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1 Introduction 

When the U.S. Federal Reserve finally raised its target for the Federal Funds Rate in December 2015, this 
likely marked the end of the zero-bound on short-term nominal interest rates for the United States after a 
staggering seven years. Japan’s zero-bound period will most likely exceed this duration under 
Abenomics, while the Bank of England has similarly had near-zero interest rates since March of 2009. 
The Euro Central Bank is also not expected to raise interest rates for years. Combined with the previous 
experiences with the zero-bound on interest rates that occurred during the Great Depression and in Japan 
during the 1990s-2000s, this suggests that the two most prominent empirical features of zero-bound 
episodes are that they are rare but long-lived. 
 The zero-bound on interest rates raises a number of profound problems for monetary 
policymakers, one of which is the traditional question of what the optimal inflation rate should be. While 
it is well-understood that even stable inflation has costs (such as those arising from price dispersion), 
higher average inflation is also associated with higher nominal interest rates, which can benefit 
policymakers by giving them extra room to avoid running into the zero-bound. Quantifying the optimal 
rate of inflation then requires balancing the costs of inflation against its benefits, such as minimizing the 
frequency and severity of zero lower bound (ZLB) episodes. 
 But quantifying this potential benefit of higher inflation is difficult because the paucity of ZLB 
episodes makes their frequency and duration hard to gauge. For example, Schmidt-Grohe and Uribe 
(2010) calibrated their model prior to the start of the Great Recession and had no post-WWII zero-bound 
episodes in the U.S. to guide their choice over the frequency of hitting the zero-bound. This resulted in a 
calibration with very rare and short-lived ZLB episodes. Coibion, Gorodnichenko and Wieland (2012) 
used the fact that the U.S. had spent 3 years at the ZLB at the time of their writing out of the post-WWII 
period to fix their frequency, yielding more frequent but still mostly short-lived episodes. In each case, 
these authors conclude that the optimal rate of inflation is unlikely to be much above 2% despite the zero-
bound on interest rates. But given the actual durations of the most recent ZLB experienced by developed 
economies, each of these papers likely underestimated the average duration of ZLB episodes and 
therefore the potential benefits of higher levels of target inflation on the part of central banks. 
 In this paper, we revisit the topic of longer-lived ZLB episodes in two steps. First, following 
previous work, we generate longer-lived ZLB episodes by either increasing the persistence or the 
volatility of AR(1) risk-premium shocks which push the economy into the ZLB in our model. By doing 
so, we can generate a longer average duration of ZLB episodes consistent with the data. In our benchmark 
New Keynesian model, increasing the average duration of ZLB episodes (for a given steady-state level of 
inflation) through either more persistent or more volatile shocks can have large positive effects on the 
optimal inflation rate. For example, moving from an average duration of ZLB episodes of 5 quarters to 
just 6 quarters, holding the frequency of ZLB episodes fixed (by varying the persistence and volatility of 
shocks accordingly), can raise the optimal inflation rate from 1.3% to 2.2% in our baseline calibration, a 
very high sensitivity.  
 This sensitivity, however, reflects an unappealing characteristic common to all standard models 
of the ZLB in which normally distributed shocks drive the economy into the ZLB: the vast majority of 
ZLB episodes in the model are extremely short-lived. Significantly raising the average duration therefore 
requires large tail events, and these episodes have disproportionately large welfare costs. Policymakers 
become very willing to tolerate higher average inflation rates to avoid these episodes, leading to 
significantly higher optimal rates of inflation for even small changes in average durations of ZLB 
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episodes. Hence, the high sensitivity of the optimal rate of inflation to the average duration of ZLB 
episodes in our benchmark model is a reflection of the counterfactual distribution of ZLB episodes, 
namely that they are too frequent and short-lived compared to the rare and long-lived episodes that we 
observe in the data. 
 Our second step is then to incorporate an alternative modeling strategy for the shocks that drive 
the economy into the ZLB which generates an empirically realistic distribution of ZLB episodes, namely 
that they tend to be rare but long-lived. We assume that each period, risk premia follow a regime-
switching process. In each period when the economy is not at the ZLB, there is a fixed probability that the 
risk premium will rise sharply for a set number of periods. If the increase in the premium is large enough, 
this shock will give rise to a distribution with very long-lived ZLB durations, thereby more closely 
representing the empirical distribution of ZLB episodes. As a result, we can more carefully assess 
whether (or how much) raising the rate of inflation is optimal, in a welfare sense, to offset the presence of 
the zero bound on interest rates. 
 Unlike the AR(1) model, the regime switching approach does not display an excessive sensitivity 
of the optimal inflation rate to the average duration of ZLB episodes. Nonetheless, long-lived ZLB 
episodes generate large welfare costs in the model, which higher levels of steady state inflation can help 
avoid by reducing their frequency. We find that depending on our calibration of the average duration and 
the unconditional frequency of ZLB episodes, the optimal inflation rate can range from 1.5% to 4%. This 
uncertainty stems ultimately from the paucity of historical experience with ZLB episodes, which makes 
pinning down these parameters with any degree of confidence very difficult. A key conclusion of the 
paper is therefore that much humility is called for when making recommendations about the optimal rate 
of inflation since this fundamental data constraint is unlikely to be relaxed anytime soon.    

Our paper builds on a broad literature on the optimal rate of inflation. This literature has covered 
a wide range of costs and benefits, with the zero bound on interests only recently coming to the forefront 
as a plausible source for positive optimal rates of inflation. In a survey of pre-Great Recession work, 
Schmidt-Grohe and Uribe (2010) highlighted that, although the quantitative conclusions about the optimal 
rate of inflation were potentially sensitive to the choice of the model used to assess the costs and benefits 
of inflation (or deflation) in the steady-state, one generally found that it was optimal to have a small 
amount of deflation. For example, using a standard model with demand for money, Schmidt-Grohe and 
Uribe (2010) estimated the optimal inflation rate at -0.6 percent per year with the Ramsey optimal policy. 
While this rate of deflation is considerably smaller than the rate of deflation originally suggested by 
Milton Friedman (approximately equal to the real interest rate), the optimality of deflation in steady state 
is inconsistent with the 1-3%/year inflation rates currently targeted by most central banks.  

Even when one moves to cashless economies, it is difficult to push the optimal rate of inflation 
near the levels commonly targeted by modern central targets using traditional arguments for positive 
levels of inflation such as downward wage rigidity. Indeed, New Keynesian models generally suggest that 
the optimal rate of inflation should be close to zero because price dispersion generated by non-zero trend 
inflation is costly (see Benigno and Woodford 2005).1 However, one may be able to raise the optimal rate 
of inflation by departing from the workhorse specifications to incorporate e.g. foreign demand for 
currency (Schmidt-Grohe and Uribe 2012), firm-specific productivity growth (Weber 2012), occasionally 
binding financial constraints (Abo-Zaid 2015), or tax evasion (Schmidt-Grohe and Uribe 2010).  
                                                            
1 Wolman (2011) and others show that even in the absence of money demand considerations, the optimal rate of 
inflation in New Keynesian models can be negative. For example, in Wolman’s model and calibration the optimal 
deflation is 0.4% per year.  
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Pre-Great Recession work (e.g., Summers 1991) discussed the zero lower bound (ZLB) on 
nominal interest rates as a potential reason for positive inflation but generally considered the ZLB as an 
improbable event. As a result, the models were calibrated to generate infrequent and short-lived ZLB 
episodes. For example, Schmidt-Grohe and Uribe (2010) indicate that to violate the zero bound “…the 
nominal interest rate … must fall more than 4 standard deviations below its target level” thus making 
ZLB an extremely rare event.  

Many others found similar results. For example, Reifschneider and Williams (2000) and Chung et 
al. (2012) document that the frequency of ZLB for three popular dynamic stochastic general equilibrium 
(DSGE) models estimated on the post-WWII, pre-2007 data is typically less than 5 percent.2 Furthermore, 
ZLB episodes longer than 8 quarters can be observed less than 1 percent of the time. If one uses data from 
the Great Moderation period to assign parameters in DSGE models, ZLB episodes are even shorter and 
less frequent. Similarly, Adam and Billi (2007) find that, with optimal monetary policy, conditional on 
hitting ZLB, the likelihood of being at the ZLB for more than 4 quarters is a mere 1.8%. In Billi’s (2011) 
calibration, the ZLB binds 4 percent of the time and the average duration of ZLB is only 2 quarters. Using 
non-linear methods to solve and simulate calibrated DSGE models, Amano and Shukayev (2012) report 
that the probability of hitting the ZLB is 1.7% per quarter (i.e., a 4-quarter ZLB episode occurs once 
every 60 years). In other words, ZLBs in models used by researchers and policymakers were too short and 
too rare to matter.  

As the welfare costs of short ZLB episodes tend to be small, the ZLB was found to have tiny 
effects on the estimated optimal rate of inflation. For example, the optimal rate of inflation in the 
Schmidt-Grohe and Uribe (2010) calibration increased modestly from -0.6 to -0.4 percent per year in light 
of the ZLB. In short, the consensus view before the Great Recession was that, although the ZLB was an 
interesting and curious possibility, one could treat it as remote and largely irrelevant.  

With policy interest rates in major developed economies having spent years at the zero lower-
bound during the Great Recession and its aftermath, there has of course been a shift in thinking about the 
frequency and nature of the ZLB. Examination of new cross-country evidence and long time series (i.e., 
series including the Great Depression) suggests that ZLB episodes are potentially costly (e.g., Williams 
(2009) estimated that four years at the ZLB can cost as much as $1.8 trillion), more frequent (e.g., Chun 
et al. (2012) indicate that, based on pre-2010 data, one should double the probability of being at the ZLB 
in calibrated models), and more persistent. The latter point is particularly important as ZLB episodes in 
the U.S. and elsewhere are not characterized by a series of short intervals of constrained policy rates. 
Instead, the Great Depression and the Great Recession in the U.S. or the crash in Japan indicate that ZLB 
episodes can last for years if not decades.  

Incorporating these changes in the way we model the ZLB can have dramatic effects on the 
optimal rate of inflation. Indeed, apart from ZLB episodes being modeled as more frequent and thus 
costlier, we know from Coibion et al. (2012) and others that the cost of ZLB is increasing steeply in its 
duration. That is, an 8-quarter ZLB is costlier than two 4-quarter ZLB episodes. Thus, the cost of ZLB in 
a new calibration can be considerably larger than in previous calibrations and can entail an optimal rate of 
inflation higher than the conventionally suggested 2 percent per year.   

While the treatment of the ZLB is one important source of differences in the estimated optimal 
rate of inflation, there are other factors and modelling choices that can affect the optimal rate. For 
example, Coibion et al. (2012) show that how one models price stickiness can also influence results. 

                                                            
2 Coibion et al. (2012) calibrate the frequency of ZLB in the basic New Keynesian model at 5 percent.  
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Using the Calvo (1983) approach tends to yield a lower optimal inflation rate because Calvo-style pricing 
generates a larger increase in cross-sectional price dispersion for a given increase in trend inflation than 
e.g. Taylor (1977) pricing.3 Intuitively, firms with Calvo pricing may be stuck at suboptimal prices for a 
long time while Taylor pricing guarantees that prices can be reset after a fixed number of periods which 
caps the size of departures from optimal levels of prices. Because cross-sectional price dispersion is the 
main cost of non-zero steady-state inflation in New Keynesian models, the choice of pricing assumptions 
can alter the point at which the cost of positive inflation balances the benefit of positive inflation (e.g., 
avoid ZLB). Consistent with this logic, Coibion et al. (2012) find the optimal rate of inflation to be 1.5% 
under Calvo pricing (when the probability of price adjustment is set at 0.55) and 1.8% under Taylor 
pricing (when the duration of contracts is set at 3 quarters). 

In a similar spirit, menu-cost models limit the degree of cross-sectional price dispersion (since a 
firm can reset its price whenever it deviates too far from the optimal price) and thus could reduce the cost 
of non-zero steady-state inflation. As a result, it may be optimal in such models to target a higher rate of 
inflation which will reduce the probability of hitting the ZLB, but the exact magnitude depends on the 
details of menu cost models. While the optimal rate of inflation in the Dotsey et al. (1999) model is below 
2 percent (see Coibion et al. 2012), Blanco (2015) found that in the Golosov and Lucas (2007) model 
welfare is maximized at approximately 5%/year inflation rate. Because the computational demands 
become exceedingly high for long-lasting ZLB periods even in linearized models, we will focus on the 
Calvo approach to model price stickiness. 

The paper is organized as follows. Section 2 presents the model and the two ways of modeling 
shocks that drive the economy into the zero bound. Section 3 then presents the main results of the paper, 
including comparing the distribution of ZLB episodes under the two assumptions about shock processes 
and their implications for optimal inflation. Section 4 concludes. 
 
2 Model  

In our quantitative analyses, we use the standard New Keynesian model similar to the framework in 
Coibion, Gorodnichenko and Wieland (2012). To preserve space, we describe the main building blocks of 
the model and relegate derivations and various details to the Appendix.  

2.1. Households 

The representative consumer maximizes the present discounted value of the utility stream from 
consumption and leisure  

max𝐸𝐸𝑡𝑡 ∑ 𝛽𝛽𝑗𝑗 �log(𝐶𝐶𝑡𝑡+𝑗𝑗 − ℎ ∙ 𝐺𝐺𝐴𝐴𝑡𝑡+𝑗𝑗 ∙ 𝐶𝐶𝑡𝑡+𝑗𝑗−1) − 𝜂𝜂
𝜂𝜂+1 ∫ 𝑁𝑁𝑡𝑡+𝑗𝑗(𝑖𝑖)1+1/𝜂𝜂𝑑𝑑𝑑𝑑1

0 �∞
𝑗𝑗=0   (1) 

where 𝐶𝐶 is consumption of the final good, 𝑁𝑁(𝑖𝑖) is labor supplied to individual industry i, 𝐺𝐺𝐺𝐺 is the gross 
growth rate of technology, 𝜂𝜂 is the Frisch labor supply elasticity, ℎ the internal habit parameter and β is 
the discount factor.  The budget constraint in each period 𝑡𝑡 is given by  

𝜉𝜉𝑡𝑡:𝐶𝐶𝑡𝑡 + 𝑆𝑆𝑡𝑡
𝑃𝑃𝑡𝑡

+ 𝑇𝑇𝑡𝑡 ≤ ∫ �𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

� 𝑑𝑑𝑑𝑑1
0 + 𝑆𝑆𝑡𝑡−1𝑞𝑞𝑡𝑡−1𝑅𝑅𝑡𝑡−1

𝑃𝑃𝑡𝑡
+ Γ𝑡𝑡   (2) 

                                                            
3 Using a medium-scale DSGE model, Ascari, Phaneuf, and Sims (2015) estimate that a consumption-equivalent 
welfare loss from of raising inflation from 2% to 4% can be as large as 7 percent. 
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where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 
the price of the final good, 𝑊𝑊(𝑖𝑖) is the nominal wage earned from labor in industry i, T is real lump sum 
taxation (or transfers), Γ are real profits from ownership of firms, 𝑞𝑞 is a risk premium shock, and 𝜉𝜉 is the 
shadow value of wealth (i.e., the Lagrange multiplier on constraint (2)). As we discuss below, the risk 
premium shock plays a central role in generating binding ZLB.  

2.2. Firms 

For each intermediate good 𝑖𝑖 ∈ [0,1], a monopolist generates output using a production function linear in 
labor  

𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝐴𝐴t𝑁𝑁𝑡𝑡(𝑖𝑖) (3) 

where 𝐴𝐴 denotes the level of technology, common across firms. The time series of technology is described 
by a random walk process: 𝐴𝐴𝑡𝑡 = exp (𝑢𝑢𝑡𝑡𝐴𝐴), 𝑢𝑢𝑡𝑡𝐴𝐴 =  𝜇𝜇 + 𝑢𝑢𝑡𝑡−1𝐴𝐴 +  𝜀𝜀𝑡𝑡𝐴𝐴 with 𝜀𝜀𝑡𝑡𝐴𝐴~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝐴𝐴2). Parameter 𝜇𝜇 sets 
the average growth rate of technology in the model.  

A perfectly competitive sector combines intermediate goods into a final good using the Dixit-
Stiglitz aggregator

 𝑌𝑌𝑡𝑡 = �∫ 𝑌𝑌𝑡𝑡(𝑖𝑖)(𝜃𝜃−1)/𝜃𝜃𝑑𝑑𝑑𝑑1
0 �

𝜃𝜃/(𝜃𝜃−1)
   (4) 

where Y is the final good and 𝜃𝜃 denotes the elasticity of substitution across intermediate goods, yielding 
the following demand curve for goods of intermediate sector i: 

𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝑌𝑌𝑡𝑡(𝑃𝑃𝑡𝑡(𝑖𝑖)/𝑃𝑃𝑡𝑡)−𝜃𝜃 (5) 

and the following expression for the aggregate price level 

𝑃𝑃𝑡𝑡 = �∫ 𝑃𝑃𝑡𝑡(𝑖𝑖)(1−𝜃𝜃)𝑑𝑑𝑑𝑑1
0 �

1/(1−𝜃𝜃)
.  (6) 

Each intermediate good producer has sticky prices, modeled as in Calvo (1983) where 1 − 𝜆𝜆 is 
the probability that each firm will be able to reoptimize its price each period. Denoting the optimal reset 
price of firm i by B (all firms choose the same rest price), re-optimizing firms solve the following profit-
maximization problem  

max
𝐵𝐵𝑡𝑡(𝑖𝑖)

𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗�𝑌𝑌𝑡𝑡+𝑗𝑗(𝑖𝑖)𝐵𝐵𝑡𝑡(𝑖𝑖) −𝑊𝑊𝑡𝑡+𝑗𝑗(𝑖𝑖)𝑁𝑁𝑡𝑡+𝑗𝑗(𝑖𝑖)�∞
𝑗𝑗=0     (7) 

where 𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗 =  𝛽𝛽𝑗𝑗𝐸𝐸𝑡𝑡 �
𝜉𝜉𝑡𝑡+𝑗𝑗
𝜉𝜉𝑡𝑡

𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑗𝑗

� is the stochastic discount factor.  The optimal reset price 𝐵𝐵𝑡𝑡 is then given 

by 

𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡

=
𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗𝑌𝑌𝑡𝑡+𝑗𝑗�

𝑃𝑃𝑡𝑡+𝑗𝑗
𝑃𝑃𝑡𝑡

�
𝜃𝜃+1

� 𝜃𝜃
𝜃𝜃−1�(𝑀𝑀𝑀𝑀𝑡𝑡+𝑗𝑗(𝑖𝑖)/𝑃𝑃𝑡𝑡+𝑗𝑗)∞

𝑗𝑗=0

𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗𝑌𝑌𝑡𝑡+𝑗𝑗(𝑃𝑃𝑡𝑡+𝑗𝑗/𝑃𝑃𝑡𝑡)𝜃𝜃∞
𝑗𝑗=0

 (8) 
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where 𝑀𝑀𝐶𝐶𝑡𝑡(𝑖𝑖) =  𝑊𝑊𝑡𝑡(𝑖𝑖)
At

 is the marginal cost of firm 𝑖𝑖.4  

Given these price-setting assumptions and price index in (6), the dynamics of the price level are 
governed by 

𝑃𝑃𝑡𝑡1−𝜃𝜃 = (1 − 𝜆𝜆)𝐵𝐵𝑡𝑡1−𝜃𝜃 + 𝜆𝜆𝑃𝑃𝑡𝑡−11−𝜃𝜃. (9) 

Firms’ aggregate real profits are 

Γ𝑡𝑡           =  ∫ Γ𝑡𝑡(𝑖𝑖)
1
0  𝑑𝑑𝑑𝑑 = 1

𝑃𝑃𝑡𝑡
∫ [𝑃𝑃𝑡𝑡(𝑖𝑖)𝑌𝑌𝑡𝑡(𝑖𝑖) − 𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)]𝑑𝑑𝑑𝑑1
0   

= 𝑌𝑌𝑡𝑡 − ∫ �𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

� 𝑑𝑑𝑑𝑑1
0  .   (10) 

We define the aggregate labor input as 

𝑁𝑁𝑡𝑡 = �∫ 𝑁𝑁𝑡𝑡(𝑖𝑖)(𝜃𝜃−1)/𝜃𝜃𝑑𝑑𝑑𝑑1
0 �

𝜃𝜃/(𝜃𝜃−1)
= �∫ �𝑌𝑌𝑡𝑡(𝑖𝑖)

𝐴𝐴𝑡𝑡
�

(𝜃𝜃−1)/𝜃𝜃
𝑑𝑑𝑑𝑑1

0 �
𝜃𝜃/(𝜃𝜃−1)

= 𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡

. (11) 

2.3. Government 

We allow for government consumption of final goods (𝐺𝐺) with the good market clearing condition 𝑌𝑌𝑡𝑡 =
𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡. The government budget constraint is defined as 

𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 𝑃𝑃𝑡𝑡⁄ = 𝐺𝐺𝑡𝑡 + 𝑆𝑆𝑡𝑡−1𝑞𝑞𝑡𝑡−1𝑅𝑅𝑡𝑡−1
𝑃𝑃𝑡𝑡

, (12) 

where 𝐺𝐺𝑡𝑡 =  𝐺̅𝐺𝑡𝑡 exp(𝑢𝑢𝑡𝑡𝐺𝐺), 𝐺̅𝐺𝑡𝑡 is the path of government spending such that the share of government 
spending in the economy is fixed when prices are flexible, and 𝑢𝑢𝑡𝑡𝐺𝐺 is an exogenous, forcing variable:  
𝑢𝑢𝑡𝑡𝐺𝐺 = 𝜌𝜌𝐺𝐺𝑢𝑢𝑡𝑡−1𝐺𝐺 + 𝜀𝜀𝑡𝑡𝐺𝐺  with 𝜀𝜀𝑡𝑡𝐺𝐺~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝐺𝐺2).   

 The policy rule followed by the central bank is 

𝑅𝑅𝑡𝑡 = max {1,𝑅𝑅𝑡𝑡∗} (13) 

𝑅𝑅𝑡𝑡∗ = 𝑅𝑅� �𝑅𝑅𝑡𝑡−1
∗

𝑅𝑅�
�
𝜌𝜌1
�𝑅𝑅𝑡𝑡−2

∗

𝑅𝑅�
�
𝜌𝜌2

 ��Πt
Π�
�
𝜙𝜙𝜋𝜋
�𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡�
�
𝜙𝜙𝑌𝑌
�𝐺𝐺𝑌𝑌𝑡𝑡
𝐺𝐺𝐺𝐺����
�
𝜙𝜙𝐺𝐺𝐺𝐺

�
(1−𝜌𝜌1−𝜌𝜌2) 

exp (𝜀𝜀𝑡𝑡𝑅𝑅) (14) 

where 𝑅𝑅 is the realized gross interest rate, 𝑅𝑅∗ is the desired gross interest rate, 𝐺𝐺𝐺𝐺 is the gross growth rate 
of output, Π� is the gross, steady-state level of inflation, 𝐺𝐺𝐺𝐺���� is the steady state growth rate of output, 𝑌𝑌�𝑡𝑡 is 
the flexible-price level of output, 𝑅𝑅� is the steady state nominal interest rate, and 𝜀𝜀𝑅𝑅 is an i.i.d policy 
shock. Equation (13) is responsible for introducing the zero lower bound to the model. We abstract from 
alternative monetary policy actions during ZLB episodes, such as quantitative easing. While these could 

                                                            
4 Labor employed by firm 𝑖𝑖 each period is obtained through the minimization of production costs. 
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potentially lower the costs of ZLB episodes, there is little evidence suggesting that these policies have had 
large economic effects.5 

2.4. Risk premium shocks 

As discussed in Amano and Shukayev (2012), the risk premium shock is the main “tool” that can generate 
a binding ZLB in standard New Keynesian models. To be clear, this shock should be interpreted broadly 
as capturing a variety of forces that bring interest rates to ultra-low levels. We consider two general 
approaches to model the dynamics of the shock.   

The first approach is to describe the time series of the shock as an AR(1) process similar to what 
is usually assumed for other forcing variables in DSGE models (e.g., Coibion et al. 2012):  

𝑞𝑞𝑡𝑡 = exp�𝑢𝑢𝑡𝑡
𝑞𝑞�, 𝑢𝑢𝑡𝑡

𝑞𝑞 =  𝜌𝜌𝑞𝑞𝑢𝑢𝑡𝑡−1
𝑞𝑞 +  𝜀𝜀𝑡𝑡

𝑞𝑞 with 𝜀𝜀𝑡𝑡
𝑞𝑞~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑞𝑞2).   (15) 

By adjusting 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2, one can regulate the frequency and duration of ZLB episodes. As we will show 
later, a major shortcoming of this approach to modeling the risk premium is that it cannot replicate the 
main qualitative empirical properties of ZLB episodes, namely that they are rare but long-lived. Instead, 
AR(1) shocks primarily deliver frequent and short-lived ZLB episodes. 
 As a result, we also consider a second approach which  allows for two regimes of risk premia. For 
example, Christiano, Eichenbaum and Rebelo (2011), Eggertsson and Woodford (2003), and Guerierri 
and Lorenzoni (2009) assume that the ZLB is binding for a fixed number of periods or that, conditional 
on being at the ZLB, every period there is a random, i.i.d. draw determining exit from the ZLB; that is, 
with some probability the risk premium declines from a high level (ZLB is binding) to a low level (ZLB 
is not binding). This line of work typically assumes that after exiting ZLB the economy does not return to 
it.  

To permit recurrent ZLB episodes, we consider the following regime-switching process. The risk 
premium can take two values: zero and Δ > 0. Each period when the risk premium is zero, there is a 
random, i.i.d. draw such that with probability 𝑝𝑝12 the risk premium switches from zero to Δ and stays at 
this elevated level for 𝑇𝑇𝑞𝑞 periods. After 𝑇𝑇𝑞𝑞 periods with low interest rates, the risk premium returns to 
zero. By varying Δ,𝑝𝑝12,𝑇𝑇𝑞𝑞  , we can obtain variation in the frequency and duration of ZLB. Note that Δ >
0 does not guarantee that the interest rate will be literarily stuck at zero: other shocks (e.g., productivity) 
can lift the economy off the ZLB. However, by making Δ large enough, we can reduce the incidence of 

                                                            
5 Coibion, Gorodnichenko and Wieland (2012, CGW henceforth) examine how the optimal rate of inflation varies if 
the central bank can implement an optimal stabilization policy with commitment. One can think of the commitment 
policy as introducing a very powerful form of forward guidance. CGW find that in this case the optimal rate of 
inflation shrinks to zero considerably. Intuitively, with a strong form of forward guidance delivered by fully credible 
commitment to keep low interest rates far into the future, the stabilization powers of monetary policy remain large 
unaffected by the ZLB. As a result, there is no need for a “cushion” created by positive trend inflation. CGW also 
show that if a Taylor rule includes an element of price level targeting, the central bank can nearly achieve the 
welfare one can obtain under the optimal policy with commitment because current below-target inflation is 
compensated with above-target inflation in the future. Since our objective is to consider scenarios that should push 
up the optimal rate of inflation (most importantly, increase in the duration of ZLB episodes), we do not cover the 
optimal policy with commitment as these move the optimal rate of inflation in the opposite direction. 
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such lift-offs. We solve the model by adapting the solution algorithm in Coibion et al. (2012) to these 
deterministic regime-switching processes.6 
 While the difference in modeling the risk premium shock may seem subtle, these two approaches 
can generate different distributions for ZLB durations with important implications for calculating welfare 
losses arising from binding ZLB. As we demonstrate below, the AR(1) approach tends to yield frequent, 
short-lived ZLB episodes. Such a distribution of ZLB episodes appears to be inconsistent with the 
experience of the U.S. and other developed economies during the Great Recession or in other instances. 
In contrast, the regime-switching approach can produce long-lived ZLB episodes, similar to what we 
observe in the data.   

 2.5. Log-linearized system 

Using lower-case letters with hats to denote variables log-linearized around the stochastic trend in 
technology, we can summarize the system of optimality conditions and budget constraints by the familiar 
equations.  

Phillips curve:  

�1 + 𝜃𝜃
𝜂𝜂� �

𝜆𝜆Π�(θ−1)

1−𝜆𝜆Π�(θ−1)� 𝜋𝜋�𝑡𝑡 =  ∑ �𝛾𝛾2
𝑗𝑗(1 − 𝛾𝛾2) − 𝛾𝛾1

𝑗𝑗(1 − 𝛾𝛾1)�∞
𝑗𝑗=0 �𝑦𝑦�𝑡𝑡+𝑗𝑗 + 𝜉𝜉𝑡𝑡+𝑗𝑗�  

+(1 − 𝛾𝛾2)∑ 𝛾𝛾2
𝑗𝑗 �1𝜂𝜂𝑦𝑦�𝑡𝑡+𝑗𝑗 − 𝜉𝜉𝑡𝑡+𝑗𝑗�∞

𝑗𝑗=0   

+∑ �𝛾𝛾2
𝑗𝑗+1𝜃𝜃 �1 + 1

𝜂𝜂� − 𝛾𝛾1
𝑗𝑗+1(𝜃𝜃 − 1)�∞

𝑗𝑗=0 𝐸𝐸𝑡𝑡�𝜋𝜋�𝑡𝑡+𝑗𝑗+1� + 𝑢𝑢�𝑡𝑡𝑚𝑚 , (16) 

where 𝛾𝛾1 = 𝜆𝜆𝜆𝜆Π�(θ−1) and 𝛾𝛾2 = 𝛾𝛾1Π�(1+𝜃𝜃/𝜂𝜂) and 𝑢𝑢�𝑡𝑡𝑚𝑚 is an ad hoc cost-push shock such that 𝑢𝑢�𝑡𝑡𝑚𝑚 =
𝜌𝜌𝑚𝑚𝑢𝑢�𝑡𝑡−1𝑚𝑚 + 𝜀𝜀𝑡𝑡𝑚𝑚 and 𝜀𝜀𝑡𝑡𝑚𝑚~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑚𝑚2 ).   

IS curve (consumption Euler equation):  

𝜉𝜉𝑡𝑡 = 𝐸𝐸𝑡𝑡�𝜉𝜉𝑡𝑡+1 + 𝑟̂𝑟𝑡𝑡 − 𝜋𝜋�𝑡𝑡+1 + 𝑢𝑢�𝑡𝑡
𝑞𝑞�, (17) 

where 𝜉𝜉𝑡𝑡 = ℎ
(1−ℎ)(1−𝛽𝛽ℎ) 𝑐̂𝑐𝑡𝑡−1 −

1+𝛽𝛽ℎ2

(1−ℎ)(1−𝛽𝛽ℎ) 𝑐̂𝑐𝑡𝑡 + 𝛽𝛽ℎ
(1−ℎ)(1−𝛽𝛽ℎ)𝐸𝐸𝑡𝑡𝑐̂𝑐𝑡𝑡+1.  

Taylor rule:  

𝑟̂𝑟𝑡𝑡 = max {𝑟̂𝑟𝑡𝑡∗,−𝑟̅𝑟},  (18) 

𝑟̂𝑟𝑡𝑡∗ = 𝜌𝜌1𝑟̂𝑟𝑡𝑡−1∗ + 𝜌𝜌2𝑟̂𝑟𝑡𝑡−2∗ + (1 − 𝜌𝜌1 − 𝜌𝜌2)�𝜙𝜙𝜋𝜋𝜋𝜋�𝑡𝑡 + 𝜙𝜙𝑦𝑦𝑦𝑦�𝑡𝑡 + 𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑡𝑡� + 𝜀𝜀𝑡𝑡𝑟𝑟 , 

where 𝑔𝑔𝑔𝑔�𝑡𝑡 = 𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡−1 + 𝜀𝜀𝑡𝑡𝐴𝐴 is the log-linearized growth rate of output.  

Market clearing:  

                                                            
6 We fix the duration 𝑇𝑇𝑞𝑞 so we only have to solve backward once from period 𝑡𝑡 + 𝑇𝑇𝑞𝑞 . By contrast, if the exit were 
stochastic we would have to solve backward from every possibly realization and weigh these paths by their 
probability. 
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𝑦𝑦�𝑡𝑡 = (1 − 𝑠𝑠𝐺𝐺)𝑐̂𝑐𝑡𝑡 − 𝑠𝑠𝐺𝐺𝑔𝑔�𝑡𝑡,  (19) 

where 𝑠𝑠𝐺𝐺 = 𝐺̅𝐺𝑡𝑡/𝑌𝑌�𝑡𝑡. 

2.6. Welfare  

Proposition 1 in Coibion et al. (2012) derives the second order approximation to expected per period utility 
in eq. (1) when steady state inflation is different from zero:  

Θ0 + Θ1var(𝑦𝑦�𝑡𝑡) + Θ2var(𝜋𝜋�𝑡𝑡) + Θ3var(𝑐̂𝑐𝑡𝑡)  (19) 

where parameters Θ𝑘𝑘 , 𝑘𝑘 = {0,1,2,3}  depend on the steady state inflation 𝜋𝜋�. As discussed in Coibion et al. 
(2012), this approximation has an intuitive interpretation and properties. The term Θ0 captures the cost of 
cross-sectional price dispersion arising from positive trend inflation. For quantitatively relevant inflation 
rates,  Θ0 becomes more negative as steady-state inflation increases. Because of the functional assumption 
about the household’s utility, Θ1 < 0 but Θ1 does not depend directly on steady-state inflation. The 
coefficient on the variance of inflation Θ2 < 0, which is the main cost of business cycle in the standard 
New Keynesian model like ours, is decreasing in steady state inflation. Finally, the coefficient on the 
variance of consumption Θ3 < 0 captures the desire of habit-driven consumers to smooth consumption.  

2.7. Calibration  

We calibrate the model as in Coibion et al. (2012), see Table 1. This parametrization uses values standard 
in the literature. Parameter values governing the frequency and duration of ZLB (that is, 𝜌𝜌𝑞𝑞 ,𝜎𝜎𝑞𝑞2 for the 
AR(1) model and Δ,𝑝𝑝12,𝑇𝑇𝑞𝑞 for the regime switching model) are harder to pin down because ZLB 
episodes are rare. Consequently, we will consider combinations of parameter values that yield a spectrum 
of durations and unconditional frequencies of ZLB episodes. As a baseline, we will focus on parameter 
values that generate an unconditional frequency of the ZLB equal to 10%, which corresponds to the U.S. 
post-WWII experience (seven years at the ZLB over seventy years), although we relax this assumption 
later on. In the case of the regime switching model, we have an extra free parameter. As a baseline, we 
choose to set Δ = 0.090 to ensure that the risk premium shock almost always yields a binding ZLB. For 
robustness, we will also consider two additional values of Δ. One is based on setting Δ = 𝑅𝑅� − 1 =
1
𝛽𝛽
Π�(1 + 𝜇𝜇) − 1. That is, the size of the premium is equal to the steady-state level of the nominal rate, 

which in turn depends on the time preference parameter 𝛽𝛽, the steady state level of inflation Π�, and the 
growth rate of output (and technology) in the economy 𝜇𝜇. Given the calibration of other parameters, we 
have Δ ≈ 6% per year in this case. Note that because 𝑅𝑅𝑡𝑡 may be larger than 𝑅𝑅�, the risk premium Δ = 𝑅𝑅� −
1 may be not large enough to push interest rates all the way to zero. Even when they do, the duration of 
the ZLB episode may be very short-lived if some other positive shocks hit the economy. The alternative 
calibration is to set a much higher value of Δ = 0.120. This value will ensure that ZLB episodes are 
almost always long-lived.  
 
3 Results 

For each calibration, we simulate the model for 10,000 periods to calculate welfare and various statistics 
such as the frequency and duration of ZLB episodes. Because Coibion et al. (2012) provide an exhaustive 
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description of mechanisms and results for the conventionally calibrated model, we focus our analysis on 
the effects of alternative calibrations of risk premium shocks that govern the properties of ZLB.  

3.1 Parameters of Risk Premium Shock and the Properties of ZLB Episodes 

We first consider how different parameter values in each representation of the risk premium shock 
process affect the properties of ZLB episodes. Panel A of Figure 1 illustrates how 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2 in the AR(1) 
models affect the unconditional frequency of the economy being at ZLB (that is, the fraction of periods 
when 𝑅𝑅𝑡𝑡 = 1). By raising either 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2, we increase the unconditional frequency of the ZLB. This is 
intuitive: more persistent shocks (higher 𝜌𝜌𝑞𝑞) naturally tend to leave the economy depressed longer and 
more volatile shocks (higher 𝜎𝜎𝑞𝑞2) imply that large enough shocks that push the economy into the ZLB 
happen relatively more frequently. At the same time, there is a clear trade-off between 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2: one can 
sustain a given level of the unconditional frequency of ZLB episodes by reducing 𝜎𝜎𝑞𝑞2 (i.e., making the risk 
premium shocks less volatile) and increasing 𝜌𝜌𝑞𝑞 (i.e., making the shocks more persistent) or vice versa. 
Hence, one can in principle achieve a target frequency of ZLB episodes through different combinations of 
𝜎𝜎𝑞𝑞2 and 𝜌𝜌𝑞𝑞.  

However, changing the parameter values of 𝜎𝜎𝑞𝑞2 and 𝜌𝜌𝑞𝑞 in such a way that the unconditional 
frequency of ZLB episodes is unchanged still changes the nature of ZLB episodes. When 𝜌𝜌𝑞𝑞 is relatively 
high for a given unconditional frequency of ZLB episodes (and 𝜎𝜎𝑞𝑞2 is therefore relatively low), ZLB 
episodes will tend to be rare but longer-lived, as suggested by the historical experience. Panel A of Figure 
2 demonstrates this result: as 𝜌𝜌𝑞𝑞 rises and we move along an isoquant for a given frequency of ZLB 
episodes (so 𝜎𝜎𝑞𝑞2 falls by the necessary amount), the average duration of ZLB episodes also rises. This 
suggests that, within the context of AR(1) risk-premium shocks, we can model the notion of rare but long-
lived ZLB episodes by raising 𝜌𝜌𝑞𝑞 and lowering 𝜎𝜎𝑞𝑞2, thereby changing the distribution of ZLB episodes 
from being frequent and short-lived to being rare and long-lived.  

However, Panel A of Figure 2 also reveals that the average duration of ZLB episodes is fairly 
insensitive to changes in 𝜌𝜌𝑞𝑞 when these are offset by corresponding changes in 𝜎𝜎𝑞𝑞2 that leave the ZLB 
frequency unchanged. It takes very large changes in 𝜌𝜌𝑞𝑞 to raise the duration of ZLB by a quarter. For 
example, if we focus on the unconditional probability of 0.1, one has to increase 𝜌𝜌𝑞𝑞 from 0.97 to 0.985 
(that is, increase the half-life of the risk premium shock from ≈ 23 quarters to ≈ 46 quarters) to raise the 
average ZLB duration by just one quarter.7  

To further explore why the average ZLB duration is relatively unresponsive to changes in 𝜌𝜌𝑞𝑞, we 
examine the distribution of ZLB durations in the AR(1) model for different calibrations of 𝜎𝜎𝑞𝑞2 and 𝜌𝜌𝑞𝑞 in 
Figure 3. In each case, we choose 𝜎𝜎𝑞𝑞2 and 𝜌𝜌𝑞𝑞 such that the unconditional frequency of ZLB episodes is 
0.10 but the average duration of ZLB episodes varies from a little over two quarters to almost seven 
quarters in duration.  A striking feature common to all calibrations is that the distribution of ZLB episodes 
has a very heavy left tail: most ZLB episodes are just one- or two-quarters long while the share of ZLB 
episodes longer than 12 quarters is less than 20%. Similar results have been found in other studies (e.g., 
Cheng et al. 2012) using an AR(1) process for shocks akin to our risk premium shock. This characteristic 
of the ZLB distribution is largely invariant to the average duration. As 𝜌𝜌𝑞𝑞 increases, there are relatively 

                                                            
7 The half life is given by ln(0.5) / ln�𝜌𝜌𝑞𝑞�. 
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more very long-lived episodes. But higher values of  𝜌𝜌𝑞𝑞 also require lower values of 𝜎𝜎𝑞𝑞2, so the share of 1-
quarter ZLB episodes falls only gradually. These two nearly off-setting effects explain the pattern noted 
in Panel A of Figure 2 that even large increases in 𝜌𝜌𝑞𝑞 have very modest effects on average ZLB 
durations.8 In short, it is very difficult to generate an empirically realistic pattern of ZLB episodes using 
AR(1) shocks to the risk premium. 

As a result, we also consider an alternative modeling strategy of regime switching risk-premia, as 
described in section 2.4. There are now three parameters of interest: 𝑝𝑝12 (the probability of a risk-
premium increase when the economy is outside the ZLB), 𝑇𝑇𝑞𝑞 (the duration of the high risk premium 
period), and Δ (the size of the risk premium shock). In Panel B of Figure 1, we illustrate that, for a fixed 
value of  Δ = 9%, by changing 𝑝𝑝12 and 𝑇𝑇𝑞𝑞 we can maintain a given unconditional frequency of ZLB, 
which is qualitatively similar to the AR(1) case. Increasing 𝑝𝑝12 means raising the probability the risk 
premium going up when the economy is outside the ZLB, which is similar to raising  𝜎𝜎𝑞𝑞2 in the AR(1) 
case. Increasing 𝑇𝑇𝑞𝑞 makes the length of the risk premium shock longer, which is akin to increasing 𝜌𝜌𝑞𝑞 in 
the AR(1) case. Hence, raising either parameter serves to increase the frequency of ZLB episodes and 
there is a tradeoff between the two parameters that can be utilized to maintain a fixed unconditional 
frequency of ZLB episodes, as in the AR(1) case. In this respect, the two ways of modeling risk premia 
appear similar. 

However, the regime switching model is much more successful at allowing us to change average 
durations of ZLB episodes. Panel B of Figure 2 plots, again for a fixed value of  Δ = 9%, how the average 
duration of ZLB episodes changes as one increases 𝑇𝑇𝑞𝑞 (the length of risk premium shocks) while 
changing 𝑝𝑝12 by just enough to maintain a fixed unconditional frequency of ZLB episodes (as indicated 
by isoquants in the Figure). In contrast to the very flat slopes obtained with the AR(1) model, the regime 
switching model yields an approximately  linear increase with a slope just above one in the average 
duration of ZLB episodes.  

The reason for this difference lies in the distribution of ZLB episodes generated by the regime 
switching model. Figure 4 plots these distributions for four different values of Δ: 6%, 9%, 12%, and 18%. 
In each case, 𝑇𝑇𝑞𝑞 is held fixed at 12 quarters while  𝑝𝑝12 is chosen to generate an unconditional frequency of 
ZLB episodes of 0.10. When the size of the risk premium shock is low (Δ= 6%), the distribution of ZLB 
episodes is very similar to the AR(1) case. Even though the risk-premium shocks are long-lived, they are 
not large enough to keep the economy in the ZLB for extended periods because other shocks tend to 
quickly push the economy out. As a result, ZLB episodes end up being frequent and short-lived, as in the 
AR(1) case. But as the size of the risk-premium shock goes up, the distribution of ZLB durations shifts 
away from short durations and toward longer-lived episodes. In part, this increase in the duration of ZLB 
episodes is generated by eliminating short breaks in periods with low interest rates. For example, a risk 
premium shock lasting 8 quarters can push the nominal interest rate towards zero but an expansionary 
demand can interrupt the spell of low interest rates. As a result, the simulated path may have three periods 
at the ZLB, then one period outside the ZLB, and then another four periods at the ZLB even though these 
eight periods are effectively the same episode. A sufficiently high Δ ensures that such interruptions are 
minimized which raises the average duration of ZLB episodes. In contrast, the AR(1) model does not 
allow for a straightforward treatment of such breaks. Once Δ  is large enough, we see almost no short-
                                                            
8 In principle, it is possible to push 𝜌𝜌𝑞𝑞 close to one and make ZLB episodes potentially very long. In this case, 
however, we start to face numerical issues.  Once we have very long periods with the Taylor principle being 
violated, the model generates indeterminacy and thus can break down.  
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lived ZLB episodes because the size of the risk premium shock is too large to be offset by other economic 
shocks and the duration of ZLB episodes is generally close to, albeit somewhat less than, the duration of 
the risk premium shock. Hence, this alternative modeling strategy is much more successful at replicating 
the empirical pattern of ZLB episodes being both rare and long-lived. 

It’s also worth noting that as Δ becomes large, the distribution of ZLB episodes becomes 
increasingly tight around 𝑇𝑇𝑞𝑞, a feature which may seem unrealistic given that ZLB episodes have been 
varied in duration across countries and time. This reflects our assumption that 𝑇𝑇𝑞𝑞 is deterministic and 
constant. One could readily assume a stochastic process for 𝑇𝑇𝑞𝑞, which would generate much more 
variation in the distribution of durations of ZLB episodes. Unfortunately, because of the lack of historical 
data on ZLB episodes, it is not clear a priori how one might best characterize this distribution. As a result, 
and because our baseline calibration of Δ = 9% already seems to yield a reasonable distribution of ZLB 
episodes, we prefer to treat 𝑇𝑇𝑞𝑞 as a constant. 

3.2 ZLB Duration, Welfare, and Optimal Inflation 

We now consider how changes in the duration of ZLB episodes affect welfare. To do so, we first illustrate 
how welfare changes with different levels of steady state inflation under different calibrations of the risk 
premium process. Parameters for the risk premium are chosen to achieve different average durations of 
ZLB episodes but a fixed unconditional frequency of the ZLB equal to 0.1 when the steady state level of 
inflation in the model is equal to 3.5% (the historical average for the U.S.). We then simulate the model 
for each set of parameter values under different levels of steady state inflation to quantify changes in 
welfare.  

The results for the AR(1) assumption for risk premia are plotted in Panel A of Figure 5 for 
average ZLB durations ranging from a little over two quarters to almost seven quarters. When the average 
ZLB duration is very low (about two quarters), welfare losses are very high at all levels of inflation. This 
is because achieving short durations of ZLB episodes for this fixed frequency requires very volatile risk 
premium shocks, and this volatility generates a very high level of welfare losses. These losses decline as 
average durations rise to around five quarters because the latter requires much less volatile shocks to the 
risk premium.  

As ZLB durations get much higher, the welfare losses experienced at low levels of steady state 
inflation become extremely high, the welfare curves start to shift down, and the peaks of the curves start 
to move to the right. The first and second observations suggest that the cost of ZLB episodes increases in 
the duration of ZLB episodes. As a result, it is optimal to trade off some steady-state inflation for a 
reduced incidence of the ZLB.  

To confirm this intuition, we plot the cost of the ZLB per quarter for the same combination of 
parameters in Panel A of Figure 6. As the duration of ZLB episodes increases, the welfare cost per period 
of ZLB rises. Furthermore, the increase in the cost is non-linear and rapid. If steady-state inflation is zero, 
then for the combination of 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2 with the implied average duration of ZLB episodes equal to 
approximately 7 quarters, the permanent consumption-equivalent cost of a quarter at ZLB is a whopping 
13%. This cost, however, rapidly declines with the average duration of ZLB episodes. For example, with 
the same unconditional frequency of binding ZLB but an average duration equal 4 quarters, the cost is 
around 1.3%. These costs also decline sharply with higher levels of trend inflation, since the latter reduce 
the duration of ZLB episodes. For example, the same calibration that yields a 13% cost of a quarter at the 
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ZLB when steady-state inflation is zero yields a much smaller ZLB cost per quarter of just over 2% when 
steady-state inflation is 3%.     

With AR(1) shocks, a small increase in the duration of ZLB from around 5.5 quarters to almost 7 
quarters is associated with an increase in the optimal steady-state level of inflation from 1.5% per year to 
around 2.5% per year. From a policy point of view, this is a dramatic difference in the inflation rate 
coming from a relatively small change in the average duration of ZLB episodes. This sensitivity of the 
optimal rate of inflation reflects the fact that that while the average duration of the ZLB may be rising 
only little, engineering this change with AR(1) shocks requires generating some dramatically longer-lived 
ZLB episodes in the tail of the distribution of ZLB durations to make up for the fact that most episodes 
remain very short-lived, as illustrated in Figure 3. Because long-lasting episodes are extremely costly in 
the model, even a very rare occurrence of such episodes translates into a non-trivial unconditional cost of 
the ZLB. These episodes are extremely costly because the Taylor principle is not satisfied for a long time 
and thus a large volatility of output, inflation and consumption is possible. Because the cost of the ZLB is 
convex in ZLB duration, the welfare loss essentially explodes with these very long-lived ZLB episodes. 
As a result, raising the steady state inflation rate becomes worthwhile to offset these otherwise extremely 
rare and costly events.  

The very high sensitivity of the optimal inflation rate to the average duration of the ZLB therefore 
appears to be an artefact of the empirically unrealistic distribution of ZLB episodes generated by AR(1) 
shocks, making it an unreliable guide to policy. We therefore turn to the predictions of the regime 
switching approach, which can generate more empirically realistic distributions of ZLB episodes. First, 
the shapes of the welfare curves in the regime-switching model (Panel B of Figure 5) are qualitatively 
similar to those of the AR(1) model. When average ZLB durations are relatively high, the welfare losses 
of low trend inflation are particularly large. This again reflects the disproportionately high cost of ZLB 
episodes when average durations are higher, as illustrated in Panel B of Figure 6. Second, the optimal 
inflation rate is rising with the average duration of ZLB episodes (once these are sufficiently high) as 
higher levels of inflation work to reduce the incidence of these episodes that induce such high welfare 
costs.  

However, there are also some important differences between the results for the AR(1) and 
regime-switching models. One is that the curvature in Panel B is weaker than that in Panel A, especially 
at higher durations of ZLB episodes. Another is that the peaks of the curves in Panel B are closer to zero 
than in Panel A, such that welfare is generally higher in the regime-switching model than in the AR(1) 
model. The latter reflects the fact that ZLB episodes are less costly in the regime-switching model than in 
the AR(1) model even when we use high values of Δ. Panel B of Figure 6 confirms this conjecture: the 
costs of the ZLB per quarter of hit are more compressed and flatter in the regime switching model than in 
the AR(1) model. For example, at 𝜋𝜋� = 0, an average duration of ZLB episodes of 7 quarters yields a 
welfare cost of 13% in consumption equivalent per quarter of binding ZLB under AR(1) shocks but only 
around 3.5% with regime switching in the risk premium. This much smaller cost suggests that raising 
steady-state inflation levels might be less effective at combatting ZLB in the regime-switching model than 
in the AR(1) model. Indeed, in Panel B of Figure 5, we see that raising the average duration of ZLB 
episodes by a full year raises the optimal inflation rate by less than a percentage point, a significantly 
reduced sensitivity relative to the AR(1) case.  

Since the cost of the ZLB is lower in the regime-switching model than in the AR(1) model, the 
implied optimal steady-state rate of inflation rate is also lower in the regime-switching model. For 
example, when average durations of ZLB episodes are around 5-5.5 quarters, the optimal inflation rate is 
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1.4% with regime switching risk premia but approximately 1.7% with AR(1) shocks. When average 
durations are higher, the differences are even more pronounced: the optimal inflation rate with AR(1) 
shocks is nearly 3% when ZLB episodes have an average duration of 6.8 quarters whereas it is only 1.8% 
with regime switching in risk premia. 

In short, these results highlight the pitfalls associated with relying on AR(1) shocks to study how 
economies hit the ZLB. Because this approach necessarily implies the existence of many very short-lived 
ZLB episodes, generating longer average durations requires hitting the economy with extremely long-
lived and disproportionately costly episodes that drive welfare and policy results. In contrast, the regime 
switching approach can deliver a more realistic distribution of ZLB episodes and this distribution implies 
a smaller sensitivity of the optimal inflation rate to the average duration of ZLB episodes. 

3.3 Optimal Inflation Rates for Different Durations and Frequencies of the Zero Bound 

In Figure 5, we provided some results on optimal inflation rates for a few average durations of ZLB 
episodes and a single unconditional frequency of ZLB episodes. But as discussed earlier, the paucity of 
historical experience with this type of episode should make anyone wary of taking a strong stand on the 
precise values of these parameters. As a result, we now consider a much wider range of both frequencies 
and durations of ZLB episodes and characterize optimal inflation rates in each case.  
 Our results for AR(1) shocks are presented in Panel A of Figure 7 while analogous results for 
regime switching model are in Panel B of Figure 7. In each case, we plot optimal inflation rates (vertical 
axis) associated with different average durations of ZLB episodes (horizontal axis) and unconditional 
frequencies of the ZLB (captured by isoquants), where the latter two are measured at a 3.5% steady state 
inflation rate. The key result in the case of AR(1) shocks is, regardless of the specific frequency of the 
ZLB, the optimal inflation rate rises extremely rapidly with the average duration, as indicated by the slope 
of the isoquants. For example, going from an average duration of the ZLB of five quarters at an 
unconditional frequency of ZLB episodes equal to 7% to an average duration of eight quarters raises the 
optimal inflation rate from about 2% to almost 4.5%. But as discussed earlier, this excessive sensitivity 
reflects the unrealistic distribution of ZLB episodes generated by AR(1) shocks to risk premia. 

A second unappealing feature of the AR(1) approach to modeling shocks is the fact that low 
frequency isoquants are to the left of higher frequency isoclines. This implies that for a given average 
duration of ZLB episodes, a higher frequency of the ZLB is associated with a lower optimal rate of 
inflation. The reason is that we cannot separately calibrate the volatility of the risk premium and the 
frequency and duration of ZLB episodes with only two parameters for the shock process, which is yet 
another undesirable property of AR(1) shocks. 
 Panel B of Figure 7 presents the analogous results from the regime switching approach to 
modeling shocks that push the economy into the zero bound on interest rates. The first difference to note 
is that, as expected, the slopes of the isoquants are now much flatter: optimal inflation rates rise less 
rapidly with average ZLB durations. This reflects the fact that one does not need to introduce extremely 
long-lived ZLB periods to change the average duration as is the case with AR(1) shocks. Nonetheless, 
high inflation rates can be sustained as optimal if one believes that average durations of ZLB episodes are 
sufficiently high or sufficiently frequent.  
 A second difference to note is that the regime switching approach now implies that, holding the 
average duration constant, higher frequencies of the ZLB would be associated with higher optimal rates of 
inflation. This result holds even at lower levels of Δ, as illustrated in Appendix Figure 1. Hence, the 
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alternative modeling strategy of regime switching shocks can fix this additional undesirable property of 
AR(1) shocks when it comes to characterizing the tradeoffs faced by policymakers. 
 More broadly, the results in Panel B of Figure 7 suggest that a wide range of optimal inflation 
rates can potentially be defended, depending on what one perceives to be the correct values for the 
average duration and frequency of ZLB episodes are. For example, relying only on the U.S. post-war 
experience of a single ZLB episode lasting seven years over a seventy year period points to an 
unconditional frequency of 10% and an average duration of twenty-eight quarters. This duration would 
justify an optimal inflation rate of approximately five percent, well above the Federal Reserve’s current 
objective of two percent but in line with recommendations made by economists like Olivier Blanchard 
and Paul Krugman. Of course, other countries such as Canada experienced much shorter ZLB episodes 
during the Great Recession and other advanced economies such as Australia and New Zealand did not 
reach the ZLB at all. This suggests that the U.S. experience is likely not an average experience. 
 To get a better sense of the cross-country experience with the zero bound on interest rates since 
World War II, we summarize the experience of a range of advanced economies since 1950 in Table 2. 
Only Switzerland has experienced one-quarter long ZLB experiences, in 1972Q1 and again in 1972Q3. 
All other durations have been of at least one year. There are several episodes of approximately one year in 
length, although some of these are what one might consider interrupted sequences of longer underlying 
periods of economic weakness, such as the Euro-zone and Sweden from 2009Q3-2010Q3. For countries 
still at the ZLB, we assume that they will remain at the ZLB until 2015Q4 and measure durations and 
frequencies using this final date.  
 Figure 8 plots the distribution of the duration of ZLB episodes from Table 2 as well as a kernel 
estimate of the density. Despite the small number of observations, we can see that this distribution 
resembles, at least loosely, the distribution of ZLB episodes of the regime switching model with Δ = 9%. 
There is a small but non-zero share of very short ZLB episodes, but the vast majority of ZLB episodes are 
longer-lived, with significant dispersion in terms of actual durations of ZLB episodes. We interpret this as 
suggesting that our calibration of the model is indeed well suited to characterize the empirical distribution 
of ZLB episodes and also that the U.S. experience with the ZLB is in the upper ranges, at least in terms of 
durations. The mean duration across all episodes, for comparison, is fourteen quarters, less than half what 
the U.S. will have spent at the ZLB since the start of the Great Recession. If Japan is excluded from the 
sample, or if we include all of the Euro-zone countries as separate observations, the mean durations are 
lower still, at 11.5 and 12.3 quarters respectively. Hence, we interpret a reasonable estimate for average 
durations at the ZLB as somewhere between ten and fifteen quarters.   
  For each country in this sample, we also estimate the frequency of the ZLB as the share of 
quarters spent at the ZLB between 1950Q1 and 2015Q4. These frequencies range from a high of 23% for 
Japan to a low of 0% for Norway, Australia, and New Zealand, the three countries who experienced no 
ZLB periods at all over this time period. The U.S. frequency, at 11%, is again well above the average 
frequency across all countries in the sample, which is given by 7.5%. Excluding Japan lowers this 
frequency further to just under 6%, although it can go as high as 11% if we exclude those countries which 
have never experienced a ZLB episode from our estimate. Again, the U.S. is on the high end of estimates, 
and the cross-country experience suggests a plausible range of values for the frequency of ZLB estimates 
ranging anywhere from 6% to 11%.9  

                                                            
9 Dropping the high-inflation period (e.g. 1968-1982), when reaching the ZLB was less likely given higher nominal 
interest rates, reduces the length of the sample and therefore raises measured frequencies somewhat. Monetary 
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 With these of ranges of values for the frequency and duration of ZLB episodes in mind, we can 
then reexamine optimal inflation rates in Panel B of Figure 7. If we consider the very low end of our 
estimates for both frequency and duration of ZLB episodes (a duration of around 10 quarters and a 
frequency of 6%), then our model points toward an optimal level of the annual inflation rate of 1.5%. The 
high end of our estimates for both frequency and duration of ZLB episodes (a duration of around 15 
quarters and a frequency of 11%) points instead toward an optimal rate of inflation of 3%. Hence, these 
results suggest that reasonable bounds for the optimal rate of inflation are 1.5-3%.  
 The results vary little if we consider alternative calibrations of our regime switching model. In 
Appendix Figure 1, we plot equivalent results as those in Figure 7 using Δ = 6% and Δ = 12%. With the 
former, ZLB episodes are less costly, so optimal inflation rates are somewhat lower. But the equivalent 
range is only slightly changed, to 1.5-2.8%. With a higher value of Δ, ZLB episodes become more costly 
and optimal inflation rates rise. In this case, the range of optimal inflation rates becomes 1.6-4.0%. But as 
illustrated in Figure 4, neither calibration is as successful in replicating the historical distribution of ZLB 
durations as our baseline calibration.     

 
4 Conclusion 

Economies rarely hit the zero bound on interest rates, but when they do, these episodes tend to be long-
lived. This simple empirical pattern is one that is not replicated by traditional models of optimal inflation 
that incorporate the zero bound on interest rates. We show that the most common approach to modeling 
shocks that drive the economy into the zero bound yields a distribution of ZLB episodes that is 
counterfactual: ZLB episodes are frequent and short-lived rather than rare and long-lived. And this 
counterfactual distribution is not innocuous. The fact that AR(1) shocks have to generate a large share of 
very short-lived ZLB episodes implies that longer average durations of ZLB episodes can only occur if 
there are also extremely long-lived episodes that generate disproportionately large welfare costs. The 
latter make policymakers very willing to raise inflation rates to avoid the ZLB, making the optimal 
inflation rate exceedingly sensitive to the average duration rate of ZLB episodes. 
 In contrast, we show that a regime switching approach to modeling the shocks that push the 
economy into the ZLB can generate an empirically realistic distribution of ZLB episodes and that this 
approach does not generate the same sensitivity of the optimal inflation rate to the average duration of 
ZLB episodes. The optimal rate of inflation is still sensitive to the ZLB since the latter is costly, and more 
frequent or long-lived episodes increase the incentives of policymakers to raise the target rate of inflation, 
but this incentive is much reduced relative to what is implied by the standard approach to modeling 
shocks. 
 The specific optimal rate of inflation implied by the model remains very sensitive to one’s beliefs 
about the frequency and duration of ZLB episodes, values for which history provides only limited 
guidance. Using only the U.S. post-WWII experience, for example, our model would imply an optimal 
rate of inflation above 4%. From a broader cross-section of countries’ historical experiences with the 
ZLB, one could just as readily conclude that the optimal rate of inflation is 2%, with a plausible range of 
values running from 1.5% to at least 3%. Given the uncertainty associated with measuring historical 
frequencies and durations associated with ZLB episodes, the range of plausible outcomes for optimal 
inflation rates implies that profound humility is called for by anyone advocating a specific inflation target.    

                                                                                                                                                                                                
policy prior to this period appears to have been made similarly to that of post-Volcker era (Romer and Romer 2002), 
so there is little reason to disregard the earlier time period.      
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TABLE 1: BASELINE PARAMETER VALUES 

 

  
Parameters of Utility Function Steady-State Values 

      η: Frisch Labor Elasticity 1.00       𝜇𝜇: Growth Rate of RGDP/cap 1.5% p.a. 
      β: Discount factor 0.998       𝑐𝑐𝑦𝑦���: Consumption Share of GDP 0.80 
     h: Habit in consumption 0.7       𝑔𝑔𝑦𝑦����: Government Share of GDP 0.20 

Pricing Parameters Shock Persistence 
      θ: Elasticity of substitution  7       ρg: Government Spending Shocks 0.97 
      λ: Degree of Price Stickiness 0.55       ρm: Cost-Push Shocks 0.90 
      ω: Price indexation 0.00   

Taylor Rule Parameters Shock Volatility 
      𝜙𝜙𝜋𝜋: Long run response to inflation 2.50       σg: Government Spending Shocks 0.0052 
      𝜙𝜙𝑔𝑔𝑔𝑔: Long run response to output growth 1.50       σm: Cost-Push Shocks 0.0014 
      𝜙𝜙𝑥𝑥: Long run response to output gap 0.11       σa: Technology Shocks 0.0090 
      ρ1: Interest smoothing  1.05       σr: Monetary Policy Shocks 0.0024 
      ρ2: Interest smoothing -0.13   
    
Notes: The table presents the baseline parameter values assigned to the model in section 2.1 and used for solving for 
the optimal inflation rate in section 2.2.  “p.a.” means per annum. 
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TABLE 2: POST-WAR EXPERIENCES WITH THE ZLB 

 Start of ZLB 
Episode 

End of ZLB 
Episode 

Duration 
(quarters) 

Duration 
(years) 

Unconditional 
Frequency of ZLB 

for Country 
Australia N/A N/A N/A N/A 0.00 
Canada 2009Q2 2010Q2 5 1.25 0.02 
Germany/ECB 2009Q3 2010Q4 6 1.50 0.08 
Germany/ECB 2012Q1 2015Q4* 16 4 0.08 
Japan 1998Q4 2006Q3 32 8 0.23 
Japan 2008Q4 2015Q4* 29 7.25 0.23 
New Zealand N/A N/A N/A N/A 0.00 
Norway N/A N/A N/A N/A 0.00 
Sweden 2009Q3 2010Q3 5 1.25 0.04 
Sweden 2014Q3 2015Q4* 6 1.50 0.04 
Switzerland 1972Q1 1972Q1 1 0.25 0.16 
Switzerland 1972Q3 1972Q3 1 0.25 0.16 
Switzerland 1978Q1 1979Q1 5 1.25 0.16 
Switzerland 2003Q1 2004Q3 7 1.75 0.16 
Switzerland 2008Q4 2015Q4* 29 7.25 0.16 
United States 2008Q4 2015Q4* 29 7.25 0.11 
United Kingdom 2009Q1 2015Q4* 28 7 0.11 
      
Average:   14.2 3.6 0.075 
Average with all Euro countries: 12.3 3.1 0.085 
Average w/o Japan: 11.5 2.9 0.058 
Average w/o Norway, Australia and New Zealand: 14.2 3.6 0.108 
Average without the 1968-1984 period 17.5 4.4 0.098 
 
Notes: The table presents a summary of ZLB episodes for advanced economies since World War II. We use 
Germany as representative of Euro-zone economies. For countries currently at the ZLB and expected to remain so 
through the end of 2015, we list the end of the episode as 2015Q4. Frequencies are measured using data starting in 
1950Q1 going until 2015Q4. “Average with all Euro countries” incorporates eleven additional countries with the 
same ZLB experience as Germany.     
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FIGURE 1. UNCONDITIONAL FREQUENCY OF ZLB EPISODES 

               Panel A: AR(1) model                      Panel B: Regime-switching model 

  

Notes: Each figure plots combinations of parameters that yield specific frequencies of ZLB episodes in simulated data, as indicated by isoquants. 
In the left panel, the two parameters are the persistence of the AR(1) process for the risk premium (x-axis) and its volatility (y-axis). In the right 
panel, the two parameters are the duration of the risk premium shock (x-axis) and the probability that a risk premium shock will occur in periods 
when the economy is not in the ZLB (y-axis). The size of the risk premium shock in Panel B is 9%. See section 3.1 for details. 

 



23 
 

FIGURE 2. DURATION OF ZLB EPISODES 
               Panel A: AR(1) model                      Panel B: Regime-switching model 

 

Notes: Each figure plots how average durations of ZLB episodes change as persistence of risk premium shocks varies holding constant the 
unconditional frequency of ZLB episodes. In panel A, shocks are AR(1), so persistence depends on 𝜌𝜌𝑞𝑞, with 𝜎𝜎𝑞𝑞2 being changed in offsetting way to 
hold frequency of ZLB constant along isoquants. In panel B, shocks follow regime-switching, so 𝑇𝑇𝑞𝑞 determines the duration of the risk premium 
shock while 𝑝𝑝12 is changed in offsetting manner to hold frequency of ZLB constant along isoquants. The size of the risk premium shock in Panel 
B is 9%. See section 3.1 for details. 



24 
 

FIGURE 3. DURATION OF ZLB EPISODES WITH AR(1) SHOCKS 

 
Notes: The figure plots the distribution of durations of ZLB episodes from simulating the model with 
AR(1) shocks for different average durations of ZLB episodes but a constant unconditional frequency of 
ZLB episodes. This is done by changing the persistence and volatility of the shock process. See section 
3.1 for details. 
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FIGURE 4. DURATION OF ZLB EPISODES WITH REGIME-SWITCHING SHOCKS 

 
Notes: The figure plots the distribution of durations of ZLB episodes from simulating the model with a 
regime switching risk premium shock for different average durations of ZLB episodes but a constant 
unconditional frequency of ZLB episodes. The duration of the risk premium shock (𝑇𝑇𝑞𝑞) is held constant 
but the size of the risk premium shock (Δ) and the probability of a high risk premium occurring outside 
the ZLB (𝑝𝑝12) are allowed to vary to achieve the changing average duration of ZLB episodes with fixed 
unconditional frequency. See section 3.1 for details. 
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FIGURE 5. WELFARE LOSSES AT FIXED FREQUENCY OF ZLB 

Panel A: AR(1) model         Panel B: Regime-switching model 

 

Notes: The figures plots welfare losses (y-axis) associated with different levels of annual trend inflation (x-axis) for different calibrations of the 
average duration of ZLB episodes (different colored lines) holding the unconditional frequency of ZLB episodes fixed at 0.10 for a trend inflation 
level of 3.5%. Panel A is done for AR(1) shocks, in which case 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2 are varying to change the ZLB durations. Panel B is done for regime 
switching risk premia, with Δ=9% while 𝑇𝑇𝑞𝑞 and 𝑝𝑝12 are varied to change the average durations of ZLB episodes. See section 3.2 for details. 
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FIGURE 6. COST OF ZLB PER HIT 

Panel A: AR(1) model         Panel B: Regime-switching model 

 

Notes: The figures plots the cost of each ZLB period (y-axis) associated with different levels of annual trend inflation (x-axis) for different 
calibrations of the average duration of ZLB episodes (different colored lines) holding the unconditional frequency of ZLB episodes fixed at 0.10 
for a trend inflation level of 3.5%. Panel A is done for AR(1) shocks, in which case 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2 are varying to change the ZLB durations. Panel B is 
done for regime switching risk premia, with Δ=9% while 𝑇𝑇𝑞𝑞 and 𝑝𝑝12 are varied to change the average durations of ZLB episodes. See section 3.2 
for details. 
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FIGURE 7. OPTIMAL INFLATION FOR DIFFERENT FREQUENCIES AND DURATIONS OF ZLB EPISODES 

Panel A: AR(1) model         Panel B: Regime-switching model 

 

Notes: The figures plots the optimal annualized inflation rate (y-axis) associated with different levels of average ZLB durations (x-axis) and 
unconditional frequencies of the ZLB (indicated by isoquants). Panel A is done for AR(1) shocks, in which case 𝜌𝜌𝑞𝑞 and 𝜎𝜎𝑞𝑞2 are varying to change 
the ZLB durations. Panel B is done for regime switching risk premia, with Δ=9% while 𝑇𝑇𝑞𝑞 and 𝑝𝑝12 are varied to change the average durations of 
ZLB episodes. See section 3.2 for details. 



29 
 

FIGURE 8. DISTRIBUTION OF HISTORICAL ZLB DURATIONS 
 

 
Notes: The figure plots the distribution of durations of historical ZLB episodes from Table 2. Durations 
are in quarters. 
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APPENDIX FIGURE 1: OPTIMAL INFLATION WITH DIFFERENT SIZES OF SHOCKS TO RISK PREMIUM 
 

Panel A: Δ = 6%           Panel B: Δ = 12% 

  
Notes: The figures plot the optimal annualized inflation rate (y-axis) associated with different levels of average ZLB durations (x-axis) and 
unconditional frequencies of the ZLB (indicated by isoquants). Panel A is done for regime switching risk premia, with Δ = 6% while 𝑇𝑇𝑞𝑞 and 𝑝𝑝12 
are varied to change the average durations of ZLB episodes. Panel B is done with Δ = 12%. See section 3.2 for details. 
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APPENDIX 1: MODEL  
 

In this appendix, we present a more detailed version of the model from section 2 in the paper. 
 

Household 

The representative consumer maximizes the present discounted value of the utility stream from 

consumption and leisure  

max𝐸𝐸𝑡𝑡 ∑ 𝛽𝛽𝑗𝑗 �log(𝐶𝐶𝑡𝑡+𝑗𝑗 − ℎ𝐺𝐺𝐴𝐴𝑡𝑡+𝑗𝑗𝐶𝐶𝑡𝑡+𝑗𝑗−1) − 𝜂𝜂
𝜂𝜂+1 ∫ 𝑁𝑁𝑡𝑡+𝑗𝑗(𝑖𝑖)1+1/𝜂𝜂𝑑𝑑𝑑𝑑1

0 �∞
𝑗𝑗=0   (1) 

where C is consumption of the final good, N(i) is labor supplied to individual industry i, 𝐺𝐺𝐺𝐺 is the gross 

growth rate of technology, η is the Frisch labor supply elasticity, ℎ the internal habit parameter and β is 

the discount factor.10  The budget constraint each period t is given by  

𝜉𝜉𝑡𝑡:𝐶𝐶𝑡𝑡 + 𝑆𝑆𝑡𝑡
𝑃𝑃𝑡𝑡

+ 𝑇𝑇𝑡𝑡 ≤ ∫ �𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

� 𝑑𝑑𝑑𝑑1
0 + 𝑆𝑆𝑡𝑡−1𝑞𝑞𝑡𝑡−1𝑅𝑅𝑡𝑡−1

𝑃𝑃𝑡𝑡
+ Γ𝑡𝑡   (2) 

where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 

the price of the final good, W(i) is the nominal wage earned from labor in industry i, T is real lump sum 

taxation (or transfers), Γ are real profits from ownership of firms, 𝑞𝑞 is a risk premium shock, and ξ is the 

shadow value of wealth.11   

 

The risk premium shock 𝑞𝑞 is defined as follows: 

𝑞𝑞𝑡𝑡 = exp�𝑢𝑢𝑡𝑡
𝑞𝑞� 

𝑢𝑢𝑡𝑡
𝑞𝑞 =  𝜌𝜌𝑞𝑞𝑢𝑢𝑡𝑡−1

𝑞𝑞 +  𝜀𝜀𝑡𝑡−1
𝑞𝑞  

with 𝜀𝜀𝑡𝑡−1
𝑞𝑞  iid normally distributed. 

 

The first order conditions from this utility-maximization problem are then: 

(𝐶𝐶𝑡𝑡 − ℎ𝐺𝐺𝐴𝐴𝑡𝑡𝐶𝐶𝑡𝑡−1)−1 − 𝛽𝛽ℎ𝐸𝐸𝑡𝑡𝐺𝐺𝐴𝐴𝑡𝑡+1(𝐶𝐶𝑡𝑡+1 − ℎ𝐺𝐺𝐴𝐴𝑡𝑡+1𝐶𝐶𝑡𝑡)−1 = 𝜉𝜉𝑡𝑡,  (3) 

𝑁𝑁𝑡𝑡(𝑖𝑖)1/𝜂𝜂 = 𝜉𝜉𝑡𝑡𝑊𝑊𝑡𝑡(𝑖𝑖)/𝑃𝑃𝑡𝑡,  (4) 

𝜉𝜉𝑡𝑡/𝑃𝑃𝑡𝑡 = 𝛽𝛽𝐸𝐸𝑡𝑡[𝜉𝜉𝑡𝑡+1𝑞𝑞𝑡𝑡𝑅𝑅𝑡𝑡/𝑃𝑃𝑡𝑡+1]. (5) 

 
                                                            
10 We use internal habits rather than external habits because they more closely match the (lack of) persistence in 
consumption growth in the data. The gross growth rate of technology enters the habit term to simplify derivations. 
11 As discussed in Smets and Wouters (2007), a positive shock to q, which is the wedge between the interest rate 
controlled by the central bank and the return on assets held by the households, increases the required return on assets 
and reduces current consumption. The shock q has similar effects as net-worth shocks in models with financial 
accelerators. Such financial shocks have arguably played a major role in causing the zero lower bound to bind in 
practice.  Amano and Shukayev (2010) also document that shocks like q are essential for generating a binding zero 
lower bound in the New Keynesian model.  
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Final Goods 

Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 

𝑌𝑌𝑡𝑡 = �∫ 𝑌𝑌𝑡𝑡(𝑖𝑖)(𝜃𝜃−1)/𝜃𝜃𝑑𝑑𝑑𝑑1
0 �

𝜃𝜃/(𝜃𝜃−1)
   (6) 

where Y is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 

across intermediate goods, yielding the following demand curve for goods of intermediate sector i 

𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝑌𝑌𝑡𝑡(𝑃𝑃𝑡𝑡(𝑖𝑖)/𝑃𝑃𝑡𝑡)−𝜃𝜃 (7) 

and the following expression for the aggregate price level 

𝑃𝑃𝑡𝑡 = �∫ 𝑃𝑃𝑡𝑡(𝑖𝑖)(1−𝜃𝜃)𝑑𝑑𝑑𝑑1
0 �

1/(1−𝜃𝜃)
.  (8) 

 

Government 

We allow for government consumption of final goods (𝐺𝐺). Government budget constraint is defined as 

𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 𝑃𝑃𝑡𝑡⁄ = 𝐺𝐺𝑡𝑡 + 𝑆𝑆𝑡𝑡−1𝑞𝑞𝑡𝑡−1𝑅𝑅𝑡𝑡−1
𝑃𝑃𝑡𝑡

+ 𝜈𝜈 ∫ �𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

� 𝑑𝑑𝑑𝑑1
0        (9) 

𝐺𝐺𝑡𝑡 =  exp(𝑢𝑢𝑡𝑡𝐺𝐺) 𝐺̅𝐺𝑡𝑡          (10) 

𝑢𝑢𝑡𝑡𝐺𝐺 = 𝜌𝜌𝐺𝐺𝑢𝑢𝑡𝑡−1𝐺𝐺 + 𝜀𝜀𝑡𝑡𝐺𝐺  

with 𝜀𝜀𝑡𝑡−1𝐺𝐺  iid normally distributed 

𝐺̅𝐺𝑡𝑡 is the path of government spending such that the share of government spending in the economy is fixed 

when prices are flexible 

Substituting household’s budget constraint (2) into the government budget constraint (9) 

𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡 =  Γ𝑡𝑡 + (1 − 𝜈𝜈)∫ (𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)/𝑃𝑃𝑡𝑡)𝑑𝑑𝑑𝑑
1
0        (11) 

 

Market Clearing 

Firms’ aggregate real profits are 

Γ𝑡𝑡 =  ∫ Γ𝑡𝑡(𝑖𝑖)
1
0  𝑑𝑑𝑑𝑑 = 1

𝑃𝑃𝑡𝑡
∫ 𝑃𝑃𝑡𝑡(𝑖𝑖)𝑌𝑌𝑡𝑡(𝑖𝑖)
1
0 − (1 − 𝜈𝜈)𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑡𝑡 − (1 − 𝜈𝜈)∫ (𝑁𝑁𝑡𝑡(𝑖𝑖)𝑊𝑊𝑡𝑡(𝑖𝑖)/𝑃𝑃𝑡𝑡)𝑑𝑑𝑑𝑑

1
0    (12) 

Plug (12) in (11), this gives us the goods market clearing condition for the economy 

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡.  (13) 

 

Intermediate Goods 

The production of each intermediate good is done by a monopolist facing a production function linear in 

labor  

𝑌𝑌𝑡𝑡(𝑖𝑖) = At𝑁𝑁𝑡𝑡(𝑖𝑖) (14) 
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At = exp (𝑢𝑢𝑡𝑡𝐴𝐴)  

𝑢𝑢𝑡𝑡𝐴𝐴 =  𝜇𝜇 + 𝑢𝑢𝑡𝑡−1𝐴𝐴 +  𝜀𝜀𝑡𝑡−1𝐴𝐴  

with 𝜀𝜀𝑡𝑡−1𝐴𝐴  iid normally distributed, and 𝐴𝐴 denotes the level of technology, common across firms.  Each 

intermediate good producer has sticky prices, modeled as in Calvo (1983) where 1 − 𝜆𝜆 is the probability 

that each firm will be able to reoptimize its price each period.  We allow for indexation of prices to 

steady-state inflation by firms who do not reoptimize their prices each period, with 𝜔𝜔𝑠𝑠 and 𝜔𝜔𝑑𝑑 

respectively representing the degree of static and dynamic indexation (0 for no indexation to 1 for full 

indexation).  Denoting the optimal reset price of firm i by B(i), re-optimizing firms solve the following 

profit-maximization problem  

max
𝐵𝐵𝑡𝑡(𝑖𝑖)

𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗 �𝑌𝑌𝑡𝑡+𝑗𝑗(𝑖𝑖)𝐵𝐵𝑡𝑡(𝑖𝑖)Π�𝑗𝑗𝜔𝜔𝑠𝑠�∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘
𝑗𝑗
𝑘𝑘=1 �

𝜔𝜔𝑑𝑑 − (1 − 𝜈𝜈)𝑊𝑊𝑡𝑡+𝑗𝑗(𝑖𝑖)𝑁𝑁𝑡𝑡+𝑗𝑗(𝑖𝑖)�∞
𝑗𝑗=0      (15) 

 

where 𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗 =  𝛽𝛽𝑗𝑗𝐸𝐸𝑡𝑡 �
𝜉𝜉𝑡𝑡+𝑗𝑗
𝜉𝜉𝑡𝑡

𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑗𝑗

� is the stochastic discount factor, Π� is the gross steady-state level of 

inflation and Π is gross level of inflation.   The optimal relative reset price is then given by 

𝐵𝐵𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

=
𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗𝑌𝑌𝑡𝑡+𝑗𝑗�

𝑃𝑃𝑡𝑡+𝑗𝑗
𝑃𝑃𝑡𝑡

�
𝜃𝜃+1

Π�−𝑗𝑗𝜔𝜔𝑠𝑠𝜃𝜃�∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘
𝑗𝑗
𝑘𝑘=1 �

−𝜔𝜔𝑑𝑑𝜃𝜃� 𝜃𝜃
𝜃𝜃−1�(𝑀𝑀𝑀𝑀𝑡𝑡+𝑗𝑗(𝑖𝑖)/𝑃𝑃𝑡𝑡+𝑗𝑗)∞

𝑗𝑗=0

𝐸𝐸𝑡𝑡 ∑ 𝜆𝜆𝑗𝑗𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗𝑌𝑌𝑡𝑡+𝑗𝑗(𝑃𝑃𝑡𝑡+𝑗𝑗/𝑃𝑃𝑡𝑡)𝜃𝜃Π�−𝑗𝑗𝜔𝜔𝑠𝑠(𝜃𝜃−1)∞
𝑗𝑗=0 �∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘

𝑗𝑗
𝑘𝑘=1 �

−𝜔𝜔𝑑𝑑(𝜃𝜃−1)  (16) 

Labor employed by firms each period is obtained through the minimization of production costs 

min
𝑁𝑁𝑡𝑡(𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡�𝑌𝑌𝑡𝑡(𝑖𝑖)� = (1 − 𝜈𝜈)𝑊𝑊𝑡𝑡(𝑖𝑖)𝑁𝑁𝑡𝑡(𝑖𝑖)   𝑠𝑠. 𝑡𝑡.𝑌𝑌𝑡𝑡(𝑖𝑖) = At𝑁𝑁𝑡𝑡(𝑖𝑖)    (17) 

The FOC of problem (17) brings 

𝑀𝑀𝐶𝐶𝑡𝑡(𝑖𝑖) =  (1−𝜈𝜈)𝑊𝑊𝑡𝑡(𝑖𝑖)
At

          (18) 

Firm-specific marginal costs can be related to aggregate variables using 

𝑀𝑀𝑀𝑀𝑡𝑡+𝑗𝑗(𝑖𝑖)
𝑃𝑃𝑡𝑡+𝑗𝑗

= (1 − 𝜈𝜈) �𝜉𝜉𝑡𝑡+𝑗𝑗
−1

𝐴𝐴𝑡𝑡+𝑗𝑗
� �𝑌𝑌𝑡𝑡+𝑗𝑗𝐴𝐴𝑡𝑡+𝑗𝑗

�
1/𝜂𝜂

�𝐵𝐵𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡
�
−𝜃𝜃/𝜂𝜂

� 𝑃𝑃𝑡𝑡+𝑗𝑗

Π�𝑗𝑗𝜔𝜔𝑠𝑠�∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘
𝑗𝑗
𝑘𝑘=1 �

𝜔𝜔𝑑𝑑
𝑃𝑃𝑡𝑡
�
𝜃𝜃/𝜂𝜂

 (19) 

Note that in equilibrium all firms reoptimize to the same price, so 𝐵𝐵𝑡𝑡 𝑃𝑃𝑡𝑡⁄ = 𝐵𝐵𝑡𝑡(𝑖𝑖) 𝑃𝑃𝑡𝑡⁄ .  

Plugging (20) and the expression for 𝑄𝑄𝑡𝑡,𝑡𝑡+𝑗𝑗 in (16) and rearranging 

�𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡
�
�1+𝜃𝜃𝜂𝜂� =

𝐸𝐸𝑡𝑡 ∑ �(1−𝜈𝜈)𝜃𝜃
𝜃𝜃−1 �� 𝛽𝛽𝛽𝛽

Π�
𝜔𝜔𝑠𝑠𝜃𝜃�1+

1
𝜂𝜂�
�

𝑗𝑗

�∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘
𝑗𝑗
𝑘𝑘=1 �

−𝜔𝜔𝑑𝑑𝜃𝜃�1+
1
𝜂𝜂��

𝑌𝑌𝑡𝑡+𝑗𝑗
𝐴𝐴𝑡𝑡+𝑗𝑗

�
�1+1𝜂𝜂�

�
𝑃𝑃𝑡𝑡+𝑗𝑗
𝑃𝑃𝑡𝑡

�
𝜃𝜃�1+1𝜂𝜂�∞

𝑗𝑗=0

𝐸𝐸𝑡𝑡 ∑ � 𝛽𝛽𝛽𝛽
Π�𝜔𝜔𝑠𝑠(𝜃𝜃−1)�

𝑗𝑗
�∏ Π𝑡𝑡+𝑗𝑗−𝑘𝑘

𝑗𝑗
𝑘𝑘=1 �

−𝜔𝜔𝑑𝑑(𝜃𝜃−1)
�𝐴𝐴𝑡𝑡+𝑗𝑗𝜉𝜉𝑡𝑡+𝑗𝑗��

𝑌𝑌𝑡𝑡+𝑗𝑗
𝐴𝐴𝑡𝑡+𝑗𝑗

��
𝑃𝑃𝑡𝑡+𝑗𝑗
𝑃𝑃𝑡𝑡

�
(𝜃𝜃−1)

∞
𝑗𝑗=0

  (20) 

 

This equation can be log-linearized around the stochastic trend in technology as 
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�1 + 𝜃𝜃
𝜂𝜂� 𝑏𝑏�𝑡𝑡 =  ∑ [𝛾𝛾2

𝑗𝑗(1 − 𝛾𝛾2) − 𝛾𝛾1
𝑗𝑗(1 − 𝛾𝛾1)]∞

𝑗𝑗=0 �𝑦𝑦�𝑡𝑡+𝑗𝑗 + 𝜉𝜉𝑡𝑡+𝑗𝑗� + (1 − 𝛾𝛾2)∑ 𝛾𝛾2
𝑗𝑗 �1𝜂𝜂𝑦𝑦�𝑡𝑡+𝑗𝑗 − 𝜉𝜉𝑡𝑡+𝑗𝑗�∞

𝑗𝑗=0 +

∑ �𝛾𝛾2
𝑗𝑗+1𝜃𝜃 �1 + 1

𝜂𝜂� − 𝛾𝛾1
𝑗𝑗+1(𝜃𝜃 − 1)�∞

𝑗𝑗=0 𝐸𝐸𝑡𝑡�𝜋𝜋�𝑡𝑡+𝑗𝑗+1� − 𝜔𝜔𝑑𝑑 ∑ �𝛾𝛾2
𝑗𝑗+1𝜃𝜃 �1 + 1

𝜂𝜂� − 𝛾𝛾1
𝑗𝑗+1(𝜃𝜃 − 1)� 𝜋𝜋�𝑡𝑡+𝑗𝑗 + 𝑢𝑢�𝑡𝑡𝑚𝑚∞

𝑗𝑗=0  

            (21) 

Define 𝐹𝐹𝑡𝑡 as the numerator of (20). It can be recursively expressed as 

𝐹𝐹𝑡𝑡 =  ��(1−𝜈𝜈)𝜃𝜃
𝜃𝜃−1

� �𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
�
�1+1𝜂𝜂� + � 𝛽𝛽𝛽𝛽

Π�
𝜔𝜔𝑠𝑠𝜃𝜃�1+

1
𝜂𝜂�Π𝑡𝑡

𝜔𝜔𝑑𝑑𝜃𝜃�1+
1
𝜂𝜂�
�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

𝜃𝜃(1+1 𝜂𝜂⁄ )𝐹𝐹𝑡𝑡+1�� exp(𝑢𝑢𝑡𝑡𝑚𝑚)  (22) 

𝑢𝑢𝑡𝑡𝑚𝑚 =  𝜌𝜌𝑚𝑚𝑢𝑢𝑡𝑡−1𝑚𝑚 +  𝜀𝜀𝑡𝑡−1𝑚𝑚  

with 𝜀𝜀𝑡𝑡−1𝑚𝑚  iid normally distributed 

where 𝑢𝑢𝑡𝑡𝑚𝑚 is an ad-hoc cost push shock. 

Define 𝐻𝐻𝑡𝑡 as the denominator of (20). It can be recursively expressed as 

𝐻𝐻𝑡𝑡 =  (𝐴𝐴𝑡𝑡𝜉𝜉𝑡𝑡) �
𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
� + � 𝛽𝛽𝛽𝛽

Π�𝜔𝜔𝑠𝑠(𝜃𝜃−1)Π𝑡𝑡
𝜔𝜔𝑑𝑑(𝜃𝜃−1)�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

(𝜃𝜃−1)𝐻𝐻𝑡𝑡+1�      (23) 

Therefore, (20) can be expressed as 

𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡

=  �𝐹𝐹𝑡𝑡
𝐻𝐻𝑡𝑡
�
� 1
1+𝜃𝜃 𝜂𝜂⁄ �

          (24) 

Given these price-setting assumptions, the dynamics of the price level are governed by 

𝑃𝑃𝑡𝑡1−𝜃𝜃 = (1 − 𝜆𝜆)𝐵𝐵𝑡𝑡1−𝜃𝜃 + 𝜆𝜆𝑃𝑃𝑡𝑡−11−𝜃𝜃Π�𝜔𝜔𝑠𝑠(1−𝜃𝜃)Π 𝑡𝑡−1
𝜔𝜔𝑑𝑑(1−𝜃𝜃). (25) 

Dividing by 𝑃𝑃𝑡𝑡1−𝜃𝜃  

1 = (1 − 𝜆𝜆) �𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡
�
1−𝜃𝜃

 + 𝜆𝜆 �Π
�𝜔𝜔𝑠𝑠Π 𝑡𝑡−1

𝜔𝜔𝑑𝑑

Πt
�
1−𝜃𝜃

 (26) 

Plugging (24) on (26) and rearranging 

 

𝐹𝐹𝑡𝑡
𝐻𝐻𝑡𝑡

= �
1−𝜆𝜆�

Π�𝜔𝜔𝑠𝑠Π 𝑡𝑡−1
𝜔𝜔𝑑𝑑

Πt
�
1−𝜃𝜃

1−𝜆𝜆
�

1+𝜃𝜃 𝜂𝜂⁄
1−𝜃𝜃

         (27) 

 

We define the aggregate labor input as 

𝑁𝑁𝑡𝑡 = �∫ 𝑁𝑁𝑡𝑡(𝑖𝑖)(𝜃𝜃−1)/𝜃𝜃𝑑𝑑𝑑𝑑1
0 �

𝜃𝜃/(𝜃𝜃−1)
 (28) 

Plugging (15) on (30) 

𝑁𝑁𝑡𝑡 = �∫ �𝑌𝑌𝑡𝑡(𝑖𝑖)
𝐴𝐴𝑡𝑡
�

(𝜃𝜃−1)/𝜃𝜃
𝑑𝑑𝑑𝑑1

0 �
𝜃𝜃/(𝜃𝜃−1)

 (29) 

Plugging (7) on (31) 
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𝑁𝑁𝑡𝑡 =  𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
�∫ �𝑃𝑃𝑡𝑡(𝑖𝑖)

𝑃𝑃𝑡𝑡
�
1−𝜃𝜃

𝑑𝑑𝑑𝑑1
0 �

−� 𝜃𝜃
1−𝜃𝜃�

= 𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡

  (30) 

 

Monetary Policy 

Finally, the policy rule followed by the monetary authority is 

𝑅𝑅𝑡𝑡 = max {1,𝑅𝑅𝑡𝑡∗} (31) 

𝑅𝑅𝑡𝑡∗ = 𝑅𝑅� �𝑅𝑅𝑡𝑡−1
∗

𝑅𝑅�
�
𝜌𝜌1
�𝑅𝑅𝑡𝑡−2

∗

𝑅𝑅�
�
𝜌𝜌2

 ��Πt
Π�
�
𝜙𝜙𝜋𝜋
�𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡�
�
𝜙𝜙𝑌𝑌
�𝐺𝐺𝑌𝑌𝑡𝑡
𝐺𝐺𝐺𝐺����
�
𝜙𝜙𝐺𝐺𝐺𝐺

�𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡���
�
𝜙𝜙𝑃𝑃
�

(1−𝜌𝜌1−𝜌𝜌2) 
exp (𝜀𝜀𝑡𝑡𝑅𝑅) (32) 

where 𝑅𝑅 is realized gross interest rate, 𝑅𝑅∗ is desired gross interest rate, 𝐺𝐺𝐺𝐺 is the gross growth rate of 

output and 𝜀𝜀𝑅𝑅 is an i.i.d policy shock. Note that equation (31) is responsible for introducing the zero 

lower bound to the model. 

 

 

 

 

Equilibrium conditions 

𝐹𝐹𝑡𝑡 =  

⎝

⎜
⎛
�

(1 − 𝜈𝜈)𝜃𝜃
𝜃𝜃 − 1

� �
𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
�
�1+1𝜂𝜂�

+ �
𝛽𝛽𝛽𝛽

Π�𝜔𝜔𝑠𝑠𝜃𝜃�1+
1
𝜂𝜂�Π𝑡𝑡

𝜔𝜔𝑑𝑑𝜃𝜃�1+
1
𝜂𝜂�
�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

𝜃𝜃(1+1 𝜂𝜂⁄ )𝐹𝐹𝑡𝑡+1�

⎠

⎟
⎞

exp(𝑢𝑢𝑡𝑡𝑚𝑚) 

𝐻𝐻𝑡𝑡 =  (𝐴𝐴𝑡𝑡𝜉𝜉𝑡𝑡) �
𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
� + �

𝛽𝛽𝛽𝛽

Π�𝜔𝜔𝑠𝑠(𝜃𝜃−1)Π𝑡𝑡
𝜔𝜔𝑑𝑑(𝜃𝜃−1)�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

(𝜃𝜃−1)𝐻𝐻𝑡𝑡+1� 

𝐹𝐹𝑡𝑡
𝐻𝐻𝑡𝑡

=

⎝

⎜
⎛1 − 𝜆𝜆 �

Π�𝜔𝜔𝑠𝑠Π 𝑡𝑡−1
𝜔𝜔𝑑𝑑

Πt
�
1−𝜃𝜃

1 − 𝜆𝜆

⎠

⎟
⎞

1+𝜃𝜃 𝜂𝜂⁄
1−𝜃𝜃

 

𝜉𝜉𝑡𝑡 = 𝛽𝛽𝐸𝐸𝑡𝑡 �
𝜉𝜉𝑡𝑡+1𝑞𝑞𝑡𝑡𝑅𝑅𝑡𝑡
Πt+1

� 

𝜉𝜉𝑡𝑡 = (𝐶𝐶𝑡𝑡 − ℎ𝐺𝐺𝐴𝐴𝑡𝑡𝐶𝐶𝑡𝑡−1)−1 − 𝛽𝛽ℎ𝐸𝐸𝑡𝑡𝐺𝐺𝐴𝐴𝑡𝑡+1(𝐶𝐶𝑡𝑡+1 − ℎ𝐺𝐺𝐴𝐴𝑡𝑡+1𝐶𝐶𝑡𝑡)−1 

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + exp(𝑢𝑢𝑡𝑡𝐺𝐺) 𝐺̅𝐺𝑡𝑡  

𝑅𝑅𝑡𝑡 = max {1,𝑅𝑅𝑡𝑡∗}  

𝑅𝑅𝑡𝑡∗ = 𝑅𝑅� �
𝑅𝑅𝑡𝑡−1∗

𝑅𝑅�
�
𝜌𝜌1
�
𝑅𝑅𝑡𝑡−2∗

𝑅𝑅�
�
𝜌𝜌2

 ��
Πt
Π�
�
𝜙𝜙𝜋𝜋
�
𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡�
�
𝜙𝜙𝑌𝑌
�
𝐺𝐺𝑌𝑌𝑡𝑡
𝐺𝐺𝐺𝐺����

�
𝜙𝜙𝐺𝐺𝐺𝐺

�
𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡�
�
𝜙𝜙𝑃𝑃
�

(1−𝜌𝜌1−𝜌𝜌2) 

exp (𝜀𝜀𝑡𝑡𝑅𝑅) 
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𝐺𝐺𝑌𝑌𝑡𝑡 =
𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡−1 

 

𝐺𝐺𝐶𝐶𝑡𝑡 =
𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡−1 

 

𝑃𝑃�𝑡𝑡 = Π�𝑡𝑡 

At = exp (𝑢𝑢𝑡𝑡𝐴𝐴) 

qt = exp (𝑢𝑢𝑡𝑡
𝑞𝑞)  

𝑢𝑢𝑡𝑡𝐴𝐴 =  𝜇𝜇 + 𝑢𝑢𝑡𝑡−1𝐴𝐴 +  𝜀𝜀𝑡𝑡𝐴𝐴 

𝑢𝑢𝑡𝑡
𝑞𝑞 =  𝜌𝜌𝑞𝑞𝑢𝑢𝑡𝑡−1

𝑞𝑞 +  𝜀𝜀𝑡𝑡
𝑞𝑞 

𝑢𝑢𝑡𝑡𝐺𝐺 = 𝜌𝜌𝐺𝐺𝑢𝑢𝑡𝑡−1𝐺𝐺 + 𝜀𝜀𝑡𝑡𝐺𝐺  

𝑢𝑢𝑡𝑡𝑚𝑚 = 𝜌𝜌𝑚𝑚𝑢𝑢𝑡𝑡−1𝑚𝑚 + 𝜀𝜀𝑡𝑡𝑚𝑚 

 

 

Equilibrium conditions, stationary variables 

𝐹𝐹𝑡𝑡 =  

⎝

⎜
⎛
�

(1 − 𝜈𝜈)𝜃𝜃
𝜃𝜃 − 1

�𝑌𝑌�𝑡𝑡
�1+1𝜂𝜂� + �

𝛽𝛽𝛽𝛽

Π�𝜔𝜔𝑠𝑠𝜃𝜃�1+
1
𝜂𝜂�Π𝑡𝑡

𝜔𝜔𝑑𝑑𝜃𝜃�1+
1
𝜂𝜂�
�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

𝜃𝜃(1+1 𝜂𝜂⁄ )𝐹𝐹𝑡𝑡+1�

⎠

⎟
⎞

exp(𝑢𝑢𝑡𝑡𝑚𝑚) 

𝐻𝐻𝑡𝑡 =  𝜉𝜉𝑡𝑡𝑌𝑌�𝑡𝑡 + �
𝛽𝛽𝛽𝛽

Π�𝜔𝜔𝑠𝑠(𝜃𝜃−1)Π𝑡𝑡
𝜔𝜔𝑑𝑑(𝜃𝜃−1)�𝐸𝐸𝑡𝑡 �Π 𝑡𝑡+1

(𝜃𝜃−1)𝐻𝐻𝑡𝑡+1� 

𝐹𝐹𝑡𝑡
𝐻𝐻𝑡𝑡

=

⎝

⎜
⎛1 − 𝜆𝜆 �

Π�𝜔𝜔𝑠𝑠Π 𝑡𝑡−1
𝜔𝜔𝑑𝑑

Πt
�
1−𝜃𝜃

1 − 𝜆𝜆

⎠

⎟
⎞

1+𝜃𝜃 𝜂𝜂⁄
1−𝜃𝜃

 

𝜉𝜉𝑡𝑡 = �𝐶̃𝐶𝑡𝑡 − ℎ𝐶̃𝐶𝑡𝑡−1�
−1 − 𝛽𝛽ℎ𝐸𝐸𝑡𝑡�𝐶̃𝐶𝑡𝑡+1 − ℎ𝐶̃𝐶𝑡𝑡�

−1
 

𝜉𝜉𝑡𝑡 = 𝛽𝛽𝐸𝐸𝑡𝑡 �
𝜉𝜉�𝑡𝑡+1𝑞𝑞𝑡𝑡𝑅𝑅𝑡𝑡
𝐺𝐺𝐴𝐴𝑡𝑡+1Πt+1

�  

𝑌𝑌�𝑡𝑡 = 𝐶̃𝐶𝑡𝑡 + exp(𝑢𝑢𝑡𝑡𝐺𝐺)𝐺𝐺�̅   

𝐺𝐺𝐴𝐴𝑡𝑡 = exp(𝜇𝜇 + 𝜀𝜀𝑡𝑡𝐴𝐴) 

𝐺𝐺𝑌𝑌𝑡𝑡 =  
𝑌𝑌�𝑡𝑡
𝑌𝑌�𝑡𝑡−1

𝐺𝐺𝐴𝐴𝑡𝑡 

𝐺𝐺𝐶𝐶𝑡𝑡 =  
𝐶̃𝐶𝑡𝑡
𝐶̃𝐶𝑡𝑡−1

𝐺𝐺𝐴𝐴𝑡𝑡 

𝑃𝑃�𝑡𝑡 = 𝑃𝑃�𝑡𝑡−1
Π𝑡𝑡
Π�
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𝑅𝑅𝑡𝑡∗ = 𝑅𝑅� �
𝑅𝑅𝑡𝑡−1∗

𝑅𝑅�
�
𝜌𝜌1
�
𝑅𝑅𝑡𝑡−2∗

𝑅𝑅�
�
𝜌𝜌2

 ��
Πt
Π�
�
𝜙𝜙𝜋𝜋
�
𝑌𝑌�𝑡𝑡
𝑌𝑌��
�
𝜙𝜙𝑌𝑌

�
𝐺𝐺𝑌𝑌𝑡𝑡
𝐺𝐺𝐺𝐺����

�
𝜙𝜙𝐺𝐺𝐺𝐺

𝑃𝑃�𝑡𝑡
𝜙𝜙𝑃𝑃�

(1−𝜌𝜌1−𝜌𝜌2) 

exp (𝜀𝜀𝑡𝑡𝑅𝑅) 

𝑅𝑅𝑡𝑡 = max {1,𝑅𝑅𝑡𝑡∗} 

qt = exp (𝑢𝑢𝑡𝑡
𝑞𝑞)  

𝑢𝑢𝑡𝑡
𝑞𝑞 =  𝜌𝜌𝑞𝑞𝑢𝑢𝑡𝑡−1

𝑞𝑞 +  𝜀𝜀𝑡𝑡
𝑞𝑞 

𝑢𝑢𝑡𝑡𝐺𝐺 = 𝜌𝜌𝐺𝐺𝑢𝑢𝑡𝑡−1𝐺𝐺 + 𝜀𝜀𝑡𝑡𝐺𝐺  

𝑢𝑢𝑡𝑡𝑚𝑚 = 𝜌𝜌𝑚𝑚𝑢𝑢𝑡𝑡−1𝑚𝑚 + 𝜀𝜀𝑡𝑡𝑚𝑚 

 

where 𝜉𝜉𝑡𝑡 = 𝐴𝐴𝑡𝑡𝜉𝜉𝑡𝑡, 𝐶̃𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡 𝐴𝐴𝑡𝑡⁄  and 𝑌𝑌�𝑡𝑡 =  𝑌𝑌𝑡𝑡 𝐴𝐴𝑡𝑡⁄  

 

 

 

Steady state values  

𝑌𝑌�� =  ��
(𝜃𝜃 − 1)(1 − 𝛽𝛽ℎ)�1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)𝜃𝜃(1+1 𝜂𝜂⁄ )�

(1 − 𝜈𝜈)𝜃𝜃(1 − ℎ)(1 − 𝐺̅𝐺)(1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1))
��

1 − 𝜆𝜆Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1)

1 − 𝜆𝜆
�

1+𝜃𝜃 𝜂𝜂⁄
1−𝜃𝜃

�

1
1+1 𝜂𝜂⁄

 

𝐹𝐹� =  �
(1 − 𝜈𝜈)𝜃𝜃

(𝜃𝜃 − 1)(1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)𝜃𝜃(1+1 𝜂𝜂⁄ ))
�𝑌𝑌��(1+1 𝜂𝜂⁄ ) 

𝐻𝐻� =  
1 − 𝛽𝛽ℎ

(1 − ℎ)(1 − 𝐺̅𝐺)(1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1))
 

𝐶̃𝐶̅ = (1 − 𝐺̅𝐺)𝑌𝑌�� 

𝜉𝜉̅ =  �
1 − 𝛽𝛽ℎ

(1 − ℎ)(1 − 𝐺̅𝐺)
�𝑌𝑌��−1 

𝑅𝑅� =
Π�𝐺𝐺𝐺𝐺����
𝛽𝛽

 

𝑅𝑅�𝑆𝑆 = 𝑅𝑅� 

𝐺𝐺𝐺𝐺���� = exp(𝜇𝜇) 

𝑃𝑃�� = 1 

𝑢𝑢𝑞𝑞���� =  0 

𝑢𝑢𝐺𝐺���� = 0 

𝑢𝑢𝑚𝑚���� = 0 
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𝑓𝑓𝑡𝑡 = �1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)𝜃𝜃�1+1𝜂𝜂�� �1 + 1
𝜂𝜂
� 𝑦𝑦�𝑡𝑡 + �𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)𝜃𝜃�1+1𝜂𝜂�� �𝜃𝜃 �1 + 1

𝜂𝜂
� π�𝑡𝑡+1 − 𝜔𝜔𝑑𝑑𝜃𝜃 �1 + 1

𝜂𝜂
� π�𝑡𝑡 + 𝑓𝑓𝑡𝑡+1� + 𝑢𝑢�𝑡𝑡𝑚𝑚 

ℎ�𝑡𝑡 = �1 − 𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1)��𝜉𝜉𝑡𝑡 + 𝑦𝑦�𝑡𝑡� + �𝛽𝛽𝛽𝛽Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1)��(𝜃𝜃 − 1)π�𝑡𝑡+1 − 𝜔𝜔𝑑𝑑(𝜃𝜃 − 1)π�𝑡𝑡 + ℎ�𝑡𝑡+1� 

𝑓𝑓𝑡𝑡 − ℎ�𝑡𝑡 = �1 + 𝜃𝜃
𝜂𝜂
� �

𝜆𝜆Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1)

1 − 𝜆𝜆Π�(1−𝜔𝜔𝑠𝑠−𝜔𝜔𝑑𝑑)(𝜃𝜃−1)� (π�𝑡𝑡 − 𝜔𝜔𝑑𝑑π�𝑡𝑡−1) 

𝜉𝜉𝑡𝑡 =
ℎ

(1 − ℎ)(1 − 𝛽𝛽ℎ) 𝑐̂𝑐𝑡𝑡−1 −
1 + 𝛽𝛽ℎ2

(1 − ℎ)(1 − 𝛽𝛽ℎ) 𝑐̂𝑐𝑡𝑡 +
𝛽𝛽ℎ

(1 − ℎ)(1 − 𝛽𝛽ℎ)𝐸𝐸𝑡𝑡𝑐̂𝑐𝑡𝑡+1 

𝜉𝜉𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝜉𝜉𝑡𝑡+1 + 𝑟̂𝑟𝑡𝑡 − 𝜋𝜋�𝑡𝑡+1 + 𝑢𝑢�𝑡𝑡
𝑞𝑞] 

𝑦𝑦�𝑡𝑡 = (1 − 𝑠𝑠𝑔𝑔)𝑐𝑐�𝑡𝑡 − 𝑠𝑠𝑔𝑔𝑢𝑢�𝑡𝑡
𝐺𝐺 

𝑟̂𝑟𝑡𝑡 = max {𝑟̂𝑟𝑡𝑡∗,−𝑟̅𝑟} 

𝑟̂𝑟𝑡𝑡∗ = 𝜌𝜌1𝑟̂𝑟𝑡𝑡−1∗ + 𝜌𝜌2𝑟̂𝑟𝑡𝑡−2∗ + (1 − 𝜌𝜌1 − 𝜌𝜌2)�𝜙𝜙𝜋𝜋𝜋𝜋�𝑡𝑡 + 𝜙𝜙𝑦𝑦𝑦𝑦�𝑡𝑡 + 𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑡𝑡 + 𝜙𝜙𝑝𝑝𝑝̂𝑝𝑡𝑡� + 𝜀𝜀𝑡𝑡𝑟𝑟 

𝑔𝑔𝑔𝑔�𝑡𝑡 = 𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡−1 + 𝜀𝜀𝑡𝑡𝐴𝐴 

𝑝̂𝑝𝑡𝑡 = 𝑝̂𝑝𝑡𝑡−1 + 𝜋𝜋�𝑡𝑡 

𝑢𝑢�𝑡𝑡
𝑞𝑞 =  𝜌𝜌𝑞𝑞𝑢𝑢�𝑡𝑡−1

𝑞𝑞 +  𝜀𝜀𝑡𝑡
𝑞𝑞 

𝑢𝑢�𝑡𝑡𝐺𝐺 = 𝜌𝜌𝐺𝐺𝑢𝑢�𝑡𝑡−1𝐺𝐺 + 𝜀𝜀𝑡𝑡𝐺𝐺  

𝑢𝑢�𝑡𝑡𝑚𝑚 = 𝜌𝜌𝑚𝑚𝑢𝑢�𝑡𝑡−1𝑚𝑚 + 𝜀𝜀𝑡𝑡𝑚𝑚 
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