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to autoregressive models.
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1 Introduction

The estimation of peer effects is fraught with difficulties that, since Manski (1993), have customarily

been divided into reflection bias, selection bias, and unobserved correlated effects (see also Brock

and Durlauf 2001, Moffitt 2001). Reflection bias refers to the fact that, if i influences j, then j also

influences i, creating a multiplier effect. The standard solution to reflection bias is to instrument.

However, because reflection bias is just a multiplier effect, inference about the presence of peer

effects is widely believed to be unaffected by reflection bias – only the magnitude of the coefficient

is. We demonstrate that a largely unknown source of bias invalidates this reasoning.

The estimation of peer effects is also affected the presence of unobserved correlated effects

within the pool from which peers are selected. This has led researchers to include fixed effects

to absorb them. We show that including selection pool fixed effects is the main contributor to

the bias we study here. The bias only disappears when each selection pool gets large enough.

The source of bias is similar to what arises with autoregressive models in short panels: introducing

fixed effects generates a bias that only disappears when T , the number of periods, gets large enough

(Nickell 1981). In time series, this problem has been successfully addressed using lagged values as

instruments (e.g., Arellano and Bond 1991, Arellano and Bover 1995, Blundell and Bond 1998).

Such instruments are not available in peer effect models because of reflection.

Selection bias arises when peers share unobserved characteristics or proclivities that affect the

outcome variables of interest. Efforts to eliminate selection bias have focused on random peer

assignments, using either natural (e.g., Sacerdote 2001) or controlled experiments (e.g., Carrell et

al. 2013, Fafchamps and Quinn 2017, Cai and Szeidl 2016). Random assignment is widely believed

to eliminate the correlation of residuals due to peer selection. We show this to be untrue: random

assignment produces a negative correlation between peer outcomes in standard tests of random

assignment with selection pool fixed effects.

This paper centers on a recently discovered source of bias in the estimation of peer effects. This

bias, which we call exclusion bias, was first mentioned by Guryan et al. (2009). It arises from the

fact that the assignment of peers is done without replacement: i cannot be his own peer. When

including selection pool fixed effects, the exclusion of i from the pool of i’s peers creates a small

sample negative relationship between i’s characteristics and that of his peers: if i is above average,
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the average of those remaining in the pool is lower than i; conversely, if i is below average, the

average of those remaining in the pool is higher than i. Hence i’s characteristics are negatively

correlated with the expected value of the remaining peers in the pool. This is true irrespective of

whether peers self-select each other or peers are randomly assigned.

Through Monte Carlo simulations and the use of basic algebra, Guryan et al. (2009) and

Angrist (2014) show how this correlation produces a negative bias in ordinary least squares (OLS)

estimates of peer effects. The purpose of this paper is to move beyond these basic observations

and offer insights into the properties, causes, and consequences of exclusion bias, all of which have

largely been ignored to date. Although exclusion bias is also present when peers are self-selected,

here we focus our analysis on randomly assigned peers.

In the first part of the paper we focus on the presence of exclusion bias in standard tests of

random peer assignment. We quantify the magnitude of the bias, derive its properties and show how

tests of random peer assignment can be corrected for exclusion bias in various settings (including

unequal group sizes and/or unequal pool sizes). Exclusion bias is also present in regressions without

fixed effects when sample size is small. Next we demonstrate how exclusion bias combines with

reflection bias to distort coefficient estimates, and we offer a general solution to the estimation

of peer effects that corrects for both sources of bias – provided that some restrictions are put on

correlated effects. We combine this new estimation method with a simple approach to conduct

hypothesis testing and obtain correct inference. We use simulations and two empirical applications

using data from published papers (Guryan et al 2009 and Fafchamps and Mo 2018) to demonstrate

the importance of our findings in practice.

This paper contributes to the literature in a number of ways. First, we derive an exact formula

for the magnitude of the exclusion bias in standard linear-in-means tests of random peer assign-

ment. Unlike top-level expressions of the bias provided for instance in Angrist (2014), all formulas

presented in this paper are expressed as functions of the core parameters driving the bias: the size

of the peer group and the size of the pool from which peers are selected. Second we derive, for

groups of size two, exact formulas for the exclusion and reflection bias in standard linear-in-means

model with or without pool fixed effects. While reflection bias tends to inflate peer effect estimates,

exclusion bias always operates in the negative direction. We identify conditions under which the

exclusion bias dominates the reflection bias, changing the sign of OLS estimates. Using simulations,
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we generalize these findings to peer groups of size greater than two. Third, we show that exclusion

bias is more severe in models that include cluster fixed effects at levels other than the selection

pool, whenever peer group membership is correlated with cluster fixed effects. In these models

exclusion bias does not disappear as the sample size tends to infinity.

Fourth, we offer several solutions for obtaining estimates of peer effects that correct for exclusion

bias. The applicability of each solution depends on the objective of the researcher and the type

of data available. To correct inference, we propose to rely on one of two methods: if appropriate,

use our formula to correct point estimates and use standard errors clustered by peer selection

pool to draw inference; or, if this is inappropriate, rely on randomization inference based on the

permutation method of Krackhardt (1988).

Fifth, we show how to obtain consistent point estimates of endogenous and exogenous peer

effects in linear-in-means models with a large variety of network structures – including non-

overlapping peer groups, partly overlapping peer groups, and arbitrary network data. This solution

is general and simple to apply and as such dominates alternative approaches proposed by Guryan

et al. (2009) and in unpublished work by Wang (2009) and Stevenson (2015a, 2015b). It does not

require instruments but relies on the assumption of zero correlated shocks between peers.1 Whether

or not this assumption is appropriate depends on the context. When it is satisfied (for instance,

when common shocks can credibly be absorbed by control variables and/or by the addition of clus-

ter fixed effects), our approach allows the consistent estimation of peer effects in situations that

are not amenable to the instrumental variable approaches proposed by Bramoulle et al. (2009) and

De Giorgi et al. (2010) and extended by Lee (2007). In particular, it can estimate peer effects in

non-overlapping groups of similar size, something that the above-mentioned approaches cannot do.

This includes: the assignment of students to dorms (e.g., Sacerdote 2001, Carrell et al. 2013) or

work groups (e.g., Carrell et al. 2016); the assignment of workers to teams (e.g., Bandiera et al.

2009); and the assignment of entrepreneurs to social groups (e.g., Fafchamps and Quinn 2017, Cai

and Szeidl 2016).

Since the assumption of zero correlated effects does not suit all settings, we identify conditions

under which two-stage least squares (2SLS) does not suffer from exclusion bias. When these con-

1It nonetheless allows for correlated shocks within selection pools – e.g., classroom fixed effects in models where
all peers are selected within the same classroom.
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ditions are satisfied, they can account for a counter-intuitive yet common finding. Many studies of

social interactions obtain positive 2SLS estimates of endogenous peer effects that are significantly

larger than OLS estimates. This is counter-intuitive: positive OLS estimates ought to be biased

upwards due to reflection bias2 (e.g., Manski 1993, Brock and Durlauf 2001, Moffitt 2001). This

paper provides a new explanation for this pattern: the negative exclusion bias that affects OLS

disappears when a valid 2SLS estimation strategy is used.

2 Testing random peer assignment

The nature of exclusion bias is best illustrated in a situation where peers are assigned at random

and there are no peer effects. In this case we would normally expect peer characteristics to be

uncorrelated across peers. Yet, because of exclusion bias, they are. To illustrate this, we begin by

demonstrating how exclusion bias affects tests of random peer assignment.

2.1 Intuition

We are interested in the properties of a data generating process in which individuals are assigned

a number of peers selected from a finite selection pool of size L. In this section we focus on non-

overlapping, mutually exclusive peer groups because it is a commonly observed form of random

peer assignment (e.g., assignment to a room, a class, a team). In Section 3.3 we demonstrate how

the analysis extends to other networks. We assume throughout that individuals from a pool only

have peers from that pool, without overlap across pools. Thus if each peer group has size K and

the number of groups in a pool is 3, then the pool size L = 3K. Similarly, if each pool has size L

and the number of pools is N , then the total sample size is N × L.

Suppose a researcher has data on peer assignment and wishes to test whether assignment is

random using an observable pre-treatment characteristic xikl of individual i in peer group k from

pool l. Random peer assignment is typically verified by testing whether β1 = 0 in a linear-in-means

model of the form:

xikl = β0 + β1x̄−ikl + δl + εikl (1)

where x̄−ikl denotes the average of i’s peers in group k (excluding i herself) and where selection

2In addition to other sources of bias such as positive assorting in peer selection and unobserved correlated effects.
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pool dummies δl control for randomization strata fixed effects. Model (1) is typically estimated

using ordinary least squares (OLS).

One example is the study of Dartmouth college freshmen by Sacerdote (2001), who exploits

the random allocation of students to roommates to study peer effects. In that study, i denotes

an individual student, l is the pool to which the student is assigned based on her stated housing

preferences (‘block’), and k is the shared room within pool l to which the student is randomly

assigned. Sacerdote tests random peer assignment by regressing freshman i’s pre-treatment test

score (e.g., SAT math score) on the average pre-treatment test score of his/her roommates and a

set of block dummies.

2.2 Formula

Researchers typically proceed as if random assignment of peers implies that the estimate of the

coefficient β1 in regression (1) should be 0. As argued by Guryan et al. (2009), this is incorrect: in

small samples or when using pool fixed effects, a mechanical negative relationship exists between

i’s characteristics and those of i’s peers prior to treatment. Given that individuals cannot be their

own peers, they are excluded from the pool from which their peers are drawn.

We now provide a formula for the exclusion bias that affects β̂1 in regression (1). The proof is

provided in Appendix A. We start by considering the case when N pools of L individuals are each

randomly partitioned into non-overlapping groups of K peers – for instance, when students in a

school cohort l are randomly assigned to a dormitory or work group k (e.g., Sacerdote 2001, Glaeser

et al. 2003, Zimmerman 2003, and Duflo and Saez 2011). Below we extend our main result to the

more general case when selection pools and peer groups differ in size. If N = 1, pool dummies δl

drop out of regression (1). We have the following Proposition:

Proposition 1: Estimates of β1 in model (1) satisfy the following properties:

Part 1 : plimN→∞[β̂1] = − (L− 1)(K − 1)

(L−K)L+ (K − 1)
< 0 for L,K fixed (2)

Part 2 : plimL→∞[β̂1] = 0 for N = 1 andK fixed (3)
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Part 3 : E
[
β̂1|N

]
< plimN→∞

[
β̂1

]
≤ 0 for L,K fixed (4)

Proof: see Appendix A.1 and Appendix A.2.

Equation (2) in Proposition 1 provides a formula for the magnitude of the exclusion bias in

tests of random peer assignment in the most common case when peers are drawn from separate

selection pools and L < N . It demonstrates that, for a sufficiently large number of pools of fixed

size L, the magnitude of the exclusion bias depends on only two key parameters: the size of peer

groups K; and the size L of the pools from which peers are drawn. More specifically we have:

1. 4|plimN→∞[β̂1]|
4L < 0: For a given peer group size K, the asymptotic exclusion bias falls as L

increases. This is similar to what happens in autoregressive models with panel fixed effects,

where the bias falls as T , the number of periods, increases.3

2. 4|plimN→∞[β̂1]|
4K > 0: For a given pool size L, the asymptotic exclusion bias is more severe with

large peer groups or, equivalently, with a smaller number of groups in each pool.4

Equation (3) extends formula (2) to the special case when all peers come from the same selection

pool and this peer selection pool equals the sample population. In this case, the exclusion bias

disappears asymptotically as L grows. A more detailed discussion is presented in Appendix A.2.

This property too is reminiscent of what happens in autoregressive regressions with fixed effects,

where the bias disappears as T increases.

Equations (2) and (3) only apply in the limit, that is, when sample size tends to infinity.

Can we say something about exclusion bias in small samples? The last part of the Proposition,

equation (4), provides an additional result, obtained using Taylor approximations and Monte Carlo

simulations. It shows that, for a given pool size L and a given number of pools N , the expectation

of the exclusion bias is more negative than its asymptotic value. In the next section, we illustrate

this with a simulation analysis. We also confirm that the expected bias converges to its asymptotic

3Proof: Since (L−1)(K−1)
(L−K)L+(K−1)

= (K−1)
L−K
L−1

L+(K−1)
, the derivative only depends on how the first term in the denominator

varies with L: if it increases with L, the absolute value of the bias falls. It is easy to see that L−K
L−1

increases with L
since L > K by construction. Hence the result. QED.

4Proof: Since (L−1)(K−1)
(L−K)L+(K−1)

= L−1
L−K
K−1

L+1
, the derivative only depends on how the first term in the denominator

varies with K: if it falls with K, the absolute value of the bias increases. We have
∂ L−K

K−1

∂K
= − L−1

(K−1)2
< 0 since both

L and K are larger than 1 by construction. Hence the result. QED.
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value (2) as the sample size grows larger, keeping the sizes of selection pools L and peer groups

K constant. A similar result applies to the situation where N = 1, in which case E
[
β̂1|L

]
<

plimL→∞

[
β̂1

]
≤ 0 for N,K fixed. When the number of peer groups is small, the magnitude of

the exclusion bias can be large even though L is large, something we illustrate in the next section

as well.

So far we have assumed that all selection pools are of equal size L and groups of equal size K. If

selection pools vary in size, it can be shown (and confirmed through simulations) that the plimN→∞

of the exclusion bias for a given group size K is a weighted average of the biases associated with

the different pool sizes:

plimN→∞

[
β̂FE1

]
=

∑N
i=1 Li plimN→∞

[
β̂FE1 |Li

]
∑N

i=1 Li
(5)

where Li denotes the size of selection pool l and, as before, N is the total number of selection pools.

Similarly, given a pool size L, if peer groups differ in size Kk it can be shown that exclusion bias

is a weighted average of the bias associated with the different Kk. That is:

plimN→∞

[
β̂FE1

]
=

∑S
i=1Kk plimN→∞

[
β̂FE1 |Kk

]
∑S

i=1Kk

(6)

where Kk denotes the size of the peer group k and S is the total number of peer groups within

each selection pool.

Proposition 1 demonstrates that exclusion bias is conceptually different from the attenuation

bias associated with classical measurement error (CME). First, it is not driven by measurement

error – i.e., it arises even in the absence of measurement error. Secondly, it behaves differently from

CME. Classical measurement bias is multiplicative in β1. Consequently, its sign and magnitude

depends on the true β1. In particular, CME does not bias β̂1 if the true β1 = 0. In contrast,

exclusion bias is additive, always negative, and does not disappear when the true β1 is zero. This

makes exclusion bias a more serious adversary in terms of inference: by ignoring exclusion bias, a

researcher can wrongly conclude to the presence of (negative) assorting when β1 = 0; or conclude

that peer assignment is random when in fact the true β1 > 0 and there is positive assorting.
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2.3 Simulation results

Results from a Monte Carlo simulation are presented in Table 1 to illustrate the magnitude of the

exclusion bias in random peer assignment. Simulations vary in pool size L and peer group size K

while keeping an integer number of groups L/K. For each simulation we generate a random sample

of N ×L = 1000 observations. Each observation is assigned one realization of a standard normally

distributed i.i.d. characteristic xi ∼ N(0, 1). The N × L observations are then randomly assigned

to pools of L individuals each, and subsequently randomly assigned to a group of size K within

each pool. A pool-specific shock is added to simulate differences across pools δl.

We repeat this process 1000 times for a particular vector {K,L} and for each generated sample

we estimate regression (1) and collect the estimated β̂1. The average β̂1 for each vector {K,L}

is summarized in Table 1. For comparison purposes, we also report the predicted plimN→∞[β̂1]

derived in Proposition 1.1. Results verify Proposition 1.1: the average bias over 1000 replications is

reasonably close to its predicted asymptotic value; it increases in K; and decreases in L. Simulated

values differ slightly from plimN→∞[β̂1] because of the sample size N ×L = 1000 is not quite large

enough to converge to their asymptotic value for particular values of L and K. In Table 2 below

we illustrate this point more clearly.

Table 1 also shows the proportion of artificially generated samples for which we falsely reject

the null hypothesis that β1 = 0 at the 1%, 5% and 10% significance levels. Results indicate that

random assignment is rejected in a surprisingly large fraction of simulations, especially when K is

large relative to L. To illustrate this graphically for one particular example (L = 20 and K = 5),

we plot in Figure 1 the rate at which OLS rejects the null hypothesis that β1 = 0. If the test

is unbiased, the rejection rate should lie along the 45 degree line. This is clearly not what we

observe: the rejection rate is well above the 45 degree line, confirming that testing whether β1 = 0

in regression (1) over-rejects the null of random assignment in a substantial proportion of cases.

In other words, that test is strongly biased, and the magnitude of the bias in large samples is well

predicted by formula (2).

Finally, simulation results presented in Table 2 show for a given pool size L = 50 and separately

for K = 5 and K = 10, what happens to the exclusion bias when N increases. The results confirm

that the bias is larger in small samples and that it converges to the value predicted by (2) as N
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increases (predicted values for K = 5 and K = 10 are shown in, respectively, the middle and

bottom panel of column 2 in Table 1).

2.4 Inference

Guryan et al (2009), Wang (2009) and Stevenson (2015a, 2015b) have already proposed alternative

methods to test the null hypothesis of random peer assignment. We discuss these methods and

their limitations in some detail in Appendix B. In particular, the method proposed by Guryan

et al (2009), henceforth GKN (described in Appendix B.1), uses the average of the selection pool

as control variable to eliminate exclusion bias. While the method is simple to implement, it only

identifies the parameter of interest β1 if there is sample variation in the size of peer selection pools; if

every selection pool has the same number of individuals (which is common in practice), the model is

strictly unidentified. By extension, limited variation in pool size leads to quasi-underidentification.

Secondly, the GKN method requires precise knowledge of each peer selection pool. Such knowledge

is not always available, as for instance arises when peers form arbitrary social networks. We offer

instead two simple, and more generally applicable ways of testing random peer assignment.

The idea behind the first method is to circumvent GKN’s identification problem by netting

out the asymptotic exclusion bias using the results from Proposition 1, rather than adding one

additional parameter to estimate. Specifically, we use formula (2) – or its extension to cases of

varying group and pool sizes that is provided above – to transform the dependent variable in model

(1) so as to obtain a consistent point estimate of the true β1 under the null. To this effect, we

apply OLS to estimate:

x̃ikl = β0 + β1x̄−ikl + δl + εikl (7)

where x̃ikl ≡ xikl − plimN→∞[β̂1]x̄−ikl with plimN→∞[β̂1] given by formula (2).5 Random peer

assignment is verified by testing whether β̂1 = 0 in model (7) using OLS standard errors clustered

at the pool level. As illustrated by simulation results presented in Figure 2, only when standard

errors are clustered by selection pool does the method yield correct inference. We should point out

that regression model (7) does not yield a consistent estimate of β1 when the true β1 6= 0 – more

5Under the null of β1 = 0, this transformed model is obtained as follows: xikl = β0 +
(
β1 + plimN→∞[β̂1]

)
x̄−ikl+

δl + εikl ⇔ xikl − plimN→∞[β̂1]x̄ikl = β0 + β1x̄−ikl + δl + εikl. It immediately follows that plimN→∞[β̃1] = β1 where
β̃1 denotes the estimate obtained from estimating (7).

10



about this in Section 3.6

The above method only works when formula (2) can be calculated. It does not apply to partially

overlapping groups, or arbitrary network data. In such cases randomization inference can be used

instead (e.g., Fisher 1925). The idea is to simulate, using the data at hand, the distribution of β̂1

under the null hypothesis of random peer assignment.7 The application of this idea to networks

goes back to Krackhardt (1988). It is more general and simpler to use than the method proposed

by Athey et al. (2015), which re-randomizes treatments across peers.

We illustrate how the method works with mutually exclusive groups of different sizes. Imagine

that the researcher has observational data xikl partitioned in groups of varying size Ki within pools

of size Li. The first four columns of Table 3 gives an example of such data structure. We wish to

test random assignment within pools using regression (1). We start by estimating the model on the

data to obtain the OLS estimate of β̂1. We wish to know how likely it is to obtain value β̂1 under

the null of random assignment within pools. To this effect, we simulate the distribution of β̂1 under

the null. This is accomplished by keeping individuals within their selection pool but reassigning

them to counterfactual groups. This is illustrated in column 5 of Table 3. For each reassignment we

estimate regression (1) and obtain a counterfactual realization of β̂s1 for simulation sample s under

the null. By repeating this process a large enough number of times, we obtain an approximation of

the distribution of β̂1 under the null. The mean of the distribution of β̂s1 is the average bias under

the null. We then compare our β̂1 estimate to the distribution of β̂s1. To obtain the p-value of the

test of random peer assignment, we proceed in the same way as in other bootstrapping procedures,

e.g., by taking the proportion of β̂s1 that are either above the absolute value of β̂1 or below minus

the absolute value of β̂1.8

To visualize the performance of this procedure, we generate artificial samples of 1000 observa-

tions for three values of K = {2, 5, 10}. As before, we set the size of each pool L = 20 and we posit

εik ∼ N(0, 1). Figure 3 shows the distribution of 1000 simulated β̂s1 under the null of random peer

6It also does not work when other regressors are included. If the researcher wishes to add regressors wikl when
testing randomized assignment (e.g., to control for stratification variables), it is then necessary to first partial out
wikl from xikl and x̄−ikl. Practically, this means doing the following: (1) regress xikl on wikl and keep the residuals,
which we denote as ûikt; (2) regress x̄−ikl on w−ikl (the leave-out mean of wikl for peers) and keep the residuals,
which we denote as v̂−ikl; and (3) construct ˜̂uikt ≡ ûikt − ρv̂−ikl; and (4) regress ˜̂uikt on v̂−ikl.

7Permutation methods can also approximate the distribution of β̂1 under more complicated random assignment
processes, such as multi-level stratification.

8Note that the simulated distribution of β̂s1 need not be symmetric.
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assignment for K = {2, 5, 10}. The histograms are centered on the plim of β̂1 under the null that

were shown in Table 1, not around β1 = 0. The permutation method corrects p-values by taking

this distributional shift into consideration when calculating the probability of observing β̂1 under

the null. Figure 4 illustrates, for one particular example (i.e., N = 1000, L = 20 and K = 5), that

the permutation method yields correct inference.

2.5 Cluster fixed effects

So far we have focused on the case when FEs are added at the level of the peer selection pool,

which is appropriate for typical tests of random peer assignment. Before moving to the estimation

of endogenous peer effects in Section 3, we discuss the implication of not including such fixed effects

(FE), or of including cluster FEs at a more aggregated level than the selection pool. Researchers

typically add cluster fixed effects to a regression to soak up unobserved common shocks correlated

with regressors of interest. As a result, estimates obtained with fixed effects are regarded as more

conservative/reliable than those without. In this section we show that this reasoning does not apply

in the presence of exclusion bias: when testing for random peer assignment, adding cluster fixed

effects increases the magnitude of the bias.9

Some tests of random assignment do not include any cluster fixed effect – e.g., because the

researcher does not observe the level at which peer selection occurs and cannot control for it. Other

studies include FEs at levels other than selection pools in an effort to control for unobservables. Of

particular concern is the presence of common shocks that generate a positive correlation between

peers even in the presence of random assignment. Since these shocks need not occur at the level of

the selection pool, it is not uncommon for researchers to estimate models that include FEs other

than for selection pools.

To demonstrate what cluster fixed effects do to exclusion bias, we start by comparing two

estimators of β1 in model (1): β̂POLS1 obtained using pooled OLS without any δl fixed effects; and

β̂FE1 obtained by estimating equation (1) with pool fixed effects δl. Table 4 simulates what happens

for different values of N,L and K. In each simulation, peers are randomly assigned within selection

pools of size L = 50 and δl = 0 for all l. The true value of β1 in the data generation process (DGP)

is thus 0. The first and the last column of each panel report the simulated averages of β̂FE1 and

9This finding is again reminiscent of what happens when adding fixed effects to an autoregressive model.
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β̂POLS1 . We see that adding pool FEs induces a dramatic increase in exclusion bias. For instance,

with N = 500 and K = 10, the average β̂POLS1 = −0.04 while the average β̂FE1 = −0.25. We also

include a third column in which model (1) is estimated with cluster FEs δc at a level of aggregation

larger than the selection pool, i.e., with C = 4L. The resulting estimator is denoted β̂CL1 . We see

that on average β̂CL1 suffers less exclusion bias than β̂FE1 but more than β̂POLS1 .

The simulation results presented in Table 4 also illustrate what happens to exclusion bias as we

increase sample size. As noted before, exclusion bias tends to be largest in small samples. When

the sample size N increases, β̂FE1 converges to the value given in formula (2) in Proposition 1,

β̂POLS1 converges to zero and β̂CL1 converges to a value in between the two. These patterns are not

an artifact of a particular choice of parameter vector. They are general results, something we prove

in Appendix A.4 and summarize in the following proposition:

Proposition 2 Consider a population of N individuals indexed by i, divided into selection

pools l of size L, and randomly partitioned into groups of size K within their pool. Each individual

is assigned an outcome xikl potentially subject to a pool fixed effect but devoid of group fixed effect.

Let Ω denote a finite, non-overlapping partition of the selection pools such that each cluster in Ω

contains at least one pool, no two clusters contain the same pool, and the set Ω contains at least two

clusters. Let δc = 1 if an observation belongs to cluster c in Ω, and zero otherwise. Define three

estimators β̂POLS1 , β̂CL1 , and β̂FE1 obtained from the following three OLS regressions, respectively:

xikl = β0 + β1x̄−ikl + εikl (8)

xikl = β0 + β1x̄−ikl + δc + εikl (9)

xikl = β0 + β1x̄−ikl + δl + εikl (10)

Then:

plim[β̂FE1 ] < plim[β̂CL1 ] < plim[β̂POLS1 ]

where plim[β̂FE1 ] is given by formula (2) in Proposition 1. Furthermore plim[β̂POLS1 ] = 0 if δl =

δc = 0 for all l, c.

Proof: see Appendix A.4.

The intuition behind the proof is as follows. The pooled OLS estimator is a weighted average
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of the FE (within) estimator and the between estimator. The pool-FE estimator captures the

extent to which variation in individual outcomes within a pool is explained by variation in peer

outcomes within that pool. This correlation is affected by exclusion bias, which is always negative.

The between group estimator, in contrast, measures the correlation between average individual

outcomes and average peer outcomes across pools. This correlation is unaffected by exclusion bias

and is naturally positive, even when δl = δc = 0 for all l, c.10 Since β̂POLS1 combines the negative

exclusion bias contained in β̂FE1 with the positive correlation across pools of the between estimator,

β̂POLS1 is less negative than β̂FE1 . The same reasoning applies to β̂CL1 except that, by combining

multiple selection pools within a cluster, β̂CL1 captures part of the positive correlation across pools

that is inherent to the between estimator. This explains the result. It also implies that, when

δl = δc = 0 for all l, c, omitting cluster and pool FEs when testing random assignment leads to an

asymptotic elimination of the exclusion bias under the null.

3 Estimating endogenous peer effects

In this section we allow the true β1 to differ from 0 and we demonstrate how exclusion bias and

reflection bias interact to jointly affect the estimation of endogenous peer effects. We also present

an estimation method that corrects point estimates for both exclusion bias and reflection bias and

does not require the presence of instruments. It does, however, rule out group correlated effects

that are not absorbed by the inclusion of selection pool fixed effects.

Methods exist that, under certain conditions, allow peer effects to be estimated even in the

presence of correlated effects – e.g., common shocks. One method applies to models of the form

yi = β0 + β1giy + γxi + εi where gi is the row of the network adjacency matrix identifying the

neighbors of i and xi is a vector of variables affecting only yi. Correlated effects are allowed, e.g.,

Cov(ui, uj) = ω if i, j are neighbors and 0 otherwise. In this model, the peer effect coefficient β1

can be estimated by using gix as instrument for giy. This approach has long been criticized for

requiring that yi not be directly affected by gix, i.e., it rules out exogenous peer effects in x.

Bramoulle et al. (2009) estimate a more general model of the form yi = β0+β1giy+γxi+θgix+εi

by using the x values of the neighbors of the neighbors of i as instrument for giy.11 While this

10When all peer groups are of equal size K, the average individual outcome in each pool is also the average of peer
outcomes in that pool, and the correlation equals 1.

11The method can be extended to include further network lags as instruments. See for instance, Lee et al. (2012),
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approach allows the joint estimation of endogenous and exogenous peer effects giy and gix, it does

not help in situations where individuals are partitioned into mutually exclusive groups. In this case

the network matrix is block-diagonal, there are no neighbors of neighbors, and thus no neighbors

of neighbors. Identification of β1 through this method also requires that the set of neighbors of

neighbors be significantly smaller than the rest of the selection pool. In small enough selection pools

(e.g., a classroom), this is often not the case – in which case identification is, de facto, infeasible.

We know of only one paper that offers a method for estimating peer effects in mutually exclusive

groups with correlated within-group effects, namely, Lee (2007). The approach suggested by the

author is to rely on variation in the size of groups to distinguish peer effects (which operate like

multipliers and thus are stronger in large groups) from correlated effects (which are constant with

group size). Successful identification requires having sufficient variation in the size of peer groups.

The method we propose here allows peer groups to be of equal size – but rules out correlated

effects within peer groups. It does, however, allow correlation within selection pools. While it

applies to any network structure, its practical usefulness is highest when the above cited methods

fail, e.g., for non-overlapping peer groups of equal (or similar) size, or when Bramoulle et al.

(2009) instruments in principle exist but are too weak to achieve identification. Whether or not

it is reasonable to assume away within-group correlated effects depends on the context. In the

empirical section of this paper we offer two illustrations in which the assumption is defensible given

the controlled nature of the experimental or quasi-experimental environment.

Formally, we consider a data generating process similar to that of Moffit (2001). To make the

demonstration easier to follow we start by ignoring control variables and contextual effects. In

Section 4.1 we extend the model to include regressors other than endogenous peer effects. We

begin with a simple example in which group size K = 2. For this example, the exact value of the

reflection and exclusion biases can be derived algebraically if we assume away unobserved correlated

effects within peer groups. We then generalize the approach to any group size and we show how

non-linear least squares/GMM can be used to obtain an estimate of β1 that is free of both reflection

and exclusion bias.

Appendix 5 for examples.
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3.1 Model with group size K = 2

We start with a model where exclusion bias is absent so as to derive a precise formula of the

reflection bias in our model. This formula allows us to conceptually distinguish the reflection bias

from exclusion bias later on. For simplicity, we assume homoskedastic i.i.d. errors. We have

E[εikl] = 0, E[ε2ikl] = σ2
ε , E[εiklεjml] = 0 for all i 6= j and all k 6= m, and E[εiklεjkl] = 0 for all k and

all i 6= j. The E[εiklεjkl] = 0 equality is far from innocuous since it assumes away the presence of

what Manski (1993) calls correlated effects, that is, correlated εikl between individuals belonging

to the same peer group.12 With this assumption, correlation in outcomes between members of the

same peer group constitutes evidence of endogenous peer effects. The can be used for identification

purposes as follows.

Following Moffit (2001), the estimating equations for any two individuals 1 and 2 in the same

group can be written as:

y1 = β0 + β1y2 + ε1

y2 = β0 + β1y1 + ε2

where 0 < β1 < 1, E[ε1] = E[ε2] = 0 and E[ε2] = σ2
ε . We estimate:

y1 = a+ by2 + v1 (11)

by OLS. Note that selection pool fixed effects are omitted. This means that exclusion bias disap-

pears as sample size increases. Using part 2 of Proposition 1, we can show that the magnitude of

the reflection bias is given by the following proposition:

Proposition 3: [Proof in Appendix A.5]: If E[ε1ε2] = 0 (i.e., there are no correlated effects),

the bias in model (11) is given by:

plimN→∞ [̂bOLS ] =
2β1

1 + β2
1

(12)

An immediate corollary is that plimN→∞ [̂bOLS ] = 0 iff β1 = 0, implying that the existence of

12As we show later, the model can easily accommodate FEs to capture correlated effects at the level of a cluster
or selection pool.
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peer effects can be investigated by testing whether b = 0. Moreover, formula (12) can be solved to

recover an estimate of β1 from the naive b̂, yielding:13

β̂1 =
1−

√
1− b̂2

b̂
(13)

This demonstrates that identification can be achieved solely from the assumption of independence

of ε1 and ε2, without the need for instrument.

As shown in Part 1 of Proposition 1, exclusion bias arises when selection pool fixed effects are

added to model (11) and the size L of each selection pool is fixed. The estimated model is now

y1 = a+ by2 + δl + v1, which we can rewrite in deviation from the pool mean to eliminate the fixed

effect δl:

ÿ1 = a+ bÿ2 + ε̈1 (14)

where the notation z̈ikl ≡ z − z̄l where z̄l is the sample mean of z in pool l. As demonstrated in

part 1 of Proposition 1, for any i.i.d. variable z, there exists a sample correlation between any

demeaned zikl and the demeaned average of a set of peers zikl in the same pool. This correlation

is given by formula (2). This formula, with K = 2 also applies to demeaned errors ε̈ikl and ε̈jkl:

ρ ≡ plimN→∞SampleCorr(ε̈iklε̈jkl) = − L− 1

(L− 2)L+ 1
= − 1

L− 1
(15)

Integrating this result into the algebra leading to Proposition 3, we obtain a formula for the size of

the combined reflection and exclusion bias as follows:

Proposition 4: [Proof in Appendix A.6] The bias in model (14) is given by:

plimN→∞ [̂bFE ] =
2β1 + (1 + β2

1)ρ

1 + β2
1 + 2β1ρ

(16)

where ρ = − 1
L−1 .

13The other root can be ignored because it is always > 1 and peer effects in a linear-in-means model cannot exceed
1. Furthermore, in the simple model presented here, the maximum value that b̂ can take is 1, which arises when
y1 and y2 are perfectly positively correlated. Similarly, the smallest value it can take is -1, which arises if they are
perfectly negatively correlated. It is thus impossible for the absolute value of b̂ to exceed 1, which guarantees the
generality of the formula.
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As for Proposition 3, we can take roots of formula (16) to obtain a consistent estimate β̂1 as: 14

β̂FE1 =
1− b̂ρ−

√
1 + b̂2ρ2 − b̂2 − ρ2

b̂− ρ
(17)

We present in Table 5 calculations based on formula (17) and simulation of b̂FE over 100 replications

to illustrate the magnitude of the reflection and exclusion bias for various values of β1 and for

N = 500, L = 20 and K = 2.15 We see that, when β1 is zero or small, the total predicted bias

is dominated by the exclusion bias and is thus negative. As β1 increases, the reflection bias takes

over and leads to coefficient estimates that over-estimate the true β1. What is striking is that

the combination of reflection bias and exclusion bias produces coefficient estimates that diverge

dramatically from the true β1, sometimes under-estimating it and sometimes over-estimating it.

The direction of the bias nonetheless has a clear pattern that can be summarized as follows:

1. If β1 = 0, then plimN→∞ [̂bFE ] = ρ < 0 which is the size of the exclusion bias.

2. It is possible for plimN→∞ [̂bFE ] to be negative even though β1 > 0. This arises when ρ is

large in absolute value, for instance if L = 20 and K = 2 as in Table 5.

3. Since the exclusion bias is always negative, b̂FE > 0 can only arise if β1 > 0. It follows that,

in this model, a positive b̂FE unambiguously indicates the presence of peer effects.

While formula (17) can be used to obtain a corrected estimate of the peer effect coefficient β1, there

remains the important question of inference: how can we test whether β̂FE1 is significantly different

from 0. In order to obtain correct inference, we need to correct p-values for the standard test of

significance that β1 = 0. The solution is to use one of the methods discussed in Section 2.4 since

the null hypothesis is the same.

To illustrate, we present the results of a Monte Carlo study in Table 6. We create random

samples of N × L =10,000 observations following the data generating process described above but

14There are two roots, but one of them is larger than one and can thus be ignored as a realistic value for β1. Indeed,
in a linear-in-means such as the one here, β1 > 1 implies an explosive solution for the y1 and y2 system of equation,
i.e., y1 = ∞ = y2 – or possibly a corner solution (not modeled here). As long as the researcher observes interior
values of y, we can ignore the β1 > 1 root as plausible value.

15We use a large sample size of N × L= 10, 000 to show convergence of the simulation results to the predicted
values. Given that each replication takes a long time for such a large sample, we restrict the number of replications
to 100 in this exercise, which is sufficient to illustrate this point for samples of size N × L= 10, 000.
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for different values of β1. We then use randomization inference to obtain correct p-values using 500

permutation replications for each regression. We set K = 2, L = 20 and N = 500. In columns 2 and

3 we report the mean simulated b̂FE and the corresponding p-value as reported by OLS. Reported

p-values are for two-sided tests. In column 4 we report the corrected estimate β̂FE1 obtained using

formula (17). The last column presents the corrected p-values obtained from 500 bootstrapping

replication of the null hypothesis of no peer effect. Results confirm that b̂FE is dramatically biased,

sometimes yielding a significantly negative estimate when the true β1 is close to zero, sometimes

yielding an inflated estimate when reflection bias dominates. Corrected estimates β̂FE1 do not

display this pattern: they are centered on the true β1. We also note that using corrected p-values

eliminates the risk of incorrectly concluding that β1 < 0. When the true value of β1 is positive

but small, we are unable to reject that β1 = 0, an indication that power is not always sufficient

to identify the presence of peer effects. As a whole, however, the method produces a massive

improvement in inference.

3.2 General group model

In the case where K = 2 we were able to derive an algebraic formula to correct the estimate of β1.

Obtaining a closed-form formula becomes difficult if not impossible when we generalize to a larger

group size K or to groups of varying size. But provided that we are willing to assume i.i.d. errors

conditional on selection pool fixed effects, it remains possible to obtain an estimate of the true β1

and to bootstrap its p-value.

To illustrate, consider a general structural model of the form:

Yi = βGiY + γXi + δGiX + εi (18)

where Y is the vector of all Yi, vector Gi identifies all the peers of individual i, Xi is a vector

of individual characteristics that affect Yi directly, and X is the matrix of all Xi. Parameter γ

captures the effect of the characteristics of individual i on Yi, β captures endogenous peer effects

as before, and δ captures so-called exogenous peer effects, that is, the effect of the characteristics

of peers that affect i directly without the need to influence the behavior of the peers. Matrix G is

the matrix of all Gi vectors. In the linear-in-means model (1), Gi is a vector of 0’s and 1/(K − 1)
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so that GiY is equal to ȳ−ikl. But this can be generalized to other influence models by varying Gi,

for instance by letting G be a network adjacency matrix (see below).

Regression model (18) can be written in matrix form as:

Y = βGY + γX + δGX + ε

Simple algebra yields the following reduced-form model:

Y = (I − βG)−1(γX + δGX + ε)

from which we obtain:

E[Y Y ′] = E[(I − βG)−1(γX + δGX + ε) (γX + δGX + ε)′(I − βG′)−1]

= (I − βG)−1E[(γX + δGX)(γX + δGX)′](I − βG′)−1

+(I − βG)−1E[ε ε′](I − βG′)−1 (19)

where we have assumed that the G matrix is non-stochastic. As in Liu (2017), the covariance

matrix of the X’s is identified from the data. If the ε’s are i.i.d, we have E[ε ε′] = σ2
ε I as before.

With this assumption, expression (19) can be used as starting point for estimation.

With exclusion bias – e.g., if all variables in the above model are expressed in deviation from

their pool mean – E[ε̈ ε̈′] 6= σ2
ε I. Formula (15) can then be used to construct the asymptotic

covariance matrix of the ε̈’s.

To illustrate, suppose that all observations are arranged so that the observations from the

first pool come first, then the observations from the second pool, etc. In this case E[ε̈ ε̈′] is a

block-diagonal matrix:

E[ε̈ ε̈′] =



B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 B


(20)
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where each block B is an L× L matrix of the form:

B =


E[ε̈21] E[ε̈1ε̈2] ...

E[ε̈2ε̈1] E[ε̈22] ...

... ... ...

 (21)

From equation (15), we know that, for two individuals i and j in the same selection pool of size L,

we have E[ε̈iε̈j ] = ρσ2
ε with ρ = − 1

L−1 for i 6= j. Hence B can be rewritten as:

B = σ2
ε


1 ρ ...

ρ 1 ...

... ... ...

 ≡ σ2
εA (22)

What is important is that the asymptotic value of ρ is known and need not be estimated.

Equation (19), combined with (20) and (22), provides a characterization of the data generating

process that can be used to estimate structural parameters β, γ, δ and σ2. Identification is achieved

from the assumption that, conditional on pool fixed effects, errors εikl are independent across

observations from the same peer group. With this assumption, instruments are not required in

spite of the presence of reflection bias.16 Inference can be conducted in the same way as before,

that is, by simulating the distribution of estimated coefficients under the null hypothesis of no peer

effects.

One approach to estimate (19) is to rely on the method of moments to choose the parameter β

that provides the best fit to the observed data E[Y Y ′]. This is achieved using a search algorithm.

For each guess β(n) that the algorithm makes about β, we solve for the corresponding values of γ

and δ by calculating Y − β(n)GY and regressing it on X and GX to obtain estimates of γ̂(n) and

δ̂(n). This process also yields an estimate of the variance of errors σ̂
2(n)
ε . Using β(n), γ̂(n), δ̂(n) and

σ̂
2(n)
ε we compute the value of each element of the right hand side of equation (19). Subtracting each

value from the corresponding yiyj , taking squares, and summing over all ij pairs yields the value

of the ‘fit’ for guess β(n). We then search over possible values of β to achieve the best fit/lowest

16The observation that the cross product of the errors can be used to estimate a network or spatial autocorrelation
parameter has been made before, e.g., in Kelijian and Prucha (1999) for spatial models. But, to our knowledge, it
has not been proposed as a way of overcoming the issue of reflection bias, as done here.
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sum of squared residuals in equation (19).

To illustrate the effectiveness of this approach, we estimate model (18) on simulated data. The

average results from 1000 Monte Carlo replications are shown in Table 7. We keep the number of

observations in each sample constant at N = 1000 but we vary K and β1 across simulation exercises.

Pool fixed effects are included throughout. In the first two rows we report the uncorrected β̂1
OLS

and its p-value obtained by regressing Yi on GiY and pool dummies. Results confirm that the

uncorrected β̂1
OLS

and the inference based on it is biased. As before this bias comes from two

sources: reflection and exclusion bias. When β1 is small, the exclusion bias dominates and the

naive β̂1
OLS

underestimates the true β1. On average, β̂1
OLS

is more likely to overestimate the true

β1 when exclusion bias is small, which occurs when L is large. The third row shows the proportion

of times the simulated naive p-value is smaller or equal to 0.05. In the third row of column 1 and

column 4 (where β1 = 0), this statistic essentially gives us the likelihood of making a type II error,

that is, the probability of rejecting the null hypothesis when it is in fact true. If the estimator is

unbiased then we would expect this statistic to be close to 5%. In the third row of columns 2-3

and columns 5-6 (where β1 > 0), this statistic is indicative of the statistical power of the test,

that is, the probability of rejecting the null hypothesis when it is not true. If the estimator is

unbiased then we would expect this statistic to be close to 100%. Combined these result show that

the probability of making a type II error and the statistical power of the test are very high for

the naive estimator, particularly for K = 5. In the fourth row in Table 7, we report the average

of β̂1
Ref

estimates corrected for reflection bias but ignoring the exclusion bias. This is estimated

using model (19) with E[ε ε′] = σ2
ε I. In all cases, the average estimate is closer to the true β1, but

the failure to eliminate exclusion bias results in an underestimation of the true β1 on average. The

fifth row reports the average β̂1
Corr

derived from model (19) with E[ε̈ ε̈′] given by (20). The β̂1
Corr

is centered around its true value in all cases. The sixth row in Table 7 shows the corrected p-values

obtained using the permutation method described earlier. We see that the method yields unbiased

inference. Moreover, the last row in the first column shows that the permutation-based inference

method has relatively high statistical power and a low probability of rejecting the null hypothesis

when it is in fact true.

In the form presented here, the method does not accommodate heteroskedastic ε errors. Bor-

rowing from Liu (2017), it may nonetheless be possible to generalize the approach to heteroskedastic
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errors by relying on a root estimator instead. This would require considering a moment condition

of the form E[Y GY ′] and using the consistent root of this equation to estimate peer effects when

instruments are not available. The advantage of using this approach is that E[εGε′] = 0 even if

the errors are heteroskedastic (continuing to rule out correlated effects within peers). Thus the

estimator is heteroskedasticity robust. Using this approach while correcting for exclusion bias is

left for future research. Thanks to an anonymous referee for making this suggestion.

3.3 Network data

Until now we have considered situations in which peers form mutually exclusive groups, i.e., such

that if i and j are peers and j and k are peers, then i and k are peers as well. Exclusion bias

also arises when peers form more general networks, i.e., such that i and k need not be peers. To

illustrate this, let us consider the canonical case examined in Section 3.2 and assume that individuals

in selection pool l are randomly assigned peers within that pool. The only difference with Section

3.2 is that we no longer restrict attention to mutually exclusive peer groups but allow links between

peers to take an arbitrary (including directed or undirected) network shape within each pool l.

Partially overlapping groups and mutually exclusive groups of unequal size can be handled in the

same manner.

The approach developed to estimate general group models with uncorrelated errors can be

applied to network data virtually unchanged. Equation (19) remains the same. Formally let

gijl = 1 if i and j in cluster l are peers, and 0 otherwise. We follow convention and set gii = 0

always. The network matrix in cluster l is written Gl = [gijl] and G is a block diagonal matrix of

all Gl matrices.

To estimate network models in levels, we use G directly. If the model we wish to estimate is

linear-in-means, let nil denote the number of peers (or degree) or i. The value of nil typically differs

across individuals. Let us define vector ĝil as a vector formed by dividing i’s row of Gl by nil, i.e.:

ĝil = [
gi1l
nil

, ...,
giLl
nil

]

where, as before, L denotes the size of the selection pool.17 The average outcome of i’s peers can

17To illustrate, let L = 4 and assume that individual 1 has individuals 2 and 4 as peers. Then ĝil = [0, 1
2
, 0, 1

2
].
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then be written as ĝilyl where yl is the vector of all outcomes in selection pool l. The peer effect

model that we aim to estimate is:

yikl = β0 + β1ĝilyl + δl + εikl (23)

We define Ĝl as the Ll ×Ll matrix obtained by stacking all ĝil in pool l. Similarly define Ĝ as the

block-diagonal matrix of all Ĝl matrices. The linear-in-means network autoregressive model can

thus be written in matrix form as:

Y = βĜY + γX + δĜX + ε (24)

As in the previous section, equation (19) combined with (15), (20) and (22) can be used to

estimate structural parameters β, γ, δ and σ2. The only difference is that G is now a network

matrix rather than a block-diagonal matrix. It is intuitively clear that exclusion bias affects model

(23) as well: individual i is still excluded from the selection pool of its own peers, and this continues

to generate a mechanical negative correlation between i’s outcome and that of its peers. The same

asymptotic formula is used to substitute for parameter ρ as before. Pre- and post-multiplying

matrix E[ε̈ ε̈′] by (I − βG)−1 in expression (19) picks the relevant off-diagonal elements of B to

construct the needed correction for exclusion bias. Estimation proceeds using the same iterative

algorithm as described above.

We illustrate this approach for network data in Table 8. We generate each adjacency matrix Gl

as a Poisson random network with linking probability p. In other words, p is the probability that

a link exists between any two individuals i and j within the same pool. When p = 0.1 and L = 20,

each individual has two peers on average; when p = 0.25 (0.5) each individual has on average 5

(10) peers, respectively. Table 8 provides simulation results and shows how our suggested method

of moments correction method is able to correct the estimate of β1 to be close to the true β1.

The permutation method can be adapted to correct p-values for this case as well. To recall, we

want to simulate the counterfactual distribution of β̂1 under the null hypothesis of zero peer effects.

In contrast with Section 3, peers are no longer selected by randomly partitioning individuals into

groups within pools, but rather by randomly assigning peers within pools. In practice, we keep the
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network matrices in each selection pool unchanged but we change who is linked to whom. This

approach is known in the statistical sociology literature as Quadratic Assignment Procedure or

QAP (e.g., Krackhardt 1988).

To implement this approach within pool l, we scramble matrix Gl in the following way. Say the

original ordering individual indices in l is {1, ..., i, ..., j, ..., L}. We generate a random reordering

(k) of these indices, e.g., {j, ..., 1, ..., L, ..., i}. We then reorganize the elements of Gl according to

this reordering to obtain a counter-factual network matrix G
(k)
l . To illustrate, imagine that i has

been mapped into k and j into m. Then element gijl of matrix Gl becomes element gkml in matrix

G
(k)
l . We then use this matrix to compute the average peer variable ĝ

(k)
il yl. For each reordering

(k) we estimate model (23) and obtain a counter-factual estimate β̂
(k)
1 corresponding to the null

hypothesis of zero peer effects. We then use the distribution of the β̂
(k)
1 ’s as approximation of the

distribution of β̂1 under the null of zero peer effects.

In Table 8 we compare the p-values obtained from the naive model and the permutation approach

applied to model (23). We find that the performance of the estimation method in the network case

is comparable to what it was in the peer group case.

4 Avoiding exclusion bias

4.1 Exogenous peer effects

When estimating exogenous peer effects, it is possible to eliminate the exclusion bias by using

control variables. A good example is the golf tournament studied by Guryan et al. (2009). Many

random pairing experiments, such as the random assignment of students to rooms or to classes,

have a similar structure.

At t + 1 golfers participating to tournament l are assigned to a peer group k with whom they

play throughout the tournament. The performance of golfer i in tournament l is written as yikl,t+1.

The researcher has information on the performance of each golfer i in past golf tournaments. This

information is denoted as yiklt. The researcher wishes to test whether the performance of golfer i

in tournament l depends on the past performance of the golfers i is paired with. The researcher’s
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objective is thus to estimate coefficient β1 in a regression of the form:

yikl,t+1 = β0 + β1ȳ−iklt + δl + εikl,t+1 (25)

where ȳ−iklt denotes the average past performance of i’s assigned peers. A key difference with the

models discussed earlier is that here ȳ−iklt is calculated using the past performance of peers in other

tournaments, before being assigned to be i’s peers. Because of exclusion bias, ȳ−iklt is mechanically

negatively correlated with yiklt due to the presence of pool fixed effects. Since i’s past performance

is correlated with i’s unobserved talent, we expect yiklt to be positively correlated with yikl,t+1.

This generates a negative correlation between ȳ−iklt and the omitted variable yiklt which is part of

the error term. The result is a negative bias for β1 in regression (25).

The example suggests an immediate solution: include yiklt as additional regressor to eliminate

the exclusion bias:

yikl,t+1 = β0 + β1ȳ−iklt + β2yiklt + δl + εikl,t+1

where yiklt serves as control variable. This is the approach adopted, for instance, in Munshi (2004).

A similar reasoning applies if the researcher wishes to test the influence of the pre-existing

characteristics of peers x̄−ikl on i’s subsequent outcome yikl,t+1 and includes pool fixed effects.18

Here too the pre-existing characteristics of peers are negatively correlated with i’s pre-existing

characteristic xikl. Hence if the researcher fails to control for xikl and xikl is positively correlated

with yikl,t+1, then estimating a model of the form:

yikl,t+1 = b0 + b1x̄−ikl + δl + uikl,t+1

will result in a negative exclusion bias.19 This bias can be corrected by including xikl as control,

as done for instance in Bayer et al. (2009):

yikl,t+1 = b0 + b1x̄−ikl + b2xikl + δl + uikl,t+1

18As discussed in Proposition 1 Part 3, even if the researcher does not include pool fixed effects, there is still an
exclusion bias if the pool size L is small enough.

19If xikl is negatively correlated with yikl,t+1 then the exclusion bias is positive, i.e., b1 is estimated to be less
negative than it is.
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If the researcher does not have data on yiklt or xikl, it may be possible to reduce the exclusion

bias by including individual characteristics of i as control variables to soak up some of the omitted

variable bias. How successful this approach can be depends on how strongly individual charac-

teristics predict yiklt or xikl, as the case may be. Simulations (not reported here) indicate that

the reduction in exclusion bias is sizable when control variables collectively predict much of the

variation in yikl,t+1 (e.g., a correlation of 0.8). The improvement is negligible when the correlation

is small (e.g., 0.2).

4.2 Endogenous peer effects

When estimating endogenous peer effects, the use of instrumental variables can – under certain

conditions – eliminate exclusion bias. One case that is particularly relevant in practice is when

the researcher uses the peer average of a variable z to instrument peer effects, but also includes

zi in the regression. To illustrate this formally, let us assume that the researcher has a suitable

instrument z̄−ikl for ȳ−ikl. For instance, z̄−ikl may be the peer group average of a characteristic z

known not to influence yikl, e.g., because this characteristic has been assigned experimentally. If

z̄−ikl is informative about ȳ−ikl, then zikl should be informative about yikl as well. For this reason,

zikl is often included in the estimated regression as well. In this case, the first and second stages of

this 2SLS estimation strategy can be written as follows:

ȳ−ikl = π0 + π1z̄−ikl + π2zikl + δl + vikl (26)

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + δl + εikl (27)

where E(ziklεikl) = 0, E(εikl) = 0 and ˆ̄y−ikl = π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l is the fitted value from the

first-stage regression.20

20Expanding the second-stage 2SLS equation and replacing the fitted values by the above expression, it is straight-
forward to show that cov(ˆ̄y−ikl, εikl|zikl) = 0 and therefore that β̂2SLS

1 does not suffer from exclusion bias. Indeed
we have:

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + δl + εikl

= β0 + β1(π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l) + β2zikl + δl + εikl (28)

If yikl and zikl are correlated (i.e., if β2 6= 0), we expect z̄−ikl to be mechanically correlated with yikl because

z̄−ikl =

[∑N
K
s=1

∑K
j=1 zjs

]
−zikl

L−1
+ ũikl, where ũikl ≡ z̄−ikl − z̄−il. Since equation (28) controls for zikl directly, this

mechanical relationship is prevented from generating an exclusion bias.
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Since such 2SLS strategies eliminate the negative exclusion bias, they yield peer effect estimates

that are larger – i.e., more positive – than OLS estimates. This counter-intuitive finding is often

attributed to classical measurement error or some other cause (e.g., Goux and Maurin 2007, Halliday

and Kwak 2012, De Giorgi et al. 2010, de Melo 2014, Brown and Laschever 2012, Helmers and

Patnam 2012, Krishnan and Patnam 2012, Naguib 2012). Exclusion bias offers an alternative,

mechanical explanation.

The above examples serve to illustrate that for 2SLS to effectively eliminate exclusion bias, it

is necessary to control for i’s own value of the instrument zikl in equation (26). This condition is

satisfied, for instance, by the estimation strategies employed by Bramoulle et al. (2009), Di Giorgi

et al. (2010) or Lee (2007). Any instrumentation method that fails to do so suffers from exclusion

bias in the same way and for the same reason as OLS.

5 Empirical applications

We now illustrate how our method can be used to estimate endogenous peer effects in situations

where the IV methods suggested by Bramoulle et al. (2009), De Giorgi et al. (2010) and Lee .

(2007) all fail. To this effect we revisit two data sets in which subjects within a selection pool are

randomly assigned to groups of fixed size. The first dataset comes from golf tournaments in which

participants are randomly assigned to groups of three players within their qualification category.

It is the same dataset as that used by Guryan et al. (2009).21 The second dataset comes from

Fafchamps and Mo (2018) and includes Chinese primary school students randomly paired within

their classroom for a computer-assisted course lasting the entire academic year.22 In both cases, we

limit our data to groups of the same size – three in the golfer data and two in the student data.23

This is done to demonstrate that our method provides identification even with groups of fixed size.

21Verification of the data reveals that some players (25% of all observations) had been assigned to groups of size
larger than K = 3. We drop these observations from the sample.

22Using results from an earlier version of our current paper, Fafchamps and Mo (2018) report p-values corrected for
exclusion bias in their test of random peer assignment using our method described in Section 2.4. In their main peer
effect estimations, they abstract from reflection bias and exclusion bias by focusing on the estimation of contextual
peer effects only. In this section we use the methods described in the current paper to yield estimates of endogenous
peer effects that correct for both reflection bias and exclusion bias.

23In the golfer data, players assigned to groups of two players account for 25% of observations – some tournaments
are played in pairs instead of triads.
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In both cases we estimate a model of the following form:

yikl,t+1 = β0 + β1ȳ−ikl,t+1 + β2yikl,t + β3ȳ−ikl,t + δl + εikl,t+1 (29)

where, as before, yikl,t+1 denotes an outcome of interest for individual i in group k from selection

pool l at time t + 1 and ȳ−ikl,t+1 is the average value of ykl,t+1 for the peers of i in group k from

selection pool l. Coefficient β1 is the endogenous peer effect. Regressors yiklt and ȳ−iklt measure the

past performance of i and of his/her peers. Coefficient β3 estimates what is commonly referred to

as an exogenous peer effect (or contextual peer effect). We include pool fixed effects δl and assume

that the residuals εikl,t+1 are not correlated within groups. The suitability of this assumption

depends on the context but, given the inclusion of pool fixed effects, it is unproblematic in the two

datasets we have selected. This assumption means that any correlation in outcomes within group

must come either from endogenous or exogenous peer effects. As noted earlier, regressor yiklt needs

to be included to avoid exclusion bias in β3.

Model (29) is estimated by expressing it in the same form as in equation (19) and using the

GMM-based iterative algorithm developed in Section 3.2. To recall, this algorithm iterates on β1

guesses to find the best fit to the data. For each guess about β
(n)
1 , we estimate a regression of the

form:

ỹikl,t+1 = β0 + β2yiklt + β3ȳ−iklt + δl + εikl,t+1 (30)

where ỹikl,t+1 ≡ yikl,t+1 − β
(n)
1 ȳ−ikl,t+1. This regression is then demeaned and combined with

equation (20) to compute the right-hand side of equation (19) that corresponds to that particular

guess β
(n)
1 . The algorithm then seeks the value of β

(n)
1 that minimizes the distance between the

constructed matrix and the data matrix E[Y Y ′]. The p-value for β̂1 is obtained using randomizing

inference as in Section 2.4 – that is, by constructing artifactual samples in which groups are formed

at random within selection pools and simulating the distribution of β̂1 under the null hypothesis

of no endogenous or exogenous peer effects. Estimates for β2 and β3 are those given by model (30)

at the optimal value of β̂1; their standard errors are clustered by selection pool.

Results for golfers using data from Guryan et al (2009) are presented in the first column of

Table 9. To keep the estimation as transparent as possible, we restrict our attention to the first
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round of each tournament and we drop observations from the second round that could potentially

provide an additional source of identification. We also drop observations involving golfers assigned

to a group outside their selection pool (6% of observations) since they do not fit our postulated

data generation process. To demonstrate the efficiency of the approach, we also reduce the number

of observations by focusing on a random sub-set of 100 out of 302 selection pools. This makes the

sample size comparable to the student data and speeds up simulation-based inference later. We also

focus on groups of size 3 (K = 3) which consists of 95% of all observations. This leaves a sample

of 2,517 observations from 100 pools of roughly 25 golfers each, organized in groups of three.

The estimates for regression model (29) are presented in the first panel of Table 9. In this

empirical application, the outcome of interest is the golfer’s score. Unsurprisingly, the golfer’s past

tournament performance is a strong predictor of current performance: β̂2 is large and significant.

Regarding peer effects, we find a positive endogenous peer effect β̂Corr1 significant at the 1% level.

The magnitude of the coefficient is large: i’s performance increases by 5.8% of the average per-

formance of the two golfers in i’s group, conditioning for their average past performance. Given

the multiplier effect induced by reflection, the total impact on performance is even larger. This

suggests that emulation between players helps performance in golf tournaments: when one player

in a group plays above its own average, the other players in that group also tend to play better

than normal. The opposite holds as well: when a golfer in a group plays worse than normal, this

has a negative ripple effect on the other golfers in that group. Importantly, this effect is not a

result of matching: the exogenous peer effect coefficient β̂3 is not significant and, if anything, it is

negative. The results presented here therefore suggest that emulation comes from play during the

tournament, not from who golfers are grouped with.

To illustrate how these results compare with alternative estimation strategies, we report in the

second panel of Table 9 the point estimate β̂OLS1 obtained by OLS and the point estimate β̂Ref1

obtained from the GMM estimator to correct for reflection, but ignoring exclusion bias. In practice,

β̂Ref1 is estimated by erroneously setting ρ = 0 in matrix (22). As predicted in Section 3, the OLS

point estimate ‘shrinks’ when correcting for reflection bias: β̂1 drops from 0.022 to 0.010. We

also note that the naive p-value of β̂OLS1 wrongly concludes that there are no endogenous peer-

effects. However, if we use randomization inference to obtain a consistent p-value for β̂OLS1 we get

p = 0.014, indicating the presence of endogenous peer effects. The reason for this is illustrated in
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Figure 5 where we plot the simulated distribution of β̂OLS1 under the null of no endogenous peer

effects: this distribution is centered well below 0, compared to the simulated distribution of β̂Corr1

under the null, which is centered on β1 = 0. This is yet another illustration of the fact that, as

shown in Section 2.4, it is possible to test for the presence of endogenous peer effects by applying

randomization inference directly on OLS estimates.24 We also see that the simulated estimator

β̂Corr1 has a smaller variance than β̂OLS1 under the null. This is because each β̂OLS1 estimate is

magnified by reflection and thus varies more across samples. A similar reasoning applies to β̂Ref1 ,

shown in the third panel of Table 9 together with its p-value obtained by randomization inference.

Here too randomization inference yields a p-value that indicates the presence of endogenous peer

effects, in spite of the fact that β̂Ref1 is quite small in magnitude. The explanation is illustrated in

Figure 5: under the null of β1 = 0, the simulated distribution of β̂Ref1 is tighter than the distribution

of β̂OLS1 since reflection bias has been eliminated, but it is shifted to the left of 0 due to exclusion

bias.

The second column of Table 9 presents similar estimates for the student data of Fafchamps and

Mo (2018). Here too we find that, as expected, the past math score is a strong and significant

predictor of the future score: β̂2 is large and significant and, amusingly, of same magnitude as in

the golfer data. The fact that β̂2 is well below one indicates strong reversion to the mean among

our primary school student population. Results for β̂Corr1 are quite different to those we obtained

for golfers, however: the point estimate is negative and significant, indicating that endogenous

peer effects are negative – suggesting for instance congestion effects in computer usage. We also

find some evidence of positive exogenous peer effects: a pupil assigned to share a computer with

a stronger math student tends to learn slightly more from computer-assisted learning. The latter

result is reminiscent of what Fafchamps and Mo (2018) conclude in their own analysis, but the

negative endogenous peer effect is a new result.

Estimates β̂OLS1 and β̂Ref1 are reported in the bottom half of Table 9. We find that β̂OLS1 is

negative and unrealistically large in magnitude. The OLS p-value suggests the presence of negative

endogenous peer effects. The β̂Ref1 shrinks towards zero, due to correction for reflection bias.

Applying randomization inference to both estimators yields significant p-values, again confirming

that inference about the presence of endogenous peer effects can be undertaken without estimating

24This is basically what the quadratic assignment procedure (QAP) of Krackhardt (1999) does.
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β̂Corr1 directly.

Given that K = 2 in the student data, we can use formulas (13)-(17) to obtain exact predictions

about the plim of β̂OLS1 , β̂Ref1 and β̂Corr1 under the null. These predictions are shown in Table 10

and compared to the means of the simulated distributions of β̂OLS1 , β̂Ref1 and β̂Corr1 shown in Figure

6. As predicted by Proposition 1, β̂OLS1 is centered around -0.059 instead of being centered around

the true β1 = 0. Under the null, formula (13) predicts β̂Ref1 to be centered around -0.029, which is

close to the average of -0.026 yielded by the simulations shown in Figure 6. Similarly, by applying

formulas (15) and (17), we expect β̂Corr1 to be centered on zero. The simulation average of β̂Corr1

is 0.001. Finally, formulas (13)-(17) predict an exact linear relationship between β̂Ref1 and β̂OLS1 ,

and between β̂Corr1 and β̂OLS1 . Given this relationship, Columns 1 and 3 in Table 11 show the

predicted constant and coefficient estimate of a regression of simulated β̂Ref1 on simulated β̂OLS1 ,

and of simulated β̂Corr1 on simulated β̂OLS1 , respectively. Column 2 and column 4 in turn show the

actual estimation results. Notwithstanding small differences due to Monte Carlo approximation

error, the predicted values are strikingly similar to the actual simulation results.

6 Application to time series autoregressive models

The methodological approach proposed here can in principle be applied to autoregressive mod-

els other than those operating on network or group data. We illustrate this with a time series

autoregressive model with fixed effects of the form:

xit = β1xit−1 + δi + εit (31)

where T is small and N is large. Here T serves the same role as L in peer effect models: it is the

size of the pool from which peers (here, the t− 1 neighbor of t) are drawn. Such models are known

to suffer from bias (Nickell 1981) and various instrumentation strategies have been proposed to

estimate them (e.g., Arellano and Bond 1991, Arellano and Bover 1995, Blundell and Bond 1998).

Using an approach similar to Proposition 1, the asymptotic bias in β1 under the null can easily

be derived as:

Proposition 5: When the true β1 = 0, estimates of β1 in model (31) satisfy:
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plimN→∞(β̂1) = − 1

T − 1
= ρ (32)

See Appendix A.7 for a proof. Interestingly, the limit given by formula (32) is the same as that given

by Proposition 1 Part 1 for K = 2 and it is equal to the value of ρ in equation (15). Formula (32)

shows how large the Nickell bias is at the null: for T = 3, the shortest panel for which instruments

exist, the plim of β̂1 under the null of β1 = 0 is -0.5; for T = 10, the asymptotic bias under the

null is still −0.111.25

The good news is that the different approaches proposed here also work for model (31). For

instance, if the researcher is solely interested in testing whether β1 = 0, this is easily achieved

by creating a variable x̃it ≡ xit − ρxit−1 and regressing it on xit−1, as indicated in equation (7).

The GMM estimation model (19) can similarly be used by setting network matrix G to have 1’s

immediately to the left of the diagonal, and 0’s everywhere else, so as to pick the lagged value

of the dependent variable in lieu of the ’average of peers’. Everything we said about inference

applies as well. While this approach allows the estimation of β1 in model (31) without recourse to

instruments, it does impose the fairly strict requirement that errors εit be i.i.d. within each pool,

which precludes autocorrelated errors.

7 Concluding remarks

This paper has examined an under-studied source of downward bias in the estimation of peer effects.

This bias exists on top of other, well-known problems such as reflection bias and correlated effects,

and it arises even if peers are randomly assigned. We provided a comprehensive treatment of its

causes and consequences and offered ways to correct it in the estimation of endogenous peer effects.

We first have shown that, with selection pool fixed effects, a negative correlation in peer out-

comes mechanically arises because individuals cannot be their own peers: i.e., they are excluded

from the pool from which their peers are drawn – hence its moniker ‘exclusion bias’. We have

demonstrated that the exclusion bias can seriously affect point estimates and inference in standard

tests of random peer assignment and in the estimation of endogenous peer effects. The magnitude

of the bias is most prevalent in studies that include pool fixed effects as well in studies with large

25See Nickel (1981) and Arellano (2003) for simulations of the bias when β1 6= 0.
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peer groups relative to the size of the peer selection pool.

In contrast to exclusion bias, the widely-publicized reflection bias is little more than a multiplier

effect. It follows that, if exclusion bias did not exist and we are willing to assume zero correlated

effects within groups, inference about the presence of endogenous effects can be conducted using

OLS: the reflection bias simply magnifies OLS estimates of endogenous peer effects. In this paper,

however, we have shown that when the true peer effect is small and pool fixed effects are included,

the negative exclusion bias dominates the reflection bias, yielding an overall negative bias in OLS

estimates of peer effects. Hence if OLS yields an insignificant or even negative estimate of endoge-

nous peer effects, a researcher unaware of exclusion bias will conclude that (positive) peer effects

are absent and the issue is not worthy of further investigation. Because of this, we suspect that

many peer effect studies have never seen the light of day – creating a so-called ‘file drawer problem’.

To demonstrate that exclusion bias is not simply an irrelevant statistical oddity, we provide two

empirical examples based on published papers in which lack of awareness about exclusion bias leads

to incorrect inference. In the first example, we show that the OLS estimate of peer effects is close to

zero and not statistically significant, which would normally be interpreted as prima facie evidence

against peer effects. When we correct for exclusion bias, however, we find significant evidence

of endogenous peer effects. In a second example, the OLS estimate of endogenous peer effects is

negative and large in magnitude. Correcting for exclusion bias reduces the size of the estimate but

confirms the presence of negative peer effects. These two examples illustrate the policy relevance of

the method: finding no peer effects where these are actually present could have serious implications

for policy makers.

We have also presented an alternative to the estimation of peer effects using instrumental

variables. Methods that rely on network structure to identify suitable instruments (e.g., Bramoulle

et al. 2009, Di Giorgi et al. 2010, and Lee 2007) are unsuitable for mutually exclusive peer groups.

Even when they are applicable, they can yield weak instruments, especially when pool fixed effects

are included. Because suitable instruments are hard to find, many studies rely on OLS with pool

fixed effects to test for peer effects. As just noted, this approach often yields misleading inference

due to the presence of exclusion bias. We offer an alternative estimation method that deals with

these shortcomings but does not rely on instrumentation. Although the method allows the inclusion

of selection pool fixed effects, it assumes away correlated effects within peer groups. Whether or

34



not this assumption is reasonable depends on the specific context of the study. But even when

correlated effects cannot be ruled out on a priori grounds, researchers can still use the method as a

robustness check free of reflection and exclusion bias. More importantly, the method offers a way

of estimating endogenous peer effects when peer groups are mutually exclusive and have equal size,

in which case the instrumentation methods of Bramoulle et al. (2009), Di Giorgi et al. (2010), and

Lee (2007) all fail. There is an abundance of peer effect studies that have this data structure – most

notably the assignment of students to rooms, dorms, and study groups. Controlled experiments on

peer effects also often have a fixed-size, non-overlapping peer group structure. In all these cases,

our method is capable of offering a viable alternative for the estimation of endogenous peer effects.
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Schools", Banco de México, Working Paper No. 2014-05.

Duflo, E. and E. Saez (2011). "Participation and Investment Decisions in a Retirement Plan:

The Influence of Colleagues’ Choices", Journal of Public Economics, 85(1): 121-48.

Elandt-Johnson, C.E. and N. L. Johnson (1980). Survival Models and Data Analysis, John

Wiley & Sons NY, p. 69.

Fafchamps, M and D. Mo (2018). “Peer effects in computer assisted learning: evidence from a

randomized experiment”, Experimental Economics, 21(2): 355-382.

Fafchamps, M and S. Quinn (2017). "Networks and Manufacturing Firms in Africa: Results

from a Randomized Field Experiment", World Bank Economic Review, Forthcoming.

Fisher, R.A. (1925). “Theory of Statistical Estimation”, Proceedings of the Cambridge Philo-

sophical Society, 22: 700-25.

Glaeser, E. L., B. I. Sacerdote, and J. A. Scheinkman (2003). "The Social Multiplier", Journal

of the European Economic Association, 1(2-3): 345-53.

Goux, D. and E. Maurin (2007). "Close Neighbors Matter: Neighborhood Effects on Early

Performance at School," Economic Journal, 117(523): 1193-215.

Guryan, J. , D. Kroft, and N. J. Notowidigdo (2009). "Peer Effects in the Workplace: Evidence

from Random Groupings in Professional Golf Tournaments", American Economic Journal: Applied

36



Economics, 44(3): 289-302.

Halliday, T. J. and S. Kwak (2012). "What Is a Peer? The Role of Network Definitions in

Estimation of Endogenous Peer Effects", Applied Economics, 44(3): 289-301.

Helmers, C. and M. Patnam (2011). "The Formation and Evolution of Childhood Skill Acqui-

sition: Evidence from India," Journal of Development Economics, 95(2): 252-66.

Kelejian, H, H. and I. R. Prucha (1999). “A generalized moments estimator for the autoregres-

sive parameter in a spatial model”, International Economic Review, 40: 509-533.

Krackhardt, D. (1988). "Predicting with Networks: Nonparametric Multiple Regression Anal-

ysis of Dyadic Data", Social Networks, 10: 359-81.

Krishnan, P. and M. Patnam (2012). "Neighbors and Extension Agents in Ethiopia: Who

Matters More for Technology Diffusion?", Department of Economics, University of Cambridge.

Mimeo.

Lee, L. F. (2007). “Identification and estimation of econometric models with group interactions,

contextual factors and fixed effects”, Journal of Econometrics, 140(2): 333–74.

Liu, X., E. Patacchini, Y. Zenou and L. F. Lee (2012). “Criminal Networks: Who Is the Key

Player?”, Nota di Lavoro, Fondazione Eni Enrico Mattei, 39.2012.

Liu, X. (2017). “Identification of Peer Effects via a Root Estimator”, Economic Letters, 156:

168-71.

Manski, C. (1993). "Identification of Endogenous Social Effects: The Reflection Problem",

Review of Economic Studies, 60(3): 531-42.

Moffitt, R. A. (2001). "Policy Interventions, Low Level Equilibria, and Social Interactions",

Social Dynamics, 45-82, MIT Press, Cambridge, MA.

Munshi, K. (2004). "Social Learning in a Heterogeneous Population: Technology Diffusion in

the Indian Green Revolution", Journal of Development Economics, 73(1): 185-215.

Naguib, K. (2012). "The Effects of Social Interactions on Female Genital Mutilation: Evidence

from Egypt", Department of Economics, Boston University. Mimeo.

Nickell, S. (1981). “Biases in Dynamic Models with Fixed Effects”, Econometrica, 49: 1417-26.

Raudenbush, S. W. and A. S. Bryk (2002). Hierarchical Linear Models: Applications and Data

Analysis Methods, Sage Publications.

Sacerdote, B. (2001). "Peer Effects with Random Assignment: Results for Dartmouth Room-

37



mates", Quarterly Journal of Economics, 116(92): 681-704.

Stevenson, M. (2015a). "Tests of Random Assignment to Peers in the Face of Mechanical

Negative Correlation: An Evaluation of Four Techniques", University of Pennsylvania, Mimeo,

Stevenson, M. (2015b). "Breaking Bad: Mechanisms of Social Influence and the Path to Crim-

inality in Juvenile Jails", University of Pennsylvania, Mimeo.

Stuart, A. and Ord, K. (1998). Kendall’s Advanced Theory of Statistics, Arnold, London, 1998,

6th Edition, Volume 1, p. 351.

Wang, L.C. (2009). "Peer Effects in the Classroom: Evidence from a Natural Experiment in

Malaysia", Department of Economics, UC San Diego, Mimeo.

Zimmerman, D. (2003). "Peer Effects in Academic Outcomes: Evidence from a Natural Exper-

iment", Review of Economics and Statistics, 85(1): 9-23.

38



Appendix

A Proofs of propositions

The notation is as follows. In a sampled population Ω, each individual i ∈ Ω is randomly assigned

to a group of Ki people. Let Πi ⊆ Ω be the pool of people from which i’s (Ki− 1) peers are drawn

at random. When the pool Πi is the entire sample, Πi = Ω. The pool Πi can also be a subset of

the sample of size Li, with Πi ⊂ Ω and Li < N . Section A.1 deals with cases with multiple peer

selection pools, i.e., Πi ⊂ Ω (Part 1 of Proposition 1). Section A.2 deals with Πi = Ω (Part 2 of

Proposition 1). Section A.3 discusses the magnitude of the exclusion bias in small samples (Part

3 of Proposition 1). These first three sections focus on cases with a constant pool size L and peer

group size K. Sections A.4, A.5, A.6, and A.7 prove Propositions 2, 3, 4 and 5, respectively.

A.1 Proposition 1 part 1: Multiple peer selection pools of fixed size L and peer

groups of fixed size K

Let the sampled population Ω be partitioned into N distinct pools of size L. Individuals in each

pool are partitioned into mutually exclusive groups of size K – which implies that L is an integer

multiple of K. Each individual is assigned a realization of a random variable x with the following

data generating process:

xikl = δl + εikl (33)

where xikl is the value of x for individual i in group k of pool l, δl is a pool fixed effect, and εikl is

an i.i.d. random variable with mean 0 and variance σ2
ε .

To test random peer assignment on these data, the researcher estimates regression (1), repro-

duced here:

xikl = β1x̄−ikl + δl + εikl (34)

where x̄−ikl is the sample mean of xikl for individuals other than i who are in the same group k as
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i, i.e.:

x̄−ikl =

[∑K
j=1 xjkl

]
− xikl

K − 1

Regression (34) can be expressed in deviation from the pool mean so as to eliminate the pool

fixed effect δl:

xikl − x̄l = β1(x̄−ikl − x̄l) + (εikl − ε̄l) (35)

where x̄l is the pool sample mean of xikl, ε̄l is the pool sample mean of εikl, and we have used the

fact that the pool sample mean of x̄−ikl is x̄l.

We note that, by construction, x̄l ≡ δl + ε̄l. It follows that the demeaned regressor x̄−ikl − x̄l is

mechanically correlated with the demeaned error term εikl− ε̄l, resulting in a bias in the estimation

of β1 using equation (35). This problem has long been noted in the estimation of autoregressive

models with fixed effects and need not be further discussed here. In that literature, the proposed

solution has been to first-difference regression (34) and instrument xikl with lagged values. This

approach does not apply here since peer effects are reflexive.

In the rest of this Section, we derive a formula for the asymptotic bias of β1 for our specific

case of a constant pool and group size. This bias is present even when the true β1 = 0, leading to

incorrect inference when using model (35) to test random peer assignment. We start by defining

uikl ≡ x̄−ikl− x̄−il where x̄−il is the sample mean of xikl for individuals other than i who are in the

same pool l as i, i.e.:

x̄−il ≡

[∑ L
K
s=1

∑K
j=1 xjsl

]
− xikl

L− 1
(36)

With this new notation, x̄−ikl = x̄−il+uikl and equation ((35)) can be rewritten as:

xikl− x̄l = β1


[∑ L

K
s=1

∑K
j=1 xjsl

]
− xikl

L− 1
+ uikl −


[∑ L

K
s=1

∑K
j=1 xjsl

]
− x̄l

L− 1

− ūl
+εikl− ε̄l (37)

where ūl is the pool sample mean of uikl and is identically 0 by construction. The above equation

thus simplifies to:

xikl − x̄l = β1

(
x̄l − xikl
L− 1

+ uikl − ūl
)

+ εikl − ε̄l (38)
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If we define the notation z̈ ≡ z − z̄l , for z = x, ε, u, we can further simplify equation (35) as:

ẍ = β1

(
−ẍ
L− 1

+ ü

)
+ ε̈ (39)

from which it is immediately apparent that the regressor used to identify β1 is mechanically corre-

lated with the error term since it contains the dependent variable itself.

Next we apply the standard formula for calculating the plim of the OLS estimator for β1, which

takes the following form :

plimN→∞

(
β̂FE1

)
= β1 +

cov
(
−ẍ
L−1 + ü, ε̈

)
var

(
−ẍ
L−1 + ü

) (40)

where β̂FE1 stands for the fixed effect estimator obtained using regression (39). Since β1 = 0 by

construction, we can write:

plimN→∞

(
β̂FE1

)
=

cov
(
−ẍ
L−1 , ε̈

)
+ cov (ü,ε̈)

var
(
−ẍ
L−1

)
+ 2cov

(
−ẍ
L−1 , ü

)
+ var (ü)

(41)

With some algebra, equation (41) will now enable us to calculate the asymptotic value of the

bias in β̂FE1 . We start by noting that, since ūl ≡ 0 by construction, we have:

cov (ü, ε̈) = E (üε̈) = E [(uikl − ul) (εikl − εl)]

= E (uiklεikl)− E (uiklε̄l) = 0 (42)

by definition of the average. Similarly we can write:

var (ü) = var (uikl − ūl) = σ2
u (43)

To tackle the three remaining terms in equation (41), we start by transforming equation (39) to

obtain an expression for − ẍ
L−1 . By simple manipulation of equation (39), we obtain:

[
L− 1 + β1

L− 1

]
ẍ = β1ü+ ε̈
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which leads to:

− ẍ

L− 1
=

−β1ü

L− 1 + β1
− ε̈

L− 1 + β1
(44)

Next we note that: 
E (εiklε̄l) =

E(ε2ikl)
L = σ2

ε
L

var (ε̄l) = var

(∑Np
i=1 εikl
L

)
=

∑Np
i=1 var(εikl)

L2 = Lσ2
ε

L2 = σ2
ε
L

(45)

from which we obtain

var (ε̈) = σ2
ε − 2

σ2
ε

L
+
σ2
ε

L
=

(L− 1)σ2
ε

L
(46)

Using the facts that E(ε̈) = E(εikl − ε̈l) = 0 and that β1 = 0 by assumption, and combining

these with equations (42), ((46), and (44), we obtain:

cov

(
−ẍ
L− 1

, ε̈

)
= E

[[
−ẍ
L− 1

− E
(
−ẍ
L− 1

)]
ε̈

]
= E

[
−ε̈ε̈
L− 1

]
=
−var(ε̈)
L− 1

= −σ
2
ε

L
(47)

This gives the value of the first term in the numerator of equation (41).

Next, we use equation (42) and (44) to get the value of the middle term in the denominator of

(41):

2cov

(
−ẍ
L− 1

, ü

)
= −2

E(üε̈)

L− 1
= 0 (48)

For the first term in the denominator of (41), we again use equation (44) to get:

var

(
−ẍ
L− 1

)
= var

(
− ε̈

L− 1

)
=

σ2
ε

L(L− 1)
(49)

Summarizing these different results, we can write the numerator and denominator of (40) as

42



follows:

cov(
−ẍ
L− 1

+ ü, ε̈) = −σ
2
ε

L
(50)

var(
−ẍ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+ σ2

u (51)

We now need an expression for σ2
u. Recall that uikl ≡ x̄−ikl − x̄−il. Therefore:

σ2
u = V ar(u) = V ar [x̄−ikl − x̄−il] = V ar


[∑K

j=1 xjkl

]
− xikl

K − 1
−

[∑ L
K
s=1

∑K
j=1 xjsl

]
− xikl

L− 1


= V ar

(L− 1)
[(∑K

j=1 xjkl

)
− xikl

]
(L− 1)(K − 1)

−
(K − 1)

[(∑K
j=1 xjkl

)
− xik

]
(L− 1)(K − 1)

−
∑ L

K
s6=k

∑K
j=1 xjsl

L− 1


= V ar

(L−K)
[(∑K

j=1 xjkl

)
− xikl

]
(L− 1)(K − 1)

−
∑ L

K
s6=k

∑K
j=1 xjsl

L− 1


Using var(xikl) = σ2

ε and the assumption that xikl is i.i.d., we obtain the following relationship

between σ2
u and σ2

ε :

σ2
u =

(L−K)2(K − 1)

(L− 1)2(K − 1)2
σ2
ε +

(L−K)

(L− 1)2
σ2
ε =

(L−K)

(L− 1)(K − 1)
σ2
ε < ε2ε (52)

Substituting this into equation (51) the denominator of (40) can be written:

var(
−ẍ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+

(L−K)

(L− 1)(K − 1)
σ2
ε

=
(K − 1) + (L−K)L

L(L− 1)(K − 1)
σ2
ε

Combining these results we get:

plimN→∞

(
β̂FE1

)
=

(−σ2
ε
L )

(K−1)+(L−K)L
L(L−1)(K−1) σ2

ε

= − (L− 1)(K − 1)

(K − 1) + (L−K)L
(53)

which is obviously negative. This proves the first part of Proposition 1.
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A.2 Proposition 1 part 2: one single peer selection pool Πi = Ω and L = N

We now turn to the second part of Proposition 1 when peers are randomized at the level of the

sampled population Ω and there is a single peer selection pool Πi = Ω and L = N . In this case,

the estimated regression does not include pool fixed effects δl.

The first part of Proposition 1 (summarized by formula (2) and derived in Section A.1) states

that the magnitude of the exclusion bias depends on the size of the peer selection pool L: for a

given peer group size K, a larger pool size is associated with a smaller exclusion bias. From the

same formula (2) it immediately follows that as L converges to infinity, the exclusion bias converges

to zero. Formally, if Πi = Ω, then

plimL→∞

(
β̂OLS1

)
= 0 (54)

However, in samples that are small relative to the peer group size K, the magnitude of the exclusion

bias can be large, even when there is only one peer selection pool Πi = Ω.

A.3 Proposition 1 Part 3: Small sample exclusion bias

Formula (53) only holds in the limit, that is, for large sample sizes N. The computation of E(β̂FE1 )

that applies in small sample sizes is not as straightforward, because E

[
samplecov( −ẍL−1

+ü,ε̈)
samplevar( −ẍL−1

+ü)

]
6=

E[samplecov( −ẍL−1
+ü,ε̈)]

E[samplevar( −ẍL−1
+ü)]

. We can however use a Taylor expansion to sign the bias.

Stuard and Ord (1998) and Elandt-Johnson and Johnson (1980) have shown that for two random

variables R and S, where S either has no mass at 0 (discrete) or has support [0,∞), a Taylor

expansion approximation for E[A/B] is as follows:

E

(
R

S

)
' µR
µS
− Cov(R,S)

µ2
S

+
V ar(S)µR

µ3
S

In our application R = SampleCov
(
−ẍ
L−1 + ü, ε̈

)
, S = SampleV ar

(
−ẍ
L−1 + ü

)
, µR is the mean of

R and µS is the mean of S. The first term, µR
µS

, is expression (53). We know from equation (50)

and equation (51) that µR < 0 and µS > 0. While an expression for Cov(R,S) is harder to derive,
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simulation results indicate that Cov(R,S) < 0. Given that V ar(S) > 0, it follows that:

E
[
β̂FE1 |L

]
< plimN→∞

[
β̂FE1

]
(55)

a finding that is also confirmed through numerous simulations. Hence, we see that for a given size

of the selection pool L and a given size of the peer group K, the negative exclusion bias shrinks

from below towards its plim as sample size N × L increases.

A.4 Proof Proposition 2

We assume N pools of fixed size L each partitioned into peer groups of size K. Let, as before, β̂FE1

denote the pool fixed effect estimator and let and β̂OLS1 denote the pooled OLS estimator without

pool fixed effects. We want to show that:

plimN→∞(β̂FE1 ) < plimN→∞(β̂OLS1 )

As is well known, the pooled OLS estimator β̂OLS1 is a weighted average of the within estimator

β̂FE1 and the between estimator β̂BE1 :

β̂OLS1 = η2β̂BE1 + (1− η2)β̂FE1 (56)

where 0 < η2 < 1 is the ratio of the between sum of squares of ȳ−ikl to its total sum of squares (e.g.,

Raudenbush and Bryk 2002). From Proposition 1, we know that plimN→∞

(
β̂FE1

)
< 0. Thus if we

can prove that plimN→∞

(
β̂BE1

)
≥ 0, we will have proven that plimN→∞(β̂FE1 ) < plimN→∞(β̂OLS1 ).

The between estimator is the OLS estimator from a regression of x̄l on an intercept and ¯̄x−il,

where x̄l denotes the average outcome xikl over the individuals in pool l and ¯̄x−il denotes the

average peer group outcome of the pool:

x̄l = β0 + β1 ¯̄x−il + ε̄l (57)

where
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¯̄x−il = x̄−il + ūl (58)

and x̄−il is the average outcome over the individuals in the pool l, excluding individual i and ūl

denotes the pool average of u.

The between-group model reduced form equation is:

x̄−il =

[∑ L
K
s=1

∑K
j=1 xjsl

]
− β0

L− 1 + β1
− β1ūl
L− 1 + β1

− ε̄l
L− 1 + β1

=
Lx̄l − β0

L− 1 + β1
− β1ūl
L− 1 + β1

− ε̄l
L− 1 + β1

(59)

where x̄l , ūl and ε̄l denote the pool averages of x , u and ε , respectively. Under random peer

assignment (i.e. β1 = 0), this equation reduces to:

x̄−il =
Lx̄l − β0

L− 1
− ε̄l
L− 1

(60)

Using (58) and (60), we have:

cov(¯̄x−il, ε̄l) = cov(x̄−il + ūl, ε̄l)

= cov(x̄−il, ε̄l)

= L
E(ε̄2l )

L− 1
−
E(ε̄2l )

L− 1

= var(ε̄l) =
σ2
ε

L
(61)
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and

var (¯̄x−il) = var


L∑
i=1

x̄−ikl

L


=

1

L2
var

(
L∑
i=1

(∑L
j=1 xjl − xil
L− 1

)
+

L∑
i=1

uil

)

=
1

L2
var

(
L∑
i=1

xil +

L∑
i=1

uil

)

=
σ2
ε + σ2

u

L

=
(L− 1)(K − 1) + (L−K)

L(L− 1)(K − 1)
σ2
ε (62)

where in the last step we used the result in (52). Using equation (61) and (62) we then obtain:

plimN→∞

(
β̂BE1

)
=
cov (¯̄x−il, ε̄l)

var (¯̄x−il)
(63)

=
σ2
ε
L

(L−1)(K−1)+(L−K)
L(L−1)(K−1) σ2

ε

=
(L− 1)(K − 1)

(L− 1)(K − 1) + (L−K)
> 0 (64)

This proves that plimN→∞

(
β̂BE1

)
> 0.

We can also use (56) to prove the corollary that β̂OLS1 tends to zero for large sample sizes. To

proceed, we need expressions for β̂FE1 , β̂BE1 and η2. The within estimator β̂FE1 and the between

estimator β̂BE1 were presented in (2) and (64), respectively. We now derive an expression for η2.

Weight parameter η2 in equation (65) is the ratio of the between-group sum of squares of x̄−ikl

relative to its total sum of squares:

η2 =
SSBGx̄−ikl
SSTotalx̄−ikl

=
SSBGx̄−ikl

SSBGx̄−ikl + SSWithin
x̄−ikl

(65)

Specifically, SSBGȳ−i,k,l is the sum of all squared differences between cluster group means and the
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overall sample mean, multiplied by the number of observations in the pool l. In other words:

SSBGx̄−ikl = SSBEx̄−ikl × L (66)

where SSBEx̄−ikl is the sum of squares of ¯̄x−il in the between regression (46). Furthermore, using the

definition of the variance, we know that:

var (¯̄x−il) =
SSBEx̄−ikl(
N
L − 1

) ⇒ SSBEx̄−ikl = var (¯̄x−il)×
(
N

L
− 1

)
(67)

By combining equations (65) - (67) we obtain:

SSBGx̄−ikl = var (¯̄x−il)×
(
N

L
− 1

)
× L

Substituting in for var (¯̄x−il) given by equation (62), we have:

SSBGx̄−ikl =
(L− 1)(K − 1) + (L−K)

(L− 1)(K − 1)
σ2
ε ×

(
N

L
− 1

)
× σ2

ε (68)

Next, SSWithin
x̄−ikl

is the sum of the squared differences between each individual’s average peer

group outcome, x̄−ikl , and its average for the individual’s group ¯̄x−il. Similarly to equation (67),

we have:

var (x̄−il − ¯̄x−il) =
SSWithin

x̄−ikl

(N − 1)
⇒ SSWithin

x̄−ikl
= var (x̄−il − ¯̄x−il)× (N − 1)

From the above we know that var (x̄−ikl − ¯̄x−il) = var
(
−ẍ
L−1 + ü

)
. Therefore, we can substitute in

for the expression of var (x̄−ikl − ¯̄x−il) by using equations (51). We have:

SSWithin
ȳ−ikl

=
L+ (L−K)(K − 1)

K(K − 1)L
× N − 1

L
σ2
ε (69)

Combining equations (65), (68) and (69) , we obtain:

η2 =
SSBGx̄−ikl

SSBGx̄−ikl + SSWithin
x̄−ikl
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where 
SSBGx̄−ikl = (L−1)(K−1)+(L−K)

(L−1)(K−1) σ2
ε ×

(
N
L − 1

)
× σ2

ε

SSWithin
x̄−ikl

= L+(L−K)(K−1)
K(K−1)L × N−1

L × σ2
ε

Finally, denoting as constants A = (L−1)(K−1)+(L−K)
(L−1)(K−1) σ2

ε and B = L+(L−K)(K−1)
K(K−1)L and taking proba-

bility limits, we obtain the following expression:

plimN→∞(η2) = plimN→∞

[
A
(
N
L − 1

)
A
(
N
L − 1

)
+B

(
N−1
L

)]

=
A

A+B
(70)

This closed form result only holds when sample size N tends to infinity. Using (56), (2), (64) and

(70) we now derive the large sample property of pooled OLS when peers are selected at the pool

level l and when the true β = 0:

plimN→∞

(
β̂OLS1

)
= plim(η2)plim(β̂BE1 ) +

[
1− plim(η2)

]
plim(β̂FE1 ) (71)

=

(
A

A+B

)
1

AL
−
(

1− A

A+B

)
1

BL
= 0

This proves the corollary.

Finally, we illustrate formally why the exclusion bias is more present in smaller samples. We

first note that:

E
(
η2
)

= E

(
SSBGx̄−ikl

SSBGx̄−ikl + SSWithin
x̄−ikl

)

= E
(
SSBGx̄−ikl

)
E

(
1

SSBGx̄−ikl + SSWithin
x̄−ikl

)
+ Cov

(
SSBGx̄−ikl ,

1

SSBGx̄−ikl + SSWithin
x̄−ikl

)

=
LK − 2K + 1

L(L− 1)
+ Cov

(
SSBGx̄−ikl ,

1

SSBGx̄−ikl + SSWithin
x̄−ikl

)

= plimN→∞
(
η2
)

+ Cov

(
SSBGx̄−ikl ,

1

SSBGx̄−ikl + SSWithin
x̄−ikl

)

It is clear that Cov

(
SSBGx̄−ikl ,

1
SSBGx̄−ikl

+SSWithin
x̄−ikl

)
< 0. Therefore, we obtain:
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0 < E
(
η2
)
< plim

(
η2
)
< 1

Hence, ceteris paribus, as N gets smaller, more weight is given to the pool FE estimator in the

estimation of pooled OLS (see (56)). This in turn magnifies exclusion bias in the pooled OLS.

In contrast, as sample size increases, more weight is given to the between estimator in the pooled

OLS, which reduces exclusion bias.

A similar logic applies to β̂CL1 which is obtained by adding fixed effects at a cluster level that

combines multiple peer selection pools. The only difference is that, by combining multiple selection

pools within a cluster, β̂CL1 captures part of the positive correlation across pools that is inherent

to the between estimator. This yields the final result that

plim[β̂FE1 ] < plim[β̂CL1 ] < plim[β̂POLS1 ]

A.5 Proof of Proposition 3

To recall, we have, in each group:

y1 = α+ βy2 + ε1

y2 = α+ βy1 + ε2

where 0 < β < 1, E[ε1] = E[ε2] = 0 and E[ε2] = σ2
ε . Solving this system of simultaneous linear

equations yields the following reduced forms:

y1 =
α(1 + β)

1− β2
+
ε1 + βε2
1− β2

y2 =
α(1 + β)

1− β2
+
ε2 + βε1
1− β2

which shows that y1 and y2 are correlated even if ε1 and ε2 are not – this is the reflection bias.

None of the ε’s from other groups enter this pair of equations since we have assumed no spillovers

across groups. We have E[y1] = E[y2] = α(1+β)
1−β2 ≡ y. If ε1 and ε2 are independent from each other,
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E[ε1ε2] = 0 and we can write:

E[(y1 − y)2] = E

[(
ε1 + βε2
1− β2

)2
]

= σ2
ε

1 + β2

(1− β2)2

The covariance between y1 and y2 is given by:

E[(y1 − y)(y2 − y)] = E

[(
ε1 + βε2
1− β2

)(
ε2 + βε1
1− β2

)]
=

2βσ2
ε

(1− β2)2

where we have again used the assumption that E[ε1ε2] = 0. The correlation coefficient r between

y1 and y2 is thus:

r =
E[(y1 − y)(y2 − y)]

E[(y1 − y)2]
=

2β

1 + β2

We estimate a model of the form:

y1 = a+ by2 + v1

Since equation (11) is univariate, we have b̂ = r̂
σy1
σy2

= r̂ since σy1 = σy2 . Hence it follows that:

plimN→∞ [̂b] =
2β

1 + β2
6= β

A.6 Proof of Proposition 4

We have shown in the text that, starting from Proposition 1 with K = 2, if we regress ε̈ikl on ε̈ikl,

the regression coefficient converges to:

ρ ≡ plimN→∞SampleCorr(ε̈iklε̈jkl) = − 1

L− 1
(72)

We can now calculate the covariance between y1 and y2 that results from the combination of both

the reflection bias and the exclusion bias. The variance and covariance of y are now:

plimN→∞[(ÿ1 − ÿ)2] =
σ2
ε (1 + β2 + 2βρ)

(1− β2)2

plimN→∞[(ÿ1 − ÿ)(ÿ2 − ÿ)] =
σ2
ε (2β + (1 + β2)ρ)

(1− β2)2
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Equipped with the above results, we can now derive an expression for the combined reflection and

exclusion bias in model (11). As before, we use the fact that b̂FE = SampleCov[(ÿ1−ÿ)(ÿ2−ÿ)]

SampleV ar[(ÿ1−ÿ)2]
. Simple

algebra along the same lines as Proposition 3 yields:

plimN→∞ [̂bFE ] =
2β + (1 + β2)ρ

1 + β2 + 2βρ
(73)

A.7 Proof of Proposition 5

Let the sampled population Ω be partitioned into N distinct pools of size T . Observations in each

pool refer to a given individual i and are ordered chronologically by t = {1, ...T}. Each individual

observation is assigned a realization of a random variable x with the following data generating

process:

xit = δi + εit (74)

where xit is the value of x for individual i at time t, δi is an individual fixed effect, and εit is an i.i.d.

random variable with mean 0 and variance σ2
ε . Note that here the individual index i corresponds

to the pool index l in the network data. Under the null, the variance of xit is the same as the

variance of εit and the two variables are perfectly correlated.

To test whether variable xit is autoregressive, the researcher estimates the following regression:

xit = β1xit−1 + δi + εit (75)

where xit−1 is the lagged value of xit. Note that the above regression is estimated using observations

t = {2, ...T} on variable xit while observations t = {1, ..., T − 1} of xit are used for regressor.

Regression ((75)) can be expressed in deviation from the individual mean so as to eliminate the

individual fixed effect δl:

xit − x̄i = β1(xit−1 − x̄′i) + (εit − ε̄i) (76)

where x̄i is the pool sample mean of xit, x̄
′
i is the pool sample mean of xit−1, and ε̄l is the pool

sample mean of εit. Specifically we have:

x̄i =
1

T − 1

T∑
t=2

xit
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x̄′i =
1

T − 1

T−1∑
t=1

xit

ε̄i =
1

T − 1

T∑
t=2

εit

When T is large, x̄i ' x′i but when T is small the difference matters. We can rewrite the demeaned

model more concisely as:

ẍit = β1ẍ
′
it + ε̈it (77)

The plimN→∞(β̂FE1 ) is thus:

plimN→∞

(
β̂FE1

)
= β1 +

cov (ẍ′it, ε̈it)

var (ẍ′it)
(78)

We now derive an expression for cov (ẍ′, ε̈); it is not equal to 0, implying a systematic bias in

β̂FE1 . The basic reason is that observations for ẍ′, ε̈ overlap except for observation 1, which only

appears in ẍ′, and observation T, which only appears in ε̈. To simplify the algebra, we use equation

75 to replace x with ε throughout. We have:

x̄i = δi +
1

T − 1

T∑
t=2

εit

x̄′i = δi +
1

T − 1

T−1∑
t=1

εit

ε̄i =
1

T − 1

T∑
t=2

εit

ε̄′i =
1

T − 1

T−1∑
t=1

εit

ẍ′it = εit−1 −
1

T − 1

T−1∑
t=1

εit

ε̈it = εit −
1

T − 1

T∑
t=2

εit

By construction we have that E(εit) = 0, E(ε2it) = σ2
e , and, by independence of the errors,

53



E(εitεis) = 0 for all s 6= t. By extension, E(ε̈it) = 0 and E(ẍ′it) = 0 as well. We also note that the

variance of a sample means ε̄i and ε̄′i is simply σ2
e

T−1 . Hence we have:

cov
(
ẍ′it, ε̈it

)
= E(ẍ′itε̈it) = E(εit−1 −

1

T − 1

T−1∑
t=1

εit)(εit −
1

T − 1

T∑
t=2

εit)

= E(εit−1εit −
εit−1

T − 1

T∑
t=2

εit −
εit

T − 1

T−1∑
t=1

εit +
1

(T − 1)2
(

T−1∑
t=1

εit)(

T∑
t=2

εit))

= −2(T − 2)σ2
e

(T − 1)2
+

T − 2

(T − 1)2
σ2
e = − T − 2

(T − 1)2
σ2
e

The first term on the second line drops out because errors are iid across observations by as-

sumption. Regarding the second term, for observation 2 the cross-term E( εit−1

T−1

∑T
t=2 εit) = 0 since

εi1 does not appear in
∑T

t=2 εit. Similarly for observation T in the cross-term E( εit
T−1

∑T−1
t=1 εit) = 0.

Hence, over T − 1 observations, these cross-terms are equal to σ2
e

T−1 only T − 2 times. Hence, in

expectations, each cross-term is equal to σ2
e

T−1 only T−2
T−1 of the time.

Turning to the denominator, we have:

var
(
ẍ′it
)

= E(εit−1 −
1

T − 1

T−1∑
s=1

εis)(εit−1 −
1

T − 1

T−1∑
s=1

εis)

= E(ε2it−1 − 2
ε2it−1

T − 1
+

1

(T − 1)2
(
T−1∑
s=1

ε2is))

=
T − 2

T − 1
σ2
e

It follows that:

plim
(
β̂FE1

)
= − 1

T − 1

B Comparison to other tests of random peer assignment

Various methods have recently been proposed to test random peer assignment. We discuss them

briefly in turn.
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B.1 GKN method

To correct for exclusion bias in a test of random peer assignment, Guryan et al. (2009) propose

to control for differences in mean characteristic across selection pools. To this effect, they suggest

adding to equation (1) the mean characteristic x̄−i,l of individuals other than i in selection pool l.

We denote this the GKN method. The estimating equation is the following:

xikl = β0 + β1x̄−ikl + δl + ϕx̄−i,l + εikl (79)

where ϕ is an additional parameter to be estimated.

To see how, under specific conditions, this effectively deals with exclusion bias when the true

β1 = 0, we substitute equation (79) in for equation (??) and rearrange as follows:

xikl = β0 + β1x̄−ikl + δl + ϕx̄−il + εikl

= β0 + β1(x−il + uikl) + δl + ϕx̄−il + εikl

= β0 + (β1 + ϕ)x−il + β1uikl + δl + εikl

The inclusion of the proxy variable x−il soaks up the non-random component of x−ikl. As a result,

if β1 = 0, the coefficient estimate β̂1 measures the partial effect of the random component uikl.

Since E(uiklεikl) = 0 under the assumption of random peer selection, E(β̂1) = β1 and OLS yields

a consistent estimate of the peer effect β1.

This method has some limitations, however. First, as already noted by Guryan et al. (2009),

parameters β1 and ϕ are separately identified only if there is variation in pool size. If every

selection pool has the same number of individuals L, then xikl = L x̄l − (L− 1)x̄−il and the model

is unidentified. Secondly, even when there is some variation in L across pools, this variation may

be limited, leading to quasi-underidentification of β1 and ϕ. Thirdly, the method requires precise

knowledge of each selection pool. Such knowledge may be not available, e.g., when peers form

arbitrary social networks.
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B.2 Joint F-test

Wang (2009) suggested an alternative test of random peer assignment. It involves running an F-test

of joint significance of peer group dummies in a model of the form:

xikl = β0 + β1Ck + δl + εikl

where Ck is a set of group dummies (excluding a base category). The authors argue that, if

individuals are randomly assigned to groups, then all group means should be statistically similar

and therefore the coefficients included in vector β1 should jointly not be significantly different

from zero. This method has been criticized by Stevenson (2015a) who argues, based on simulation

results, that the method fails to reject the null hypothesis if peers are negatively correlated.

B.3 Split-sample method

Stevenson (2015a, 2015b) proposes a ‘split-sample’ method which, as the term suggests, involves

splitting the original sample to break the mechanical negative correlation introduced by exclusion

bias. The approach recognizes the fact that exclusion bias manifests itself if and only if (i) indi-

viduals are excluded from their own peer groups and (ii) if they are included in the peer groups of

other individuals in the sample. If each individual in the study sample only appears on one side of

the peer effect estimation equation, then there is no problem.

The split-sample method exploits this feature, as follows:

1. In the first step the researcher randomly selects one observation from each peer group in the

original dataset;

2. Next the researcher calculates the average outcome of the peers of those individuals selected

in Step 1, excluding the selected individuals themselves;

3. Finally, the researcher regresses the outcomes of the sub-sample of the individuals selected in

Step 1 on the average peer group outcomes constructed in Step 2.

Hence, the method effectively creates a dataset – derived from the original data – where (i) indi-

viduals are excluded from their own peer group but where (ii) they are also excluded from the peer

56



groups of other individuals in the sample. This eliminates the source of the exclusion bias. One

obvious downside of this approach is the large loss of efficiency that results from the reduction in

sample size. The efficiency of the approach can in principle be improved by performing multiple

iterations, but this is cumbersome, especially with large datasets.
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TABLES AND FIGURES

Table 1: Simulated exclusion bias with random peer assignment
L = 20 L = 50 L = 100

(1) (2) (3)

K = 2 Predicted plim[β̂1] -0.05 -0.02 -0.01

Average β̂s
1 -0.05 -0.02 -0.01

% of β̂s
1 = 0 rejected at 1% level 26% 10% 8%

% of β̂s
1 = 0 rejected at 5% level 43% 21% 18%

% of β̂s
1 = 0 rejected at 10% level 52% 29% 24%

K = 5 Predicted plim[β̂1] -0.25 -0.09 -0.04

Average β̂s
1 -0.26 -0.10 -0.04

% of β̂s
1 = 0 rejected at 1% level 75% 22% 9%

% of β̂s
1 = 0 rejected at 5% level 85% 38% 21%

% of β̂s
1 = 0 rejected at 10% level 89% 48% 31%

K = 10 Predicted plim[β̂1] -0.82 -0.22 -0.10

Average β̂s
1 -0.86 -0.25 -0.11

% of β̂s
1 = 0 rejected at 1% level 97% 42% 17%

% of β̂s
1 = 0 rejected at 5% level 99% 58% 27%

% of β̂s
1 = 0 rejected at 10% level 100% 65% 36%

Notes: The Table reports simulation results from 1000 Monte Carlo replications for different values of K and L. Each

simulation includes N × L = 1000 observations generated with a true β1 = 0. In each simulated sample s, coefficient β̂s
1 is

estimated using fixed effects at the level of the selection pool. The predicted plimN→∞[β̂1] is obtained using

Proposition 1. The average β̂s
1 is the average of β̂s

1 estimates over all replications. The percentage of rejections is the

proportion of replications for which a standard t-test rejects the null that β1 = 0 for different critical levels of the test.
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Figure 1: Performance of the standard t-test under the null of random assignment

Notes: The Figure shows the simulated performance of a standard t-test to evaluate whether β1 = 0 under the null hypothesis
of random assignment that it is true. The expected rejection rate is a 45 degree line. The actual performance of the test under
the null is simulated using 1000 Monte Carlo replications with N=50, L=20 and K=5. Pool fixed effects are included in each
replication. An actual rejection rate above the 45 degree line indicates over-rejection: the probability of rejecting the null of
random assignment is larger than the critical value of the test.

Table 2: Simulated exclusion bias with random peer assignment: Different sample sizes N
N = 2, L = 50 N = 4, L = 50 N = 10, L = 50 N = 20, L = 50 N = 40, L = 50 N = 80, L = 50 N = 120, L = 50

(1) (2) (3) (4) (5) (6) (7)

K = 5 -0.14 -0.12 -0.10 -0.09 -0.09 -0.09 -0.09

K = 10 -0.46 -0.33 -0.25 -0.24 -0.23 -0.22 -0.22
Notes: The Table reports simulation results from 1000 Monte Carlo replications for different values of K and N. Each simulation
considers pool size L = 50, with N pools and considers observations generated with a true β1 = 0. In each simulated sample s,

coefficient β̂s
1 is estimated using fixed effects at the level of the selection pool.
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Figure 2: Performance of the corrected model with different standard error estimators
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d. Transformed estimator - clustered

Notes: Figure shows for different estimators the simulated performance of a standard t-test to evaluate whether β1 = 0 under
the null hypothesis of random assignment that it is true. The upper two panels show this for the ‘naive’ model (1) for different
standard error estimators: One without clustering at the selection pool level (left) and one with standard errors clustered at
the selection pool level (right). Using model (3) with a corrected dependent variable, the bottom two panels show the results
without (left) and with (right) clustering of standard errors at the selection pool level. The expected rejection rate is a 45
degree line. The actual performance of the test under the null is simulated using 1000 Monte Carlo replications with N=50,
L=20 and K=5. Pool fixed effects are included in each replication. An actual rejection rate above the 45 degree line indicates
over-rejection: the probability of rejecting the null of random assignment is larger than the critical value of the test.

Table 3: An illustration of the permutation method
i k l xikl x̃ikl

1 1 1 x111 x211

2 1 1 x211 x521

3 2 1 x321 x111

4 2 1 x421 x321

5 2 1 x521 x421

6 3 2 x632 x842

7 3 2 x732 x632

8 4 2 x842 x942

9 4 2 x942 x1052

10 5 2 x1052 x732
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Figure 3: Histogram of β̂s1 under the null

Notes: This Figure shows the distribution of simulated β̂s1 using 1000 Monte Carlo replications with random assignment for

different group sizes K. We set N=50 and L=20. Each histogram presents the frequency distribution of β̂s1 under the null. Pool
fixed effects are included in all regressions.
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Figure 4: Performance of the permutation test under the null
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Notes: The Figure shows the simulated performance of a permutation test to evaluate whether β1 = 0 under the null hypothesis
of random assignment. The expected rejection rate is a 45 degree line. The actual performance of the test under the null is
simulated using 1000 Monte Carlo replications with N=50, L=20 and K=5. Pool fixed effects are included in each replication.
An actual rejection rate above the 45 degree line indicates over-rejection: the probability of rejecting the null of random
assignment is larger than the critical value of the test.

Table 4: Comparing Pool FE, Cluster FE and Pooled OLS under the null
N = 10, C = 200, L = 50 N = 20, C = 200, L = 50 N = 40, C = 200, C = 50 N = 80, C = 200, L = 50 N = 120, C = 200, L = 50

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

β̂FE1 β̂CL1 β̂POLS1 β̂FE1 β̂CL1 β̂POLS1 β̂FE1 β̂CL1 β̂POLS1 β̂FE1 β̂CL1 β̂POLS1 β̂FE1 β̂CL1 β̂POLS1

K = 5 -0.10 -0.03 -0.02 -0.09 -0.03 -0.01 -0.09 -0.02 -0.01 -0.09 -0.02 0.00 -0.09 -0.02 0.00

K = 10 -0.25 -.008 -0.04 -0.24 -0.06 -0.02 -0.23 -0.05 -0.01 -0.22 -0.05 0.00 -0.22 -0.05 0.00

Notes: Each cell of this Table gives, for different sample sizes and different values of K , the mean value of the estimated β1
under the null, for L = 50 and C = 200 – which implies that each cluster contains four selection pools. Each average is simulated
using 1000 Monte Carlo replications with β1 = 0 and with no correlated effects at the cluster level. For each replication β̂FE1

is estimated using OLS with pool fixed effects, β̂CL1 is estimated using OLS with cluster fixed effects, with a cluster covering

four pools, while β̂POLS1 is estimated using OLS without any fixed effects.
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Table 5: Bias in the estimation of endogenous peer effects
K = 2; L = 20 ; N = 500

(1) (2) (3)

True β1 Predicted plim(b̂) Mean simulated b̂

0.00 -0.06 -0.06

0.01 -0.04 -0.04

0.02 -0.02 -0.02

0.03 0.01 0.01

0.04 0.03 0.03

0.05 0.05 0.05

0.06 0.07 0.07

0.07 0.09 0.09

0.08 0.11 0.11

0.09 0.12 0.12

0.10 0.14 0.14

Notes: Each row of the Table corresponds to a different Monte Carlo

simulation. The first column gives the value of β1 used to generate

each simulated sample. The second column gives the predicted

plim(b̂) from formula (12) in the text. The third column reports the

average value of the estimated b̂ over 100 Monte Carlo replications

with N=500, L=20 and K=2. Pool fixed effects are included in all

regressions.
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Table 6: Correction bias in the estimation of endogenous peer effects - K = 2

K = 2; L = 20 ; N = 500

(1) (2) (3) (4) (5)

β1 Mean simulated b̂ Simulated p-value Corrected b̂ Corrected p-value

0.00 -0.06 0.005 0.00 0.474

0.01 -0.04 0.044 0.01 0.294

0.02 -0.02 0.320 0.02 0.060

0.03 0.01 0.340 0.03 0.007

0.04 0.03 0.110 0.04 0.000

0.05 0.05 0.016 0.05 0.000

0.06 0.07 0.000 0.06 0.000

0.07 0.09 0.000 0.07 0.000

0.08 0.11 0.000 0.08 0.000

0.09 0.12 0.000 0.09 0.000

0.10 0.14 0.000 0.10 0.000

Notes: Each row of the Table corresponds to a different Monte Carlo simulation over 100 Monte Carlo replications with
N=500, L=20 and K=2. The first column gives the value of β1 used to generate each simulated sample. Columns 2 and 3
report, respectively, the estimates for plim(b̂) and the corresponding p-value as reported by OLS. The fourth column reports

the corrected estimate β̂1 obtained using formula (15). The last column presents the corrected p-values obtained from 500
bootstrapping replication of the null hypothesis of no peer effect. Pool fixed effects are included in all regressions.

Table 7: Correction bias in the estimation of endogenous peer effects - Groups
K = 2 K = 5

(1) (2) (3) (4) (5) (6)

True β1 β1 = 0.00 β1 = 0.10 β1 = 0.20 β1 = 0.00 β1 = 0.10 β1 = 0.20

β̂1
OLS

- no corrections -0.05 0.15 0.34 -0.27 -0.04 0.18

Mean of p-value of β̂1
OLS

0.22 0.01 0.00 0.04 0.35 0.08

Proportion of naive p-value ≤ 0.05 39.8% 96.4% 100.0% 86.7% 22.5% 75.7%

β̂1
Ref

- corrected for reflection bias only -0.02 0.07 0.16 -0.11 -0.01 0.09

β̂1
Corr

- corrected for reflection bias + exclusion bias 0.00 0.09 0.19 -0.01 0.09 0.18

Mean of p-value of β̂1
Corr

(using permutation method) 0.50 0.00 0.00 0.50 0.15 0.00

Proportion of p-value ≤ 0.05 4.0% 99.2% 100.0% 5.8% 49.9% 98.6%

Notes: Each column corresponds to a different Monte Carlo simulation over 1000 replications. We keep the number of observations in each

sample and selection pool constant at N=1000 and L=20, but we vary β1 and group size K. Cluster fixed effects are included throughout. Row 1

and row 2 report, respectively, the uncorrected β̂1
OLS

and its p-value obtained by regressing Yi on GiY and pool fixed effects. The third row

reports the proportion of times the simulated naive p-value is smaller or equal to 0.05. For column 1 and column 4 this statistic essentially tells

us what is the likelihood to make a type II error, that is, rejecting the null hypothesis when it is in fact true. For columns 2-3 and columns 5-6

this statistic essentially gives us the statistical power of the test. The fourth row presents the average of β̂1
Ref

estimates corrected for reflection

bias but ignoring exclusion bias. This is estimated using model (15) with E[εε′] = σ2
ε I. The fifth row reports the average β̂1

Corr
derived from

model (15) with E[εε′] given by (16). The last two rows show the corrected p-value obtained using the permutation method and a statistic

related to the power of the permutation inference method (similarly computed as in the third row).
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Table 8: Correction bias in the estimation of endogenous peer effects - Networks
p = 0.10 p = 0.25

(1) (2) (3) (4) (5) (6)

True β1 β1 = 0.00 β1 = 0.10 β1 = 0.20 β1 = 0.00 β1 = 0.10 β1 = 0.20

β̂OLS1 - no corrections -0.09 0.08 0.25 -0.26 -0.09 0.10

Mean of p-value of β̂OLS1 0.18 0.18 0.00 0.03 0.32 0.26

Proportion of naive p-value ≤ 0.05 51.1% 41.7% 99.9% 88.8% 27.9% 36.3%

β̂Ref1 - correction for reflection bias only -0.05 0.04 0.12 -0.10 -0.03 0.03

β̂Corr1 - correction for reflection bias + exclusion bias 0.00 0.10 0.19 0.00 0.09 0.19

Mean of p-value of β̂Corr1 (using permutation method) 0.51 0.04 0.00 0.50 0.18 0.01

Proportion of p-value ≤ 0.05 6.3% 88.9% 100.0% 4.9% 47.3% 96.5%

Notes: Each column corresponds to a different Monte Carlo simulation over 1000 replications. We keep the number of observations in each

sample and selection pool constant at N=50 and L=20, but we vary β1 and the linking probability p. Cluster fixed effects are included

throughout. Row 1 and row 2 report, respectively, the uncorrected β̂1
OLS

and its p-value obtained by regressing Yi on GiY and pool fixed

effects. The third row reports the proportion of times the simulated naive p-value is smaller or equal to 0.05. For column 1 and column 4 this

statistic essentially tells us what is the likelihood to make a type II error, that is, rejecting the null hypothesis when it is in fact true. For

columns 2-3 and columns 5-6 this statistic essentially gives us the statistical power of the test. The fourth row presents the average of β̂1
Ref

estimates corrected for reflection bias but ignoring exclusion bias. This is estimated using model (15) with E[εε′] = σ2
ε I. The fifth row reports the

average β̂1
Corr

derived from model (15) with E[εε′] given by (16). The last two rows show the corrected p-value obtained using the permutation

method and a statistic related to the power of the permutation inference method (similarly computed as in the third row).
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Table 9: Empirical applications
Golfer data Student data

(1) (2)
Final estimates:

Endogenous peer effect (βCorr1 ) 0.058 *** -0.023 **
p-value obtained through randomization
inference

0.008 0.02

Lagged own effect (β2) 0.481 *** 0.477 ***
Standard error 0.079 0.020

Exogenous peer effect (β3) -0.077 0.027 *
Standard error 0.130 0.015

OLS estimates:
Endogenous peer effect (βOLS1 ) 0.022 -0.113 **

Näıve p-value 0.439 0.000
p-value obtained through randomization
inference

0.014 0.022

GMM estimates correcting for reflection bias only:

Endogenous peer effect (βRef1 ) 0.010 -0.051 **
p-value obtained through randomization
inference

0.008 0.020

Number of observations: 2517 2960
Number of selection pools 100 155
Group size 3 2

Notes: The golfer data are from Guryan et al (2009) and the student data are from Fafchamps and Mo (2018). For

demonstration purpose, we restrict the golfer sample to the first tournament round, and to a random sub-set of

N=100 out of 302 pools, making the overall sample size more comparable to the student application. We also focus

on groups of size 3 (K = 3) which consist of 75% of all observations. We drop some observations which in the

original dataset had erroneously been assigned to one or more players from a different pool than the one assigned to

them (6% of all observations). The variable of interest in the golfer application is golf player’s score and the lagged

variable is a measure of ability of skill for every player (which is constructed based on lagged test scores). For the

student application, we drop a few observations for which we observed inconsistencies in the indication of peers

within a pair (16%). The variable of interest is the math score of the students. All regressions include pool fixed

effects. In the golfer application the pool is the qualification category to which each player is assigned within each

tournament. In the student application the pool is the classroom. Corrected P-values for each estimate are obtained

using the permutation method, using 500 iterations.
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Figure 5: Simulated β̂OLS1 , β̂Ref1 , and β̂Corr1 under H0 : β̂1 = 0 - Golfer data
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Notes: These Figures plot for the Guryan et al (2009) application the simulated distribution of the naive

β̂OLS
1 under the null of no endogenous peer effects (obtained after 500 repetitions of randomly reshuffling

observations to different peers through Monte Carlo simulations) and compares this distribution (i) in the

left panel to the distribution of simulated β̂Ref
1 , i.e. the coefficient estimate which corrects for reflection

bias but not for exclusion bias, and (ii) in the right panel to the distribution of simulated β̂Corr
1 , i.e. the

coefficient estimate correcting for both reflection and exclusion bias.
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Figure 6: Simulated β̂OLS1 , β̂Ref1 , and β̂Corr1 under H0 : β̂1 = 0 - Student data
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Notes: These Figures plot for the Fafchamps and Mo (2018) application the simulated distribution of the

naive β̂OLS
1 under the null of no endogenous peer effects (obtained after 500 repetitions of randomly reshuffling

observations to different peers through Monte Carlo simulations) and compares this distribution (i) in the

left panel to the distribution of simulated β̂Ref
1 , i.e. the coefficient estimate which corrects for reflection

bias but not for exclusion bias, and (ii) in the right panel to the distribution of simulated β̂Corr
1 , i.e. the

coefficient estimate correcting for both reflection and exclusion bias.

Table 10: Mean β̂OLS1 , β̂Ref1 , and β̂Corr1 under H0 : β̂1 = 0 - Student data

β̂OLS1 β̂Ref1 β̂Corr1

Prediction Simulation Prediction Simulation Prediction Simulation
(1) (2) (3) (4) (5) (6)

Mean -0.059 -0.058 -0.029 -0.026 0.000 0.001
Notes: This Table compares for the Fafchamps and Mo (2018) application (where K = 2)
the mean of the simulated β̂OLS1 , β̂Ref1 and β̂Corr1 (shown in Figure 6), to the exact predictions
made by formulas (11)-(13) about the plim of β̂OLS1 , β̂Ref1 and β̂Corr1 under the null of no
endogenous peer effects.
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Table 11: Relationship between the different estimators under H0 : β̂1 = 0 - Student data

β̂Ref1 β̂Corr1

Prediction Simulation Prediction Simulation
(1) (2) (3) (4)

Constant 0.000 0.000 0.029 0.028

β̂OLS1 0.500 0.453 0.500 0.454
N 1000 1000 1000 1000
Notes: This Table shows for the Fafchamps and Mo (2018)
application (where K = 2) results of regressions of simulated
β̂Ref1 on simulated β̂OLS1 and of simulated β̂Corr1 on simulated
β̂OLS1 and compares these results to the predicted
relationships between these different estimators, obtained
using equations (11)-(13).
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