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1 Introduction

Economies tend to consume more abundant resources first, turning to alternatives only after

sufficient depletion has set in (Herfindahl, 1967). However, if consumption of an abundant

resource generates substantial social costs, an earlier transition to alternative resources may

be required. Many environmental challenges are characterized by this problem, and none

more so than anthropogenic climate change. Carbon emissions arise, in part, because the

most abundant fossil fuel, coal, is also the most climate-damaging.1 As a consequence, it

is widely recognized that the global economy must permanently transition away from using

coal in order to address climate change.2

How can a sustained energy transition away from coal be induced? Economic theory offers

two perspectives. In the traditional view, where an economy’s composition of resources is

determined primarily by relative supply, a permanent intervention that lowers coal use (e.g.,

a Pigouvian tax) is needed to offset coal’s supply advantage. If the policy were ever removed,

the forces of relative supply would return, enabling coal consumption and carbon emissions to

resume upward trajectories. This behavior appears in economies exhibiting either no or weak

path dependence in energy transitions. Unfortunately, permanent policy interventions may

be unrealistic when governments have difficulty committing to long-term policies. Indeed,

the history of climate policies to date is filled with examples of policy revisions, reversals,

and withdrawals.3

In contrast, recent structural change models posit that in the presence of certain tran-

sitional dynamics, a large but temporary intervention that exogenously lowers coal use can

permanently overcome coal’s abundant supply (Acemoglu et al., 2012, 2016; Lemoine, 2024;

Fried, 2018; Acemoglu et al., 2023). Under such circumstances, a sustained long-term tran-

sition away from coal could be achieved even after the intervention is lifted. Economies with

this feature are broadly characterized as having strong path dependence in energy transi-

tions. Whether such dynamics actually govern energy transitions, however, remains an open

1Coal contains over half of energy stored in global fossil fuel deposits (BP, 2017). It is also responsible for
over half of emitted anthropogenic carbon dioxide since the pre-industrial era (Boden, Marland and Andres,
2013).

2Local pollution from coal inspired early papers on external costs (Pigou, 1920; Coase, 1960), and con-
tinues to motivate an extensive valuation literature (e.g., Chay and Greenstone (2003, 2005); Barreca, Clay
and Tarr (2014); Clay, Lewis and Severnini (2024); Beach and Hanlon (2018); Hanlon (2020)).

3For example, the U.S. recently withdrew from the U.N. Paris Agreement and repealed clean energy
subsidies under the 2022 Inflation Reduction Act. In 2011, Canada withdrew from the Kyoto Protocol, the
preceding U.N. climate agreement, several years after the Protocol entered into force. Key details of the E.U.
and California carbon trading markets have been revised since their inceptions. See Acemoglu and Rafey
(2023) for other examples.
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empirical question.

This paper provides one of the first empirical studies of long-run energy transitions.

Specifically, I examine the transitional dynamics of the U.S. electricity sector over the 20th

century, making three contributions. First, I find reduced-form evidence of strong path

dependence in long-run transitions between coal and other fuels, shedding light on the his-

torical circumstances that made the U.S. among the most carbon-intensive economies in the

world. Second, I combine additional evidence with a model of structural change for the elec-

tricity sector to recover the long-run elasticity of substitution between coal and other fuels

from reduced-form estimates, an important common parameter found across recent optimal

climate policy models but which remains largely unknown to date. Third, I conduct simula-

tions using my calibrated model to characterize how climate policies of varying magnitudes

and durations could enable a permanent future U.S. energy transition away from coal.

There are two main empirical challenges in estimating energy transitions in the electricity

sector. First, electricity capital (i.e., power plants) is built for specific fuels and lasts multiple

decades. Detecting significant changes in fuel composition therefore requires sufficiently

long data series spanning multiple capital vintages. Second, estimating path dependence

requires an exogenous and temporary shock to coal supply that subsequently alters the fuel

composition of electricity capital.

To overcome the first challenge, I combine modern and historical power plant records to

construct a new dataset of county-level, fuel-specific electricity capital for the U.S. midwest

across the 20th century. This enables an analysis of long-run energy transitions capturing

changes in the fuel composition of electricity capital. To address the identification chal-

lenge, I construct local coal supply shocks using local coal transport distances driven by the

changing regional accessibility of subsurface coal. The introduction of mechanized mining

around the early 20th century allowed extraction over previously inaccessible coal held in

deep underground deposits. Mechanized mining, together with the location and subsurface

depth of coal resources, altered coal transport distances and thus the spatial distribution of

delivered coal prices. As such, these local coal transport distance shocks are driven primarily

by two remote regional factors - the time-invariant spatial structure of subsurface coal geol-

ogy and time-varying mining technology - and thus plausibly uncorrelated with unobserved

local determinants of fuel composition.

Using an event study design with county-by-decade panel data, I find evidence of strong

path dependence: a negative coal supply shock triggers a declining trajectory of the relative

use of coal in electricity capital that lasts for up to ten decades. Notably, these lagged
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effects display discrete jumps at two and seven decades after the event, corresponding to

the expected timing of two subsequent vintages of electricity capital. In support of my

parallel trends assumption, I do not find pre-trends in key covariates or in the outcome

variable. A series of robustness checks addresses further identification, data construction,

sample restriction, and statistical modeling concerns.

Path dependence in energy transitions emerges from a combination of “push” and “pull”

forces. Prior literature highlights various mechanisms that amplify energy transitions. These

include macroeconomic channels such as directed technical change (Aghion and Howitt,

1992; Acemoglu et al., 2012, 2016; Aghion et al., 2016; Fouquet, 2016; Hassler, Krusell

and Olovsson, 2021; Lemoine, 2024; Casey, 2024) and network externalities (David, 1985;

Aghion et al., 2025). They also include microeconomic channels such as increasing returns to

scale and local productivity effects such as via learning-by-doing that may be more relevant

with my county-level research design (Nerlove, 1963; Christensen and Greene, 1976; Arthur,

1994). The literature also considers a common dampening force against runaway transitions:

imperfect long-run substitutability between clean and dirty fuels, a key structural parameter

found across several recent optimal climate policy models (Acemoglu et al., 2012; Golosov

et al., 2014; Lemoine, 2024; Fried, 2018; Acemoglu et al., 2023). In general, the need for

reliable estimates of energy input substitutability has been a long-standing concern in the

energy economics literature.4 Most prior estimates use price variation at the annual or sub-

annual levels (Lanzi and Wing, 2010; Aghion et al., 2016; Papageorgiou, Saam and Schulte,

2017; Knittel, Metaxoglou and Trindade, 2019; Jo, 2025), which may not capture important

long-run patterns of substitution involving changes in energy capital.5

To recover a substitution parameter relevant for my empirical context, I first develop a

model of structural change for the electricity sector at the county level featuring increasing

returns to scale and local productivity effects. Empirical tests using the structure of this

model verify that increasing returns to scale may be driving my reduced-form estimates.

Further tests fail to statistically detect alternative explanations related to local productivity

effects as well as other possible mechanisms such as cost-of-service electricity regulation, the

U.S. Clean Air Act, coal procurement contracts, increasing returns in coal transportation,

4See Atkinson and Halvorsen (1976); Griffin and Gregory (1976); Pindyck (1979); Stern (2012); Papa-
georgiou, Saam and Schulte (2017); Fried (2018); Casey (2024).

5A related paper by Hawkins-Pierot and Wagner (2025) shows that negative energy price shocks at the
time a manufacturing facility opens results in persistently higher energy efficiency during the lifetime of that
facility, regardless of subsequent energy prices. This technological lock-in effect has similar climate policy
implications as the fuel composition dynamics explored in this paper by creating path dependence in energy
use.

3



and residential household sorting, though statistical uncertainty prohibits one to definitively

rule out these mechanisms. This evidence, together with the structure of the model enables

a mapping between my reduced-form estimate of strong path dependence and the long-run

elasticity of substitution between coal and other fuels.

Finally, I calibrate my model using reduced-form estimates to draw lessons for future

U.S. energy transitions away from coal. Evidence of strong path dependence implies it is

possible for a temporary intervention to induce permanent fuel switching. But under what

conditions? To answer this question, I simulate future electricity sector carbon emissions for

the average U.S. county following temporary relative coal price shocks of varying magnitude

and duration. For a better than 50% chance of achieving a permanent switch away from coal

and thus weakly declining carbon emissions, a temporary shock equal in magnitude to recent

high relative coal prices (e.g., due to natural gas hydraulic fracturing) must last at least five

decades. Alternatively, if the shock can only last one decade, it must then be six times

higher than that of recent prices to trigger sustained fuel switching. Further simulations

explore how requirements for sustained energy transitions change under different elasticity

of substitution and scale parameter values. Altogether, these simulations conclude that in

the absence of climate policy, recent economic conditions are insufficient for sustaining a

permanent U.S. energy transition away from coal.

The remainder of the paper is organized as follows: Section 2 presents motivating evidence

on the U.S. electricity sector. Section 3 details statistical challenges and proposes a solution.

Section 4 discusses data construction and verification checks. Section 5 presents reduced-

form evidence of path dependence and related robustness tests. Section 6 introduces a

theoretical framework which informs empirical tests of potential mechanisms. Section 7 uses

this framework to formally define path dependence strength, recover the long-run elasticity

of substitution, and simulate future carbon emissions. Section 8 concludes.

2 Prima facie: Why is the U.S. so dependent on coal?

The United States has one of the most carbon-intensive economies in the world. Figure

A.1 plots carbon dioxide (CO2) emissions per capita against GDP per capita for non-OPEC

countries in 2000 using data from Boden, Marland and Andres (2013) and Bank (2014).

U.S. emissions per capita is nearly 2 standard deviations higher than what income would

predict. This reflects the U.S. electricity sector’s heavy reliance on coal, the most carbon-

4



intensive of energy fuels.6 Since the 1960s, roughly 40% of U.S. electricity has been produced

from coal (Energy Information Administration, 2012). Why is the U.S. electricity sector so

dependent on coal? Many observers point to its world-leading coal resources. However,

a casual exploration of historical patterns of local coal use suggests that a supply-based

explanation may be incomplete.

Figure 1: Relative coal capital for counties close to and far from Illinois Coal Basin
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Notes: Plot shows log relative coal capital averaged across counties with centroids that are less than 50
miles (solid black) and between 200 and 250 miles (dashed gray) from the nearest coal resource in the Illinois
Coal Basin for each decade from 1890 to 1990.

Before turning to these patterns, it is useful to first introduce how coal composition is

measured throughout this paper. In the electricity sector, capital size is usually denoted by

the capacity of a generating unit, or the maximum electricity it can produce in an hour. Thus,

a natural measure of coal composition is the ratio of the capacity of coal-fired generating

units to the capacity of generating units using other fuels. I call this relative coal capital.7

6Bituminous coal, the most common type of coal for electricity, produces 206 lbs of CO2 per million
British Thermal Units (BTU). By contrast, oil and natural gas produces 157 and 117 lbs of CO2 per million
BTU, respectively.

7 Structural change concerns changes in the composition of inputs, and not that of individual inputs.
Because inputs are jointly determined, it is important to examine an outcome variable that is a function of
both coal and non-coal electricity capital. Relative coal capital is preferred over coal capital share (i.e., the
ratio of capacity of coal-fired generating units to total capacity of generating units across all fuels), as my
main outcome variable, largely because predictions from standard models of structural change (discussed
further in Sections 6 and 7) are typically expressed as factor input ratios.
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Figure 1 examines U.S. relative coal capital at the county-by-decade level (see Section

4.2 for data construction details).8 It plots average log relative coal capital over 1890-1990

separately for counties that are close to (between 0 and 50 miles) and further away (between

200 and 250 miles) from coal resources in the Illinois Coal Basin, the basin studied in

this paper (for reasons discussed in Section 4.1). Consistent with a coal supply argument,

counties closer to coal resources exhibit higher relative coal capital throughout the 20th

century. However, the gap between these two sets of counties widens dramatically over this

period. Such a pattern cannot be explained by coal supply alone, which predicts relative

coal capital convergence, not divergence, over time as counties closer to coal resources face

higher mine prices as their supplying mines deplete more rapidly. Instead, these divergent

dynamics hint at the presence of path dependence, under which past relative coal capital

has a direct effect on future relative coal capital.

Unfortunately, Figure 1 does not provide causal evidence of path dependence in energy

transitions. Among other concerns, the dynamics displayed in Figure 1 may reflect the role

of unobserved time-invariant and varying characteristics with ongoing influence on relative

coal capital, rather than the direct influence of past relative coal capital. The next section

details this and other statistical considerations.

3 Empirical framework

This section begins by describing the empirical challenges to identifying path dependence in

energy transitions. I then discuss how shocks to local coal transport distance driven by the

changing regional accessibility of subsurface coal may overcome these challenges. To focus

for now on empirical issues, this section considers path dependence and its strength within a

reduced-form setting. Section 7 will offer formal definitions through the lens of a structural

change model.

3.1 Challenges to identifying path dependence

Statistically, path dependence is present when past outcomes have a causal effect on future

outcomes. Path dependence in structural change occurs when the outcome exhibiting such

dynamics is the composition of inputs. I begin with a simple empirical framework to illustrate

the challenges with estimating path dependence in energy transitions. There are two decades,

8Because electricity capital last multiple decades, I use a decade as the time-step for all empirical analyses.

6



t ∈ {1, 2}, and two fuel-specific intermediate sectors of electricity production, j ∈ {c, n}.
Sector c produces electricity using coal; sector n produces electricity using other fuels. The

outcome of interest is relative coal capital in county i, K̃it =
Kcit
Knit

. wcit is the delivered coal

price. Demand for relative coal capital for each period is

ln K̃i1 =π lnwci1 + ξi1 (1a)

ln K̃i2 =ρ ln K̃i1 + π lnwci2 + ξi2 (1b)

where π is the contemporaneous price effect. ρ is my reduced-form parameter for path de-

pendence. The error term ξit contains unobserved time-varying and -invariant determinants

of relative coal capacity. The presence of the latter, in particular, implies that a compo-

nent of ξi2 also appears in K̃i1 such that the autoregressive coefficient obtained by directly

estimating equation (1b) may not distinguish path dependence following a transitory shock

from the persistent effects of time-invariant determinants.9 To formalize this concern, insert

equation (1a) into (1b)

ln K̃i2 =ρπ lnwci1 + π lnwci2 + εi2 (1c)

where εi2 = ρξi1 + ξi2. Two statistical assumptions are needed for the ratio of lagged to

contemporaneous effects to identify ρ. The first is E[wci2εi2|wci1] = 0, which states that

contemporaneous coal prices must be exogenous. This exogeneity assumption would be

violated if, for example, relative coal capital and prices were simultaneously determined. The

second identifying assumption is E[wci1εi2|wci2] = 0, which requires that past coal prices be

uncorrelated with unobserved contemporaneous determinants of relative coal capital. If this

“exclusion restriction” assumption is satisfied, past prices affect current relative capital only

through past relative capital. When both assumptions are satisfied, lagged effects that are

larger in magnitude than contemporaneous effects suggest strong path dependence in energy

transitions. Conversely, lagged effects that are smaller in magnitude than contemporaneous

effects suggest weak path dependence.

In practice, another complication arises when estimating equation (1c), which implicitly

assumes that lagged effects can be detected within a single decade. Electricity capital decays

slowly over multiple decades. To detect effects on subsequent new capital investments (and

not just on depreciated existing capital), one needs county-level coal prices across much of

the 20th century. Unfortunately, to the best of my knowledge, such historical data were

either never collected or, if collected, are no longer available today (see Appendix B for a

9See a related discussion in Bleakley and Lin (2012).
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summary of historical data collection and availability).

3.2 Solution: regionally-driven local coal transport distances

To address these empirical challenges, I construct shocks to local coal transport distance

that rely on plausibly weaker identifying assumptions and span a 110-year period. The basic

idea is to construct local shocks using the changing regional accessibility of subsurface coal.

Mechanized mining and access to deep coal resources Prior to the 20th century,

most coal in the U.S. was manually mined which generally limited extraction to coal resources

less than 200 feet from the surface (Fisher, 1910; Speight, 1994). Mechanized mining was

introduced around the turn of the century and eventually came to dominate coal extraction.

As shown in Figure A.2, nearly the entire production increase in bituminous coal - the variety

most used for electricity - between 1890-1930 came from mechanized extraction (U.S. Census

Bureau, 1975). The main benefit of mechanization was the introduction of mechanized drills

that allowed for the excavation of previously inaccessible deep coal resources. The interaction

between this aggregate technology shock and the spatial distribution of deep coal resources

altered local delivered coal prices.

Using local coal transport distances To illustrate how changing regional coal accessi-

bility from the introduction of mechanized mining can be exploited, I return to the empirical

framework in Section 3.1. Suppose only shallow coal resources no deeper than 200 feet from

the surface could be extracted in the first decade. In the second decade, technology enables

deep coal mining. Denote the set of operating mines in each period as Mt.

To construct local coal transport distance shocks in this setting, I enlist the Herfindahl

Principle (Herfindahl, 1967), a theoretical result in models of spatial competition. The

Herfindahl Principle states that when a homogeneous resource is costly to transport across

space, and homogeneous suppliers are perfectly competitive, a consumer buys from the

physically nearest supplier at a price that is set, in part, by distance to that supplier. While

the Herfindahl Principle is a theoretical result, later in the paper I examine its empirical

validity (see Figure A.8) and conduct robustness checks in case its underlying assumptions

are violated (see Section 5.3).10

10More specifically, the Herfindahl Principle states that under perfect competition, a consumer will buy
resources from the producer with the lowest cost of supplying to that consumer. When producers have
homogeneous resource endowments and extraction costs, and transport costs scale with distance, the lowest
cost producer for a consumer is its physically nearest producer. See Gaudet, Moreaux and Salant (2001)
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For county i in decade t, distance to the nearest mine is

dit = min
mt∈Mt

{||i−mt||}

where ||i−mt|| is the Euclidean distance between county i and coal mine mt ∈Mt. Delivered

coal price can then be decomposed into

lnwcit = ln dit + ζit (2)

where ζit includes other supply-side factors. The coefficient on ln dit is normalized to one for

reasons detailed below.

Inserting equation (2) into equation (1c) yields

ln K̃i2 = ρπ ln di1 + π ln di2 + µi2 (3)

where µi2 = ρπζi1+πζi2+εi2. ln di2 is log distance to the nearest mine when mechanized min-

ing is available. ln di1 is log distance to the nearest mine before mechanized mining.11 To en-

sure ∂lnK̃i2/∂lndi1

∂lnK̃i2/∂lndi2
has a path dependence interpretation, the updated exogeneity and exclusion

restriction assumptions for equation (3) are E[ln di2µi2| ln di1] = 0 and E[ln di1µi2| ln di2] = 0,

respectively. Observe that the coefficient on distance in equation (2) need not be one. As

long as this coefficient is time-invariant12 and the identifying assumptions for equation (3)

are satisfied, ∂lnK̃i2/∂lndi1
∂lnK̃i2/∂lndi2

would cancel out this coefficient and identify ρ. That is, to estimate

path dependence, one only needs the identifying variation - in this case local coal transport

distances - to drive relative coal capital. It need not directly capture coal prices, per se.

Compared with directly using coal prices in equation (1c), use of ln dit has two distinct

advantages. First, construction of ln dit requires only historical data on the location, coal

depth, and operating years of coal mines, which, unlike historical coal prices, is available

across the 20th century. Second, observe that outside of county i’s location (addressed

below), ln dit is driven primarily by two regional determinants: (i) the time-invariant spatial

distribution of the depth of subsurface coal resources and (ii) the time-varying introduction

of mechanized mining which made deep coal accessible. As a consequence, use of ln dit is

for a generalized setting with multiple, spatially differentiated, consumers. Robustness checks in Section 5.3
considers potential complications that arise when coal resources have heterogeneous quality and when coal
mines have market power.

11In this setting, it need not be the case that ln di1 ̸= ln di2 for all counties. The introduction of mechanized
mining may not lead to the opening of a deep coal mine that is closer to a given county than an existing
shallow coal mine.

12Table A.2 shows there is no trend in the county-level coal price-transport distance correlation from the
1970s to the 1990s, the period in which both variables are observed.

9



more likely to satisfying my identifying assumptions.

3.3 Regression specification

Equation (3) from Section 3.1’s simple empirical framework is a cross-sectional regression. In

practice, I use a county-by-decade panel dataset over the 20th century to estimate an event

study specification that generalizes equation (3). This approach affords several additional

advantages. First, identifying assumptions are now in terms of parallel trends, with county-

specific fixed effects removing the potentially confounding influence of time-invariant factors

such as geography and other natural features. Namely, in the absence of shocks to local coal

transport distance, relative coal capital would have followed the same trends in all sample

counties. Second, because each county experiences the event of first switching to deep coal

at different moments in time, lagged effects of distance to the nearest shallow mine in “event

time” can be identified relative to local secular trends through the use of state-by-decade fixed

effects. Third, the presence of multiple decades of data for each county enables estimation of

lead effects and lagged effects over a long time horizon. Lead effects provide an indirect test

of parallel trends. Lagged effects across multiple decades allow sufficient time for capturing

new electricity capital decisions.

Denote h = −2, . . . , 10 as the event-time index. For each county, there are three distinct

periods, each occurring when the distance to its nearest coal mine changes. The focal event

occurs when a county’s nearest mine switches from a shallow to a deep coal mine for the first

time. h > 0 denotes the period after that switch. h = 0 marks the period before the switch

during which a county was closest to a shallow coal mine.13 ln d0i is distance to that shallow

coal mine and represents my local coal transport distance shock. h < 0 indicates an earlier

period when a county’s coal supplier was yet a different shallow coal mine. Using this event

study setting, I estimate for county i, in state s, during decade t

ln K̃it =
∑

−2≤τ≤10
τ ̸=0

βτ [ln d0i × 1(τ = h)] + π ln dit +
∑

−2≤τ≤10
τ ̸=0

γτ1(τ = h) +ϖi + ϕst + µist (4)

where γτ captures common event-time effects and µist is an error term. County fixed effects,

ϖi, removes concerns that local coal transport distance shocks may be correlated with a

13Note that in our baseline specification, h = 0 can span multiple decades if the shallow coal mine is a
county’s nearest supplier for more than a decade. In a robustness check, we redefine h = 0 as the single last
decade before a county first switches to deep coal to examine whether there are differential pre-trends in the
decades before that switch.
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county’s time-invariant characteristics such as its geography.14 State-by-decade fixed effects,

ϕst, removes the presence of time-varying state-level supply and demand conditions that may

jointly influence deep coal mine openings and relative coal capital. In Section 5.1, I show pre-

trend tests for key covariates that support the inclusion of these controls. Because ln dit is a

county’s contemporaneous distance to its nearest coal mine, π captures the contemporaneous

effect of coal prices. Its inclusion removes any correlation between past and current coal

prices, which supports a path dependence interpretation for lagged effects of ln d0i .

Our coefficients of interest are βτ . When τ > 0, βτ are lagged effects, with βτ

π
> 1 and

βτ

π
< 1 implying strong and weak path dependence, respectively.15 When τ < 0, βτ are lead

effects and test for the presence of differential pre-trends in relative coal capital.16 Equation

(4) is my baseline specification. In Section 5.3, I also estimate variants of equation (4) to

address remaining identification concerns.

4 Data

This section first details how spatial data on coal resources and mines are used to construct

shocks to local coal transport distance. I then describe the construction of relative coal

capital, my main outcome variable. For both variables, I present several tests to verify

assumptions used in each construction procedure.

4.1 Local coal transport distance

The USGS National Coal Resource Assessment (NCRA) recently amassed and digitized

spatial data on coal resources and mining that was previously held separately in the archives

of state geological agencies (East, 2012). As shown in Figure A.3, the NCRA provides GIS

14Because mines serve multiple counties, county fixed effects also absorbs heterogeneity in the mill price
set by the nearest mine right before the switch to deep coal. Heterogeneity in mill price captures variation
in mines’ marginal cost of coal extraction (Hotelling, 1929; C. d’Aspremont, 1979; Salop, 1979; Vogel, 2008),
Hotelling rent associated with the size of its coal resource (Hotelling, 1931; Gaudet, Moreaux and Salant,
2001), and coal quality, such as heat, ash, and sulfur content, which can alter the amount of coal needed to
produce a unit of electricity.

15In the absence of any path dependence, one may detect βτ

π < 1 if there was gradual capital depreciation
over time.

16These lead effects provide indirect tests for whether the nearby availability of deep coal extraction was
anticipated. Even if those shocks were predictable, it may not be the case that relevant forward-looking
agents would act on it ex-ante. Miners cannot mine deep coal unless the technology to do so is available.
Likewise, electric utilities are unlikely to construct coal-fired power plants in advance of nearby deep coal
resources extraction.
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shape files for coal resources of depths greater than and less than 200 ft from the surface for

each of the major U.S. coal basins.17 This paper makes several sample restrictions for data

availability and estimation reasons.

I focus on coal resources found in the Illinois coal basin.18 Of the major basins assessed

by the NCRA, only for the Illinois Basin is there data on the location, area, and opening

and closing years of coal mines.19 This data goes back to 1890. The Illinois Basin is also

advantageous for its geological properties. As Figure 2 shows, it has a dish-like shape with

shallow coal resources in the outer regions and deeper resources near the center, implying

that earlier shallow coal drilling in a given location does not geologically lead to deeper coal

drilling, a potential source of endogeneity.20 Coal across a single large deposit is less likely

to be heterogeneous in quality. Indeed, data from the FERC-423 coal procurement forms

displayed in Table A.1 show that of the five major coal basins, the Illinois Basin contains

coal with the second lowest standard deviation in heat and ash content.

Within the Illinois Basin, I consider only large coal mines whose spatial area exceeds the

95% percentile for that basin. This is done to enable cleaner identification because large

coal resources are more likely to be mined in response to regional, rather than local coal

demand. Indeed FERC-423 forms reveal that counties with at least one of these large mines

on average produce 3 times more coal than other counties in our sample region. Coal is also

shipped further: the average quantity-weighted transport distance from these counties are

10 times longer. Additionally, larger coal resources have lower Hotelling, or scarcity rents,

which may be an endogenous component of the delivered coal price (Hotelling, 1931). Figure

2 shows the location of these mines over the Illinois Basin. On the demand side, I restrict

my county sample to those whose distance from centroid to nearest Illinois coal resource is

(i) less than the distance to the nearest Appalachian coal resource and (ii) less than 250

miles. The first restriction reduces the influence of coal from nearby Appalachian Basin on

delivered coal prices. The second restriction reduces the influence from other coal basins.

17The NCRA does not provide shape files with finer intervals of coal depth. Fortunately, Fisher (1910)
notes 200 ft from the surface as generally the depth limit for manual coal mining prior to the 20th century.

18In the 1990s, the Illinois Coal Basin provided 20% of bituminous coal in the U.S. (Energy Information
Administration, 1994) That share is likely to have been higher earlier in the 20th century before the large
scale extraction of western U.S. coal.

19Historical coal mine data for other basins are still held by state-level natural resource agencies. These
agencies typically possess a coal mine “final map” which dates a mine’s closing, but not opening year.

20While the NCRA provides shape files of modern coal resources, much of the Illinois Basin has been
characterized since the start of the 20th century such that one can interpret Figure 2 as indicating the
location of coal resources known across much of the 20th century. For example, the shape of the Illinois
Basin shown in Figure 2 matches closely with that found in Campbell (1908).
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Figure 2: Location of Illinois Basin coal resources and mines

Notes: Green (lighter) shaded area indicates shallow coal resources (<200 ft. underground). Black (darker)
shaded area indicates deep coal resources (>200 ft. underground). Yellow dots show all large coal mines
that operated at any point after 1890. County and state boundaries also shown.

The resulting sample of counties located in 11 states is shown in Figure A.4. These coal

mine and county sample restrictions will be subjected to robustness checks. Figures 2 and

A.4 visualize the regional scope of my coal supply shocks: less than 7% of sample counties

have nearest sample coal mines in the same county.

Using the NCRA spatial data, I identify a county’s distance to its nearest coal mine for

each decade from 1890 to 1990 (see Appendix A for data construction details). Figure A.5

maps county distance to nearest mine in 1890 and 1950, showing how its spatial distribution

has changed during this period. From this data, I can also determine the decade in which a

county’s nearest mine switches from a shallow to a deep coal mine for the first time. Figure

A.6 shows the timing of this switch for each sample county, stacked according to the decade

when it occurs. Observe that the timing of the switching event differs across counties.

I turn to three pieces of auxiliary evidence to verify my construction of coal transport

distances. First, the use of transport distance assumes that transport costs are an important
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component of delivered coal prices. Figure A.7 shows that transport costs were between

40-60% of national U.S. delivered coal prices over the first half of the 20th century. This

is consistent with previous research emphasizing the high costs of transporting coal, the

heaviest fossil fuel by heat content (Joskow, 1987; Busse and Keohane, 2007; McNerney,

Farmer and Trancik, 2011; Preonas, 2024).

Second, my construction procedure relies on the Herfindahl Principle, in which power

plants buy coal from its nearest mine. Using coal procurement data from 1990-1999 FERC-

423 forms, Figure A.8 shows how the share of coal purchased by a county varies according

to the rank in the transport distance to coal-supplying counties.21 Nearly 50% of purchased

coal came from the nearest coal supplying county. There is a steep and sustained drop in

the share of coal purchased from other counties.

As a final check, I regress observed county-level delivered coal prices obtained from the

FERC-423 forms during the 1970s, 1980s, and 1990s against local coal transport distance

for sample counties. A perfect statistical fit is not expected nor desired as observed prices

may contain endogenous components in addition to transport costs. The correlations shown

in Table A.2 are statistically significant at the 5% level across all three decades and thus

provide confidence that my transport distance shocks is capturing variation in delivered coal

prices. There is also no clear trend in these correlations.

4.2 Electricity capital

Fuel-specific electricity capital, or capacity, at or below the county level throughout the

20th century is also not directly available (see Appendix B for details). Instead, I turn to

modern EIA-860 forms to construct a county-by-decade panel of relative coal capital from

1890 to 1990. Importantly, this construction of historical data is made possible because

EIA-860 collects data on capacity, operating years, and primary fuel input for both active

and retired generating units at power plants that were operating at the time of reporting.

The availability of retired generating units, in particular, enables one to observe historical

electricity capital that is no longer active today (see Appendix A for construction details).

Three assumptions must be satisfied for my constructed relative coal capital to match

historical values. First, all power plants since 1890 must continue to have at least one active

generating unit today. If an entire power plant retires, their generating units would not

21Unfortunately, FERC-423 forms provide the county of origin for delivered coal, and not mine. Because
I am unable to directly link power plants with coal mines, Figure A.8 provides a noisy test of the Herfindahl
Principle.
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appear in modern EIA-860 forms. To test the degree in which my constructed data may

be missing retired power plants, I turn to historical data since 1920 which is only available

at the national level (U.S. Census Bureau, 1975). Panel A of Figure A.9 compares U.S.

electricity capacity (in gigawatt, GW) summed across generating units burning fossil fuels

(i.e., coal, oil, and natural gas) constructed from EIA-860 forms against observed values from

the U.S. Historical Census for the 1920-1970 period. Panel B of Figure A.9 provides a similar

comparison but for annual capacity changes. While my constructed data under reports fossil

fuel capacity levels prior to 1955, the two national data series track closely in terms of annual

changes throughout the 1920-1970 period. This suggests that my constructed data may be

missing power plants that began operation prior to 1920 but less likely those operating after

1920. Panels C and D of Figure A.9 draw a similar conclusion for electricity capital using

hydro power.

My second and third assumptions are that a generating unit must not change its capacity

and primary fuel during its lifetime. Section 6.1 discusses engineering reasons for why these

features are likely to be stable over time. Nonetheless, such changes may occur. Table

A.3 examines the consistency of key generating unit characteristics across the 1990-2012

EIA-860 forms. For each characteristic across columns of Table A.3, row values indicate

the percentage of 1990-2011 EIA-860 forms with values that differed from that reported in

the 2012 EIA-860 form. 75%, 94%, 97% and 80% of generating units consistently reported

using the same capacity, primary fuel, opening year, and retirement year in 1990-2011 as

was reported in 2012.

To examine the consistency of generating unit characteristics over a longer time horizon,

I digitized the 1980 EIA “Inventory of Power Plants in the United States,” the earliest

available comprehensive generating-unit dataset, with data collected during the late 1970s.

Figure A.10 plots generating unit capacity reported in 2012 against the capacity reported in

the late 1970s, showing a nearly one-for-one relationship. Table A.4 shows the distribution of

reported primary fuel in 2012 conditional on primary fuel reported in the late 1970s. There

has been little fuel switching since the late 1970s.22

The EIA-860 forms have one final limitation: they exclude generating units on power

plants with less than 1 megawatt (MW) of combined electricity capacity. Appendix C

discusses how this censoring may reduce the sample size, decreases the sample mean, and

increases the skewness of relative coal capital. To address this, Appendix C details an

imputation procedure which first predicts the number of missing power plants for each decade

22Note that there has been more fuel switching since 2010 (Energy Information Administration, 2020).
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at the national level using a flexible polynomial function, estimated separately for coal and

non-coal, and then distributes these predicted missing plants across electricity-producing

counties. Robustness checks will examine various implementations of this procedure as well

as its estimation uncertainty.

Even with imputed missing small power plants, the distribution of relative coal capital

remains right-skewed. This skewness in my outcome variable can be mitigated by the log

transformation applied in equation (4). However, a log transformation is also sensitive to

small values of the untransformed variable, which depends on my imputation procedure. To

produce estimates that are less sensitive to my imputation method, I estimate equation (4)

using a Poisson model (Silva and Tenreyro, 2006).23 I consider other models as robustness

checks.

5 Reduced-form results

This section presents reduced-form evidence of path dependence in energy transitions. To

guide the specification of my baseline model, I first test for pre-trends in key county covariates

across models with different controls. I then present baseline reduced-form estimates and

various robustness checks.

5.1 Examining pre-trends in county covariates

The baseline specification in equation (4) includes county and state-by-decade fixed effects.

Table 1 verifies the importance of these controls by examining whether a county’s distance

to its nearest shallow mine before its switch to deep coal (i.e., ln d0i ) correlates with con-

temporaneous county characteristics that broadly capture coal demand. These covariates

were obtained from Haines (2010) and shown down the rows of Table 1. Total and urban

population proxy for residential coal demand. The number of establishments, employment,

23Specifically, the Poisson version of equation (4) is

K̃it = exp

 ∑
−2≤τ≤10

τ ̸=0

βτ [ln d0i × 1(τ = h)] + π ln dit +
∑

−2≤τ≤10
τ ̸=0

γτ1(τ = h) +ϖi + ϕst

+ µist (4’)

The Poisson model has the additional benefit of being a member of the linear exponential family such that
even if the density is misspecified, one can still obtain consistent point estimates through quasi-MLE provided
that the conditional mean function is correctly specified.
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capital value, and output value for the manufacturing sector capture its coal demand.24

Table 1: Pre-trends in county covariates

(1) (2) (3)
Outcome Levels Changes

log population (1890-1990) -0.13 -0.01 -0.02
(0.09) (0.01) (0.01)

Counties 261 261 261

log urban population (1890-1980) -0.09 -0.01 0.02
(0.17) (0.02) (0.02)

Counties 183 171 171

log mgf establishments (1890-1990) -0.20** -0.05 0.05
(0.10) (0.06) (0.06)

Counties 260 260 260

log mgf employment (1890-1990) -0.16 0.11** 0.00
(0.20) (0.05) (0.07)

Counties 258 255 255

log mgf capital stock (1890-1910) 0.07 0.17** 0.09
(0.24) (0.09) (0.15)

Counties 106 105 105

log mgf output (1890-1940) -0.44 0.17** 0.04
(0.35) (0.08) (0.16)

Counties 114 113 113

State fixed effects No No Yes
Notes: Each coefficient comes from a separate regression of ln d0i on a
contemporaneous county covariate as outcome. Time coverage for covariates
indicated. County sample shown in Figure A.4. Covariates in column 1 in
log levels. Covariates in columns 2 and 3 in first log differences. Column 3
augments column 2 by including state fixed effects. Robust standard errors
clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

24A more precise test of pre-trends in manufacturing activity would isolate subsectors that are coal or
electricity intensive. Historically, such data would have been collected by the U.S. Census of Manufacturers
(COM). For our sample counties, pre-trend tests require data during 1880-1960. Unfortunately, as noted
by Vickers and Ziebarth (2018), most COM data from this period has either since been lost or was never
collected.
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Each column of Table 1 estimates a model with different identifying assumptions. Column

1 shows the effect of ln d0i on log covariates in levels. Column 2 examines the effect of

ln d0i on log covariates in first-differences, analogous to a panel estimator with county fixed

effects. Column 3 augments column 2 by further including state fixed effects, akin to a

panel estimator with county and state-by-decade fixed effects. Only in column 3 are pre-

trends in these covariates systematically unrelated to ln d0i . This confirms the importance of

controlling for time-invariant county characteristics such as geography through county fixed

effects, and time-varying state-level conditions through state-by-decade fixed effects, both of

which are in the baseline statistical model shown in equation (4).

5.2 Baseline estimates of path dependence

The thick solid red line in Figure 3 shows my baseline point estimates of βτ from equation

(4) estimated using a Poisson model with relative coal capital, K̃it =
Kcit
Knit

, as the outcome.

These estimates are also printed in column 1 of Table 2.

Standard Poisson models impose that the first and second moments of the outcome be

equal. Table A.5 shows that the variance of relative coal capital exceeds its mean. To

address this overdispersion issue, my baseline model has standard errors clustered at the

county level. This adjustment relaxes the assumption of equal first and second moments

by allowing arbitrary forms of within-county heteroskedasticity and serial correlation in

the error term. The darker shaded area of Figure 3 shows baseline 95% point confidence

intervals for βτ using county-level clustered standard errors. It is possible that error terms

are spatially correlated across counties. To accommodate error correlation across a broader

spatial scale, the lighter shaded area shows the 95% point confidence interval when errors are

clustered at the state-by-decade level, which allows arbitrary heteroskedasticity and spatial

correlation across counties in the same state and decade. These two confidence intervals cover

similar ranges.25 Figure A.13 augments the county and state-by-decade clustered standard

errors in Figure 3 with estimated uncertainty from predicting missing small power plant by

bootstrapping my imputation procedure (see Appendix C for details). Confidence intervals

widen slightly.

I do not detect lead effects (i.e., βτ : τ < 0). The absence of differential pre-trends in

my outcome variable is consistent with the lack of pre-trends in county covariates shown in

25I further find very similar confidence intervals when using two-way clustered standard errors at the
county and decade-levels to account for both serial correlation within a county and spatial correlation across
counties in a decade. Those results are omitted because inference is complicated when there are only 11
decades in the sample.

18



Table 2: Baseline reduced-form estimates of path dependence

(1) (2)
relative coal relative coal

capital capital investment

ln d0i (β
τ )

2 decades lead -1.38 0.60
(1.02) (2.00)

1 decade lead -0.65 -0.34
(0.67) (2.32)
— —

1 decade lag -0.67 -4.45**
(1.25) (1.90)

2 decades lag -4.10*** -3.45
(1.14) (2.18)

3 decades lag -3.74*** -7.74**
(0.66) (3.62)

4 decades lag -3.50*** -5.66
(0.71) (5.24)

5 decades lag -4.57*** -4.43
(0.98) (3.61)

6 decades lag -3.70*** -2.87
(0.75) (3.90)

7 decades lag -6.19*** -10.05**
(1.37) (4.21)

8 decades lag -7.29*** -6.36
(1.59) (4.28)

9 decades lag -7.29*** -3.78
(1.57) (4.57)

10 decades lag -7.00*** -2.72
(1.56) (5.83)

ln dit (π) -1.53*** -3.47***
(0.53) (0.89)

Observations 2369 2369
Counties 261 261
Notes: Estimates of βτ and π from equation (4) using Poisson
model. Outcomes variables are at the county-by-decade level. Each
model includes event time, county, and state-by-decade fixed effects.
County sample shown in Figure A.4. Time period is 1890-1990.
Outcome in column 1 is relative coal capital. Outcome in column 2
is relative coal capital investment. Robust standard errors clustered
at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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column 3 of Table 1 and provides even stronger support for a parallel trends assumption.

Next, consistent with a reduced-form definition of strong path dependence, I detect statis-

tically significant negative lagged effects that are larger in magnitude to the contemporaneous

effect (i.e, βτ

π
> 1). These negative lagged effects also intensify over time. Notably, Figure

3 shows stronger lagged effects two and seven decades later, which roughly coincides with

the typical generator lifespan of four to six decades (see Appendix Figure A.12).26 It is,

however, still possible that the pattern shown in Figure 3 is due to differential retirement

of existing coal and non-coal electricity capital. Column 2 of Table 2 shows estimates of βτ

when the outcome is relative coal capital investment, X̃it =
Xcit
Xnit

, the ratio of new coal to

non-coal electricity capital built in each county i and decade t. Indeed, shocks to local coal

transport distance alter relative coal capital investment over many later decades.

5.3 Robustness checks

I turn now to a series of robustness checks designed to address further identification, data

construction, sample restriction, and other statistical modeling concerns. Point estimates

for all robustness checks are shown as thin non-solid blue lines in Figure 3.

Remaining identification concerns Table A.6 explores remaining identification con-

cerns, with column 1 replicating my baseline estimates. It is possible that distance to the

nearest shallow mine continues to directly influence relative coal capital after the switching

event. While this implies that lagged effects would not have a clean path dependence in-

terpretation, the resulting bias is likely towards zero, with lagged coefficients understating

the true strength of path dependence. This is because, on its own, increasing mill prices

from the ongoing depletion of the shallow mine would predict weakening, not strengthening,

lagged effects over time.

One particular channel through which a shallow mine may exert direct influence on

relative coal capital after the switching event is if the mine could price discriminate. For

example, if mine A, the initial nearest supplier to a county, becomes the second nearest

supplier following the opening of mine B, mine B could price-discriminate by setting a

buyer’s coal price equal to its distance to mine A (MacLeod, Norman and Thisse, 1988;

Vogel, 2011). Under this form of market power, distance to mine A would directly determine

26Because generator retirement ages vary, the estimated lagged effects in Figure 3 do not pick up discrete
new generator vintages but instead are averages across the distribution of generator lifespans.
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Figure 3: Reduced-form estimates of path dependence in relative coal capital
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Notes: Thick solid red line and darker shaded area show baseline point estimates and 95% confidence
intervals for βτ from equation (4) with county-level clustered standard errors. Outcome is relative coal
capital at the county-by-decade level. County sample shown in Figure A.4. Time period is 1890-1990.
Estimates also shown in column 2 of Table 2. Lighter shaded area shows the 95% confidence interval when
estimating equation (4) with state-by-decade clustered standard errors. Thinner non-solid blue lines show
point estimates from various robustness tests displayed in columns 2-6 of Table A.6, columns 2-6 of Table
A.7, columns 2-6 of Table A.8, columns 2-5 of Table A.9, and columns 2-4 of Table A.10.

a county’s subsequent coal price even if it were no longer supplying coal.27 To remove the

possibility of price discrimination from affecting my results, column 2 estimates my baseline

model without the counties for which the earlier supplying shallow mine becomes the second

nearest mine at any point after the switching event. My results are little affected.

I next examine the possibility that distance to the shallow mine may be correlated with

trends in other determinants of relative coal capital. Both the residential and manufacturing

sectors consume electricity, while the manufacturing sector also consumes coal. In column 3,

27There is evidence from recent years showing price discriminating behavior by railroad companies that
sell coal to power plants (Busse and Keohane, 2007; Preonas, 2024). Little is known, however, about whether
such mark-ups existed across the longer time period considered in this study.
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I augment the baseline model with three county-by-decade covariates available throughout

the 20th century that proxy for the economic activity in these linked sectors: residential and

manufacturing demand population, number of manufacturing establishments, and manufac-

turing employment, all in logs. Similarly, column 4 accounts for trends in transport costs

by adding interaction terms between a linear time trend and two geographical features that

affect transport costs: a county’s distance to the nearest navigable waterway and its rugged-

ness, as approximated by its variance in slope, both in logs (see Appendix A for data details).

Coefficients in columns 3 and 4 are similar to those of my baseline results. Despite these

controls for local coal demand and transport costs, labor mobility across counties may still

introduce endogeneity if remote coal mine openings draw away workers regionally affecting

a given county’s local wages and coal-fired electricity. Column 5 examines this possibility by

controlling for county-by-decade log manufacturing wages, a county-level wage measure that

is available for my sample period from Haines (2010), showing similar results. The current

omitted event term marks the period before the initial switch to deep coal, which for some

counties can span multiple decades. There may be differential pre-trends during this period

that are not examined in my benchmark specification. To explore this possibility, column 6

redefines the focal event as just the single decade before the initial switch to deep coal such

that pre-trends in the decades before this switch can be estimated. I do not detect such

pre-trends.

Imputing missing small power plants Table A.7 examines alternative imputations for

missing power plants with less than 1 MW capacity. Column 1 replicates my baseline result

which uses a 4th order flexible polynomial function to fit national size distributions, sepa-

rately for new coal and non-coal power plants built each decade, as detailed in Appendix C.

Columns 2 and 3 show these results are stable to when 3rd and 5th order polynomial func-

tions are used. If my imputation procedure is biased, one would want to weight my regression

towards observations with more observed power plants. Column 4 does this by weighting

each county-decade observation with each county’s time-averaged number of power plants

and shows similar results.28 In column 5, I use a simpler, though less data-driven, imputa-

tion procedure by simply adding 1 MW capacity to coal and non-coal capital investment.

The overall shape and precision of lagged effects are unchanged. While the magnitude of all

coefficients are smaller, the ratio of lagged to contemporaneous effects, βτ

π
, is consistently

greater than one, indicative of strong path dependence. Column 6 estimates equation (4)

28These weights, however, may be endogenous and thus are not used in my benchmark specification.
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using unadjusted relative coal capital. Despite the smaller sample size, lagged effects up

to six decades have similar magnitudes to baseline results, with 3 to 5 decade lags statis-

tically significant at the 10% level. Furthermore, consistent with strong path dependence,

column 6 shows that lagged effects up to 9 decades later is larger in magnitude than the

contemporaneous effect.

Column 7 provides an indirect test of my <1MW capacity imputation procedure by

pretending 1-2MW capacity power plants are missing and instead impute these plants using

the same procedure used to impute missing <1MW plants. To test my imputation procedure

against observed data, column 7 estimates are compared to those in column 6, which includes

observed 1-2MW plants and without imputation of <1MW plants. The lagged effects in

columns 7 and 6 are of similar sign and magnitude for the first six decades. Longer lagged

effects in column 7 are of smaller magnitude, though lagged effects remain larger than the

contemporaneous effect up to 9 decades later, consistent with strong path dependence. This

pattern, were it to hold for missing <1MW plants, suggests that my imputation of <1MW

plants leads to lagged effects that are biased towards zero. Lastly, I detect a similar pattern

when modeling unadjusted coal capital share, or Kcit
Kcit+Knit

, as shown column 6.29

Sample restrictions Table A.8 considers different sample restrictions, with column 1

reproducing my baseline results. On the coal supply side, recall that in order to isolate local

coal transport distance shocks driven by regional conditions, I focused on large mines with

areas above the 95th percentile of Illinois Basin mines. Estimates in columns 2 and 3 use

transport distances constructed from mines with area above the 90th and 97.5th percentiles,

respectively. While the inclusion of smaller mines result in statistically significant lead

coefficients, these coefficients trend in the opposite direction of lagged effects.

On the coal demand side, to lessen the competing effects of other coal basins, my bench-

mark sample restricted counties to those within 250 miles of the nearest Illinois Basin coal

resource and are situated closer to the Illinois Basin than to the Appalachian Basin. In

column 4, I further weaken the influence of other coal basins by restricting the sample to

counties within 200 miles of the nearest Illinois Basin coal resource. I find similar point esti-

mates and standard errors. In column 5, I allow more counties into the sample by increasing

the distance threshold to 300 miles. In column 6, I allow counties that are situated closer

29An alternative modeling approach may be to separately model the extensive margin of coal and non-coal
capital investments via probit or logit models. In addition to having to address the missing small plant
censuring issue, these models also do not account for the joint determination of coal and non-coal capital,
which is essential for examining changes in fuel composition. Standard multinomial discrete choice models
also do not readily account for simultaneous input choices.
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to the Appalachian Basin into the sample. For both larger samples, effect sizes are smaller,

possibly due to the influence of other coal resources. However, point estimates are within

the confidence intervals of baseline results.

Functional forms The log-log functional form of equation (4) implicitly assumes that

the relationship between relative coal capital and coal transport distance is an isoelastic

function. While this will be appealing for the theory in Section 6, this functional form may

not be empirically supported. Figure A.14 examines whether the data supports linearity

by estimating a variant of equation (4) that breaks log distance to the nearest mine into

discrete bins, allowing a flexible relationship between distance and relative capital for each

event-time period. Figure A.14 shows log relative coal capital predicted by log distance to

the contemporaneous nearest mine, and by log distance to the earlier shallow mine two and

seven decades after the switching event. These three relationships are approximately linear.

The baseline model in equation (4) includes 10 lag and 2 lead terms. More lag terms

allow effects on new capital investments to be detected and 10 is the largest number of

lags permitted by my 11 decade-long dataset. I vary the number of lead terms in Table

A.9. Column 1 replicates the baseline model, column 2 includes 1 lead term, and column 3

includes 3 lead terms. I do not detect statistically significant lead terms across these models,

nor very different lagged effects.

Finally, I consider two alternatives to the baseline Poisson model. The first alternative

is a log-log linear model. The downside to such an approach is that a log transformation is

sensitive to small values of an outcome variable, which may arise from how missing small

power plants are imputed. A second alternative is to employ a negative binomial model.

In contrast to a Poisson model which semi-parametrically addresses overdispersion via clus-

tered standard errors, a negative binomial model parametrically models overdispersion as a

function of the expected outcome.

Column 4 of Table A.9 estimates equation (4) using a log-log linear model, while column

5 uses a negative binomial model. Both alternative models produce statistically significant

lagged effects, mostly at the 5% level. The overall shape of lagged effects from these two

models, including the jumps at two and seven decades later, mirrors baseline results. While

these coefficients are smaller in magnitude, the ratio of lagged to contemporaneous effects

actually imply stronger path dependence.

Staggered treatment There are two concerns with dynamic staggered event study designs

such as equation (4). First, the underlying composition of counties changes with event time
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as fewer sample counties are available for estimating longer lagged effects (Wing, Freedman

and Hollingsworth, 2024; Baker et al., forthcoming). If county composition matters, one

should see lagged effects changing significantly depending on the decade in which the switch

occurs. To examine this, column 2 of Table A.10 estimates my benchmark specification on

the subsample of counties that experience the switching event prior to the 1960s. Estimates

are similar to the benchmark full sample estimates in column 1 of Table A.10. Column 3

implements a continuous version of this test by interacting the first five lagged terms – terms

which can be estimated using early and late switching counties (see Figure A.6) – with the

decade in which a county switches. These interaction terms are not statistically significant.

The second concern with staggered designs is the potential bias arising from using already-

treated units as controls for later-treated units. To date, the econometrics literature has

overwhelmingly focused on binary treatments in staggered designs (Callaway and Sant’Anna,

2021; Goodman-Bacon, 2021; de Chaisemartin and d’Haultfoeuille, 2020). My particular em-

pirical approach – a staggered event study with dynamic effects, continuous treatment, and

Poisson estimation – remains, to the best of my knowledge, beyond the scope of existing

econometric results.30 In the absence of established econometric methods, I informally ad-

dress the improper controls concern by employing a stacked difference-in-difference approach

following Wing, Freedman and Hollingsworth (2024). Specifically, I estimate a Poisson model

after stacking the data into groups of counties by switching decade, limiting control counties

to those that have not-yet or never experience the switching event, and further restricting

my sample to counties with balanced event time observations (resulting in fewer lead and lag

terms). Column 3 of A.10 shows qualitatively similar estimates to my benchmark results.

6 Mechanisms

Section 5’s reduced-form evidence of strong path dependence in energy transition suggests

it is possible for a permanent energy transition to be induced by a temporary intervention.

This section combines theory and additional evidence to understanding the mechanism be-

hind these results. To that end, I first develop a model of structural change model which

incorporates two mechanisms that could operate at a county-level previously highlighted in

the energy economics literature: increasing returns to scale and the accumulation of fuel-

specific productivity. Informed by the structure of this model, I then conduct a series of

30Notable recent developments for staggered design with dynamic effects and continuous treatment in
linear models are de Chaisemartin and d’Haultfoeuille (2024); Callaway, Goodman-Bacon and Sant’Anna
(2024); de Chaisemartin and D’Haultfœuille (2025).
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empirical tests designed to isolate the relevant mechanism. For completeness, I also test for

mechanisms not considered by the model. While these tests by no means exhaust all possible

explanations, their results lend confidence for the particular structural interpretation of my

reduced-form results considered in Section 7.

6.1 A model of structural change for the electricity sector

A typical electricity producer operates several power plants, each consisting of fuel-specific

generating units of different vintages. Generating units, in turn, combine one or more boilers

and an electric generator to convert primary fuel, such as coal, into electricity. Each tier of

this production structure - generating unit, power plant, producer - exhibits distinct features

that have long been recognized in the energy economics literature. I first summarize these

features before introducing them into a model.

F1 “Putty-clay” capital A generating unit consists of a boiler which turns fuel into

steam and a generator which produces electricity from the boiler’s steam. Boilers are

typically designed to consume a particular fuel at a particular quantity. Sustained use

of other fuels or use of the intended fuel in other quantities can lead to large efficiency

losses (Avallone, Baumeister and Sadegh (2006), p.871). To account for this feature,

prior literature has modeled electricity capital as “putty-clay,” where it is fully utilized

once built (Joskow, 1985, 1987; Atkeson and Kehoe, 1999).

F2 Fuel and capital as perfect complements Fuel is essential for producing electricity

and cannot be substituted with other inputs. At the generating unit level, the com-

bination of fuel and capital is typically modeled using a Leontief function (Komiya,

1962; Atkeson and Kehoe, 1999; Fabrizio, Rose and Wolfram, 2007).

F3 Returns to scale At the power plant-level, boilers can be linked to multiple gen-

erators. Thus, when a new boiler is installed, it can serve both new and existing

generators, providing efficiency gains for generating units across multiple vintages of

capital. This spillover effect, together with newer boilers typically being more effi-

cient, provides a physical basis for increasing returns to scale at the power plant-level.

Nerlove (1963) and Christensen and Greene (1976) provide seminal early estimates of

scale economies in the electricity sector.

F4 Imperfect substitutability across fuel-specific electricity Electricity properties

differ across input fuels. For example, electricity from coal provides “base load” supply
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that cannot be easily ramped up or down in response to variable demand, unlike

electricity from natural gas. This imperfect substitutability across fuels is a crucial

element of the directed technical change model developed by Acemoglu et al. (2012).

I incorporate these features into a model of electricity production with vintaged capital.

In order to later map this model onto my reduced-form evidence, I consider a county that

acts as a small open economy and served by a single electricity producer. The index t denotes

the time increment between each capital vintage. At the top tier, the final good, electricity,

Yt, is generated using two intermediate goods, Yct and Ynt, representing electricity from coal

and all other fuels respectively. Specifically, it takes the following Constant Elasticity of

Substitution form

Yt =
(
Y

(ϵ−1)/ϵ
ct + Y

(ϵ−1)/ϵ
nt

)ϵ/(ϵ−1)

(5)

where ϵ is the long-run elasticity of substitution between electricity produced from the two

intermediate sectors.31 To allow for imperfect substitutability between electricity from dif-

ferent fuels (i.e., F4), I assume ϵ ∈ (1,+∞). Final good price is normalized to 1.

Fuel-specific electricity, the intermediate good, is produced via middle and lower tiers of

the production structure, corresponding to power plants and generating units respectively.

These two tiers combine to form the following expression

Yjt = (min[AXjtXjt, AEjtEjt])
α(min[AXjt−1(1− δ)Xjt−1, AEjt−1Ejt−1])

α for j∈{c,n} (6)

where δ ∈ (0, 1) is the capital depreciation rate and α ∈ (0, 1) is the fuel-specific electricity

elasticity of input. Returns to scale at the power plant-level (i.e., F3) is reflected in the

middle tier where fuel-specific electricity comes from combining generating units across two

vintages with scale parameter ψ = 2α.32 At the lowest tier, generating units combine fuel,

Ejt, and t-vintaged capital, Xjt as perfect complements in a Leontief function (i.e., F2).

AXjt > 0 and AEjt > 0 indicate capital and fuel productivities, respectively.

To explore how scale and productivity effects could generate path dependence for other-

wise similar intermediate sectors, suppose capital and fuel productivities were the same across

the two intermediate sectors in period t−1, such that AXct−1 = AXnt−1 and AEct−1 = AEnt−1.

Next, observe that when fuel and capital are perfect complements, efficient allocation in the

lower production tier imply AXjtXjt = AEjtEjt for each intermediate sector j. Furthermore,

31This parameter is long-run in the sense that it reflects changes in capital.
32This allows for diminishing marginal product under varying returns to scale. Otherwise, the relative

input demand curve becomes upward sloping. The assumption that returns to scale is constant for coal and
non-coal electricity production is examined in Table 3.
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“clay” past-vintage capital (i.e., F1) with large efficiency losses implies that it is fully uti-

lized, set at AXjt−1(1−δ)Xjt−1 = AEjt−1Ejt−1 for each intermediate sector j.33 Rewriting the

first order conditions in terms of current-vintage relative coal capital investment, X̃t =
Xct
Xnt

,

yields (see Appendix D.1 for full derivation)

X̃t = w̃
ϵ

φ−1

t X̃
α(1−ϵ)
φ−1

t−1 Ã
α(1−ϵ)
φ−1

Xt (7)

where w̃t = wct
wnt

is the relative input price index and ÃXt = AXct
AXnt

is the ratio of capital

productivity for coal and non-coal generating units of vintage t. φ = (1−α)(1−ϵ) < 0, from

earlier assumptions.34 Equation (7) provides two channels through which past relative input

prices, w̃t−1, affect current-vintage relative coal capital investment, X̃t. First, after applying

equation (7) recursively, it can shown that past relative input prices affect past-vintage

relative coal capital investment, X̃t−1. This occurs through the scale channel. Second,

while not explicitly modeled here, in the presence of sector-biased technical change, past

relative input prices could also affect current-vintage relative capital productivities, ÃXt.

This productivity channel would occur if there was accumulation over time in fuel-specific

capital productivity such as via learning-by-doing, secular energy efficiency improvements,

or if relative input prices direct research towards fuel-biased technological change.

To empirically isolate which of these two channels are relevant for the estimates in Section

5, I turn next to a series of nested empirical tests informed by the tiered structure of the

model. First, I conduct power plant-level cost regressions for plants that only use coal to

recover the plant-level scale parameter. I then turn to generating unit-level regressions to

test for productivity effects.

6.2 Testing for scale effects at the power plant level

To recover the scale parameter, ψ, I follow the approach developed initially by Nerlove

(1963) and implemented by Christensen and Greene (1976) to estimate returns to scale in

the electricity sector. Following Fabrizio, Rose and Wolfram (2007), I use power plant-level

cost data from the Utility Data Institute (UDI) from 1981-1999.35 To remove the influence

33Appendix D.2 shows how large efficiency losses when using electricity capital below its designed capacity
lead to full utilization of past-vintage capital.

34I choose this notation to be consistent with that found in Acemoglu et al. (2012).
35Ideally, to be consistent with data on relative coal capital, plant-level cost data should also cover the 20th

century. Unfortunately, cost data prior to 1981 is not readily available. Use of 2009-2012 annual averages to
construct productivity measures potentially assuages a concern that locations with higher coal generation
share may also have higher coal generation volatility due to less available dispatchable energy sources (e.g.,
oil and gas).
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of the elasticity of substitution parameter, ϵ, I restrict my sample to power plants p in county

i and state s that exclusively use coal. Cost minimization of equation 6 implies the following

regression of non-fuel cost (see Appendix D.3 for full derivation)

ln non fuel costpis =
1

ψ
lnY pis + θ′Zpis + ηpis (8)

where the bar indicates time-averaged variables over 1981-1999. My parameter of interest

is the scale parameter ψ. Y pis is electricity output in megawatt-hours (MWh). Zpis is a

vector of cross-sectional controls. They include observed log power plant-level delivered coal

price from UDI, state fixed effects, and the latitude and longitude of the county centroid. I

also control for differences across transmission grids by including NERC region fixed effects.

Standard errors, ηpis, are clustered at the county level. Table 3 displays estimates of ψ for

coal-only power plants in my baseline county sample. I estimate a scale parameter of ψ̂ = 1.8

that is statistically significant at the 1% level.

Potential simultaneity bias in equation (8) has been noted as early as Nerlove (1963). In

particular, electricity prices for electric utilities are historically regulated to cover a plant’s

average costs. As a consequence, electricity output may be correlated with unobserved

determinants of non-fuel costs. To address this endogeneity concern, I use past delivered

coal prices as an instrument for current electricity output via an instrumental variables (IV)

approach. Specifically, my instrument is the interaction between county distance to the

nearest shallow mine before the switch to deep coal and the number of decades since that

switching event. For identification to be valid, shocks to local coal transport must affect

current non-fuel costs only through current output. Specifically, my first stage regression is

lnY pis = κ1 ln d
o
i ∗ sinceEventi + κ2 ln d

o
i + κ3sinceEventi + ϑ′Zpis + νpis (9)

Equation (9) estimates the event time-varying effects of past transport distance shocks

and is the cross-sectional analog to my panel estimator in equation (4). In particular, κ1 cap-

tures the event time-varying effect of past shocks, or the slope of the lagged effects shown in

Figure 3 over time. Column 2 of Table 3 shows an IV estimate that is statistically significant

at the 1% level and similar in magnitude to my OLS estimate. Furthermore, this IV esti-

mate is robust to the potential presence of a weak instrument. The p-value and confidence

interval from a conditional likelihood ratio test strongly reject a null hypothesis that the

coefficient on electricity output in equation (8) is zero (Moreira, 2003), assuaging concerns

over a seemingly low Kleibergen-Paap first-stage F-statistic. Henceforth, my preferred scale
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parameter estimate is ψ̂ = 1.66 from column 2.36

Table 3: Returns to scale regressions at the power plant-level

(1) (2) (3) (4)
Outcome is ln non-fuel cost

lnY pis (1/ψ) 0.56*** 0.60*** 0.57*** 0.51***
(0.03) (0.09) (0.05) (0.05)

Implied scale parameter, ψ 1.78*** 1.66*** 1.75*** 1.96***
(0.09) (0.24) (0.16) (0.21)

Kleibergen-Paap F-stat 3.25
CLR p-value 0.01
CLR confidence int. (90%) [0.54, 0.89]

Model OLS IV OLS OLS
County sample Baseline Baseline All U.S. All U.S.
Fuel input Only coal Only coal Primary gas Primary oil
Plants 103 96 32 73

Notes: Estimates of ψ from equation (8) using power plant-level log non-fuel cost as outcome.
All models include observed power plant-level log fuel price, state and NERC region fixed effects,
and county centroid longitude and latitude. Non-fuel cost and fuel price are 1981-1999 averages.
Columns 1 and 2 include coal-only power plants in baseline county sample shown in Figure A.4.
Columns 3 and 4 include all U.S. power plants using natural gas and oil as primary fuels, re-
spectively. Columns 1, 3, and 4 show results from OLS regressions. Column 2 shows the result
from an IV regression with equation (9) as the first stage. Column 2 shows the Kleibergen-Paap
F-statistic (Kleibergen, 2004) as well as the p-value and confidence interval (in brackets) from a
conditional likelihood ratio test against a null hypothesis that 1/ψ is zero (Moreira, 2003). Robust
standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The production function in Section 6.1 assumes that coal and non-coal electricity exhibit

the same returns to scale. To examine this assumption, I estimate equation (8) for power

plants that consume natural gas and oil in columns 3 and 4 of Table 3. Because the UDI

database has few plants that only consume natural gas and oil in my county sample, for

adequate statistical power, I expand the sample to the entire U.S. and to plants UDI des-

ignates as consuming natural gas and oil as primary fuels.37 I find scale parameters from

36By comparison, Nerlove (1963)’s study of electricity sector firms in 1955 recovers a scale parameter of
1.39. For the same sample of firms, Christensen and Greene (1976) estimate an analogous scale parameter
of 1.26.

37Federal forms used in compiling the UDI data do not explicitly designate a power plant’s primary or
secondary fuel. For multi-fuel plants, UDI establishes primary fuel by calculating the energy input of each
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gas and oil-fired power plants that are statistically indistinguishable from that of coal-fired

power plants.

6.3 Testing for productivity effects at the generating unit level

Past shocks to local coal transport distance could also directly affect the accumulation of

coal-specific productivity. If so, the IV estimator in Section 6.2 would not satisfy the ex-

clusion restriction needed for identifying the scale parameter. To test whether productivity

effects violate the exclusion restriction assumption, I turn to generating unit-level regressions

where productivity effects can be more cleanly isolated. I employ two standard measures

of generating-unit productivity. Following Davis and Wolfram (2012), capital productivity,

AXct, is the ratio of electricity output to generating unit capacity on an annualized basis.

My second measure is thermal efficiency, or the ratio of heat from electricity produced to

heat from fuel consumed. This measure corresponds to fuel productivity, AEct. To ob-

tain both measures, I combine the previously mentioned generating unit capacity data from

EIA-860 forms with generating-unit electricity production and boiler-level fuel consumption

from EIA-923 forms (see Appendix A for data details). Averaging generating unit-level data

across 2009-2012,38 I estimate the following regression for generating unit g, in power plant

p, located in county i and state s with both productivity measures as outcomes

lnAgpis = ω1 ln d
o
i × sinceEventi + ω2 ln d

o
i + ω3sinceEventi + λ′Zgpis + υgpis (10)

where the set of controls Zgpis includes state and NERC region fixed effects, and the latitude

and longitude of the county centroid. The standard error, υgpis, is clustered at the county

level. As with equation 9, ω1 in equation 10 captures the event time-varying effects of past

coal transport distance shocks on generating unit productivity.

Results are shown in Table 4 for generating units in coal-only power plants located in my

baseline county sample. Column 1 examine log capital productivity while column 2 examine

log thermal efficiency. For neither outcome do I detect statistically precise effects. However,

the uncertainty in these estimates also cannot rule out economically meaningful productivity

effects.39

fuel consumed and then assigning primary fuel to the fuel with the highest energy input.
38Ideally, to be consistent with data on relative coal capital, generating unit-level productivity variables

should also cover the 20th century. Unfortunately, construction of these productivity variables require boiler-
to-generator correspondences which were only made available in 2009. See Appendix A for details. Because
productivity presumably accumulates over time, any lagged effects of past shocks to local coal transport
distance should be stronger and more detectable with more recent productivity data.

39Because past coal prices affect relative productivities of coal and non-coal generators in the presence
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Table 4: Productivity regressions at the generating unit-level

(1) (2)
ln capital prod. ln fuel prod.

ln doi × sinceEventi (ω1) -0.052 0.015
(0.032) (0.047)

ln doi (ω2) 0.12 -0.33
(0.17) (0.26)

sinceEventi (ω3) 0.14 -0.12
(0.12) (0.18)

Generating units 235 235
Notes: Estimates from equation 10 using generating unit-level out-
comes. All models includes state and NERC region fixed effects, and
county centroid longitude and latitude. Sample includes generating
units in coal-only power plants located in baseline county sample
shown in Figure A.4. Outcome in column 1 is the 2009-2012 aver-
age ratio of electricity generation to generating unit capital, which
approximates capital productivity, AXct. Outcome in column 2 is the
2009-2012 average thermal efficiency, which approximates fuel pro-
ductivity, AEct. Robust standard errors clustered at the county level
in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

It is important to note that failing to find local productivity effects from local coal

transport distance shocks does not necessarily imply there are no productivity effects at

a more aggregate level. Induced innovation can spillover across the research sector and is

not confined within counties. Similarly, if productivity improvements occur through human

capital accumulation, there could be spillovers across counties through labor reallocation by

firms with multiple power plants. I return to this issue in Section 7.

6.4 Alternative mechanisms

The model in Section 6.1 necessarily omits other potential mechanisms. While the presence

of other mechanisms would not invalidate Section 5’s reduced-form estimates of strong path

dependence in energy transitions, they would complicate how these results are structurally

interpreted.

of directed technical change, a more comprehensive test would be to jointly evaluate effects on coal and
non-coal generator productivities. Unfortunately, our productivity measure is only suitable for fossil fuel
generators and there are a limited number of non-coal (i.e., oil and natural gas) generators in Table 4’s
estimating sample.
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Electricity sector regulation Capital investment responds to regulation. In particular,

two regulations may be pertinent for electricity capital decisions. For much of the 20th

century, electricity producers faced cost-of-service regulation by state Public Utility Com-

missions (PUC) which set output prices to ensure producers recover “prudently incurred”

variable costs plus a regulated rate of return on capital investments. As noted first by Averch

and Johnson (1962), when the allowed rate of return exceeds the cost of capital, electricity

producers have an incentive to inefficiently over invest in capital relative to other inputs.40

Conceptually, the Averch-Johnson effect is unlikely to drive my reduced-form results in Sec-

tion 5. Structural change pertains to the composition of capital across different fuels and not

the overall level of capital. Because cost-of-service regulations for electricity producers do not

specify different rates of return for electricity capital using different fuels, such regulations

are unlikely to alter the relative marginal product of capital across fuels. This is supported

empirically by column 2 of Table A.11 which estimates my baseline model in equation (4)

but only keeps the subset of observations before there was state PUC regulation of electric

utilities (see Appendix A for details). Despite the smaller sample size, I detect statistically

significant lagged effects with magnitudes that are similar to my baseline estimates in column

1 of Table A.11.

A second important regulation is the U.S. Clean Air Act. Beginning with the 1970 U.S.

Clean Air Act Amendments, counties with concentrations of criteria air pollution exceeding

national ambient air quality standards were labeled as being in “nonattainment”. Both

existing and new polluting facilities in nonattainment counties were required to invest in

pollution abatement equipment. Because coal is dirtier than other fuels, it is possible that

the 1970 and later Clean Air Act Amendments altered the fuel composition of electricity

capital. Table A.11 provides two empirical tests. In column 3, I restrict the sample to

observations during 1890-1960, the period before the introduction of the 1970 Clean Air Act

Amendments. I find lagged effects that are similar in magnitude to my baseline results.

Column 3 also suggests that my path dependence estimates do not differ across the 20th

century. To provide a more direct test, column 4 restricts my sample to the subset of counties

that never received a nonattainment designation during the 20th century. Again, I do not

find lagged effects that differ much from my baseline estimates.

40The literature has found some empirical support for the Averch-Johnson effect in the U.S. energy sector.
Joskow and Rose (1989) reviews evidence from the 1960-1980 period. Cicala (2015) finds this effect using
more recent data.
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Upstream and downstream sectors The electricity sector consumes fuel from upstream

extraction and transport sectors and produces electricity for downstream manufacturing and

residential sectors. Features of these up- and down-stream sectors could generate the strong

path dependence detected in Section 5.

Power plants typically procure coal through long-term contracts with mines (Joskow,

1987). As a consequence, plants may continue buying coal from certain producers even

as contemporaneous circumstances change. Joskow (1987) showed that the average coal

contract length in 1979 lasted 12.8 years. More recent work by Kozhevnikova and Lange

(2009) and Jha (2022) find this duration has since decreased to 4.4 years in the 1980s and

1990s. Coal contracts of such duration are unlikely to generate lagged effects over multiple

decades, as detected in Section 5. Furthermore, even if coal contracts were of longer duration,

it is unclear why they would cause lagged effects to strengthen over time.

Rail and highway networks serve as complementary capital for delivering coal to power

plants. Increasing returns along with sunk costs in the transport sector can also generate

path dependence in the fuel composition of the electricity sector.41 To examine whether past

coal transport distance shocks affect the coal transport sector itself, I turn to a county-level

version of the specification in equation (10). Column 1 of Table A.12 examines whether

there are event time-varying effects of past transport distance shocks on log railroad density

in 2010 (in miles per square mile). I do not find such effects which is unsurprising given that

most modern U.S. railroads lines were already established by the end of the 19th century

(Atack, 2013). Column 2 of Table A.12 also fails to detect effects of past transport distance

shocks on log highway density in 2010 (in miles per square mile).

I also consider downstream effects. Previous literature detects long-term effects of histor-

ical access to electricity on subsequent local manufacturing sector employment (Kline and

Moretti, 2014), population density (Severnini, 2023), and energy efficiency (Hawkins-Pierot

and Wagner, 2025). Indeed, one alternative explanation for my results involves downstream

manufacturing sectors also exhibit increasing returns to scale and somehow preferring elec-

tricity produced from coal over that from other fuels. If so, one would expect my lagged

effects to be altered when I control for local manufacturing sector demand. Column 3 of

Table A.6 shows that is not the case.

Preference sorting by residential households provides another potential downstreammech-

anism (Tiebout, 1956). If households with low valuation for environmental amenities sort

41Sunk costs alone, however, would not generate path dependence in the long-run as initial capital would
eventually depreciate. See discussion in Bleakley and Lin (2012).
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into historically coal-dependent locations, these residents may support more lenient local en-

vironmental policies that enable the expansion of coal-fired electricity even as economic cir-

cumstances that initially favored coal disappear. Using the same specification from columns

1 and 2, columns 3 and 4 of Table A.12 explore this sorting mechanism by estimating event

time-varying effects of past coal transport distance shocks on the share of a county’s popu-

lation belonging to one of three major environmental NGOs in 1996 and the county share

of eligible voters that voted for the 2000 Republican Presidential candidate (see Appendix

A for data details). Neither proxy for environmental preferences responds to past transport

distance shocks.

Altogether, none of the mechanisms examined in Table A.12 yield statistically precise

effects. But as with the productivity estimates in Table 4, one can neither rule out potentially

meaningful effects given uncertainty in these estimates, an important caveat for the structural

interpretation and simulations presented in Section 7.

Capital adjustment costs Finally, path dependence in relative coal capital can arise

from convex capital adjustment costs making it more costly to adjust higher levels of capital

stock. For example, if a county has high baseline relative coal capital stock, a positive,

temporary shock to relative coal prices would exhibit a slower transition away from coal in

the presence of convex capital adjustment costs.

Appendix D.4 augments my baseline model introducing convex adjustment costs in the

level of new-vintage capital yielding three empirical implications. First, because the pro-

ducer’s first order condition (i.e., equation (A.17)) no longer delivers a closed-form log-linear

relationship between current relative coal capital and current relative input prices, it is harder

to estimate in a linear regression framework. Second, because convex adjustment costs and

the elasticity of substitution both influence how relative capital responds over time to changes

in relative input prices, it becomes difficult for an empirical framework to separately identify

these parameters without committing to particular nonlinear functional forms and identifi-

cation off those functional form assumptions. Lastly, in the presence of convex adjustment

costs, any recovery of the elasticity of substitution based on reduced-form regressions of rel-

ative coal capital investment on relative input prices that ignore these frictions will generally

understate the true elasticity of substitution: reduced-form estimates combine the effect of

the underlying substitution parameter with the transition-dampening effect of the convex

capital adjustment costs. Thus, presence of such adjustment costs, while hard to empirically

validate, adds another caveat to the structural interpretation and simulations in Section 7.
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7 Structural interpretation

This section employs the structure of the model in Section 6.1 to interpret my reduced-form

estimates. My model focuses on returns to scale as the operating mechanism given the

statistical precision of the scale parameter estimate in Table 3. I view this as an exploratory

exercise, as it implicitly, and perhaps incorrectly, assumes that other mechanisms, such as

the ones that are noisily estimated in Sections 6.3 and 6.4 and capital adjustment costs, do

not play a role.

First, I formally define scale-driven path dependence in energy transitions as a function

of two parameters: returns to scale, ψ, and the long-run elasticity of substitution between

electricity produced from coal and other fuels, ϵ. I then use this definition to recover ϵ im-

plied by my reduced-form estimates of path dependence in Section 5 and my estimates of the

scale parameter in Section 6.2. Finally, I explore through calibrated model simulations the

conditions under which temporary interventions to fuel composition can induce sustained fu-

ture transitions away from coal at the county-level. Further simulations explore implications

for U.S.-wide energy transitions away from coal.

7.1 Formal definitions of scale-driven path dependence

I formally defined scale-driven path dependence within the model in Section 6.1. To do this,

I first apply a log transformation to equation (7) and rewrite it recursively. Current-vintage

relative coal capital investment becomes

ln X̃t =
ϵ

(φ− 1)
ln w̃t +

α(1− ϵ)ϵ

(φ− 1)2
ln w̃t−1 +

α2(1− ϵ)2ϵ

(φ− 1)3
ln w̃t−2 + ...

+
α(1− ϵ)

(φ− 1)
ln ÃXt +

α2(1− ϵ)2

(φ− 1)2
ln ÃXt−1 +

α3(1− ϵ)3

(φ− 1)3
ln ÃXt−2 + ...

=
t∑

s=0

ϵ

(φ− 1)

[
α(1− ϵ)

(φ− 1)

]s
ln w̃t−s +

t∑
s=0

[
α(1− ϵ)

(φ− 1)

]s+1

ln ÃXt−s (11)

where s is a lagged time index. An increase in relative coal price lowers contemporaneous

relative coal capital investment, ∂ ln X̃t
∂ ln w̃t

< 0, and also lowers future relative coal capital

investment, ∂ ln X̃t
∂ ln w̃t−s

< 0. The relative magnitude of these two effects dictate the strength of

scale-driven path dependence in energy transitions. Formally,

PROPOSITION 1 Weak scale-driven path dependence: The effect of past relative

coal prices weakens over time, ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ϵ)ϵ
(φ−1)2

/ ϵ
(φ−1)

< 1, or when ψ < −ϵ
1−ϵ .
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PROPOSITION 2 Strong scale-driven path dependence: The effect of past relative

coal prices strengthens over time, ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ϵ)ϵ
(φ−1)2

/ ϵ
(φ−1)

> 1, or when ψ > −ϵ
1−ϵ .

Strong scale-driven path dependence occurs whenever an increase in the relative coal price

triggers a downward shift in the relative marginal product of capital investment in subsequent

periods. This shift is the net result of two countervailing forces, each of which I first consider

in isolation.

The first force is increasing returns to scale, captured by ψ. To isolate this mechanism,

suppose there is only one intermediate sector that uses coal to produce electricity. When

ψ = 2α > 1, there is a “push” from cross-vintage scale effects: an additional unit of past

coal capital boosts the marginal product of current coal capital more than an additional unit

of current coal capital lowers own marginal product from within-vintage diminishing returns

due to α ∈ (0, 1). This enables relative coal prices to have a stronger effect on future coal

capital investment than on current coal capital investment.42

However, when there is more than one sector, ψ > 1 alone does not dictate the strength

of scale-driven path dependence. A countervailing “pull” force comes from the imperfect

substitutability between electricity produced from coal and other fuels, ϵ ∈ (1,+∞). Suppose

there is no increasing returns to scale. An increase in the relative coal price induces a

contemporaneous decrease in relative coal capital investment. This capital imbalance does

not persist in subsequent periods. When electricity from coal and other fuels are imperfect

substitutes, subsequent periods experience a relative increase in demand for electricity from

coal which induces relatively more investment in coal-specific capital. As a consequence, the

capital imbalance across the two fuels eventually dissipates.

When both forces are at play, Proposition 2 states that strong scale-driven path depen-

dence can only be achieved when increasing returns to scale provides a large enough push

to overcome the pull from imperfect substitutability, or when ψ > −ϵ
1−ϵ .

43 In the context of

42This comes directly from applying Euler’s theorem. Formally, the cross partial derivative of a function
Y (Xct, Xct−1) of homogeneous degree ψ can be written as

∂2Yct
∂Xct∂Xct−1

=

(
ψ − 1

Xct−1

)
∂Yct
∂Xct

−
(

Xct

Xct−1

)
∂2Yct
∂2X2

ct

Setting Xct = Xct−1 so that one can compare the effects of lagged capital investment against current capital

investment, ∂2Yct

∂Xct∂Xct−1
> − ∂2Yct

∂2X2
ct

when ψ > 1. Thus, when ψ > 1, cross-vintage increasing returns to scale

in the cross derivative dominate within-vintage diminishing returns in the own second derivative with respect
to current capital.

43“Push” and ‘pull” mechanisms can be found in models of directed technical change (Acemoglu, 2002;
Acemoglu et al., 2012).
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the electricity sector, this occurs whenever the amplifying force of increasing returns to scale

in electricity production offsets the dampening force due to differences in the properties of

electricity from different fuels, such as electricity reliability.

7.2 Recovering the long-run elasticity of substitution

I recover ϵ using the mapping between the structural expression in equation (11) and reduced-

form coefficients in equations (4) and (8).44

To start, observe that the time index in equation (11) is in terms of capital vintages.

The time index in my empirical results is in decades relative to the switching event. To

convert from event-time to vintage-time, I weight each reduced-form lagged effect, β̂τ , by

the probability of generator retirement, ιτ , from the age distribution of retired generators in

my sample. Specifically, using β̂τ and π̂ from column 2 of Table 2, the ratio of reduced-form

lagged to contemporaneous effect is ρ̂ =
∑5
τ=1 β̂

τ∗ιτ
π̂

= 1.45, with a standard error of 0.72.45

Mapping this ratio to its structural analog ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ϵ)ϵ
(φ−1)2

/ ϵ
(φ−1)

and taking the

estimated scale parameter ψ̂ = 1.66 from column 2 of Table 3, one can express the long-run

elasticity of substitution entirely in terms of estimated statistical parameters

ϵ = 1 +
ρ̂

ψ̂
2
− ρ̂(1− ψ̂

2
)
= 3.5

7.3 Simulating future energy transitions away from coal

Strong scale-driven path dependence implies it is possible for a temporary shock to fuel

composition to induce permanent fuel switching. In the context of climate policy, it suggests

that a temporary policy can induce a long-term decline in carbon emissions at the county-

level. But under what conditions? In particular, given the abundance of coal resources in

the U.S., what is the required magnitude and/or duration of an intervention that can trigger

a sustained energy transition away from coal?

To shed light on these questions, I calibrate my structural model with reduced-form

parameters to simulate future county-level electricity sector CO2 emissions following rela-

44The long-run elasticity of substitution between fuel inputs, ϵ, appears across a recent class of optimal
climate policy models (Acemoglu et al., 2012; Golosov et al., 2014; Lemoine, 2024; Fried, 2018; Acemoglu
et al., 2023). However, substitution elasticities in those papers differ conceptually from that of this paper
(i.e., coal-non coal vs. dirty-clean energy substitution; county vs. national vs. global aggregation), limiting
any direct comparison.

45Since ιτ ∈ {.38, .27, .22, .11, .02}, ρ̂ =
∑5

τ=1 β̂τ∗ιτ
π̂ = −(4.47∗.38+3.46∗.27+7.75∗.22+5.68∗.11+4.46∗.02)

−3.48 = 1.45.
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tive coal price shocks of varying magnitude and duration. To ground my simulations in

recent economic conditions, the magnitude of the shocks considered are benchmarked to re-

cent average national relative coal prices following the introduction of natural gas hydraulic

fracturing. Figure A.15 shows that as a consequence of hydraulic fracturing, relative U.S.

coal prices in 2009 and 2010 was 143% higher than what a quadratic trend estimated over

1985-2008 would have predicted.

My simulations employ several simplifying assumptions (see Appendix E for details).

First, only electricity from coal and natural gas are considered.46 Second, to avoid forecasting

trends in relative productivity, electricity demand, and other economic conditions, I assume

that future relative productivity, total coal and natural gas capital, capital depreciation, and

baseline relative coal prices in the absence of the shock are held constant at recent average

county values. Third, I assume that the scale and elasticity of substitution parameters are

constant throughout the simulation period. Because of these assumptions, one should not

interpret these simulations as forecasts of county-level electricity sector CO2 emissions but

rather as exercises in understanding the conditions for triggering a sustained future energy

transition away from coal.

Figure 4 shows how CO2 emission trajectories are altered when one varies the magnitude

and duration of the temporary relative coal price shock. Top, middle, and bottom panels use

price shocks that are 1, 2, and 6 times that of recent relative coal prices. Left, middle, and

right panels use price shocks that last 1, 3, and 5 decades. Business-as-usual emissions in the

absence of the shock are shown as dashed gray lines. When shocks are introduced, the thick

solid blue and red lines show CO2 emissions and the coal share of capital investment under

mean values of ψ and ϵ, respectively. The thin solid blue and red lines show CO2 emissions

and coal capital investment share, respectively, from Monte Carlo draws using the estimated

uncertainty for each structural parameter. Each panel also indicates the percentage of draws

in which CO2 emissions are weakly declining in the long-term.47

In general, the likelihood of achieving weakly declining CO2 emissions in the long-term

46Initializing the simulations requires current relative coal to non-coal input prices. Input prices for the
other major U.S. electricity energy sources are hard to obtain, i.e., water for hydro dams, uranium/plutonium
for nuclear plants, marginal land for solar and wind, and oil provides less than 1% of recent U.S. electricity
generation. By projecting only the coal to natural transition, I am likely under counting non-coal electricity
capacity investment and thus overstating the coal capital investment shares in Figure 4. However, projected
total electricity CO2 emissions are likely unaffected as other major non-coal energy sources do not emit CO2.

47Because natural gas still contains carbon, in none of the simulations do CO2 emissions reach zero in the
long term. Instead, emissions converge asymptotically to a steady-state level where all electricity is produced
from natural gas. Thus, these simulations focus on whether temporary policies achieve weakly declining CO2

emissions in the long-term.
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increases with larger shocks and/or shocks of longer duration. Examining the top row of

Figure 4, if recent relative coal prices were to last up to 3 decades, CO2 would still rise in

the long-term on average. For a better than 50% chance of weakly declining emissions and a

sustained switch away from new investments in coal-fired electricity capital, recent relative

coal prices must last at least 5 decades. Going down the first column of Figure 4, if an

intervention can only last for 1 decade, it must be at least 6 times that of recent relative

coal prices for a greater than 50% chance of achieving weakly declining long-term emissions.

Figure 5: Required duration of temporary shock under different structural parameter values
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Notes: Vertical axis shows values for the returns to scale parameter, ψ. Horizontal axis shows values for
the elasticity of substitution parameter, ϵ. Heat map shows the minimum number of decades that a shock
equal in magnitude to that of recent relative coal prices must last in order for long-term CO2 emissions to
be weakly declining. X indicates parameter values estimated in this paper. See Appendix E for details.

Figure 4 suggests that given historical parameter values, a sustained energy transition at

the county level would require either a very large and/or long duration intervention. How

would different parameter values alter these requirements? This is of interest for two reasons.

First, future electricity production may exhibit different returns to scale as thermal limits
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are reached. Second, expansion of electricity grids may alter the degree of substitutability

across fuels.48

Figure 5 explores the energy transition implications of varying push and pull forces within

the structure of my model by considering different values of ϵ and ψ. For each pair of

parameter values, the heat map in Figure 5 shows the minimum number of decades a shock

equal in magnitude to that of recent relative coal prices must last in order to achieve weakly

declining long-term CO2 emissions. The require length of the intervention falls when values

of ϵ and ψ are higher than those estimated in this paper.

8 Conclusion

This paper estimates path dependence in energy transitions for the U.S. electricity sector

over the 20th century. Exploiting shocks to local coal supply driven by the changing regional

accessibility of subsurface coal, I find that a negative shock triggers a declining trajectory in

the relative use of coal for electricity lasting for up to ten decades. This suggests that it is

possible for temporary shocks of sufficient magnitude and/or duration to induce permanent

switch away from coal in the electricity sector. Additional evidence suggests increasing

returns to scale in electricity production as the underlying mechanism. To interpret these

results, I develop a model of scale-driven structural change for the electricity sector which

allows for a formal definition of strong path dependence and a mapping between my reduced-

form estimates and a key structural parameter, the long-run elasticity of substitution between

coal and other fuels.

This historical evidence is particularly timely given recent developments in the U.S.

electricity sector and increasing concerns over climate change impacts. The recent spike in

relative coal prices following breakthroughs in natural gas extraction is contributing to a

slow-down in the construction of new coal-fired power plants. However, these circumstances

may not be enough to trigger a sustained transition away from coal in the U.S. electricity

sector. Simulations of future energy transitions using this paper’s calibrated structural model

demonstrate that a sustained energy transition away from coal would require either a larger

and/or longer lasting shock to fuel composition. These simulations also show that a sustained

energy transition away from coal can be more easily achieved if investments were made to

either increase scale economies in electricity production or towards stronger substitutability

48While renewable energy is not considered in my simulations, storage technology can improve the relia-
bility of solar and wind-based electricity, making renewable energy sources stronger substitutes for coal.
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between electricity from coal and other fuels.

The presence of strong path dependence in energy transitions also provides further sup-

port for externality pricing over second-best policies that favor specific technologies or re-

sources. It is widely argued that technology- and resource-specific policies are inefficient

because they may fail to target cost-effective mitigation strategies. The presence of path

dependence amplifies this cost. Suppose a natural gas-specific subsidy induces a transition

from coal to natural gas but large climate damages ultimately requires a switch to even

cleaner fuels. The ensuing path dependence in natural gas would make the eventual switch

to cleaner fuels more costly. A carbon price would avoid this detour.
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A Data Sources

This section details data used in the paper.

A.1 Coal resources, mining, and delivered prices

USGS National Coal Resource Assessment (NCRA) I use two spatial datasets from

the NCRA (East, 2012). The first dataset contains shape files of Illinois and Appalachian Basin

coal resources that are situated less than and greater than 200 feet below the surface. These shape

files are used to generate Figure A.4 which maps coal resources for the two basins by depth. The

second dataset contains characteristics of all coal mines in the Illinois Basin that has operated since

1890. Variables include mine location, opening year, closing year, and area.

Construction of local coal transport distances requires several steps. First, I spatially overlay all

large mines in the Illinois Basin that ever existed since 1890 onto shape files of the basin’s shallow

and deep coal resources, as shown in Figure 2. Using the opening and closing years of each mine,

I construct a mine-by-depth-by-decade panel indicating when each shallow or deep coal mine was

in operation.49 Next, for each county and decade, I search for the nearest mine according to the

Euclidean distance between that county’s spatial centroid and the mine, noting whether it is from

a shallow or deep coal resource. This distance is dit in equation (4). Finally, for each county, I

find the first decade in which a county’s nearest mine first switches from shallow coal to deep coal.

Distance to the nearest shallow mine right before the switching event is denoted d0i in equation (4).

FERC-423 forms FERC-423 provides annual data on the quantity, price, heat content, sulfur

content, and ash content of purchased coal for each pair of purchasing power plant and county of

coal origin. This paper uses FERC-423 data in four ways. First, for the 1990-1999 period when the

county of coal origin is more reliable,50 I calculate county-level average annual coal production and

quantity-weighted export distance. I then compare average coal production and export distance

between counties with large mines and those without within my sample region. Second, I use

FERC-423 data on coal heat, sulfur, and heat content, aggregated to the county of origin and

averaged across years, to produce Table A.1 which documents the heterogeneity in coal quality

across the five major U.S. coal basins. Third, data from the 1990-1999 FERC-423 forms are used

to test the Herfindahl Principle, as shown in Figure A.8. Fourth, I use observed delivered coal

prices from the entire set of 1972-1999 FERC-423 forms to verify my local coal transport distances

in Table A.2.

49Specifically, if the mine was in operation for any year in a decade, I note that it was in operation during
that decade.

50According to the EIA, “The instructions for the FERC Form-423 require the respondent to report the
county in which the coal was mined. However, this data is not always known or reported correctly... It is very
difficult to verify county level data. Users of the data should be aware of this and use the data accordingly.”
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A.2 Electricity capital and production

EIA-860 forms The EIA-860 forms records the capacity (or capital size), opening and closing

years, and primary fuel input at the generating unit level.51 This paper uses data on generating

units from the EIA-860 forms to construct my main outcome variable, relative coal capital at

the county-by-decade level covering decades from 1890 to 1990. There are several steps to this

construction.

First, I create a cross-sectional dataset of operating and retired generating units, taking the

most recent data for each generating unit across the 1990-2012 EIA-860 forms. I then expand

this cross-sectional dataset along the time dimension using the opening and closing years of each

generating unit to create a generating unit-by-year panel dataset. Next, I sum all generating units

that use coal and all generating units that use other fuels to the county-by-decade level. Relative

coal capital is defined as the ratio of total capital across generating units that use coal to total

capital across generating units that use other fuels. Besides serving as my main outcome variable,

relative coal capital is also used to generate Figure 1.

Underlying assumptions behind this data construction procedure are examined in Figures A.9,

A.10 and Tables A.3 and A.4, using data from the 1990-2012 EIA-860 forms as well as from the

1980 EIA-860 form, which was digitized for this paper.

Knowing when generating units were built, I can also construct a county-by-decade dataset

of relative coal capital investment. I sum new generating units that use coal and that use other

fuels to the county-by-decade level. Relative coal capital investment is then defined as the ratio

of total capital across newly-built generating units that use coal to total capital across newly-built

generating units that use other fuels.

A.3 Control variables

Residential and manufacturing sector covariates County-by-decade residential and

manufacturing covariates from 1890 to 1990 come from historical U.S. censuses, collected by Haines

(2010).52 These variables include total population, urban population, number of manufacturing es-

tablishments, manufacturing employment, manufacturing capital value, and manufacturing output

value. To account for changing U.S. county boundaries from 1890 to 1930, I redraw pre-1930 coun-

ties to their 1930 spatial definitions to produce a county-by-decade panel of covariates that are

spatially consistent over the 20th century. This procedure uses historical GIS county shape files

from the U.S. National Historical Geographical Information System (N.H.G.I.S.)53 and is a modi-

fication of the method used by Hornbeck (2012). The resulting data serve as outcome variables in

the pre-trend tests shown in Table 1 and as control variables in column 3 of Table A.6.

51I only include generating units owned by public utility companies because units owned by non-utilities
are inconsistently reported across EIA-860 forms during the 1990-2012 period.

52Available: http://doi.org/10.3886/ICPSR02896.v3
53Available: https://www.nhgis.org{}/documentation/gis-data
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Geographical covariates County-level variance in slope is constructed using the USGS Na-

tional Elevation Dataset. County-level distance to nearest navigable river or canal at the start of

the 20th century combines GIS shape files from Atack (2015) and Atack (2017).54 Both variables

are used as controls in column 4 of Table A.6.

A.4 Testing mechanisms

PLATTS/UDI Power plant-level cost data for 1981-1999 was obtained from PLATTS/UDI.

It provides non-fuel cost, or the difference between total production costs and fuel costs, which

serves as the outcome variable for the return to scale parameter estimates in Table 3.

EIA-923 forms Generating unit-level electricity output and boiler-level coal input data comes

from the 2009-2012 EIA-923 forms. Table 4 uses two generating unit-level productivity measures.

Following Davis and Wolfram (2012), my capital productivity measure is capital operating perfor-

mance, or the ratio of a generating unit’s electricity output to its capacity. For generating unit g,

in power plant p, county i, and state s, 2009-2012 averaged annual capital operating performance

is

AXgpis =
Ygpis

Xgpis ∗ 8760

where Ygpis is annual electricity output (in MWh, from EIA-923 forms), Xgpis is capacity (in MW,

from EIA-860 forms), and 8760 is the number of hours in a year. My fuel productivity measure

is thermal efficiency. For generating unit g, in power plant p, county i, and state s, 2009-2012

averaged annual thermal efficiency is

AEgpis =
Ygpis ∗ 1000 ∗ 3412

Egpis

where Egpis is generating unit-level fuel input (in BTU) and 3412 is the equivalent BTU heat

content of one KWh of electricity.55 Generating unit-level Egpis is not directly observed. Instead,

the EIA-923 forms provide a boiler-to-generator correspondence, which can have many-to-many

matches. To obtain generating unit-level fuel input, I assume that a boiler uniformly divides fuel

input across linked generators. EIA-923 forms prior to 2009 did not include boiler-to-generator

correspondences and therefore are excluded from the analysis.

Public Utility Commissions Column 2 of Table A.11 includes only counties in state and

decades where there was no Public Utility Commission regulation of electric utilities. The following

table summarizes when Public Utility Commission regulation electric utilities was introduced for

states in my baseline sample and the data source

54Available: https://my.vanderbilt.edu/jeremyatack/data-downloads/
55See https://www.eia.gov/tools/faqs/faq.cfm?id=107&t=3 for details.
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First decade of

State PUC regulation Data source

Alabama 1920 Troesken (2006)

Arkansas 1920 State PUC website56

Iowa 1970 State PUC website57

Illinois 1920 Troesken (2006)

Indiana 1920 Troesken (2006)

Kentucky 1940 State PUC website58

Minnesota 1980 State PUC website59

Missouri 1920 Troesken (2006)

Mississippi 1960 State PUC website60

Tennessee 1920 Troesken (2006)

Wisconsin 1910 Troesken (2006)

U.S. Clean Air Act nonattainment status County-by-year nonattainment status during

1978-1999 under the Clean Air Act comes from the U.S. Environmental Protection Agency. A

county-by-decade observation is labeled nonattainment if the county is designated wholly or par-

tially in nonattainment for any of the six criteria pollutant during any year in that decade.61 This

data is used for the estimates in column 4 of Table A.11.

Transportation density County-level data on highway and railroad network density in 2010

come from the U.S. Department of Transportation’s National Transportation Atlas Database.62

These variables are used as outcomes in the regressions shown in columns 1 and 2 of Table A.12.

Environmental NGO membership and vote share County-level membership for the

Natural Resources Defense Council, The Nature Conservancy, and The National Wildlife Federation

in 1996 comes from Anderson (2011). County membership share divides membership by 2000 county

population from Haines (2010). County-level Republican Presidential vote share in 2000 comes from

Fujiwara, Meng and Vogl (2016). These variables are used as outcomes in the regressions shown in

columns 3 and 4 of Table A.12.

56Available: http://www.apscservices.info/commission-history.asp
57Available: https://iub.iowa.gov/history
58Available: https://psc.ky.gov/Home/About#AbtComm
59Available: https://mn.gov/puc/about-us/
60Available: https://www.psc.state.ms.us/executive/pdfs/2010/2010%20ANNUAL%20REPORT.pdf
61The six regulated criteria pollutants are sulfur dioxide, particulates, nitrogen dioxide, carbon monoxide,

ozone, and lead.
62Available: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/

national_transportation_atlas_database/2012/index.html

53

http://www.apscservices.info/commission-history.asp
https://iub.iowa.gov/history
https://psc.ky.gov/Home/About#AbtComm
https://mn.gov/puc/about-us/
https://www.psc.state.ms.us/executive/pdfs/2010/2010%20ANNUAL%20REPORT.pdf
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/2012/index.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/2012/index.html


A.5 Other

Cross-country data Figure A.1 uses country-level CO2 emissions per capita and GDP per

capita in 2000 from Boden, Marland and Andres (2013) and Bank (2014), respectively.

National U.S. time series data U.S. Census Bureau (1975) provides total and mechanically

produced U.S. bituminous coal production during 1890-1950 (shown in Figure A.2) and total elec-

tricity capacity, from fossil fuel and hydropower during 1920-1970 (shown in Figure A.9).63 Figure

A.7 plots the transport cost share of national delivered coal prices during 1902-2007 obtained from

McNerney, Farmer and Trancik (2011). Figure A.15 shows national coal and natural gas sales

prices during 1985-2011 obtained from the Energy Information Administration (2012).

B Collection and availability of historical data

Sections 4.1 and 4.2 note that the required historical data were either never collected or, if collected,

may no longer exist. This section summarizes the data that was historically collected, its relevance

for this study, and its known availability today.

B.1 Coal prices

1882-1970

County-level producer coal prices were recorded by the U.S. Geological Survey Bureau of Mine in

“Mineral Resources of the United States 1882-1931” and “Mineral Yearbook 1932-1970.” This data

source, however, does not provide the county-level delivered coal prices needed for this study.

Availability Online.64

B.2 Electricity capital

1902-1917:

The U.S. federal government first collected power plant-level data in 1902 in the inaugural “Central

Electric Light and Power Station Census,” administered at the time by the Department of Com-

merce and Labor. This survey was repeated in 1907, 1912, and 1917. Unfortunately, this survey

classified power plants by prime-mover (i.e. steam, hydro, internal combustion) and not by input

fuel, which this paper needs to calculate the fuel composition of electricity capital.

63Electricity capital data from the U.S. Census Bureau (1975) is broken by steam and hydropower. Steam
power typically uses coal, oil, and natural gas as fuel.

64Available: hathitrust.org
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Availability Summaries of these censuses at aggregate data levels are available online.65 How-

ever, power plant-level data could not be located following extensive private conversations with

archivists at the National Archives and Records Administration.66

1920-1970:

The Federal Power Commission (FPC), created in 1920, administered annual surveys to document

electricity production and fuel consumption. The most important of these were the Annual Finan-

cial and Statistical Reports (Form 1) and the Power System Statements (Form 12). Form 1 collects

fuel usage at the power-plant level but has two limitations. First, in order to recover fuel-specific

capital, fuel-specific capacity factors are needed for each generating unit and are not available.

Second, power plant coverage is incomplete. For example, data from the 1948 Form 1 accounts for

only 67% of total U.S. steam-powered electricity capital.

Availability Annual state-level statistics for electricity capital by prime-mover and fuel con-

sumption are available in “Production of Energy and Capacity of Plants and Fuel Consumption

of Electric Power Plants” as well as in “Electric Power Statistics, 1920-1940”.67 The report titled

“Steam-Electric Plant Construction Cost and Annual Production Expenses” has plant-level values

from Form 1 and Form 12 for 1948-1974.68

1977-1989:

In 1977, the Federal Energy Regulatory Commission (FERC) began publishing the “Inventory of

Power Plants in the United States,” which combines data on generating units from the Monthly

Power Plant Report (Form 4), Annual Power System Statement (Form 12), and the Supplemental

Power Statement (Form 12E). This annual inventory includes includes capacity, input fuel, and

built year for all operating generating units and those retired each year. Because data on previously

retired generating units was not collected, this data cannot be used for reconstructing historical

electricity capital.

Availability The 1980 “Inventory of Power Plants in the United States” is available online69.

It was digitized for the data validation exercises discussed in Section 4.2. Reports from other years

are available in microfiche in many research libraries.

65Available: http://hdl.handle.net/2027/mdp.39015028113663
66Typically, only 3% of historical government documents are deemed valuable and retained in NARA’s

permanent collection.
67Available: http://hdl.handle.net/2027/mdp.39015023906806
68Available: http://catalog.hathitrust.org/Record/000904499
69Available: http://hdl.handle.net/2027/umn.31951d02987924n
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1990-:

In 1990, the Energy Information Agency (EIA) began collecting “The Annual Electric Generator

Report,” (Form EIA-860) which replaced earlier FERC Forms 4, 12, and 12E. EIA notes

“The Form EIA-860 is a mandatory annual census of all existing and planned electric

generating facilities in the United States with a total generator nameplate capacity of 1

or more megawatts. The survey is used to collect data on existing power plants and 10

year plans for constructing new plants, as well as generator additions, modifications,

and retirements in existing plants. Data on the survey are collected at the individual

generator level.”

Availability Online.70

C Missing small power plants

Power plants with less than 1 MW of combined capacity (or capital) across generating units do not

appear in EIA-860 forms. Suppose a county’s non-coal electricity only comes from less than 1 MW

power plants. Then my data would erroneously assigned a zero value to non-coal capital, leading

to a missing value for relative coal capital. Such data censoring would result in a smaller sample

and a lower sample mean for relative coal capital. Similarly, if a county’s coal-fired electricity is

produced only with missing small power plants, then both coal capital and relative coal capital

would be incorrectly assigned zero values. This form of censuring increases the skewness of relative

coal capital.

In the absence of historical local data, one can predict the frequency of power plants below the

1MW threshold at the national level and then allocate these missing power plants across electricity-

producing counties. Specifically, for fuel j, county i, decade t, denote the capacity of a new power

plant indexed by pjit as Xpjit . Because power plants with Xpjit < 1 are missing from the EIA-860

data, county total fuel-specific capital investment can be decomposed as

Xjit =
∑

pjit:Xpjit<1

Xpjit +
∑

pjit:Xpjit≥1

Xpjit

= XM
jit︸︷︷︸

Missing

+ XO
jit︸︷︷︸

Observed from EIA-860

Next, I discretize the support of power plant capacities into 1 MW-wide bins starting at 0.5 MW.

Denote f bjit as the number of power plants with capacity Xpjit ∈ [b− .5, b+ .5). The missing county

total fuel-specific capital investment is thenXM
jit = 0.5∗f0.5jit . My imputation procedure predicts f0.5jit .

70Available: http://www.eia.gov/electricity/data/eia860/
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Specifically, to obtain county total fuel-specific capital, Kjit, I implement the following procedure

for each decade t

1. Estimate f bt = gt(b) + error ∀b ∈ {1.5, . . . , b̄}, where gt() is a flexible polynomial function

2. Predict f̂0.5t = ĝt(0.5)

3. Downscale national to local capital by using f̂0.5cit =
f̂0.5t st
Nt

, where Nt is the number of counties

with any operating power plants in decade t and st is the national share of electricity capital

using coal, aggregated from observed power plants. Likewise, f̂0.5nit =
f̂0.5t (1−st)

Nt
. This implies

X̂M
jit = 0.5 ∗ f̂0.5jit .

4. Calculate county total fuel-specific capital using Kjit = KO
jit +

∑
τ=0(1 − δ)τ X̂M

ji,t−τ , where

KO
jit is the observed county total fuel-specific capital, δ = 0.06 is the decadal depreciation

rate set at 2000s values, and τ is the lagged time index.

Figure A.11 shows the fitted 4th order polynomial function, ĝt(), estimated for new power

plants built in the 1910s (left panel) and in the 1950s (right panel) using observed power plants.

The dotted line shows the predicted national frequency of power plants smaller than 1 MW built

each decade, or ĝt(0.5). Table A.5 shows summary statistics for unadjusted relative coal capital

in column 1 and imputed relative coal capital when using a 3rd, 4th, and 5th order polynomial

function to fit gt() in columns 2-4, respectively. As expected, the imputation procedure increases

the sample size, raises the mean, and reduces the skewness of relative coal capital. In particular,

the sample size increases because observations previously with missing relative coal capital values

(i.e., positive coal capital and zero non-coal capital) and observations previously with zero relative

coal capital values (i.e., zero coal capital and positive non-coal capital) now have strictly positive

values. Column 5 displays statistics for relative coal capital using an alternative, less data-driven,

imputation which simply adds 1 MW to new coal and non-coal capital investment in each county-

by-decade observation. This implicitly assumes that there was a new 1 MW coal-fired power plant

and a new 1MW non-coal power plant built in each county-by-decade observation.

To incorporate estimated uncertainty from the imputation procedure, I iterate Steps 1-4 by

bootstrapping the estimation of gt(). This recovers an empirical distribution for each coefficient

βτ from equation (4) arising from estimated uncertainty in the imputation procedure. Figure A.13

shows 95% confidence intervals for β̂τ constructed from the sum of clustered standard errors using

point estimates of gt() and standard errors from the bootstrap procedure on gt() with 250 draws.

D Theory appendix

D.1 Model

This section solves the model presented in Section 6.1. In period t for each intermediate sector

j ∈ {c, n}, the myopic electricity producer chooses capital, Xjt, and fuel, Ejt, for current-vintage

57



generating units and fuel, Ejt−1, for past-vintage generating units. “Clay”-like capital for past-

vintage generating units, Xjt−1, is fixed. The producer’s problem is

max
Xct,Xnt,Ect,Ent,Ect−1,Ent−1

Yt − zct(Ect + Ect−1)− znt(Ent + Ent−1)− rt(Xct +Xnt) (A.1)

where zjt is the fuel price and rt is the price of capital. Final good Yt is given by equation (5) and

intermediate good Yjt is given by equation (6). To explore how scale and productivity channels

could generate path dependence for otherwise similar intermediate sectors, suppose productivities

are the same across intermediate goods during period t−1, AXct−1 = AXnt−1 and AEct−1 = AEnt−1.

Because fuel and capital are perfect complements, efficiency for current-vintage generating units

implies that the producer need only to choose capital, and not fuel, set at AXjtXjt = AEjtEjt for

j ∈ {c, n}. Clay-like past-vintage capital further implies AEjt−1Ejt−1 = AXjt−1(1− δ)Xjt−1. The

resulting constrained optimization problem is

max
Xct,Xnt

(
[AXctXctAXct−1(1− δ)Xct−1]

α(ϵ−1)/ϵ + [AXntXntAXnt−1(1− δ)Xnt−1]
α(ϵ−1)/ϵ

)ϵ/(ϵ−1)

− zct(
AXct
AEct

Xct +
AXct−1

AEct−1
(1− δ)Xct−1)− znt(

AXnt
AEnt

Xnt +
AXnt−1

AEnt−1
(1− δ)Xnt−1)− rt(Xct +Xnt)

with optimality condition

αY
1/ϵ
t (AXjtAXjt−1Xjt−1)

α(ϵ−1)
ϵ X

φ−1
ϵ

jt =
AXjt
AEjt

zjt + rt for j ∈ {c, n} (A.2)

where φ = (1− α)(1− ϵ). Taking the ratio of equation (A.2) for coal and non-coal subsectors, and

rewriting in terms of current-vintage relative coal capital investment, X̃t =
Xct
Xnt

, yields

X̃t = w̃
ϵ

φ−1

t X̃
α(1−ϵ)
φ−1

t−1 Ã
α(1−ϵ)
φ−1

Xt (A.3)

where wjt =
AXjt
AEjt

zjt + rt is the productivity-weighted input price index, w̃ = wct
wnt

is relative input

price, and ÃXt =
AXct
AXnt

is relative capital productivity for generating units of vintage t. Equation

(A.3) is equation (7) in the main text.

D.2 Extension: productivity losses and capital under-utilization

Appendix D.1 assumes that past-vintage capital is fully utilized in the current period. This as-

sumption has previously been used in the putty-clay literature to avoid a well-known curse of

dimensionality problem in vintaged capital models (Atkeson and Kehoe, 1999). This section shows

how this assumption is justified when there are large efficiency losses associated with using elec-

tricity capital below its designed capacity, as discussed in F1 of Section 6.1.

Suppose a generating unit could operate past-vintage capital below its designed capacity. Be-

cause AEjt−1Ejt−1 > AXjt−1(1− δ)Xjt−1 would lead to wasted inputs, the producer now faces the
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constraint AEjt−1Ejt−1 ≤ AXjt−1(1−δ)Xjt−1 for j ∈ {c, n}. The resulting constrained optimization

problem is

max
Xct,Xnt,Ect−1,Ent−1

(
[AXctXctAEct−1Ect−1]

α(ϵ−1)/ϵ + [AXntXntAEnt−1Ent−1]
α(ϵ−1)/ϵ

)ϵ/(ϵ−1)

− zct(
AXct
AEct

Xct + Ect−1)− znt(
AXnt
AEnt

Xnt + Ent−1)− rt(Xct +Xnt)

s.t. AEjt−1Ejt−1 ≤ AXjt−1(1− δ)Xjt−1 for j ∈ {c, n}

with optimality conditions

αY
1/ϵ
t (AXjtAEjt−1Ejt−1)

α(ϵ−1)
ϵ X

φ−1
ϵ

jt =
AXjt
AEjt

zjt + rt for j ∈ {c, n} (A.4)

αY
1/ϵ
t (AXjtAEjt−1Xjt)

α(ϵ−1)
ϵ E

φ−1
ϵ

jt−1 = zjt + λjAEjt−1 for j ∈ {c, n} (A.5)

λj [AEjt−1Ejt−1 −AXjt−1(1− δ)Xjt−1] = 0 for j ∈ {c, n} (A.6)

λj ≥ 0 for j ∈ {c, n} (A.7)

AEjt−1Ejt−1 ≤ AXjt−1(1− δ)Xjt−1 for j ∈ {c, n} (A.8)

where λj is the Lagrange multiplier on each constraint.

Under what conditions would past-vintage capital be underutilized? To answer this, consider

each sector j in isolation and take the ratio of equation (A.4) over (A.5). When the constraint

binds (i.e., λj > 0) and past-vintage capital is fully utilized, the ratio can be rewritten as

zjt
wjt

=
Xjt

Ejt−1
− λj

AEjt−1

wjt
(A.9)

When the constraint does not bind (i.e., λj = 0), this expression becomes

zjt
wjt

=
X∗
jt

E∗
jt−1

(A.10)

where the asterisk indicates the non-binding equilibrium. Setting equation (A.9) to equation (A.10)

and substituting in the Leontief equality E∗
jt−1 =

AX∗jt−1

AE∗jt−1
(1− δ)X∗

jt−1 yields

Axjt−1
λj
wjt

=
1

1− δ

(
Xjt

Xjt−1
−

X∗
jt

X∗
jt−1

AE∗jt−1/AX∗jt−1

AEjt−1/AXjt−1

)
(A.11)

Next, define the fraction of under-utilization of past-vintage capital in the non-binding base as

ϱj =
X∗
jt−1

Xjt−1
∈ [0, 1]. Further, denote the ratio of current-vintage capital for the non-binding over

the binding case as ςj =
X∗
jt

Xjt
> 0. Inserting into equation (A.11)

Axjt−1
λj
wjt

=
1

1− δ

(
Xjt

Xjt−1

)(
1− ςj

ϱj

AE∗jt−1/AX∗jt−1

AEjt−1/AXjt−1

)
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which implies λj > 0 if and only if

ϱj
ςj
>
AE∗jt−1/AX∗jt−1

AEjt−1/AXjt−1
> 0 (A.12)

The right hand side of Equation (A.12) captures the lost in fuel productivity when past-vintage

capital operates below its designed capacity. Vintage capital is more likely to be fully utilized when

fuel productivity losses are large.

D.3 Recovering the scale parameter

Consider a power plant p that contains only coal-fired generating units. This allows one to ignore

the upper tier of electricity production, drop the fuel index j, and only consider intermediate

good production captured by equation (6). Applying efficient allocation for each generating unit,

AXptXjt = AEptEpt and AXpt−1(1 − δ)Xpt−1 = AEpt−1Ept−1, the constrained cost minimization

problem can be written in terms of fuel inputs

C(zpt, rpt, Ypt) = min
Ept

zpt (Ept + Ept−1) + rt(
AEpt
AXpt

Ept)

s.t. Ypt = (AEptEptAEpt−1Ept−1)
α

Rewriting the production function as Ept−1 = Y
1/α
pt (AEptAEpt−1Ept)

−1, one obtains the following

equivalent unconstrained minimization problem

min
Ept

(zpt +
AEpt
AXpt

rt)Ept + zptY
1/α
pt (AEptAEpt−1Ept)

−1 (A.13)

Taking the first order condition of equation (A.13) yields a conditional demand function

E∗
pt = (Ypt)

1/2α(
zpt

zpt +
AEpt
AXpt

rt
)1/2(AEptAEpt−1)

−1/2 (A.14)

Inserting equation (A.14) into non-fuel cost at the cost-minimizing input level, non fuel costpt

= C(zpt, rpt, Ypt)− zpt(E
∗
pt + Ept−1) = rt(

AEpt
AXpt

E∗
pt), and applying a log transformation

ln non fuel costpt =
1

ψ
lnYpt +

1

2
ln(

zpt

zpt +
AEpt
AXpt

rt
) + ln rt + ln(A

1/2
EptA

−1/2
Ept−1A

−1
Xpt) (A.15)

where ψ = 2α. Equation (A.15) is the structural analog to the OLS specification in equation (8)

from the main text with one exception. For ease of exposition, labor is omitted as a factor of

production in equation (6) and hence missing from equation (A.15). In practice, the UDI measure

of non-fuel cost modeled in regression equation (8) includes labor costs.
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D.4 Extension: Convex adjustment costs

This section extends the baseline model by introducing convex adjustment costs in the level of

new-vintage capital of the form ς
2X

2
jt, where ς ≥ 0 governs the magnitude of these convex capital

frictions. The optimality condition of equation (A.2) now becomes

αY
1/ϵ
t (AXjtAXjt−1Xjt−1)

α(ϵ−1)
ϵ X

φ−1
ϵ

jt = wjt + ςXjt for j ∈ {c, n} (A.16)

where, as in the baseline model, wjt =
AXjt
AEjt

zjt + rt. Taking the ratio of equation (A.16) for coal

and non-coal sectors and defining relative coal capital investment as X̃t =
Xct
Xnt

yields

X̃t =

(
wct + ςXct

wnt + ςXnt

) ϵ
φ−1

X̃
α(1−ϵ)
φ−1

t−1 Ã
α(1−ϵ)
φ−1

Xt , (A.17)

where ÃXt =
AXct
AXnt

as before.

E Simulating future emissions

This section details the procedure for simulating future CO2 emissions following a relative coal

price shock, as shown in Figure 4.

E.1 Parameters

• Reduced-form path dependence parameter: ρ̂ =
1
5

∑5
τ=1 β̂

τ

π̂ = 1.45, with standard error σ̂ρ =

0.72 (from column 2 of Table 2)

• Returns to scale: ψ̂ = 1.66, with standard error σ̂ψ = 0.24 (from column 2 of Table 3)

• Baseline relative coal prices: w̃ot = 0.4 (based on value in 2000s)

• Relative coal price shock: ∆ = 1.43 (based on Figure A.15)

• Relative productivity: ÃXt = 0.7 (based on value in 2000s)

• Capital depreciation rate: δ = 0.06 (based on value in 2000s)

• Carbon content of coal: Cc = 4931.3 lb CO2/short ton coal71

• Carbon content of natural gas: Cn = 119.9 lb CO2/thousand cubic feet72

71Available here: https://www.eia.gov/environment/emissions/co2_vol_mass.cfm
72Available here: https://www.eia.gov/environment/emissions/co2_vol_mass.cfm
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E.2 Historical emissions

For each decade t ∈ [1950, 2000], electricity sector CO2 emissions for the average U.S. county is

Mt = EctCc + EntCn

where Ect and Ent is U.S. average county coal (in short tons) and natural gas (in thousand cubic

feet) consumed, respectively, by the electricity sector in decade t.73

E.3 Simulating future emissions

For each combination of shock duration, d ∈ {10, 30, 50}, and shock multiplier,M ∈ {1, 2, 6}, define
the time series of relative coal prices as

w̃t = w̃ot +∆ ∗M ∗ 1(t ≤ 2000 + d)

Conduct the following Monte Carlo procedure with b = 1...250 draws

• Draw ψ(b) ∼ N(ψ̂, σ̂ψ) and ρ(b) ∼ N(ρ̂, σ̂ρ). Define α(b) = ψ(b)
2

• Obtain ϵ(b) = 1 + ρ(b)
ψ(b)
2

−ρ(b)
(
1−ψ(b)

2

) and define φ(b) = (1− α(b))(1− ϵ(b))

• For each future decade t ∈ [2010, 2150]

1. Apply equation 11 to obtain relative coal capital investment:

X̃(b)t = exp

( ∞∑
s=0

(
ϵ(b)

(ψ(b)− 1)

[
α(b)(1− ϵ(b))

(φ(b)− 1)

]s
ln w̃t−s +

[
α(b)(1− ϵ(b))

(φ(b)− 1)

]s+1

ln Ãt−s

))

2. Obtain coal capital investment while holding total capital fixed

X(b)ct =

 1
1

X̃(b)t
+ 1

 (K(b)ct−1 +K(b)nt−1) δ

3. Obtain natural gas capital investment while holding total capital fixed

X(b)nt =

1− 1
1

X̃(b)t
+ 1

 (K(b)ct−1 +K(b)nt−1) δ

4. Obtain coal capital

K(b)ct = K(b)ct−1(1− δ) +X(b)ct

73Ect and Ent obtained from the Energy Information Administration (2012).

62



5. Obtain natural gas capital

K(b)nt = K(b)nt−1(1− δ) +X(b)nt

6. Obtain total CO2 emissions using 2000 emissions intensity

M(b)t = K(b)ct
Ec2000
Kc2000

Cc +K(b)nt
En2000
Kn2000

Cn

Figure 4 plots CO2 emissions, M(b)t, and the coal capital investment share, X(b)ct
X(b)ct+X(b)nt

, for

the 250 Monte Carlo draws across each combination of shock duration, d ∈ {10, 30, 50}, and shock

multiplier, M ∈ {1, 2, 6}. It also shows the percentage of Monte Carlo draws for which long-term

CO2 emissions are weakly declining. To explore the consequences of different structural parameter

values, Figure 5 replicates the above simulation procedure for different values of ϵ and ψ with

the shock multiplier set at M = 1. The heat map plotted in Figure 5 shows the minimum shock

duration d needed for long-term CO2 emissions to be weakly declining.
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Appendix Figures

Figure A.1: CO2 emissions intensity and income in 2000
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per capita in 2000. Linear regression fit shown with 95% confidence interval. OPEC countries excluded.
Data from Boden, Marland and Andres (2013) and Bank (2014).

Figure A.2: U.S. bituminous coal production and mechanization
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Notes: Annual U.S. bituminous coal production (in mega short tons). Solid black line shows total coal
production. Dashed gray line shows coal production from mechanical extraction. Data from the U.S. Census
Bureau (1975).
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Figure A.3: U.S. coal basins

Notes: Map of major U.S. coal basins. Reproduced from East (2012).

Figure A.4: Location of sample counties and coal basins

Notes: A county is included in the baseline sample (in yellow shading) if its spatial centroid is (i) closer to
coal resources in the Illinois Basin than in the Appalachian Basin and (ii) less than 250 miles from nearest
Illinois coal resource. Shallow (< 200 ft. underground) and deep (> 200 ft. underground) Illinois and
Appalachian Basin coal resources also shown in green and black shading, respectively.
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Figure A.5: County distance to nearest mine in 1890 and 1950

1890 1950

(200,250]
(150,200]
(100,150]
(90,100]
(80,90]
(70,80]
(60,70]
(50,60]
(40,50]
(30,40]
(20,30]
(10,20]
[0,10]

(200,250]
(150,200]
(100,150]
(90,100]
(80,90]
(70,80]
(60,70]
(50,60]
(40,50]
(30,40]
(20,30]
(10,20]
[0,10]

Notes: County distance to nearest coal mine in 1890 and 1950 over sample counties.

Figure A.6: Timing of shallow to deep coal switching for each sample county
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Notes: The timing of when a sample county’s nearest mine switches from a shallow to a deep coal mine
for the first time. Counties are stacked according to the decade when the switching event occurs. The gray,
yellow, and black shaded areas correspond to event-time periods h < 0, h = 0, and h > 0, respectively.
h = 0 can span multiple decades if there are several decades between the initial switch to a deep coal mine
and the previous switch in coal supplier.
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Figure A.7: Share of delivered coal price due to transport costs at the national level
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Notes: Share of transport cost (nominal USD per short ton) in delivered coal price (nominal USD per
short ton) for the U.S. during 1902-2007. Data from McNerney, Farmer and Trancik (2011).

Figure A.8: Testing the Herfindahl Principle
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Notes: Vertical axis shows share of total coal purchase from destination county. Horizontal axis shows the
ranking of bilateral distance between spatial centroids of origin and destination counties. Data averaged
over 1990-1999 and all U.S. counties that purchase coal for electricity.
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Figure A.9: Comparing U.S. electricity capacity from EIA-860 vs. historical census
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over 1920-1970. Panel (B) plots capacity changes. Panels (C) and (D) show the same information as in
panels (A) and (B) but for aggregate U.S. hydropower capacity.

Figure A.10: Comparing generating unit capacity in late 1970s and 2012
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Figure A.11: Fitted and predicted capacity distribution of power plants by decade of
opening
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Notes: Solid line shows fitted capital frequency distribution of all power plants built during 1910s (left
panel) and 1950s (right panel). Fitted relationship uses a 4th order polynomial function for power plants
with capacity less than 30 MW and greater than 1 MW. Dashed line shows predicted capacity frequency
for power plants with capacity less than 1 MW. See Appendix C for details.

Figure A.12: Distribution of sample generator unit lifespans
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Figure A.13: Reduced-form estimates of path dependence: bootstrapped imputation
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Figure A.14: Testing for nonlinearity in the relative coal capital-distance relationship
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Figure A.15: Ratio of U.S. coal to natural gas sales price

P
ric

e 
sh

oc
k

-1
.2

5
-1

-.
75

-.
5

U
.S

. l
n(

co
al

 p
ric

e/
ga

s 
pr

ic
e)

1985 1990 1995 2000 2005 2010
Year

Notes: Solid black line shows log ratio of U.S. coal sales price to U.S. natural gas sales price (both in
nominal USD per million BTUs) during 1985-2010. Dashed gray line shows quadratic time trend estimated
over 1985-2008.
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Appendix Tables
Table A.1: Coal quality heterogeneity by basin

Std. dev. in
Coal basin No. of counties heat content ash content sulfur content
Appalachian 187 657.24 (1) 2.96 (3) 0.93 (5)
Colorado 79 1159.77 (3) 4.47 (5) 0.15 (1)
Gulf 56 1370.36 (5) 3.71 (4) 0.29 (3)
Illinois 279 807.30 (2) 2.52 (2) 0.84 (4)
Northern Rockies 65 1270.79 (4) 1.79 (1) 0.22 (2)
Notes: Standard deviation in coal heat, ash, and sulfur content across counties that produce
coal in each coal basin. Basin ranking for each characteristic in parentheses (1=least hetero-
geneous). County-level values calculated using 1990-1999 averages.

Table A.2: Observed delivered coal prices vs. constructed distance-based measure

(1) (2) (3)
Outcome is ln delivered coal price

ln dit 0.38** 0.58*** 0.34***
(0.15) (0.15) (0.11)

Decade 1970s 1980s 1990s
Counties 153 153 133

Notes: Each column is a separate cross-sectional regression of log delivered coal price (in nom.
USD per ton) averaged within each decade on log distance to nearest mine and state fixed effects.
County sample shown in Figure A.4. Columns (1), (2), and (3) use data from the 1970s, 1980s,
and 1990s, respectively. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A.3: Comparing generating unit characteristics across 1990-2012 EIA-860 forms

Number of Percentage of generating units with different reported values
different values Capacity Primary fuel Opening year Retirement year

0 74.78 94.25 96.88 80.01
1 2.62 1.49 0.52 1.98
2 1.81 0.57 0.44 2.92
3 1.07 0.23 0.08 0.87
4 1.26 0.2 0.08 0.87
5 0.85 0.51 0.19 1.5
6 0.69 0.46 0.24 0.67
7 0.95 0.29 0.29 0.72
8 0.53 0.27 0.22 1.08
9 0.79 0.2 0.14 1.74
10 0.72 0.25 0.24 1.04

Notes: Row indicates the number of values from 1990-2011 EIA-860 forms that was different
from the 2012 EIA-860 form. Column shows generator unit-level characteristics. Each cell
shows the percentage of 1990-2011 EIA-860 forms with a reported value that is different from
that reported in the 2012 EIA-860 form. For example, row 1, column 1 indicates that 76.78%
of generating units reported the same capacity in 1990-2011 as was reported in 2012.
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Table A.4: Comparing generating unit primary fuel in late 1970s and 2012

Primary fuel in 2012
Primary fuel
in 1970s Coal Hydro Nat. gas Nuclear Oil
Coal 92.2 0.0 5.9 0.0 1.1

Hydro 0.0 100.0 0.0 0.0 0.0

Nat. gas 0.8 0.0 77.2 0.0 21.9

Nuclear 0.0 0.0 0.0 100.0 0.0

Oil 1.0 0.0 24.4 0.0 74.6
Notes: Each row shows the distribution of reported primary fuel in
the 2012 EIA-860 forms conditional on the primary fuel reported in
the 1970s. For example, 92.2% of generating units which reported
coal as the primary fuel in the 1970s also reported coal in 2012.

Table A.5: Summary statistics for unadjusted and imputed relative coal capital

(1) (2) (3) (4) (5)
Unadjusted Imputed Imputed Imputed Imputed

3rd order poly. 4th order poly. 5th order poly. add 1 MW

Number of observations
Total 2,369 2,369 2,369 2,369 2,369
Missing 1,246 0 0 0 0
Zero 825 0 0 0 0
Positive 298 2,369 2,369 2,369 2,369

Summary statistics
Obs 1,123 2,369 2,369 2,369 2,369
Mean 9.71 65.01 75.58 65.14 8.54
Median 0 .15 .16 .14 1
SD 53.44 355.37 417.01 356.52 37.3
Skewness 11.51 7.39 7.47 7.41 6.76
Notes: Top panel shows the number of total, missing, zero-valued, and positive-valued observations
for the baseline county-by-decade sample shown in Figure A.4. Bottom panel shows various summary
statistics. Column 1 shows unadjusted relative coal capital. Columns 2-4 adds imputed missing power
plants with capacity less than 1 MW using 3rd, 4th, and 5th order polynomial functions for gt(),
respectively. Column 5 adjusts relative coal capital by adding 1 MW to both coal and non-coal capital
investment. See Appendix C for details.
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Table A.6: Robustness: additional identification concerns

(1) (2) (3) (4) (5) (6)
Outcome is relative coal capital

ln d0i (β
τ )

2 decades lead -1.38 -1.49 -0.71 -2.10 -0.64 -1.41
(1.02) (0.96) (1.62) (1.91) (1.09) (0.92)

1 decade lead -0.65 -1.14 -0.22 -1.29 -1.04 0.40
(0.67) (0.71) (0.85) (0.82) (0.99) (0.98)
— — — — — —

1 decade lag -0.67 -2.22** -0.72 -1.07 -0.15 -0.71
(1.25) (1.01) (1.05) (1.40) (1.10) (1.30)

2 decades lag -4.10*** -4.91*** -3.19*** -5.03*** -3.92*** -4.18***
(1.14) (1.39) (1.08) (1.20) (0.86) (1.19)

3 decades lag -3.74*** -4.28*** -4.10*** -4.87*** -4.09*** -3.73***
(0.66) (0.62) (1.39) (1.10) (0.90) (0.73)

4 decades lag -3.50*** -4.32*** -4.10*** -4.86*** -4.13*** -3.51***
(0.71) (0.67) (1.53) (1.22) (0.99) (0.75)

5 decades lag -4.57*** -5.40*** -5.95*** -5.53*** -5.19*** -4.59***
(0.98) (1.09) (1.69) (1.15) (1.20) (0.99)

6 decades lag -3.70*** -4.52*** -4.83*** -4.84*** -3.94*** -3.72***
(0.75) (0.67) (1.43) (1.15) (0.89) (0.79)

7 decades lag -6.19*** -7.11*** -6.99*** -8.10*** -6.13*** -6.21***
(1.37) (1.45) (1.81) (1.52) (1.26) (1.39)

8 decades lag -7.29*** -8.26*** -8.03*** -9.52*** -7.13*** -7.31***
(1.59) (1.72) (1.93) (1.68) (1.46) (1.61)

9 decades lag -7.29*** -8.22*** -8.02*** -10.26*** -7.19*** -7.32***
(1.57) (1.69) (2.05) (1.69) (1.54) (1.58)

10 decades lag -7.00*** -7.85*** -7.95*** -10.63*** -7.31*** -7.02***
(1.56) (1.68) (2.06) (1.84) (1.48) (1.58)

ln dit (π) -1.53*** -1.69*** -1.56** -1.86*** -1.37** -1.53***
(0.53) (0.55) (0.62) (0.50) (0.59) (0.53)

Dropped if mine becomes 2nd closest No Yes No No No No
Demand controls No No Yes No No No
Geographic controls No No No Yes No No
Wage control No No No No Yes No
Single decade period before switch No No No No No Yes
Observations 2369 2033 2106 2369 2097 2230
Counties 261 219 261 261 261 261

Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable is relative
coal capital at the county-by-decade level. County sample shown in Figure A.4. Time period is 1890-1990.
Each model includes event time, county, and state-by-decade fixed effects. Column 1 replicates baseline
estimates. Column 2 estimates baseline model but drops counties for which the shallow mine becomes the
second nearest mine in any decade after the switching event. Column 3 adds county-by-decade population,
number of manufacturing establishments, and manufacturing employment, all in logs. Column 4 adds log
county distance to nearest navigable waterway and log variance in slope, both interacted with a linear time
trend. Column 5 adds county-by-decade log manufacturing wages. Column 6 redefines the focal event as
just the single decade before the initial switch to deep coal. Robust standard errors clustered at the county
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: Robustness: imputing missing small power plants

(1) (2) (3) (4) (5) (6) (7) (8)

ln d0i (β
τ )

2 decades lead -1.38 -1.30 -1.33 -0.63 -0.23 -2.66 -0.10 -0.07
(1.02) (1.01) (1.00) (0.96) (0.46) (2.24) (1.71) (0.75)

1 decade lead -0.65 -0.70 -0.68 -0.45 0.01 -1.53 1.14 0.16
(0.67) (0.68) (0.67) (0.60) (0.31) (0.95) (1.61) (0.29)
— — — — — — — —

1 decade lag -0.67 -0.58 -0.59 -0.51 -0.12 -0.84 -0.99 -0.21*
(1.25) (1.20) (1.19) (1.07) (0.33) (0.59) (0.81) (0.12)

2 decades lag -4.10*** -3.97*** -3.97*** -4.27*** -1.90*** -2.49 -2.88** -0.47**
(1.14) (1.08) (1.08) (1.14) (0.44) (2.04) (1.14) (0.21)

3 decades lag -3.74*** -3.70*** -3.68*** -4.11*** -2.11*** -4.18** -3.77** -0.62**
(0.66) (0.66) (0.66) (0.89) (0.41) (2.04) (1.63) (0.27)

4 decades lag -3.50*** -3.44*** -3.43*** -3.93*** -2.03*** -4.97** -4.25*** -0.69**
(0.71) (0.71) (0.71) (0.96) (0.37) (1.96) (1.62) (0.31)

5 decades lag -4.57*** -4.49*** -4.46*** -5.02*** -2.29*** -3.91* -3.16* -0.97***
(0.98) (0.91) (0.91) (1.19) (0.37) (2.09) (1.69) (0.31)

6 decades lag -3.70*** -3.66*** -3.63*** -4.11*** -1.47*** -2.82 -2.95* -0.91***
(0.75) (0.75) (0.75) (0.98) (0.48) (2.21) (1.73) (0.33)

7 decades lag -6.19*** -6.15*** -6.12*** -6.64*** -3.18*** 0.71 -1.29 -0.66
(1.37) (1.37) (1.36) (1.54) (0.80) (2.99) (3.00) (0.40)

8 decades lag -7.29*** -7.24*** -7.22*** -7.91*** -3.90*** -3.33 -1.94 -0.66
(1.59) (1.58) (1.58) (1.79) (0.80) (2.66) (2.07) (0.47)

9 decades lag -7.29*** -7.25*** -7.22*** -7.87*** -3.95*** -2.63 -1.27 -0.53
(1.57) (1.56) (1.55) (1.76) (0.78) (2.47) (1.95) (0.47)

10 decades lag -7.00*** -6.96*** -6.93*** -7.58*** -3.76*** -2.20 -0.79 -0.55
(1.56) (1.55) (1.55) (1.76) (0.75) (2.85) (2.30) (0.51)

ln dit (π) -1.53*** -1.54*** -1.54*** -1.59*** -0.86** -2.41*** -1.03 -0.16
(0.53) (0.53) (0.53) (0.55) (0.40) (0.75) (1.10) (0.15)

Outcome relative relative relative relative relative relative relative coal
coal coal coal coal coal coal coal share

Small plant imputation 4th ord. poly 3rd ord. poly 5th ord. poly 4th ord. poly add 1MW none 1-2MW none
Weights none none none plants none none none none
Observations 2369 2369 2369 2631 2369 369 369 565
Counties 261 261 261 261 261 65 65 97

Notes: Estimates of βτ and π from equation (4) using a Poisson model. County sample shown in Figure
A.4. Time period is 1890-1990. Each model includes event time, county, and state-by-decade fixed effects.
Outcome variable in columns 1-5 is relative coal capital at the county-by-decade level. Column 1 replicates
baseline estimates which imputes missing small power plants with a 4th order polynomial function for gt()
to construct relative coal capital (see Appendix C). Column 2 uses a 3rd order polynomial function for
gt(). Column 3 uses a 5th order polynomial function for gt(). Column 4 weights each observation using a
county’s time-averaged number of power plants. Outcome in column 5 adds 1 MW to both unadjusted coal
and non-coal capital investment to construct relative coal capital. Column 6 constructs relative coal capital
using the unadjusted data. Column 7 pretends 1-2 MW power plants are missing and imputes them using
the same procedure used to impute missing < 1 MW plants. Column 8 models coal capital share using
the unadjusted data. Robust standard errors clustered at the county level in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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Table A.8: Robustness: sample restrictions

(1) (2) (3) (4) (5) (6)
Outcome is relative coal capital

ln d0i (β
τ )

2 decades lead -1.38 -4.26** -0.98 -2.22* -1.20 -1.42
(1.02) (1.67) (1.07) (1.27) (1.01) (1.05)

1 decade lead -0.65 -2.53** -0.52 -1.26 -0.49 -0.75
(0.67) (1.04) (0.65) (0.82) (0.75) (0.66)
— — — — — —

1 decade lag -0.67 -0.93 -0.60 -1.98 -0.23 -0.71
(1.25) (1.40) (1.22) (1.23) (1.16) (1.05)

2 decades lag -4.10*** -5.32*** -4.01*** -5.99*** -2.70*** -3.93***
(1.14) (1.02) (1.12) (1.16) (1.02) (1.03)

3 decades lag -3.74*** -5.76*** -3.65*** -4.60*** -2.33*** -3.70***
(0.66) (1.14) (0.65) (0.83) (0.90) (0.65)

4 decades lag -3.50*** -5.38*** -3.39*** -4.48*** -2.00** -3.48***
(0.71) (1.39) (0.71) (0.93) (0.96) (0.69)

5 decades lag -4.57*** -3.75** -4.45*** -7.28*** -1.69 -4.13***
(0.98) (1.62) (0.95) (2.07) (1.12) (0.77)

6 decades lag -3.70*** 1.89 -3.62*** -4.48*** -1.59 -3.83***
(0.75) (3.78) (0.74) (0.98) (1.16) (0.73)

7 decades lag -6.19*** -6.10** -6.16*** -6.90*** -3.71** -4.55***
(1.37) (3.04) (1.37) (1.37) (1.50) (0.97)

8 decades lag -7.29*** -7.79** -7.27*** -8.07*** -4.62*** -5.15***
(1.59) (3.08) (1.59) (1.54) (1.69) (1.21)

9 decades lag -7.29*** -7.60** -7.27*** -8.09*** -4.43*** -5.11***
(1.57) (3.06) (1.56) (1.48) (1.66) (1.23)

10 decades lag -7.00*** -7.87** -6.98*** -7.75*** -4.18** -5.05***
(1.56) (3.19) (1.56) (1.49) (1.67) (1.23)

ln dit (π) -1.53*** 1.87 -1.56*** -1.53*** -1.33** -0.75
(0.53) (1.37) (0.53) (0.53) (0.52) (0.59)

Sample Benchmark > 90th > 97.5th <200 miles <300 milles Incl. closer
pct mines pct mines from Ill. coal from Ill. coal to App. coal

Observations 2369 1920 2402 1927 2869 3205
Counties 261 223 261 207 319 337
Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable is relative
coal capital at the county-by-decade level. Time period is 1890-1990. Each model includes event time,
county, and state-by-decade fixed effects. Column 1 uses baseline county sample shown in Figure A.4.
Column 2 uses transport distance constructed from mines with area above the 90th percentile. Column 3
uses transport distance constructed from mines with area above the 97.5th percentile. Columns 4 and 5
restricts sample to counties within 200 and 300 miles from the nearest Illinois Basin coal resource and are
closer to Illinois Basin coal than to Appalachian Basin coal. Column 6 restricts sample to counties within
250 from the nearest Illinois Basin coal resource but include counties that are closer to Appalachian Basin
coal than to Illinois Basin coal. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.9: Robustness: alternative modeling choices

(1) (2) (3) (4) (5)

ln d0i (β
τ )

3 decades lead 0.87
(1.48)

2 decades lead -1.38 -1.35 -0.27 0.32
(1.02) (1.00) (0.42) (1.04)

1 decade lead -0.65 -0.71 -0.63 0.27 0.27
(0.67) (0.69) (0.67) (0.40) (0.64)

— — — — —

1 decade lag -0.67 -0.64 -0.70 -0.41 -0.76*
(1.25) (1.23) (1.27) (0.26) (0.39)

2 decades lag -4.10*** -4.05*** -4.15*** -1.21*** -1.40**
(1.14) (1.14) (1.14) (0.31) (0.60)

3 decades lag -3.74*** -3.69*** -3.81*** -1.71*** -1.93**
(0.66) (0.66) (0.67) (0.49) (0.87)

4 decades lag -3.50*** -3.44*** -3.58*** -1.80*** -2.35**
(0.71) (0.72) (0.72) (0.55) (1.04)

5 decades lag -4.57*** -4.52*** -4.64*** -2.18*** -2.61**
(0.98) (0.97) (0.99) (0.65) (1.06)

6 decades lag -3.70*** -3.64*** -3.77*** -1.79** -2.49**
(0.75) (0.75) (0.75) (0.85) (1.12)

7 decades lag -6.19*** -6.13*** -6.26*** -2.88** -3.23
(1.37) (1.37) (1.38) (1.28) (2.04)

8 decades lag -7.29*** -7.23*** -7.36*** -4.10*** -4.19**
(1.59) (1.59) (1.60) (1.37) (2.01)

9 decades lag -7.29*** -7.24*** -7.36*** -3.70** -3.86*
(1.57) (1.56) (1.57) (1.51) (2.03)

10 decades lag -7.00*** -6.94*** -7.07*** -3.74** -3.55*
(1.56) (1.56) (1.57) (1.70) (2.08)

ln dit (π) -1.53*** -1.53*** -1.53*** -0.18 -0.66
(0.53) (0.53) (0.53) (0.62) (0.90)

Model Poisson Poisson Poisson Linear Neg. bin.
Observations 2369 2240 2498 2369 2369
Counties 261 261 261 261 261
Notes: Estimates of βτ and π from equation (4). Outcome variable is at the
county-by-decade level. County sample shown in Figure A.4. Time period is 1890-
1990. Each model includes event time, county, and state-by-decade fixed effects.
Column 1 replicates baseline model using a Poisson model with relative coal capital
as the outcome and includes 2 lead terms. Column 2 is identical to column 1 except
for having 1 lead term. Column 3 is identical to column 1 except for having 3 lead
terms. Column 4 uses a log-log linear model with log relative coal capital as the
outcome and includes 2 lead terms. Column 5 uses a negative binomial model with
dispersion parameter that is a function of expected relative coal capital and includes
2 lead terms. Robust standard errors clustered at the county level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1. 77



Table A.10: Robustness: staggered treatment
(1) (2) (3) (4)

Outcome is relative coal capital

ln d0i (β
τ )

2 decade lead -1.38 -1.48 -1.52
(1.02) (0.98) (1.33)

1 decade lead -0.65 -1.03 -0.63 0.04
(0.67) (0.73) (0.72) (0.11)
— — — —

1 decade lag -0.67 -2.20** -1.29 0.82
(1.25) (0.99) (1.34) (0.54)

2 decade lag -4.10*** -4.88*** -2.64 -1.72**
(1.14) (1.40) (2.35) (0.71)

3 decade lag -3.74*** -4.26*** -3.82*** -2.27**
(0.66) (0.61) (0.73) (0.90)

4 decade lag -3.50*** -4.35*** -3.77***
(0.71) (0.65) (0.92)

5 decade lag -4.57*** -5.40*** -5.04***
(0.98) (1.00) (1.11)

6 decade lag -3.70*** -4.42*** -3.69***
(0.75) (0.64) (0.72)

7 decade lag -6.19*** -6.91*** -6.19***
(1.37) (1.30) (1.35)

8 decade lag -7.29*** -8.04*** -7.35***
(1.59) (1.53) (1.58)

9 decade lag -7.29*** -8.06*** -7.31***
(1.57) (1.52) (1.55)

10 decade lag -7.00*** -7.72*** -7.02***
(1.56) (1.50) (1.53)

1 decade lag x switch decade 0.09
(0.16)

2 decade lag x switch decade -0.22
(0.24)

3 decade lag x switch decade 0.09
(0.08)

4 decade lag x switch decade 0.05
(0.15)

5 decade lag x switch decade 0.18
(0.17)

ln dit (π) -1.53*** -1.54*** -1.54*** -1.64
(0.53) (0.53) (0.53) (1.56)

Sample Full Pre-1960 event Full Stacked
Controls counties All All All Not-yet/never

treated
Observations 2369 2149 2369 869
Counties 261 229 261 132

Notes: Estimates of βτ and π from equation (4). Outcome variable is at the
county-by-decade level. County sample shown in Figure A.4. Time period is 1890-
1990. Each model includes event time, county, and state-by-decade fixed effects.
Column 1 replicates baseline estimates. Column 2 restricts sample to counties that
experience the switching event prior to the 1960s. Column 3 interacts lagged terms
up to five decades with the decade in which a county experiences the switching event.
Column 4 employs a stacked difference-in-difference approach following, restricting
the sample to counties with balanced event time observations and limiting control
counties to not-yet and never treated counties. Robust standard errors clustered at
the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

78



Table A.11: Other mechanisms: cost-of-service and Clean Air Act regulations

(1) (2) (3) (4)
Outcome is relative coal capital

ln d0i (β
τ )

2 decades lead -1.38 -0.75 -1.62 0.08
(1.02) (0.92) (1.00) (1.39)

1 decade lead -0.65 -0.71 -1.46 0.53
(0.67) (0.56) (1.00) (1.12)
— — — —

1 decade lag -0.67 -2.80** -1.90** -3.08**
(1.25) (1.10) (0.83) (1.40)

2 decades lag -4.10*** -2.93*** 0.03 -3.25**
(1.14) (1.11) (0.88) (1.29)

3 decades lag -3.74*** -2.92* -3.11*** -4.13***
(0.66) (1.55) (1.07) (0.80)

4 decades lag -3.50*** -6.94* -2.45 -3.71***
(0.71) (3.91) (2.00) (1.13)

5 decades lag -4.57*** -3.10*** -5.51* -2.26*
(0.98) (1.13) (2.90) (1.26)

6 decades lag -3.70*** -3.11*** -4.45 2.09
(0.75) (1.14) (2.93) (2.19)

7 decades lag -6.19*** -4.81* -4.32*
(1.37) (2.55) (2.25)

8 decades lag -7.29*** -5.77**
(1.59) (2.42)

9 decades lag -7.29*** -5.96***
(1.57) (2.14)

10 decades lag -7.00*** -5.33**
(1.56) (2.10)

ln dit (π) -1.53*** 0.36 0.74 -1.76***
(0.53) (1.10) (1.13) (0.68)

Keep before PUC? No Yes No No
Drop ever in nonattainment? No No No Yes
Sample period 1890-1990 1890-1970 1890-1960 1890-1990
Observations 2369 745 1586 1683
Counties 261 201 261 185

Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable is
relative coal capital at the county-by-decade level. County sample shown in Figure A.4. Each
model includes event time, county, and state-by-decade fixed effects. Column 1 replicates
baseline estimates. Column 2 drop county-decade observations when there is a state Public
Utility Commission regulating electric utilities. Column 3 includes only observations during
1890-1960. Column 4 drops counties that were ever designated as nonattainment under the
U.S. Clean Air Act. Robust standard errors clustered at the county level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.12: Other mechanisms: upstream and downstream sectors

(1) (2) (3) (4)
Outcome is

ln railroad ln highway Env. NGO Rpublican vote
density density share share

ln doi × sinceEventi (ω1) -0.048 -0.022 -0.000 0.003
(0.031) (0.018) (0.000) (0.003)

ln doi (ω2) -0.002 0.013 -0.001 -0.002
(0.169) (0.114) (0.000) (0.021)

sinceEventi (ω3) 0.226* 0.051 -0.000 -0.011
(0.135) (0.072) (0.000) (0.014)

Counties 458 458 458 458
Notes: Estimates from equation 10 using county-level outcomes. All models includes state and
NERC region fixed effects, and county centroid longitude and latitude. County sample shown
in Figure A.4. Outcome in column 1 is log railroad density in 2010 (in miles per square mile).
Outcome in column 2 is log highway density in 2010 (in miles per square mile). Outcome in
column 3 is the population share of individuals who are members of three major environmental
NGOs in 1996 (in %). Outcome in column 4 is the share of eligible voters who voted for the
Republican Presidential candidate in 2000 (in %). Robust standard errors clustered at the county
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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