b12 that solves (A.6) is greater than
zero. This observation, (A.6), and concavity of U imply that

q12U′ (τY1 − b01) > βE1[V′2 (b02 + b12)] ⇐⇒
1

q01
U′ (τY1 − b01) >

1
q02

βE1[V′2 (b02 + b12)]

where in the second relation we used the fact that q12 = q02
q01

= m2π Pr(crisis zone)
mπ Pr(crisis zone) . So we have

that

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, Y2)] ≈ {U (τY1 − b01) + βE1[V2 (b02, Y2)]}

+

{
1

q01
U′ (τY1 − b01) +

1
q02

βE1[V ′2 (b02, Y2)]

}
ε

and so

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, Y2)] > U (τY1 − b01) + βE1[V2 (b02, Y2)] (A.7)

Since under our variation the economy is in the crisis zone if

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, Y2)] ≤ V1, (A.8)

the inequality (A.7) implies that the probability of being in the crisis zone is smaller under
our variation because (A.8) is satisfied for a lower output level than (A.5). Hence bond
prices at t = 0, q01 = mπ Pr(crisis zone) and q02 = m2π Pr(crisis zone), increases and the
government can increase consumption in the first period. So the variation increases utility, a
contradiction. Therefore we must have b01 = 0. Q.E.D.

B.2 Incentive channel

We now show how the incentive channel discussed in Section 3 generates a preference for
the government to issue short term bonds. Consider now a situation in which there is no
rollover risk, π = 0, and Y0 and Y1 are deterministic. Y2 is the only source of uncertainty and
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the uncertainty is revealed in t = 2. Because output is deterministic at t = 1, issuing long
term debt at time t = 0 does not entail hedging benefits. Hence, this environment isolates
the incentive channel. The following proposition shows that the government at t = 0 issues
only short term debt.

Proposition 3. In the three period economy, if there is no rollover risk and there are no shocks in
t = 1 then the optimal solution must have b02 = 0 if the probability of default in t = 2 is positive.29

Proof. It is helpful to use a primal approach to solve for the equilibrium outcome. Without
rollover risk and uncertainty at t = 0, we can consider the following programming problem:

max
b01,b02,b12,δ1,δ2

U (G0) + βE0 {δ1 [U (G1) + β (δ2U (G2) + (1− δ2)V2)] + (1− δ1)V1} (A.9)

subject to budget constraints

G0 + D0 ≤ q01b01 + q02b02 + τY0

G1 + b01 ≤ q12b12 + τY1

G2 + b02 + b12 ≤ τY2

the pricing equations

q01 = m, q02 = mq12,

q12 = E1 [mδ2] ,

the “default” constraints

U (G1) + βE1U (G2) ≥ V1

U (G2) ≥ V2

and the “issuance” constraint

U (G1) + βE1U (G2) ≥ V1 (b01, b02) (A.10)

It is clear that an equilibrium outcome solves the above problem and the converse is also
true. The default and issuance constraints capture the sources of time inconsistency. The
default constraint captures the fact that the time zero government cannot choose allocations
that attain a value lower than the value of default since future governments at t = 1 and

29A sufficient condition for this is that β/m is sufficiently low or D0 sufficiently large.
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t = 2 can always choose such option if ex-post optimal. The issuance constraint captures
the fact that the time zero government cannot control debt issuances of the government in
period 1. Such issuances must be optimal from the t = 1 government’s perspective given its
inherited state (b01, b02).

We now show that short term debt is desirable because it relaxes the issuance con-
straint (A.10). To this end, consider a relaxed version of (A.9) in which we drop the debt-
dilution constraint (A.10). Such relaxed problem has a continuum of solutions because
the split between long and short term debt issued in period zero is undetermined. Let{

b∗01, b∗02, b∗12, δ∗1 , δ∗2
}

be a generic solution to this relaxed programming problem. The opti-
mality condition for b12 for this relaxed problem is

0 = m
∂q12

∂b2
b∗02U′ (G∗0 ) + (A.11)(

q∗12 +
∂q12

∂b2
b∗12

)
U′ (τY1 − b∗01 + q∗12b∗12)−

∫
Y2(b∗02,b∗12)

U′ (τY2 − b∗02 − b∗12) dµY2

where Y2 (b02, b12) ≡ {Y2 : U (τY2 − (b02 + b12)) ≥ V2} is the set of output levels Y2 for
which the government does not default in period 2.

We next show that if b∗02 = 0 then the government at t = 0 can achieve the value of this
relaxed problem in the more constrained problem (A.9). To see this it is sufficient to check
that the issuance constraint is met at

{
b∗01, b∗02, b∗12, δ∗1 , δ∗2

}
. To this end notice that starting at(

b∗01, b∗02
)

in period t = 1 the optimal b12 chosen by period 1 government is such that

0 =

(
q∗12 +

∂q12

∂b2
b12

)
U′ (τY1 − b∗01 + q12b12)−

∫
Y2(b∗02,b12)

U′ (τY2 − b∗02 − b12) dµY2 (A.12)

where q12 = m Pr (U (τY2 − (b∗02 + b∗12)) ≥ V2). Hence the allocation
{

b∗01, b∗02, b∗12, δ∗1 , δ∗2
}

sat-
isfies the issuance constraint if and only if it satisfies (A.12) with b12 = b∗12 and q12 = q∗12.
Now, when b∗02 = 0, condition (A.11) implies that (A.12) is satisfied. Hence the solution to
the relaxed problem can be implemented when b∗02 = 0.

The final step in the proof is to show that b∗02 = 0 is necessary when the solution to (A.9)
is such that there are defaults in t = 2 in some states. Note that (A.11) and (A.12) can be
jointly satisfied if and only if ∂q12

∂b2
b∗02 = 0 so at least one of the following conditions must be

satisfied: i) b∗02 = 0, ii) no default at t = 2 so that ∂q12/∂b2 = 0. Hence if there are defaults in
t = 2 then it must be that b∗02 = 0. Q.E.D.
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B.3 Insurance channel

We now turn to illustrate the insurance channel. To isolate this channel, we consider an
economy in which there is no rollover risk, π = 0, and the current government can choose
debt issued by future governments so that the incentive channel just described is not oper-
ative. We can think of this as studying the best Subgame Perfect Equilibrium (SPE) from the
perspective of the government in period 0. In this case, any deviations from the prescribed
path of plays is punished with a reversion to Vt.

To illustrate that long term debt is a better instrument than short term debt to provide
insurance absent outright default, we consider a minimalistic stochastic structure. In period
t = 1, s ∈ {sL, sH} with Y1 (sL) < Y1 (sH). The output at time 2 is again distributed in a
continuous fashion as in the previous example. We further assume that the realization of s
does not affect the distribution of Y2.

The best SPE outcome solves a similar problem to the one considered in the previous
subsection without the issuance constraint. That is

max
b01,b02,b12,δ1,δ2

U (G0) + βE0 {δ1 [U (G1) + β (δ2U (G2) + (1− δ2)V2)] + (1− δ1)V1} (A.13)

subject to budget constraints

G0 + D0 ≤ q01b01 + q02b02 + τY0

G1 (s) + b01 ≤ q12 (s) b12 (s) + τY1 (s)

G2 (s, Y2) + b02 + b12 (s) ≤ τY2

the pricing equations

q01 = m ∑
s∈{sL,sH}

µ (s) δ1 (s) , q02 = m ∑
s∈{sL,sH}

µ (s) δ1 (s) q12 (s) ,

q12 (s) = E1 [mδ2|s] ,

and the “default” constraints

U (G1 (s)) + βE1U (G2|s) ≥ V1

U (G2|s) ≥ V2.

Proposition 4. In the three period economy described above, the best SPE is such that if in period 1
there is no default then the government at time 0 issues only long term debt and b01 = 0.
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Proof. Assuming there is no default in period t = 1 (and so the default constraint at t = 1 is
slack) the solution of problem (A.13) must satisfy

0 = U′ (G0)m− β ∑s∈{sL,sH} µ (s)U′ (G1 (s)) + η01 (A.14)

0 = U′ (G0)

[
q02 +

∂q02

∂b02
b02

]
+ (A.15)

∑
s∈{sL,sH}

µ (s)
[

∂q12 (s)
∂b02

b12 (s) βU′ (G1 (s))−
∫
Y2(b02,b12(s))

β2U′ (τY2 − b02 − b12 (s)) dµY2

]

0 = m
∂q12 (s)

∂b2
b02U′ (G0) + (A.16)(

q12 (s) +
∂q12 (s)

∂b2
b12 (s)

)
βU′ (G1(s))−

∫
Y2(b02,b12(s))

β2U′ (τY2 − b02 − b12 (s)) dµY2

where η01 is the multiplier on the non-negativity constraint for b01 and we used the fact
that q02 = m ∑s µ (s) q12 (s). Combining (A.15) with (A.16) and using the fact that q02 =

m ∑s µ (s) q12 (s), we obtain

0 = U′ (G0)m− β ∑
s∈{sL,sH}

µ(s)U′ (G1 (s))
q12 (s)

∑s∈{sL,sH} µ(s)q12 (s)
. (A.17)

There can be two cases: either G1 (s) is not constant across s or G1 (s) is constant across s.
We consider the first case and later show that the second case cannot arise.

Suppose by way of contradiction that G1 (s) is not constant and b01 > 0 and so the multi-
plier η01 in (A.14) equals zero. Combining (A.14) with (A.17) and using η01 = 0 we obtain

0 = ∑
s∈{sL,sH}

µ(s)U′ (G1 (s))

[
1− q12 (s)

∑s∈{sL,sH} µ(s)q12 (s)

]

= Cov

(
U′ (G1 (s)) ,

q12 (s)
∑s∈{sL,sH} µ(s)q12 (s)

)
. (A.18)

Since G1 (s) is not constant by assumption, for the covariance above to be zero, we need that

q12 (s) = m Pr (U (Y2 − b02 − b12 (s)) ≥ V2)

does not depend on s, which is equivalent to have that b12(s) does not depend on s. Then,
all the terms in (A.16) other than G1 (s) do not depend on s. Hence, for (A.16) to hold at sL
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and sH, it must be that also G1(s) does not depend on s. This is a contradiction.

We now turn to show that we cannot attain perfect insurance in that G1 (s) cannot be
constant across s. Suppose by way of contradiction that G1 (s) = G1 for all s. In this case,
(b01, b02, b12 (sL) , b12 (sH)) solve the following four equations:

0 = U′ (G0)m− βU′ (G1)

where G1 = G1 (s) for all s and so

τ [Y1 (sH)−Y1 (sL)] = q12 (sL) b12 (sL)− q12 (sH) b12 (sH)

and equation (A.16) for sL and sH, which can be written compactly as

0 = Φ (b12 (sL) , G0, G1 (sL) , b01, b02) (A.19)

0 = Φ (b12 (sH) , G0, G1 (sH) , b01, b02) , (A.20)

where Φ is defined by the right side of (A.16). Note that if G1 (sL) = G1 (sH) then conditions
(A.19)-(A.20) imply that b12 (sL) = b12 (sH). Using this into the budget constraint of the
government in t = 1 is state sL and sH implies that G1 (sH) > G1 (sL) and so G1 (s) is not
constant across states. A contradiction. Therefore, we must be in the first case in which
G1 (sH) 6= G1 (sL) and b01 = 0 and all debt issued at t = 0 is long term. Q.E.D.

C Proof of Proposition 1

Given V∗ and q∗, let Scrisis(V∗) be the crisis zone associated with the fundamental equi-
librium value function. Construct the policy rule (qCB, B̄CB) so that: for all S ∈ Scrisis(V∗)
there exists at least one (B′, λ′) with B′ ≤ B̄CB (S, λ′) such that if the government asks for
assistance then it prefers to repay than default:

U

(
τY− B + ∑

n
qn,CB (S) [

(
1− λ′

)n−1 B′ − (1− λ)n B]

)
+ βE

[
V∗
(

B′, λ′, s′
)
|S
]
≥ V (s1) ,

(A.21)
and the fundamental equilibrium is always preferable than asking for assistance, in that for
all (B′, λ′) such that B′ ≤ B̄CB (S, λ′)

U

(
τY− B + ∑

n
qn,CB (S) [

(
1− λ′

)n−1 B′ − (1− λ)n B]

)
+ βE

[
V∗
(

B′, λ′, s′
)
|S
]
≤ V∗ (S) .

(A.22)
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Clearly it is possible to find policy rules that satisfy (A.21) and (A.22). An obvious example
is to set qn,CB(S) = q∗n

(
s, B∗′(S), λ∗′(S)

)
and B̄CB (S, λ) = B∗′ (S) if λ = λ∗′ (S) and zero

otherwise.

Under (A.21) and (A.22), no self-fulfilling run is possible, the optimal B′ and λ′ are the
same that arise in the fundamental equilibrium, and the government has no incentives to
activate OMT along the equilibrium path. Hence, given a policy rule that satisfies (A.21)
and (A.22), there exists a recursive equilibrium with OMT that implements the fundamental
equilibrium outcome for any sunspot process {s2t}. 30 Q.E.D.

D Data appendix

Term structure of German interest rates. Data on the term structure of ZCB for German
federal government securities is obtained from the Bundesbank online database. We collect
monthly data on the parameters of the Nelson and Siegel (1987) and Svensson (1994) model,
and we generate nominal bond yields for all maturities between n = 1 and n = 20 quarters.
We convert these monthly series at a quarterly frequency using simple averages. These series
are obtained for the period 1973:Q1-2013:Q4.

Real gross domestic product. OECD Quarterly National Accounts, GDP expenditure ap-
proach, US dollars, volume estimates (reference year 2010), 1960:Q1-2013:Q4.

Debt to output ratio. Debt is outstanding debt securities of the central government obtained
from OECD Quarterly Public Sector Debt, expressed in million of euros.31 The debt to
output ratio is the ratio between this series and GDP measured at current prices. The latter
is obtained from OECD Quarterly National Accounts. We obtain this series for the period
1999:Q1-2013:Q4.

Interest rate spreads. Yields differentials between an Italian and a German ZCB with a resid-
ual maturity of five years. Nominal yields on Italian bonds are obtained through Bloomberg
(GBTPGR5 index). Nominal yields on the corresponding German bonds is obtained from
the Bundesbank online database.

30We cannot establish that given a policy rule that satisfies (A.21) and (A.22), the fundamental equilibrium is
the unique recursive equilibrium with OMT. This is because there may be multiple fixed point of the operator
that defines a recursive equilibrium. Hence the fact that (V∗, q∗) is a fixed point of such operator for an
arbitrary sunspot process does not necessarily imply that there is not another fixed point (V, q).

31We seasonally adjust the series in two steps. We first regress it (in logs) on a linear trend and on quarterly
dummies. We then subtract the seasonal dummies, and transform it in levels.
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Weighted average life of outstanding government bonds. We use detailed information
on outstanding bonds issued by the Italian central government to construct an indicator of
debt maturity for the 2008:Q1-2013:Q4 period. We collect outstanding principal and coupon
payments to bondholders for every maturity n in every quarter t (Cn,t) using data from
the Italian treasury at http://www.dt.tesoro.it/en/debito_pubblico/dati_statistici/

scadenze_titoli_suddivise_anno/index.html. The indicator of debt maturity that we con-
sider is

N

∑
n=1

n
Cn,t

Vt
,

where Vt = ∑N
n=1 Cn,t is the ZCB-equivalent outstanding face value of the bonds issued.

This indicator, the weighted average of the times of principal and coupon repayments, maps
exactly to 1

λ′ in our model.

Government deficit. ISTAT National Accounts, General Government Statistics, Quarterly
non-financial account, http://dati.istat.it/?lang=en#.

Term structure of Italian interest rates. Data on the term structure of Italian government
debt is obtained from Datastream. Datastream provides for each period an estimate of the
yield curve of Italian government debt for maturities from 1 year to 10 years based on a fifth
degree polynomial approximation of the data. The series mnemonics are GVIL05(CM01),
GVIL05(CM02), ...., GVIL05(CM10). We collect these data monthly and we generate nominal
bond yields for all maturities between n = 1 and n = 40 quarters.

E Rollover risk and public debt management in 1980s Italy

Our identification builds on the hypothesis that Treasury departments would respond to
heightened rollover risk by actively lengthening the maturity of their debt. While the lit-
erature on this topic is limited, previous cross-country studies have shown that the matu-
rity of new issuances in emerging markets typically shortens around default crises (Broner,
Lorenzoni, and Schmukler, 2013; Arellano and Ramanarayanan, 2012), and examples of gov-
ernments extending the life of their debt in turbulent times are not well documented. This
section details one of these examples. Using a narrative approach, we analyze the experience
of the Italian Treasury department in the early 1980s.

Two main factors at the beginning of the 1980s contributed to place the Italian government
at risk of a roll-over crisis. First, the Italian government needed to refinance almost its entire
debt, which was roughly 60% of GDP at the time, within the span of a year: following
the chronic inflation of the 1970s, in fact, investors became discouraged from holding long
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duration bonds that were unprotected from inflation risk, and the average residual maturity
of Italian debt went from a peak value of 9.2 years in 1972 to 1.1 years in 1980 (Pagano,
1988). Second, and in an effort to increase the independence of the central bank, a major
institutional reform freed the Bank of Italy from the obligation of buying unsold public debt
in auctions.32

The short residual life of government debt coupled with the loss of central bank financing
meant that the Italian government had to use primary markets to refinance its maturing
debt. However, these markets were not well developed at the time, and private demand
of government bonds was weak and volatile (Campanaro and Vittas, 2004). Panel (a) of
Figure A-1 reports statistics regarding the placement of Italian treasuries during the 1981-
1982 period. The solid line plots the private bid-to-cover ratio for Italian treasuries. This
ratio averaged only 0.65 over this period, with a standard deviation of 0.25. The dashed line
reports the ratio between the quantity sold and the Treasury’s target. Until July 1981, this
ratio was equal to 1 because of the statutory requirement for the Central Bank to buy unsold
bonds. Following the reform of the Central Bank, though, the Treasury became exposed to
variation in the private demand of bonds.

The possibility that rollover problems may eventually lead to a debt crisis became evident
in the last quarter of 1982. On the auction of October 15th, private demand covered only
46% of the Treasury’s needs, and the Central Bank decided not to purchase unsold bonds.
The Treasury was thus forced to use the overdraft account it had with the Bank of Italy to
cover its financing needs, reaching the statutory limit. This led to a budgetary crisis, which
further depressed private demand of bonds out of fears of a debt restructuring.33 While
the Parliament later voted a law that allowed a temporal overshoot of the overdraft account
(Scarpelli, 2001), these events exposed to policymakers the risks implicit in refinancing large
amounts of debt in short periods of time.

The response of the Italian government to these events is consistent with the logic of our
identification strategy. As documented in Alesina, Prati, and Tabellini (1989) and in Scarpelli
(2001), the Treasury actively pursued a policy to extend the life of its public debt. Financial
innovation was the main tool used for this purpose, with the introduction of new types of
bonds whose interest payments were indexed to the prevailing nominal rate. These Certificati
di Credito del Tesoro (CCT) were palatable to investors because they offered protection from

32Starting from 1975, the Bank of Italy was required to act as a residual buyer of all the public debt that was
unsold in the auctions. This resulted in a massive increase in the share of public debt held by the Bank of Italy,
reaching a maximum of 40% in 1976. See Tabellini (1988) for a discussion of the historical context underlying
the “divorce" between the Bank of Italy and the Italian Treasury.

33These fears were not without motivations. Rino Formica, ministry of Finance at the time, publicly called
for an “agreement" with bondholders that would allow the Treasury to reimburse only part of its debt. Beni-
amino Andreatta, ministry of the Treasury, strongly opposed this view. This controversy, known in the public
debate as “lite delle comari", eventually led to the fall of the Italian government on December 1st 1982.
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Figure A-1: Rollover risk and public debt management: Italy in the early 1980s
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inflation risk, and at the same time they had longer maturity than the Buoni Ordinari del
Tesoro (BOT), the prevailing form of bond financing at the time.34 Panel (b) of Figure A-1
reports the composition of the outstanding Italian debt (bars) along with its residual average
life during the 1982-1986 period. We can see that the Treasury quickly replaced BOTs with
CCTs as the main source of public financing. The efforts of the Treasury were successful in
increasing the maturity of outstanding debt, with its residual average life more than tripling
within the span of four years.

F The lenders’ stochastic discount factor

We now derive some results concerning the lenders’ stochastic discount factor, and describe
in more details the calibration of θ1. Let q∗,nt be the log price of a non-defaultable ZCB
maturing in n periods. These bond prices satisfy the recursion

exp{q∗,nt } = Et[Mt,t+1 exp{q∗,n−1
t+1 }],

34Indexed securities like CCT are not subject to refinancing and rollover problem but are essentially equal
to short term debt for the incentive to generate ex-post inflation because any effort to generate ex-post inflation
will not reduce the real value of debt. See Missale and Blanchard (1994).
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where Mt,t+1 is defined in the system (13), and the initial condition is q0
t = 0. Ang and

Piazzesi (2003) show that {q∗,nt } are linear functions of the state variable χt,

q∗,nt = An + Bnχt,

where An and Bn satisfy the recursion

Bn+1 = −φ1 + Bnρ∗,

(A.23)

An+1 = −φ0 + An + Bnµ∗ +
1
2

B2
nσ2

χ,

with A0 = B0 = 0, ρ∗ = [ρχ − σ2
χκ1] and µ∗ = [µχ(1− ρχ) − σ2

χκ0]. In order to avoid the
divergence of Bn for large n, we restrict θ1 to satisfy |ρ∗| < 1.

F.1 Results from the pricing model

F.1.1 The risk-free rate

By definition, log-yields on a bond maturing next quarter equal y1
t = −q∗,1t . In the model,

those are equal to
y1

t = φ0 + φ1χt. (A.24)

The mean and variance of y1
t can then be derived as a function of the model parameters

E[y1
t ] = φ0 + φ1µχ var[y1

t ] = φ2
1

σ2
χ

(1− ρ2
χ)

. (A.25)

F.1.2 Expected excess returns

By definition, holding period excess log returns on a ZCB maturing in n periods equal
rxn

t+1 = q∗,n−1
t+1 − q∗,nt + q∗,1t . Substituting the expression for log prices, we can rewrite it as

rxn
t+1 = [An−1 + Bn−1µχ(1− ρχ)− An + A1]︸ ︷︷ ︸

Ãn

+ [Bn−1ρχ − Bn + B1]︸ ︷︷ ︸
B̃n

χt + Bn−1εχ,t+1, (A.26)

where Aj and Bj are defined in (A.23). Taking conditional expectations on both sides, we
obtain

Et[rxn
t+1] = Ãn + B̃nχt, (A.27)

which verifies that expected excess log returns are linear functions of χt.
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F.2 Calibration of θ1

We use the data on the term structure of German’s interest rates to construct time series for
realized excess log returns and the log forward rates for n = 4, 8, 12, 16, 20. Table A-1 reports
summary statistics on yields and realized excess log returns as a function of n.

Table A-1: Summary statistics: yields and holding period returns

Mean Standard deviation Sharpe Ratio

y1
t − inflt 2.16 1.93

y20
t − inflt 2.94 1.72

rx4
t+1 0.21 2.05 0.11

rx8
t+1 0.94 4.22 0.22

rx12
t+1 1.54 6.08 0.25

rx16
t+1 2.02 7.70 0.26

rx20
t+1 2.40 9.14 0.26

Notes: The sample period is 1973:Q1-2013:Q4. The inflation rate is the year-on-year percentage change

in the German CPI index, obtained from OECD Main Economic Indicators. Variables are reported as

annualized percentages.

We can verify that the yield curve slopes up on average: yields on 5 years bonds are, on
average, 80 basis points higher than yields on bonds maturing next quarter. We can also see
that long term bonds earn a positive excess return on average. For example, holding a 5
year bond and selling it off next quarter earns, on average, an annualized premium of 2.40%
relative to investing in a bond that matures next quarter. Excess returns on long term bonds
increase monotonically with n, and so does their Sharpe ratio.

Table A-2 reports the results of the C-P regressions. The top panel reports OLS estimates of
equation (17), where rxt+1 are realized excess log returns averaged across n = 4, 8, 12, 16, 20
and the vector ft includes the risk-free rate and the log forward rates for these five maturities.
The bottom panel reports the individual bond regressions of equation (18).

Differently from the analysis of Cochrane and Piazzesi (2005) on U.S. data, the estimated
vector γ̂ is not “tent" shaped. However, we confirm using German data the finding that a
single linear combination of log forward rates has predictive power for excess log returns,
and that the sensitivity of the latter to this factor (the estimated bn’s) increases with the
maturity of the bonds.

The parameters in θ1 are chosen as follows. First, we set φ0 and φ1 so that the model im-
plied mean and standard deviation of y1

t , defined in the equations (A.25), match the sample
statistics reported in Table A-1.35 The remaining parameters are obtained using the method

35This sets φ0 and φ1 implicitly as functions of µχ, ρχ and σχ.
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Table A-2: C-P regressions

γ0 γ1 γ2 γ3 γ4 γ5 γ6 R2

Estimates of equation (17)
-0.002 -1.65 5.00 -21.70 47.20 -45.18 16.53 0.12
(-0.27) (-2.89) (2.92) (-2.10) (1.58) (-1.19) (0.95)

an bn R2

Estimates of equation (18)

4 -0.001 0.46 0.20
(-2.06) (5.48)

8 -0.000 0.77 0.13
(-0.37) (4.92)

12 0.000 1.02 0.11
(0.14) (4.60)

16 0.001 1.27 0.11
(0.30) (4.55)

20 0.001 1.48 0.11
(0.34) (4.56)

Notes: The sample period is 1973:Q1-2013:Q4. Robust t−statistics in parenthesis.

of simulated moments. The empirical targets contains two distinct sets of moments. The first
set includes the results of the second stage regression reported in Table A-2 for an n = 20
bond, specifically the point estimates for a20, b20, and the standard deviation of the OLS
residuals. In the second set of moments we include the parameters of an AR(1) model esti-
mated on the first stage factor, xt = γ̂0 + γ̂′ft. We choose the remaining parameters in θ1 in
order to minimize a weighted distance between these sets of moments and the correspond-
ing statistics computed in model simulated data. The weighting matrix is diagonal, with the
inverse of each sample moment (in absolute value) on the main diagonal. The model implied
statistics are computed on a long simulation (T = 5000) from the model. In simulations, we
add small measurement errors to the forward rates in order to avoid multicollinearity when
estimating the Cochrane and Piazzesi (2005) first stage regression.

G Numerical solution

Before explaining the numerical solution, it is convenient to simplify the objects in the re-
cursive equilibrium. In particular, we can drop ξ from the state vector and when a func-
tion depends on ξ we will make such dependence explicit. From now onward we let
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S = [B, λ, y, χ, π] and s = [y, χ, π].

In the model set up, we argued that since bond prices depend on the current default
decision, they must depend on the inherited portfolio of debt, (B, λ). Because we are only
interested in characterizing the equilibrium outcome along the equilibrium path, it is conve-
nient to restrict attention to the fundamental pricing schedule, qfund

n (s, B′, λ′) defined in (7).
This schedule solves the following functional equation:

qfund
n

(
s, B′, λ′

)
= E

{
M
(
s1, s′1

)
δ
(
S′, ξ ′

)
qfund

n−1
(
s′, B′′, λ′′

)
|S
}

for n ≥ 1

where we again adopt the convention that qfund
0 = 1.

Moreover, to save on notation, we let q (s, B′, λ′|λ) be the fundamental value of a portfolio
of ZCB with decay parameter λ given the realization s for the exogenous state, and given
that the government’s choices for the new portfolio is [B′, λ′].36 Also, we now let B to be the
face value of outstanding debt. The price of this portfolio of ZCB can be written as

q
(
s, B′, λ′|λ

)
= E

{
M
(
s1, s′1

)
δ
(
S′, ξ ′

) [
λ + (1− λ)q

(
s′, B′′, λ′′|λ

)]
|S
}

, (A.28)

where B′′ = B′ (s′, B′, λ′) and λ′′ = λ′ (s′, B′, λ′).

With this notation, we can then rewrite the decision problem for the government using
three simple sub-problems. We define the value of repaying the debt conditional on lenders
rolling over the debt, VR

roll(S), as follows

VR
roll(S) = max

B′,λ′

{
U(τY− λB + ∆) + βE[V(B′, λ′, s′)|S]

}
, (A.29)

where
∆ = q

(
s, B′, λ′|λ′

)
B′ − q

(
s, B′, λ′|λ

)
(1− λ)B,

and Y = exp{y}. The value of repaying conditional on lenders not rolling over the debt,
VR

no roll(S), is
VR

no roll(S) =
{

U(τY− λB) + βE[V(B(1− λ), λ, s′)|S]
}

, (A.30)

while the value of defaulting, VD(y, χ), is

VD(y, χ) =
{

U(τY[1− d(Y)]) + β{ψE[V(0, λ, y′, χ′, π′)|S] + (1− ψ)E[VD(y′, χ′)|S]}
}

. (A.31)

Note that VD(.) does not depend on π because this process is assumed to be iid. The value

36Note that we need to price an arbitrary λ portfolio, given government choices [B′, λ′], in order to know
the market value of the portfolio repurchased by the government. See Sanchez, Sapriza, and Yurdagul (2015)
for a discussion of this issue.
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function of the government can then be written as

V(S, ξ) =


VR

roll(S) if VR
no roll(S) ≥ VD(y, χ)

VR
roll(S) if VR

no roll(S) < VD(y, χ) and ξ = 0

VD(y, χ) if VR
no roll(S) < VD(y, χ) and ξ = 1

This value function, its associated policy functions and the fundamental pricing function are
enough to determine the equilibrium outcome path. This is because the equilibrium price
of a bond portfolio on path is either zero - in the case of a fundamental default or a rollover
crisis - or it is equal to the fundamental value defined in (A.28) if there is repayment in the
current period.

The numerical solution of the model consists in approximating the fundamental pricing
schedule q, and the value functions {VR

roll(S), VR
no roll(S), VD(y, χ)}. We approximate the

value functions using a mixture of projection and discrete state space methods. The inverse
of the maturity for the debt portfolio, λ, is assumed to be a discrete variable from the set
Λ = {λ1, λ2, . . . , λNλ

}. Moreover, we let B = {B1, . . . , BNB} be the set of debt levels over
which we approximate the value function. The value functions are approximated using
piece-wise smooth functions. Specifically, VR

roll(.), is approximated as follows,

VR
roll(λj, Bk, s) = γR

roll,(λj,Bk)

′
T(s),

where s = [y, χ, π] ∈ S is a realization of the exogenous state variables from a set of points
S , γR

roll,(λj,Bk)
is a vector of coefficients and T(.) is a vector collecting Chebyshev’s polyno-

mials. The value of repaying conditional on the lenders not rolling over the debt, and the
value of defaulting are defined in a similar fashion, and we denote by γR

no roll,(λj,Bk)
and γD

the coefficients that parametrize those values. Note that γD is independent on the (λ, B)
inherited by the government, and it is restricted to be a function of the exogenous state vari-
ables s. The pricing schedule q in equation (A.28) is approximated on a grid. Specifically,
let B̃ = {B̃1, . . . , B̃NB̃

} be the set of debt levels that the government can choose. The pricing
schedule is then approximated on B̃ × Λ × Λ × Sq. Note that we allow the grid for the
exogenous state variables, Sq, to be different from the one used in the approximation of the
value function. This degree of flexibility is helpful because pricing schedules in model of
sovereign debt are highly non-linear in the state variables, while value functions tend to be
smoother.

We index the numerical solution by [Γ, q], with Γ = {[γR
roll,(λj,Bk)

, γR
no roll,(λj,Bk)

]j,k, γD} col-
lecting the coefficients that parametrize the value functions. The numerical solution is ob-
tained via value function iteration. Specifically, the algorithm is as follows:

63



Step 0: Defining the state space and the polynomials. Specify the set of values in
B, Λ, B̃. Set upper and lower bounds for the exogenous state variables (y, χ, π), and
construct individual grids for each exogenous state. Construct a tensor grid S for the
exogenous state variables, and the associated Chebyshev’s polynomials T(.). These are
used for the approximation of the value functions. Construct a tensor grid Sq for the
approximation of the pricing schedule.

Step 1: Update value functions. Start with a guess for the value and pricing functions,
(Γc, qc). For each point in B ×Λ× S , update the value functions using the definitions
in equations (A.29)-(A.31). Denote by Γu the updated guess, and by [rR

roll, rR
no roll, rD] the

distance between the initial guess and its update using the sup-norm.

Step 2: Update pricing function. For each exogenous state s in Sq, and for each
(B′, λ′, λ) ∈ B̃ ×Λ×Λ, evaluate the right hand side of equation (A.28) using (Γu, qc).
Denote by q̂u(s, B′, λ′|λ) this value, and by rQ the distance between qc and q̂u under the
sup norm. Update the pricing schedule as

qu(.) = aq̂u(.) + (1− a)qc(.) a ∈ (0, 1).

This step is carried out once every 10 iterations.

Step 3: Iteration. If max{rR
roll, rR

no roll, rD} ≤ 10−5 and rQ ≤ 10−3, stop the algorithm. If
not, set (Γu, qu) as the new guess, and repeat Step 1-2. �

Regarding the specifics of the algorithm, we set the upper and lower bound for the ex-
ogenous states to be equal to +/- 3 standard deviations of the stochastic processes. We then
select 5 equally spaced points between these bounds for the approximation of the value func-
tion. The set S contains, therefore, 125 distinct points. For the approximation of the pricing
function, instead, we consider 41 points on the y dimension, and 5 points on the χ and π

dimension. The set Sq contains, therefore, 1025 distinct points. The upper and lower bound
for B are [0, 14]. When approximating the value function, we construct B using 71 equally
spaced points in this interval. The grid for λ contains 11 equally spaced values within the
interval [1/(4 × 8), 1/(4 × 5.5)]. This interval implies a range of +/− 1.25 years around
an average observed maturity of 6.75 years, the Italian pre-crisis level. The grid for debt
choices over which the pricing schedule is defined, B̃, consists of 650 points in the [0, 14] in-
terval. The grid has 50 equally spaced points on the [0, 6) segment, 590 points on the [6, 12)
segment, and 20 points on the [12, 14] segment.

When iterating over the value and pricing functions, we compute expectations over future
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outcomes using Gauss-Hermite quadrature, with n = 5 points on each random variable. The
smoothing parameter for the updating of the pricing schedule is set at a = 0.20.

G.1 Simulations

We now explain how we simulate trajectories from the model. Let {yt, χt, πt, ξt}T
t=1 a re-

alization of length T for the exogenous variables of the model, and let (Bt, λt) be the face
value of debt and the decay parameter of the debt portfolio that the government inherited.
We assume that the government is not currently in a default. The simulation consists in
obtaining the default decision, δt, the characteristics of the new debt portfolio, (Bt+1, λt+1),
and the equilibrium price of a portfolio of type λ, qt(λ).

Given the state variables St, we first compute VR
no roll(St) and VD(yt, χt) using the numer-

ical solution Γ. If ξt ≥ πt−1 and VR
no roll(St) ≤ VD(St), the government enters the default

state and we set δt = 0. If VR
no roll(St) > VD(yt, χt) or ξt < πt−1, instead, we proceed as

follows

Step 1: For each B′ ∈ B̃ and each λ′ ∈ Λ, linearly interpolate the fundamental pricing
schedule along the s dimension to obtain q̂(st, B′, λ′|λt) and q̂(st, B′, λ′|λ′).

Step 2: Given q̂(st, B′, λ′|λt) and q̂(st, B′, λ′|λ′), compute

U(τ exp{yt} − Bt + ∆(St, B′, λ′)) + βE[V(B′, λ′, st+1)|st],

for each (B′, λ′) pair. Expectations over future values are evaluated using Gauss-
Hermite quadrature and the numerical solution Γ.

Step 3: Maximize the above expression over (B′, λ′), and let (B∗′, λ∗′) be the portfolio
that obtains the maximum. If the maximum is greater than VD(yt, χt), than set Bt+1 =

B∗′, λt+1 = λ∗′, δt = 1, and qt(λ) = q̂(st, Bt+1, λt+1|λ). Else, set δt = 0. �

This procedure for simulating the model allows us to compute endogenous variables at
every point in the state space, even if they are not in our grid. When computing summary
statistics on model simulations, we condition on periods during which the economy is not in
a default. The government reenters capital markets with a debt of zero, this implying debt
trajectories that drift up for some periods. When computing summary statistics, we drop
these periods in order to guarantee that the endogenous variables settle at their ergodic
distribution.
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H Details of the Counterfactual Experiment

This section details the counterfactual experiment of Section 5.1. First, we explain how we
use the auxiliary particle filter to extract information on the state vector given data on de-
trended real GDP, the estimated χt series, interest rate spreads and the empirical counterpart
of λ′. Second, we discuss how the retrieved state vector is used to generate the decomposi-
tion of Figure 5.

H.1 Particle Filtering

The model has five state variables St = [Bt, λt, yt, χt, πt].37 The vector Yt collects the observ-
ables for quarter t. The state-space representation is

Yt = g(St) + ηt

St = f(St−1, εt).

The first equation is the measurement equation, with ηt being a vector of iid Gaussian errors
with variance-covariance matrix equal to Σ. The second equation is the transition equation,
describing the law of motion for the model’s state variables. The vector εt collects the in-
novations to the structural shocks yt, χt and πt. The functions g(.) and f (.) are generated
using the numerical procedure described in Appendix G.

Let Yt = [Y1, . . . , Yt], and denote by p(St|Yt) the conditional distribution of the state
vector given observations up to period t. Although the conditional density of Yt given St is
known and Gaussian, there is no analytical expression for the density p(St|Yt). We use the
auxiliary particle filter to approximate this density for each t. The approximation is done via
a set of pairs {Si

t, w̃i
t}N

i=1, in the sense that

1
N

N

∑
i=1

f (Si
t)w̃

i
t

a.s.→ E[ f (St)|Yt],

and it is used to obtain the (mean) trajectory of the state vector over the sample. We refer
to Si

t as a particle and to w̃i
t as its weight. The algorithm used to approximate {p(St|Yt)}t

builds on Kitagawa (1996) and Pitt and Shephard (1999), and it goes as follows

Step 0: Initialization. Set t = 1. Initialize {Si
0, w̃i

0}N
i=1 from the ergodic distribution of

the model and set w̃i
0 = 1 ∀i.

37We can drop ξ from the state vector because we are considering paths during which a default does not
occur.
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Step 1: Prediction. For each i = 1, . . . , N, simulate a particle Si
t|t−1 given Si

t−1 from the
proposal density g(Si

t|Yt, Si
t−1) following the procedure described in Appendix G.1.

Step 2: Filtering. Assign to each particle Si
t|t−1 the particle weight

wi
t =

p(Yt|Si
t|t−1)p(St|Si

t|t−1)

g(St|Yt, Si
t|t−1)

w̃i
t−1.

Step 3: Resampling. Rescale the particles {wi
t} so that they add up to unity, and denote

these rescaled values by {w̃i
t}. Sample N values for the state vector with replacement

from {Si
t|t−1, w̃i

t}N
i=1, and denote these draws by {Si

t}i. Set w̃i
t = 1 ∀i. If t < T, set

t = t + 1 and go to Step 1. If not, stop. �

Regarding the tuning of the filter, we set N = 20000. The choice for the proposal density
g(St|Yt, Si

t|t−1) follows Bocola (2016), see its Online Appendix. The matrix Σ is diagonal. We
set the diagonal elements as follows. We compute the sample variance of the observables for
the 2008:Q1-2012:Q2 period. The variance of the measurement errors for ŷt, χ̂t, and λt+1 is
set to 1% of their sample variance. For interest rate spreads, the variance of the measurement
errors is set to 5% of the series sample variance. By choosing larger measurement errors for
the interest rate spreads series, we are implicitly asking the filter to track as close as possible
the observable shocks and the debt maturity series, while allowing for deviations between
the observed interest rate spreads and the ones implied by the model.

H.2 Counterfactual Experiment

We now discuss how we use the approximation to {p(St|Yt)}2012:Q2
t=2008:Q1 along with the struc-

tural model to generate the decomposition presented in Figure 5.

Let sprdata
t = y20,ita

t − y20,ger
t be the interest rate spread at time t, and let ˆsprmodel

t be

ˆsprmodel
t =

N

∑
i=1

gspr(Si
t)w̃

i
t,

where gspr(.) is the implicit relation between interest rate spreads and the state variables in
the model. The measurement error component in Figure 5 is defined as sprdata

t − ˆsprmodel
t .

In order to construct the fundamental and the non-fundamental components, we generate
a counterfactual spread ˆsprfund

t by simulation. We proceed as follows. Let t = 1. Set πi
1 = 0

for every i, and let Si,fund
1 be the state vector with πi

1 = 0. For each i, feed the model with
Si,fund

1 , and define si,fund
1 to be the model implied counterfactual. We define Si,fund

2 be the
updated state vector, where χi

2 and yi
2 are consistent with their values in {Si

2, w̃i
2}, πi

2 = 0,
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and the endogenous state variables are the one implied by the model’s law of motion f (.).
We then repeat this procedure for each t = 2, . . . , T.

Given {spri,fund
t }i∈N,t∈T, we next construct, for each t

ˆsprfund
t =

1
N

N

∑
i=1

spri,fund
t w̃i

t ≈ E[sprfund
t |Yt].

This is the (average) interest rate spread implied by the model under the assumption that πt

was identically zero over the 2008:Q1-2012:Q2 period, and it is the fundamental component
of interest rate spreads in Figure 5. The non-fundamental component of the spreads is then
defined as ˆsprmodel

t − ˆsprfund
t for each t.
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