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ABSTRACT

This paper formulates and estimates a household-level, billing-cycle water demand model under 
increasing block prices that accounts for the impact of monthly weather variation, the amount of 
vegetation on the household’s property, and customer-level heterogeneity in demand due to 
household demographics. The model utilizes US Census data on the distribution of household 
demographics in the utility’s service territory to recover the impact of these factors on water 
demand. An index of the amount of vegetation on the household’s property is obtained from 
NASA satellite data. The household-level demand models are used to compute the distribution of 
utility-level water demand and revenues for any possible price schedule. Knowledge of the 
structure of customer-level demand can be used by the utility to design nonlinear pricing plans 
that achieve competing revenue or water conservation goals, which is crucial for water utilities to 
manage increasingly uncertain water availability yet still remain financially viable. Knowledge of 
how these demands differ across customers based on observable household characteristics can 
allow the utility to reduce the utility-wide revenue or sales risk it faces for any pricing plan. 
Knowledge of how the structure of demand varies across customers can be used to design 
personalized (based on observable household demographic characteristics) increasing block price 
schedules to further reduce the risk the utility faces on a system-wide basis. For the utilities 
considered, knowledge of the customer-level demographics that predict demand differences 
across households reduces the uncertainty in the utility’s system-wide revenues from 70 to 96 
percent. Further reductions in the uncertainty in the utility’s system-wide revenues in the, range 
of 5 to 15 percent, are possible by re-designing the utility’s nonlinear price schedules to minimize 
the revenue risk it faces given the distribution of household-level demand in its service territory.
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1. Introduction 
 

There is a growing need for urban water utilities to manage periods with limited water 

supplies, particularly in arid parts of the United States.  Because more that 85 percent of the total 

cost of a typical urban water utility does not vary with the volume of water produced, this has led 

to an increasing frequency of revenue shortfalls for these entities.   According to the California 

Public Utilities Commission (CPUC), over the past 10 years as high as 50 percent of the largest 

water utilities it regulates have annual revenue shortfalls as large as 20 percent of their annual 

revenue requirement. These revenue shortfalls have resulted in a far greater use of ex post revenue 

adjustment mechanisms that increase water prices after periods with limited water availability to 

recover these revenue shortfalls. This has led to an increasing temporal mismatch between the 

retail price consumers are charged and their need to reduce to water consumption.1   

Despite rapidly growing populations in the western states over the past 30 years, there has 

been no major water storage or delivery infrastructure investment west of the Continential Divide 

since the early 1970s.  For example, the population of California in 1970, around the time the State 

Water Project was completed, was roughly half of the current value of 38.8 million.  This hiatus 

in water infrastructure investments is partially responsible for the increasing frequency of 

shortfalls in water availability to urban water utilities in the West.    

This set of circumstances suggests two possible approaches to meet the West’s future water 

demand:  (1) manage existing water resources, primarily through pricing, or (2)  build and pay for 

additional water storage and/or transportation infrastructure.  Both approaches argue for a 

significantly enhanced understanding of the customer-level demand for water. This argument is 

strengthened by the fact that nonlinear pricing is the standard approach used by water utilities to 

balance the competing goals of managing limited water resources and achieving sufficient 

revenues to recover their costs.  Customers typically face schedules where the price charged for 

each additional unit, the marginal price, rises with the customer’s monthly consumption.  The 

marginal price is fixed for a block or range of values of monthly consumption, but it increases 

across these blocks with increases in the value of monthly consumption.  For this reason these 

nonlinear price schedules are called increasing block price schedules.    

                                                 
1 For example, the Water Revenue Adjustment Mechanism (WRAM) set by CPUC to recover past revenue shortfalls 
has temporarily increased future monthly water bills for the same level of consumption by more than 40%. 
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The form of the increasing block price schedule set by the utility impacts how much water 

each customer purchases and the revenues the utility receives from that customer.  The form of the 

nonlinear price schedule also impacts the amount of uncertainty the utility faces in the quantity of 

water it sells and the revenues it receives from each customer.  This uncertainty in customer-level 

water sales and revenues to the utility is aggregated across customers to create uncertainty in the 

utility-level water sales and revenues.  If a utility can accurately predict the customer-level demand 

for water for any possible nonlinear price schedule it can then design increasing block price 

schedules to achieve any conservation or revenue goal while also minimizing utility-level water 

sales or revenue risk.   Increased information about the distribution of customer-level demand 

directly translates into reduced water sales and revenue risk associated with any rate design goal.  

This paper formulates and estimates a household-level demand for water under increasing 

block prices that accounts for the impact of weather variation within the household’s billing cycle 

and customer-level heterogeneity in demand due to observable demographic characteristics and 

other unobserved factors that differ across customers.  This model can be used to construct an 

estimate of the distribution of each customer’s monthly demand and total amount paid for water 

for any arbitrary nonlinear price schedule.  Combined with data on the distribution of observable 

customer-level heterogeneity in the utility’s service territory, these household-level demand 

models can be used to compute the distribution of aggregate water demand for any possible price 

schedule.   

This process also yields an estimate of the distribution of total utility-level revenues for 

any arbitrary nonlinear price schedule or set of nonlinear price schedules, which implies that the 

modeling results can be used to measure both the household-level and aggregate willingness to 

pay for a proposed water infrastructure investment.   Specifically, it can be used to determine if 

there exists a nonlinear price schedule consistent with the utility’s water pricing goals that recovers 

sufficient revenues to recover the cost of a given water infrastructure investment.  In general, the 

estimated household-level water demand model can be used by the utility to design nonlinear 

prices for water to achieve a wide range of systemwide policy goals.   

 The model assumes that water demand depends on the price schedule faced by the 

household the characteristics of household (such as household income, the size of the dwelling, 

size of the property, number of adults living in dwelling), weather conditions (specifically, average 

daily temperature and rainfall during the customer’s billing cycle), and a measure of the amount 
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of outdoor vegetation on the customer’s property.   Information on the amount of outdoor 

vegetation for each customer is obtained from satellite data compiled by the National Atmospheric 

Information Administration (NASA) on a bi-monthly basis.   

The demand model is estimated for two water utilities charging increasing block price 

schedules using monthly billing cycle data for a sample of customers from each utility combined 

with data from the from United States (US) Bureau of Census Public Use Microdata Sample 

(PUMS) of American Community Survey on the distribution of household demographic 

characteristics in the United States Postal Service (USPS) Zip Code, the property-level vegetation 

index, and data from the National Oceanic and Atmospheric Administration (NOAA) on daily 

weather conditions in that Zip Code during the billing cycle. 

Because there is some controversy about whether customers understand and are able to 

respond to nonlinear prices, a non-nested hypothesis test is performed comparing this model of 

household-level demand with nonlinear pricing to each of four competing models of household-

level demand that embody alternative price measures that that household responds to.2  For both 

of the utilities considered, the non-nested hypothesis tests find that the model of demand with 

nonlinear pricing provides a statistically superior description of the observed pattern of the 

household-level demand relative to each of the four alternative models. 

Several summary statistics are compiled using the model to assess the impact of resolving 

uncertainty about customer-level demand and the distribution of these demands throughout 

utility’s service territory on the systemwide sales and revenue uncertainty faced by the utility.  The 

difference in the system-wide revenue risk between a scenario that assumes the utility only knows 

the prior distribution of demographic characteristics in the household’s zip code and the scenario 

that assumes the utility knows each customer’s demographic characteristics provides a metric for 

assessing the revenues and sales risk reduction benefits to the utility from collecting demographic 

information from each of its customers. 

Counterfactual nonlinear price schedules are computed that yield no more than the same 

expected system-wide water sales and at least as much system-wide revenues as the utility’s 

existing price schedules, but also minimize the uncertainty in the utility’s annual revenues from 

                                                 
2 Ito (2014) and Borenstein (2009) argue that consumers respond to the average price they face rather than to the 
nonlinear price schedule.  Two of the alternative models of demand are based the assumption that the household’s 
demand is a function of the average price. 
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water sales.  Price schedules that reduce systemwide water consumption by 25 percent with a 95 

percent probability while still obtaining at least a much expected sales, are also computed. These 

counterfactual price schedules are constructed under the assumption that the utility knows the 

posterior distribution of demographic characteristics for each household given its zip code and 

observed vector of billing cycle-level water consumption.   

These experiments demonstrate several sources of economic benefits to the utility from 

having a more detailed knowledge of individual customers.  First, knowledge of the customer-

level demand can be used by the utility to design increasing block pricing plans that achieve any 

revenue or sales goals with less revenue or sales risk.  Second, knowledge of how these demands 

different across customers based on observable characteristics of the customers can allow the 

utility to significantly reduce the utility-wide revenue or sales risk it faces for any pricing plan.   

Third, knowledge of how the structure of demand varies across customers can be used to design 

personalized (based on observable household demographic characteristics) increasing block price 

schedules to further reduce the risk the utility faces on a system-wide basis.  Because it is relatively 

straightforward for the utility to prevent resale of residential water service, utilities can set different 

increasing block price schedules for each customer based on its observable demographic 

characteristics.  Finally, with detailed knowledge of how demands different across customers 

based on observable demographic characteristics, the utility can more accurately assess the likely 

water sales and revenue impacts of changes in the number and types of customers in their service 

territory. 

For the two utilities considered, knowledge of the customer-level demographics that 

predict demand differences across households reduced the uncertainty in the utility’s system-wide 

revenues by 70 and 96 percent, respectively.  Further reductions in the uncertainty in the utility’s 

system-wide revenues in the range of 5 to 20 percent, are possible by re-designing the utility’s 

nonlinear price schedules to minimize the revenue risk it faces given the distribution of household-

level demand in its service territory.  This household-level demand information is also particularly 

important for assessing the economic benefits of proposed water infrastructure projects and in 

designing the price schedules necessary for raising the revenue needed to pay for them with the 

least amount of water sales or revenue risk to the utility. 

 The remainder of the paper proceeds as follows.   The next section discusses the design of 

nonlinear pricing plans.  Section 3 describes the datasets used to estimate the demand model.  
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Section 4 presents the econometric model of demand, the specification tests performed, and 

estimation results.  Section 5 describes how the model can be used to estimate the distribution of 

household-level and systemwide water sales and revenues.  Section 6 presents the counterfactual 

experiments performed using the model results.  Section 7 concludes. 

2. Rate Design with Nonlinear Pricing 

A major rationale for increasing block pricing by water utilities is that this form of 

nonlinear pricing balances two competing public policy goals.  The first is to provide the 

“essential” amount of water a household needs for drinking, cooking, bathing, and other indoor 

use at a price that is affordable for virtually all households in the utility’s service territory.  The 

second goal is to provide a financial incentive for households using more than the “essential” 

amount to reduce their demand for water.   By this logic, the higher-priced steps in the increasing 

block price schedule beyond the initial baseline or essential consumption level are designed to 

discourage less essential water consumption.  For example, the second price step might be intended 

for the demand to fill the household’s swimming pool.   The third price step might be intended for 

the demand for watering the household’s outdoor trees, bushes, and shrubs.  The fourth price step 

might be intended for the demand for watering the household’s lawn.    

Another argument in favor of increasing block pricing of water is that it recovers an 

increasing amount of the utility’s revenue from high demand customers, which tend to also be the 

high income customers.  Because higher income consumers generally consume more water, the 

highest marginal price they pay is typically greater than the highest marginal price low income 

consumers pay.  For this reason, increasing block pricing implies that high income consumers pay 

a higher average price (total monthly payments divided by total monthly consumption) for their 

water consumption than low income consumers. 

Increasing block pricing can also create revenue adequacy challenges for the water utility 

if the utility makes the length of the baseline level of demand too large.  High demand households 

might consume along the baseline marginal price step as opposed to consuming at a higher 

marginal price step.   Figure 1(a) illustrates this case with DL(p), the demand curve for low-demand 

consumers, and DH(p), the demand curve for high income consumers.  Both curves intersect the 

increasing block price schedule on the first price block, which raises significantly less revenue for 

the utility than would be the case if DH(p) intersected the price schedule on the higher-priced block.  

If the first block of the price schedule is too short, this can impose an excessive financial burden 
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on low-demand, low-income consumers by charging them the marginal price intended for high 

demand consumers.   Figure 1(b) illustrates this case where both demand curves intersect the 

increasing block price schedule on the higher-priced block. 

  From the perspective of achieving enough revenues to recover the utility’s costs, while 

selling no more than a certain amount of water to all customers, the design of a nonlinear pricing 

schedule amounts to choosing a length for each step that separates customers into distinct groups 

based on their willingness to pay for water.  Moreover, if the utility has some uncertainty about 

the location and shape of each customer’s demand, then reducing this uncertainty could help the 

utility determine where to set the baseline demand level, qB, shown in Figure 1(c).  This figure 

shows the range of possible uncertainty (from the perspective of the utility) in DL(p) and DH(p).   

This is indicated by the dotted lines to the left and right of each demand curve.   Note that qB has 

been chosen so that regardless of the realization of DL(p) and DH(p), each type of customer will 

continue to consume along the same step of the increasing block price schedule.   Choosing the 

value of qB in this manner limits the amount of revenue variability that the utility faces due to its 

uncertainty about the realized values of DL(p) and DH(p).   The second part of the increasing block 

pricing design process must choose the levels of the first marginal price and the second higher 

marginal price to recover sufficient revenues to cover the utility’s costs, while still achieving the 

goal of limiting the economic burden placed on low-income consumers in purchasing their 

essential water needs.    

If the utility is able to sort households into different categories based on observable 

demographic characteristics, then it is also possible to assign separate increasing block price 

schedules to different households based on these characteristics.   In this case, the utility would 

like to achieve the outcome in Figure 1(c) for each set of observable demographic characteristics 

that predict differences in the form of the demand. 

 One possible set of counterfactual pricing experiments would use the estimated household-

level demand model to determine the extent to which it is possible for the utility to re-design its 

increasing block price schedule to achieve at least as much expected revenue and expected water 

sales no larger than it does under the current rate schedule while facing less risk to its total 

revenues.  A second set of counterfactual pricing experiments could set separate increasing block 

prices schedules for households with different observable demographic characteristics to achieve 

at least as much expected revenue and no larger expected water sales than with the current 



 
 

7 
 

increasing block price schedules used by the utility while facing the utility with less risk to its total 

revenues.  Both sets of counterfactual pricing experiments demonstrate that if a utility has more 

information about the demand for water of individual customers, it can significantly reduce the 

revenue or sales risk it faces in meeting a set of pricing goals.  

3. Data Used in Analysis 

Four datasets are used to estimate the customer-level demand model for each utility service 

territory.  The first is billing cycle-level monthly water consumption data for a sample of 

households for at least one year in duration. The second dataset is composed of daily weather 

variables at the Zip Code level obtained from the National Oceanic and Atmospheric 

Administration (NOAA) for the utility’s service territory.  The third dataset is the distribution of 

household-level demographic characteristics within each Zip Code in the utility’s service territory 

obtained from the US Bureau of the Census.   The fourth dataset is composed of the value of the 

Normalized Vegetation Difference Index (NDVI) compiled by NASA for each household’s 

property. 

Monthly household-level water consumption is available from two utilities at the billing 

cycle-level, along with the customer’s zip code, form of nonlinear price schedule faced by 

household, and other information necessary to compute customer’s monthly water bill.   Although 

utilities typically bill their customers on a monthly basis, customers receive their bills at different 

times during the month.  The time between consecutive billing dates is called the customer’s billing 

cycle and it depends on when the meter reader shows up at the customer’s premises to read the 

meter each month.   For example, one customer might be billed on the third day of every month, 

whereas another customer might be billed on the twentieth day of every month. 

Having data available on each customer’s billing cycle level is important for accurately 

modeling the impact of weather conditions on a household’s demand for water.   In terms of the 

above example, it might be the case that the first two weeks of July are extremely hot so the water 

demand is particularly high, whereas the last two weeks of July are mild and so water demand is 

significantly lower.  The customer with a billing cycle that starts on the third day of the month will 

have much higher weather-related demand than customer whose billing cycle begins on the 20th 

day of the month.  Only by knowing the customer’s billing cycle is it possible to properly account 

for differences across customers in their weather-related demand for water. 
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 The NOAA provides daily measures of rainfall and the maximum daily temperature at the 

Zip Code level for each utility service territory.   The average value of the maximum daily 

temperature is computed as the average of the daily maximum temperature across all days in the 

billing cycle.  The total amount of rainfall in that Zip Code during the billing cycle is also computed 

from this data.   The inter-quartile range of the maximum daily temperatures and inter-quartile 

range of daily rainfall in the zip code during the billing cycle are also compiled.3   

The distributions of household-level demographic variables for each Zip Code in each 

utility’s service territory are obtained from the US Bureau of Census Public Use Microdata Sample 

(PUMS) of American Community Survey.  The demographic characteristics for each household 

surveyed in each Public Use Microdata Area (PUMA) are compiled along with the sampling 

weight for that household.  These PUMAs can be matched to zip codes so that a distribution of 

household-level demographic variables in the Zip Code is available for all Zip Codes in the service 

territory  

The NDVI data is compiled by NASA from satellite data taken from the using NOAA’s 

Advanced Very High Resolution Radiometer (AVHRR).   An algorithm is applied to the 

wavelengths and intensity of visible and near-infrared light reflected by the land surface back up 

into space to quantify the concentrations of green leaf vegetation for 30 meter by 30 meter 

quadrants of the earth’s surface.  The NDVI lies on the interval [-1,1], with higher values indicating 

more green vegetation.  Values close to -1 correspond to water, whereas values close to zero (-0.1 

to 0.1) correspond to rock, sand, or snow.  Small positive values, generally between 0.2 and 0.4, 

represent shrub and grassland, and values close to 1 indicate temperate and tropical rainforests. 

Household-level, billing-cycle data is available from the Valley of the Moon (near 

Sonoma), California and Cobb County, Georgia water utilities. Daily weather data has also been 

compiled for the time period that the customer-level billing cycle data is available for each utility 

service territory.  The Zip Code-level distribution of household demographic data has also been 

compiled for the time period that the customer-level billing cycle data is available for each utility 

service territory.  The NDVI data is available on a bi-monthly basis for each household in both 

utility service territories.  All nominal prices are converted to 2012 dollars using the Federal 

                                                 
3 The inter-quartile range is the difference between the 75th percentile of the daily variables in the billing cycle and 
25th percentile of this same distribution. 
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Reserve Economic Database Gross Domestic Product (GDP) deflator from St Louis Federal 

Resource Bank.4 

4. Econometric Model 

This section describes the specification of the econometric model of the billing cycle-level 

and household-level water demand under increasing block prices that accounts for the weather 

facing that household during its billing cycle, the differences in demographic characteristics across 

households and the differences in the NDVI value for the property over time and across 

households.  This model is derived from the assumption that households choose their water 

consumption to maximize a utility function that depends on their demographic characteristics and 

NDVI value and unobserved heterogeneity.   

This econometric model is used to derive the joint density of all billing cycle-level 

consumption choices for each household during the sample period conditional on the nonlinear 

price schedule the household faces, its demographic characteristics, the value of NDVI on its 

property, and the temperature and rainfall distributions it was exposed to each billing cycle during 

the sample period.  Because the demographic characteristics of each household are unobserved, in 

order to arrive at the likelihood function used to estimate the parameters of the demand model, the 

conditional distribution of the household’s monthly billing cycle-level consumption choices are 

integrated with respect to the distribution of demographic characteristics in the Zip Code that 

contains that household.  This yields a likelihood function that depends on observable data—the 

household’s vector of monthly water consumption choices, the values of the household’s property 

vegetation index, the vector of the billing cycle-level monthly weather variables and the 

distribution of demographic characteristics for that household’s Zip Code. 

4.1. Water Demand Model 

Let U(xi,wi,Ai,Zi,Gi,εi,β) equal the utility function for household i over the N-dimensional 

vector of goods, xi = (xi1,xi2,…,xiN), where xik is household i’s monthly consumption of good k, 

and wi is the household i’s monthly consumption of water.  The utility function also depends on 

the household i’s demographic characteristics, Ai; the vector of weather variables faced by 

household i, Zi; the value of the NDVI index for household i, Gi; a vector of unobserved 

heterogeneity, εi.  This utility function is parameterized by the vector β.   Let pk equal the price of 

the kth element of xi, xik.   Let θi(w) equal the increasing block price function that the household i 

                                                 
4  Data available from https://research.stlouisfed.org/fred2/series/GDPDEF 
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faces for water.  The value of this function at consumption level w is equal to, θi(w), the marginal 

price.  Figure 1(a) to 1(c) shows several increasing block price schedules with two price blocks. 

If household i purchases w+ units of water during the month then its total bill is equal to 

R(θi(w+)) = ׬ ,ݏሻ݀ݏ௜ሺߠ
௪ା
଴  which is equal to the area under the nonlinear price schedule up to the 

observed consumption level, w+.  A household that consumes w units of water and the vector of 

other goods, x, has a monthly spending on water and the N other goods equal to ∑ ௜௞ݔ௞݌
ே
௞ୀଵ  +  

R(θi(w)).  Under the assumption of utility-maximizing behavior, the household’s observed choices 

of x and w are assumed to be the solution to the following optimization problem: 

,௜ܣ|௫ஹ଴,௪ஹ଴Uሺx,wݔܽ݉ ܼ௜, ,௜ܩ ,௜ߝ βሻ	subject	to	 ∑ ௜௞ݔ௞݌
ே
௞ୀଵ  + R(θi(w)) = Ii,  (1) 

where Ii is household i’s monthly income.  Solving problem (1) yields the household’s utility-

maximizing choices for x and w as a function of the vector of prices, P = (p1,p2,…,pN) of the N 

other goods; the nonlinear price function, θi(w); and total monthly income, Ii. 

Let w(P,θi,Mi,ܣ௜, ܼ௜, ,௜ܩ ε௜, βሻ equal the solution to this household-level optimization 

problem.  This function depends on the vector of prices of other goods, P; the nonlinear price 

schedule for water faced by household i, θi(w); household i’s total monthly income, Ii; the vector 

of observed characteristics of household i, Ai; the vector of unobserved characteristics of the 

household, εi; the vector of weather variables faced by household i, Zi; the household’s vegetation 

index, Gi; and the parameters of the household’s preference function, β. 

Assuming a parametric joint density for ε, f(ε|δ), (where δ if the vector of parameters of 

this joint density) it is possible to derive the density of the household’s vector of billing-cycle level 

observed water consumption, w, which I write g(w|P,θ,ܣ, ܼ, ,௜ܩ β, δሻ.  This density is also equal to 

the conditional (on Ai) likelihood function for a single observation of monthly billing cycle-level 

consumption for household i. 

4.2. Log-Likelihood Function 

Let the subscript “t” denote the value of a variable for billing cycle t and T(i) equal the 

number of monthly consumption observations for household i in the sample and N is the total 

number of households in the sample.  Let Wi = (wi1,wi2,…,wiT(i))’ equal the T(i) dimensional vector 

of monthly water consumption observations for household i. Let W = (W1’,W2’,…,WN’)’ equal 

the vector of the N vectors of monthly water consumption observations for all households in the 

sample.   The first step in computing the likelihood function for the econometric model is to 

compute the joint density of Wi for each household in the sample conditional on the household’s 
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demographic characteristics and the T(i) realizations of monthly weather conditions that they 

faced.   In terms of the above notation, this joint density takes the form: 

∏ gሺݓ௜௧	| ௜ܲ௧, θ௜௧, ,௡ܣ ܼ௜௧, ,௜௧ܩ β, δ
்ሺ௜ሻ
௧ୀଵ ሻ     (2) 

The PUMS data from American Community Survey can be used to compute the probability density 

functions for the vector of demographic characteristics for each Zip Code in the utility’s service 

territory.  This dataset provides the sampling weights for each household in the American 

Consumer Survey and the vector of their demographic characteristics for each 5-digit Zip Code in 

the utility’s service territory.  Let (wt(i,n), An) for n=1,…,L(i) equal the values of these sampling 

weights and associated vector of demographic characteristics for each sampled household in the 

Zip Code that contains household i.   In terms of this notation, the log-likelihood function for single 

observation is equal to: 

L(Wi	|	β, δ) = ln[	∑ ,ሺ݅ݐݓ ݊ሻ∏ gሺݓ௜௧	| ௜ܲ௧, θ௜௧, ,௡ܣ ܼ௜௧, ,௜௧ܩ β, δ
்ሺ௜ሻ
௧ୀଵ

௅ሺ௜ሻ
௡ୀଵ ሻሿ.    (3) 

Summing over all N households in the sample yields log-likelihood function for the entire 

sample: 

L(W|β, δሻ = ∑ ln	ሾ∑ ,ሺ݅ݐݓ ݊ሻ∏ gሺݓ௜௧	| ௜ܲ௧, θ௜௧, ,௡ܣ ܼ௜௧, ,௜௧ܩ β, δ
்ሺ௜ሻ
௧ୀଵ

௅ሺ௜ሻ
௡ୀଵ ሻே

௜ୀଵ ],  (4) 

Note that the joint distribution of (wi1,wi2,…,wiT(i))’ is integrated with respect to the density of the 

vector of demographic characteristics, An, rather than the density of each wit individually, in order 

to account for the persistence in household i’s billing cycle level demand over time.  If the 

consumption of household i is unexpectedly high in billing cycle t relative to what would be 

predicted based on the observable characteristics of this household, then it is likely that its 

consumption would be unexpectedly high in all other billing cycles.  Integrating with respect to 

the density of An as is done in equation (4) is consistent with that logic. 

4.3. Functional Forms 

In order to implement the model empirically, it is necessary to choose functional forms for 

the household’s utility function, U(xi,wi,Ai,Zi,Gi,εi,β), which yields the functional form for the 

household’s demand function, w(P,θi,Mi,ܣ௜, ܼ௜, ,௜ܩ ε௜, βሻ.  Because the distributions of monthly 

water consumption across both across households for the same month and for the same household 

over time are both positively skewed in the sense that  many observations are just below the mean, 

but a few observations are far above the mean, the appropriate variable to model is the logarithm 

of the household’s monthly demand for water.  
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This logic implies the following choice for the functional form for w*(θ,M,ܣ, ܼ, ,ܩ ε, βሻ,	the 

observable portion household’s billing cycle-level monthly demand for water conditional on 

observing the household’s vector of demographic characteristics, A: 

ln(w*(pw,ܸሺܣሻ, ,ܣ ܼ, βሻሻ = A’β1 + Z’β2 + G’β3 + α(A,G)ln(pw) + ρ(A,G)ln(V(A,G)),  (5) 

where ߙሺܣ, ሻܩ ൌ െexpሺܣᇱߚସ ൅ ,ܣሺߩ and	ହሻߚܩ ሻܩ ൌ െexpሺܣᇱߚ଺ ൅  ,଻ሻ.  Define β = (β1’,β2’,β3ߚܩ

β4’, β5, β6’ β7)’ as the vector of parameters of the demand function.   This functional form implies 

that the coefficient determining the price responsiveness of demand, α(A,G), is minus 1 times the 

exponential function of a linear combination of some of the elements of the vector of the 

household’s demographic variables and its vegetation index, and ρ(A,G) is an exponential function 

of a linear combination of some of the elements of the vector of the household’s demographic 

variables and its vegetation index.  V(A) is the household’s monthly virtual income and it is written 

as a function of this vector of demographic characteristics to denote the fact that the household’s 

income is one the elements of the vector of household characteristics that we “integrate” out with 

respect to in computing the likelihood function for household i in equation (4).    

This functional form allows for substantial differences in both the price responsiveness and 

income responsiveness of water demand across households in each utility service territory.  Both 

the price and income coefficients depend on the value of the vegetation index for the household’s 

property and a subset of the vector of demographic characteristics to allow for differences in both 

the income and price elasticities across households and over time for the same household.    

There are two sources of unobservables for each month and household ε = (ߟ,   where ,(ߥ

,൫0ܰ	~	ߟ ,ሺ0ܰ	~	ߥ ఎଶ൯ andߪ   are independent random variables distributed independently	ఔଶሻߪ

across households and over time for the same household.  This implies that ߜ ൌ ሺߪఎଶ,  ఔଶሻ′ in theߪ

notation of the likelihood function (2).  Constructing the conditional (on demographic 

characteristics) likelihood function (2) for household i, requires computing the density of the 

observed value of ln(wit), using the deterministic portion of the demand function and joint 

distribution of ε.  The elements of ε = (,ߟ	ߥ)’ are called the unobserved household-level 

heterogeneity, η, and the household-level optimization or technological uncertainty error, ν.  The 

former is assumed to be observed by the household, but the latter is assumed to be unobserved by 

the household.   Both elements of ε are unobserved by the econometrician. 

 To understand the determination of the household’s virtual income, V(A), and the mapping 

from ln(w*(pw,V(A),ܣ, ܼ, ,ܩ βሻ) to the logarithm of observed consumption of the household, 
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consider a four-tier increasing block price schedule with a fixed charge.  This implies p1 < p2 < p3 

< p4.   As shown in Figure 2(a), (0,w1*) is the range of consumption where marginal price is p1, 

(w1*,w2*) is the range of consumption for the marginal price p2, (w2*,w3*) is the range of 

consumption for the marginal price p3, (w3*,∞) is the range of consumption for the marginal price 

p4, and FC equals the household’s fixed charge for the billing cycle.  The increasing block price 

schedule implies the piece-wise linear budget set composed of the segments, BS1, BS2, BS3, and 

BS4 shown in Figure 2(a).  For each segment of the increasing block price schedule, the segment 

of the household’s budget set becomes increasingly steep because the slope of each segment is 

equal to −pk/po, where pk is the marginal price for the kth price block and po is the price of all other 

goods. 

Define dk as the difference between the cost of consumption level w (in the kth block of 

the increasing block price schedule) when all units are purchased at price pk, the marginal price 

for this block, and the actual cost purchasing w+ under the increasing block price schedule, so that 

݀௞ ൌ ାݓ௞݌	 െ Rሺθሺݓାሻሻ ൌ െܥܨ െ ∑ ൫݌௝ െ ௝ݓ௝ାଵ൯݌
∗௞ିଵ

௝ୀଵ . For example, if the household is 

purchasing along the first price tier, then d1 = - FC and if the household is purchasing along the 

second price tier, then d2 = - FC – (p1 – p2)w1*.   A household with a vector of demographic 

characteristics, A, purchasing along the kth price tier has virtual income of Vk(A) = I(A) + dk, where 

I(A) is the household’s income.  Income is written as a function of the vector of demographic 

characteristics to denote the fact that monthly income is one of the elements of A, the vector of 

demographic characteristics obtained from PUMS data. 

Figure 2(a) shows a point of tangency between the household’s indifference curve and the 

nonlinear budget constraint. If η was the only unobservable in the household’s demand function 

then the following statements would hold.  If there is a point of tangency between the household’s 

indifference curve and one of the piecewise linear budget set segments,  then there should be one 

value of η that yields this observed value of water consumption.  However, as Figure 2(b) 

demonstrates, it is also possible that a point of tangency could occur at a kink point of the piecewise 

linear budget set.  In Figure 2(b), the kink point is at the consumption level w2*.    In this case, there 

would be a set of values of η such that the household consumes w2* because there are a number of 

possible values of η that shift and rotate the household’s indifference curves which yield this point 

as the household’s utility maximizing consumption choice. 
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It is virtually impossible for a household to manage its water consumption with so much 

precision as to end up exactly at a kink point on the piecewise linear budget set.  Virtually all water 

services demanded by the household involves uncertainty in the actual amount of water consumed 

that is observed by the household.  A household member demands water services such as taking a 

bath or shower, filling their swimming pool, washing their car, or watering their plants or lawn.  

Despite the individual’s best intentions to use only a certain amount of water, each water service 

demand has technological uncertainty in the exact amount of water consumed.  For example, 

running water for a hot shower on a cold day takes longer than on a warm day and therefore uses 

more water.  For this reason, a second stochastic unobservable, ν, the so-called optimization error, 

is introduced into the demand model to account for uncertainty in the actual amount of water 

consumed by the household relative to their intended water service consumption level based on 

only η.5 

The mapping from the realized values of the unobservables (,ߟ	ߥ) to the observed value of 

the logarithm of the household’s monthly billing cycle-level consumption, ln(w), for a K-step 

increasing block price schedule takes the form 

ln(w) =  ln(w*(p1,V1(A),ܣ, ܼ, ,ܩ βሻሻ + η + ν   

if η < ln(ݓଵ∗ሻ - ln(w*(p1,V1(A),ܣ, ܼ, ,ܩ βሻሻ 

ln(w) =  ln(ݓଵ∗ሻ + ν  

if ln(ݓଵ∗ሻ - ln(w*(p1,V1(A),ܣ, ܼ, ,ܩ βሻሻ < η < ln(ݓଵ∗ሻ - ln(w*(p2,V2(A),ܣ, ܼ, ,ܩ βሻሻ 

ln(w) = ln(w*(p2,V2(A),ܣ, ܼ, βሻሻ + η + ν   

if ln(ݓଵ∗ሻ - ln(w*(p2,V2(A),ܣ, ܼ, ,ܩ βሻሻ < η < ln(ݓଶ∗ሻ - ln(w*(p2,V2(A),ܣ, ܼ, ,ܩ βሻሻ 

ln(w) = ln(ݓଶ∗ሻ + ν  

if ln(ݓଶ∗ሻ - ln(w*(p2,V2(A),ܣ, ܼ, ,ܩ βሻሻ < η < ln(ݓଷ∗ሻ - ln(w*(p2,V2(A),ܣ, ܼ, ,ܩ βሻሻ 

…           (6) 

ln(w) = ln(ݓ௄ିଵ∗ ሻ + ν 

if ln(ݓ௄ିଵ∗ ሻ - ln(w*(pK-1,VK-1(A),ܣ, ܼ, G, βሻሻ< η < ln(ݓ௄ିଵ∗ ሻ - ln(w*(pK,VK(A),ܣ, ܼ, ,ܩ βሻሻ 

ln(w) = ln(w*(pK,VK(A),ܣ, ܼ, ,ܩ βሻሻ + η + ν   

if ln(ݓ௄ିଵ∗ ሻ - ln(w*(pK,VK(A),ܣ, ܼ, ,ܩ βሻሻ < η 

where Vk(A) = I(A) + dk for k=1,2,…,K is equal to: 

                                                 
5 A similar error structure is employed by Hewitt and Hanemann (1995) and Olmstead, Hanemann, and Stavins 
(2007) to derive the likelihood function for their demand models.   
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∑ థሺ௦ೖሻ

ටఙആ
మା	ఙഌ

మ
ሺΦሺݎ௞ሻ െ Φሺ݊௞

௄
௞ୀଵ ሻሻ ൅	∑ థሺ௨ೖሻ

ఙഌ
మ ሺΦሺ݉௞ሻ െ

௄ିଵ
௞ୀଵ Φሺݐ௞ሻሻ  (7) 

where tk = [ln(ݓ௞∗ሻ - ln(w*(pk,Vk(A),ܣ, ܼ, ,ܩ βሻሻሿ/ση,     rk = (tk – ρsk)/ඥ1 െ ߩ ,ଶߩ ൌ ఙആమ

ටሺఙആ
మሻሺఙആ

మାఙഌ
మሻ

 

sk = (ln(wit) – ln(w*(pk,Vk(A),ܣ, ܼ, ,ܩ βሻሻ/	ටߪఎଶ ൅	ߪఔଶ,   nk = (mk-1 – ρsk)/ඥ1 െ  ଶߩ

mk = (ln(ݓ௞∗ሻ - ln(w*(pk+1,Vk+1(A),ܣ, ܼ, ,ܩ βሻሻ/ση,    uk = (ln(wit) - ln(ݓ௞∗ሻሻ/ ση. 

The multiplying this likelihood for billing cycle t for observation i by this same likelihood for all 

T(i) months for household i yields the likelihood function for observation i given in equation (2). 

 Maximizing this likelihood with respect to (β’,δ’)’ yields the maximum likelihood 

estimates of this parameter vector.  Two sets of standard errors for the parameter estimates are 

computed.  The first set uses the inverse of the matrix of the sum of the outer products of the 

gradient of the log-likelihood for each household evaluated at the maximum likelihood parameter 

estimates.  The second set uses the White (1982) quasi-maximum likelihood estimate covariance 

matrix which is equal to the inverse of the matrix of the second partial derivatives evaluated at the 

maximum likelihood parameter estimates pre- and post-multiplied by the matrix of the sum of the 

outer products of gradient of the log-likelihood function. 

4.2. Estimation Results 

Table 1 contains the estimation results for Valley of the Moon (VoM). Table 2 contains the 

estimates for Cobb County.  The coefficient estimates and the two sets of standard errors described 

in the previous section are reported for each region.  The number of households in the sample is 

also reported for each region.   There are different numbers of months of data for each household 

because of differences in billing cycles across households during the sample period for each utility. 

 The following variables make up Zit, the vector of weather characteristics that customer i 

was exposed to during billing cycle t.6    

Average high temperature:  The average of the daily maximum temperature values in household 

i’s Zip Code during household i’s billing cycle.  

Inter-quartile range of maximum daily temperatures: The 75th percentile of the daily maximum 

temperature values in household i’s Zip Code during household i’s billing cycle minus the 25th 

                                                 
6 All of the Zip Code-level weather data for each utility was obtained from the www.wunderground.com.  



 
 

16 
 

percentile of the daily maximum temperature values in household i’s Zip Code during household 

i’s billing cycle 

Total precipitation in billing cycle:  Sum of daily precipitation in inches during the billing cycle 

for the Zip Code containing household i. 

Interquartile range of daily precipitation:  The 75th percentile of the daily precipitation in 

household i’s Zip Code during household i’s billing cycle minus the 25th percentile of the daily 

precipitation in household i’s Zip Code during household i’s billing cycle 

Vegetation—Value of NDVI for household i as of the start of billing cycle t.   

Figures 3(a) and 3(b) present the histogram of the NDVI index for households in VoM and 

Cobb, respectively.  Consistent with the hotter and wetter climate in Georgia versus Northern 

California, the average value of the NDVI in Cobb is higher than in VoM, and the spread of the 

distribution of the NDVI is significantly larger in Cobb relative to VoM. 

 The household-level demographics variables, the vector A, all come from the PUMS data 

set.  A subset of the available demographic variables most likely to predict differences in water 

demand across households are included in A. 

Monthly income of household:  Monthly household income in 2012 dollars.   (Annual number 

reported in PUMS data divided by 12) 

Number of people over 18 years-old living in the household 

Number of people under 18 years-old living in the household 

House Size Indicators--House acreage between 1 and 10 acres.  House acreage above 10 acres.  

Number of bedrooms in the house 

As discussed earlier, for each household sampled by the US Bureau Census in a given Zip Code, 

this demographic information is reported along with a sampling weight indicating the number of 

households in the Zip Code estimated to have the same demographic characteristics vector as the 

sampled household.  Dividing each sampling weight by the sum of the sampling weights for all 

households sampled in that zip code yields the weight, wt(i,n), used in the construction of the 

likelihood function. 

 The price coefficient differs across households in the utility service territory because the 

coefficient on the logarithm of price depends on Ain and Git.  Nonlinear pricing of water and the 

assumed stochastic structure described in the previous subsection that gives rise to the joint density 

of Wi (the vector of billing cycle-level consumption values for household i) implies that the 
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coefficient on the logarithm of price for a given household cannot be interpreted as a price elasticity 

of demand.  The same logic applies to the coefficient on logarithm of household-level income. 

Nevertheless, as shown in the following section, analogues to price and income elasticities can be 

computed with respect to the expected water demand of the household. 

Parameter estimates of the model can be used to compute the posterior probability that 

household s has the vector of demographics Asn given its vector of billing cycle-level consumption 

W: 

௦௡|ܹሻܣሺ	݌ ൌ 	
௪௧ሺ௦,௡ሻ∏ ୥ሺ௪ೞ೟	|௉ೞ೟,஘ೞ೟,஺ೞ೙,௓೘೟, ೞீ೟,ஒ,ஔ

೅ሺೞሻ
೟సభ ሻ

∑ ௪௧ሺ௦,௡ሻ∏ ୥ሺ௪ೞ೟	|௉ೞ೟,஘ೞ೟,஺ೞ೙,௓೘೟,ீೞ೟,ஒ,ஔ
೅ሺೞሻ
೟సభ ሻಿሺೞሻ

೙సభ

.   (9) 

For each household in the sample, compute the L(s) values of ݌	ሺܣ௦௡|ܹሻ	for s=1,2,…,L(s).  The 

value of Asn that has the highest posterior probability for that household is assigned that vector of 

demographics for the purposes of computing the distrbution of systemwide sales and revenues 

assuming that the utility knows each household’s demographic attributes. 

4.3.  Specification Tests for Non-Nonlinear Pricing Model 

This section presents the results of the specification tests of the model household-level 

demand subject to nonlinear pricing. These tests uses four alternative models of the household-

level demand for water where households respond to different price and income measures and 

compares the optimized value of the log-likelihood function from each of these models to the 

optimized value of the log-likelihood function from the model of household-level demand subject 

to nonlinear pricing.  From the results of Vuong (1989), the appropriately normalized difference 

between these optimized log-likelihood functions has an asymptotic N(0,1) distribution under the 

null hypothesis that both models are equidistant (according to the Kullback-Leiber criteria) from 

the true unknown data generation process.  The direction of rejection of the two-sided test indicates 

which of the two competing models provides a statistically superior description of the distribution 

of the observed endogeneous variables given the observed conditioning variables. 

Four alternate “price” and “income” demand response models are considered for the same 

functional form and distribution of unobservables.  The functional form for each of the four 

demand functions is: 

ln(w*(pw,ܸሺܣሻ, ,ܣ ܼ, βሻሻ = A’β1 + Z’β2 + G’β3 + α(A,G)ln(price) + ρ(A,G)ln(income),  (10) 

where ߙሺܣ, ሻܩ ൌ െexpሺܣᇱߚସ ൅ ,ܣሺߩ and	ହሻߚܩ ሻܩ ൌ െexpሺܣᇱߚ଺ ൅  ଻ሻ.  The four models differߚܩ

only in terms of what variables are substituted for “price” and “income” in equation (10).  Given 
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the assumed distribution for ε = (,ߟ	ߥ)’, each of these models gives rise to a log-likelihood function 

which is then optimized with respect to (β’,δ’)’.   The four models considered are: 

1)  Actual price tier—“price” = tier price at actual consumption level and “income” = actual 
income less the fixed connect charge (This model ignores utility-maximizing choice of the price 
step.) 
 
2) Average variable price—“price” = (Variable Cost of Bill)/(Actual Consumption) and 
“income” = actual income less the fixed connect charge 
 
3) Alternative actual price tier—“price” = tier price at their actual consumption and “income” = 
actual income less the fixed connect charge plus additional income due to nonlinear price 
 schedule (This model also ignores utility-maximizing choice of price step) 
 
4) Total Average Price—“price” = (Total Bill)/(Actual Consumption) and “income” = actual 
income 
 

Let ln(f(Y|X,θ)) denote the log-likelihood function for an observation from the demand 

model with non-linear pricing and ln(g(Y|X,γ) the log-likelihood function for one of four 

competing price response models.  Vuong (1989) proposed the following non-nested test between 

two competing parametric models for the conditional density of Y given X 

H:  E(ln(f(Y|X,θ*)) = E(ln(g(Y|X,γ*) versus K:  E(ln(f(Y|X,θ*)) > E(ln(g(Y|X,γ*)  (11)  

where E(.) is expectation with respect to true joint distribution of Y and X, θ* and γ* are plims of 

ML estimates of θ and γ.  The null hypothesis is that the expected value of the log-likelihood 

functions for both models with respect to h(Y,X), the true joint density of Y and X, are equal versus 

the alternative that the expected value for one model is greater than the other.  Failure to reject the 

null hypothesis implies that both models are equidistant from the true data generation process, 

whereas a rejection implies that the model with the log-likelihood ln(f(Y|X,θ*) has a statistically 

superior average log-likelihood function value. 

 To implement the hypothesis test, estimate one of the four alternative models, g(Y|X,γ) and 

compute Wi = ln(f(Yi|Xi,ߠ෠)) – ln(g(Yi|Xi,ߛො)),  the difference between the maximized log-likelihood 

function value for ith observation for each model where ߠ෠ is the maximum likelihood estimate of 

θ* and ߛො is the maximum likelihood estimate of γ*.  Vuong (1989) shows that under null hypothesis, 

Z =  √ܰ ഥܹ /ܵ is asymptotically N(0,1) where  N = number of customers ഥܹ ൌ ଵ

ே
∑ ௜ܹ
ே
௜ୀଵ  and S = 

ටଵ

ே
∑ ሺ ௜ܹ െ ഥܹ ሻଶ	ே
௜ୀଵ . 
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Table 3 shows the results of these hypothesis tests for VoM and Cobb for each of the four 

alternate price response models.  In all cases, the null hypothesis is overwhelmingly rejected 

against the alternative that the nonlinear price model has the highest value average log-likelihood. 

This is consistent with the conclusion that it provides a statistically superior description of the 

conditional density of Y given X relative for the four alternative models considered. 

5. Using Model to Reduce Revenue and Quantity Risk 

The estimates of the parameters of the household-level demand model given in Tables 1 

and 2 make it possible to compute an estimate of the distribution of a household’s water 

consumption and monthly bill for any nonlinear price schedule either conditional on the 

household’s assigned demographic characteristics or without conditioning on the household’s 

demographic characteristics. 

 The expected value and variance of these magnitudes can be computed as follows.  For a 

given price schedule that could depend on the household’s demographic characteristics, θC(w,A*), 

a household with demographics A* has expected consumption and the variance in this 

consumption equal to: 

E[w(P,θC,M,A*,Z,G,ε, βሻ] = ׬ ,ሺPݓ ,஼,Mߠ ,∗ܣ Z, G, s, βሻfሺݏ, ,ݏሻ݀ߜ
ஶ
ିஶ   (10) 

V[w*(P,θC,M,A*,Z,ܩ, ε, βሻ] 

׬= ሺݓ∗ሺP, ,஼,Mߠ ,∗ܣ Z, G, s, βሻ െ Eሾݓ∗ሺP, ,஼,Mߠ ,∗ܣ Z, G, ε, βሻሿሻଶ	fሺݏ, ݏሻ݀ߜ
ஶ
ିஶ   (11) 

where β and δ in the above expression are evaluated at the maximum likelihood estimates given in 

Tables 1 and 2. The expectations in the above expression are to be taken with respect to the 

distribution of ε given A* assigned by the rule based on equation (9).  A household with assigned 

demographic characteristics A* has an expected monthly water bill and variance of its monthly 

water bill equal to: 

E[R(θC(w*(P,θC,M,A*,Z,G,ε, βሻ, ׬ = [ሻ∗ܣ ܴሺߠ஼ሺݓ∗ሺP, ,஼,Mߠ ,∗ܣ G, s, βሻ	ܣ∗ሻfሺݏ, ,ݏሻ݀ߜ
ஶ
ିஶ  

 (12) 

V[R(ߠ௣(w*(P,θC,M,A*,ܩ, ε, βሻ,  = [∗ܣ
׬ ܴሺߠ஼ሺݓ∗ሺP, ,஼,Mߠ ,∗ܣ Z, G, s, βሻ, ሻ∗ܣ െ EሾRሺߠ஼ሺwሺP, ,஼,Mߠ ,∗ܣ Z, G, ε, βሻ, ,ݏfሺ	ሻሿሻଶ∗ܣ ݏሻ݀ߜ
ஶ
ିஶ .     

(13) 

For the case that the household i’s demographics are assumed to be unknown, the 

household’s expected monthly water consumption and bill and the variance in its monthly water 
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consumption and bill for the demographic characteristics-dependent increasing block price 

schedule, θC(w,A*), are equal to: 

E[w*(P,θC,M,A*,Z,G,ε, βሻ] = ∑ ,ሺ݅ݐݓ ݊ሻ ׬ ,ሺP∗ݓ ,஼,Mߠ ,௜௡ܣ Z, G, s, βሻfሺݏ, ,ݏሻ݀ߜ
ஶ
ିஶ

௅ሺ௜ሻ
௡ୀଵ  (14) 

V[w*(P,θC,M,A*,Z,ܩ, ε, βሻ] 

=∑ ׬ ሺݓ∗ሺP, ,஼,Mߠ ,∗ܣ Z, G, s, βሻ െ Eሾݓ∗ሺP, ,஼,Mߠ ,∗ܣ Z, G, ε, βሻሿሻଶ	fሺݏ, ݏሻ݀ߜ
ஶ
ିஶ

௅ሺ௜ሻ
௡ୀଵ , (15) 

and 

EሾRሺߠ஼ሺwሺP, ,஼,Mߠ A, G, ε, βሻ, Aሻሿ 	ൌ	 

∑ ׬ ,ሺ݅ݐݓ ݊ሻܴሺߠ஼ሺݓ∗ሺP, ,஼,Mߠ ,௜௡ܣ G, Z, s, βሻ, ,ݏ௜௡ሻfሺܣ ,ݏሻ݀ߜ
ஶ
ିஶ

௅ሺ௜ሻ
௡ୀଵ          (16) 

V[R(ߠ௣(w*(P,θC,M,A,ܩ, ε, βሻ, Aሻ]=∑ ׬ ,ሺ݅ݐݓ ݊ሻሺܴሺߠ஼ሺݓ∗ሺP, ,஼,Mߠ ,௜௡ܣ Z, G, s, βሻሻ െ
ஶ
ିஶ

௅ሺ௜ሻ
௡ୀଵ

																																																								EሾRሺߠ஼ሺwሺP, ,஼,Mߠ A, Z, G, ε, βሻ, Aሿሻଶ	fሺݏ,  (17)      .ݏሻ݀ߜ

The expectations in (14) to (17) are taken with respect to the distribution of ε = (,ߟ	ߥ)’ and the 

distribution of the demographic characteristics within the household’s Zip Code. The expectations 

in (10) to (13) are taken with respect to the distribution of ε = (,ߟ	ߥ)’ for the value of the 

household’s demographic characteristics assigned using the approach described above.  

Consequently, comparing the variance of water consumption and total revenues, given the 

assigned value of A and the variance with respect to the distributions of ε and A, provides a 

measure of the value of demographic information to utility.  It is also possible to substitute the 

posterior probabilities computed from equation (9) into equations (14) to (17) and compute the 

expected values and variances of sales and revenues based on these distributions of the 

demographic characteristics for household i.  

These expressions in (10) and (14) can also be used to compute analogues to the price 

elasticity and income elasticity of the demand for water.   For the case of the price elasticity this 

is computed as  

{E[w(P,θ,M,A*,Z,G, ε, βሻ] - E[w(P,θ+,M,A*,Z,G,ε, βሻ]}/{0.05*E[w(P,θC,M,A*,Z,ܩ, ε, βሻ]}    (18) 

where θ is the actual nonlinear price schedule charged by the utility and θ+ is the actual nonlinear 

price schedule with each price step multiplied by 1.05.   This “price elasticity” is the percent change 

in household i’s expected water consumption as a result of a 5 percent increase in all prices on the 

nonlinear price function divided by 0.05.   Computing an “income elasticity” as the percent change 

in expected consumption from a 5 percent increase in household i’s income divided by 5 percent 

yields the coefficient on logarithm of income.  Consequently, the model of demand with nonlinear 
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pricing and demographic characteristics in the price coefficient implies a different “price 

elasticity” for each household, but the same income elasticity for each household.   However, 

because demographic characteristics and the vegetation index are included in the income 

coefficient, the income “elasticity” also differs across households.  

The “price elasticities” can be computed conditional on the vector of the household’s 

demographic characteristics or unconditional on the household’s vector of demographic 

characteristics.  The only differences in the two “price elasticities” is whether the expectations in 

(18) are taken with respect to the distribution of A or assume a fixed value of A.   Figures 4(a) and 

4(b) compute the joint distribution of income and price elasticities for VoM and Cobb, 

respectively, using the posterior distribution of A, given in equation (9) for each observation in the 

sample.  There is considerable heterogeneity in these elasticity estimates for both utilities. 

However, the majority of the probability mass is concentrated on price and income elasticities that 

are less than one in absolute value. 

 It is also possible to compute the distribution of water consumption for all households in 

the utility’s service territory and the analogous aggregate demand elasticity estimates.  Suppose 

there are J types of households, where households of type j have a vector of observed attributes, 

Aj, and Hj is the number of type j customers in the utility’s service territory.   This implies that the 

expected sales of water by the utility (summed across all customers) associated with rate schedule 

θC(w,A) is: 

Expected System-wide Water Sales = ∑ Eሾݓ∗ሺP, ,஼,Mߠ ,௝ܣ G, ε, βሿܪ௝
௃
௝ୀଵ   (19) 

Variance in System-wide Water Sales = ∑ Varሾݓ∗൫P, ,஼,Mߠ ,௝ܣ G, ε, β൯ሿܪ௝
௃
௝ୀଵ .  (20) 

Following the same procedure for system-wide revenues yields: 

Expected System-wide Revenues = ∑ EሾRሺߠ஼ሺݓ∗൫P, ,஼,Mߠ ,௝ܣ G, ε, β൯, Aሿܥ௝
௃
௝ୀଵ  (21)   

Variance in System-wide Revenues = ∑ VarሾRሺߠ஼ሺݓ∗൫P, ,஼,Mߠ ,௝ܣ G, ε, β൯, Aሿܥ௝
௃
௝ୀଵ . (22) 

Given the estimated distribution of ε = (,ߟ	ߥ)’ and the distribution of demographic attributes in 

each Zip Code within the utility’s service territory, other functions of the distribution of system-

wide sales and revenues can be computed.  The water utility or its regulatory body might be 

interested in the probability that system-wide sales or revenues exceed or fall below a pre-specified 

value for a prospective rate schedule. The model estimates can be used to compute that probability. 
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 The aggregate or system-wide “price elasticity of demand” can be computed by finding the 

percentage increase in expected system-wide demand as a result of a 5 percent increase in all price 

steps faced by all customers divided by 5 percent.  The aggregate “income” elasticity is the 

percentage increase in expected system-wide demand as a result of a 5 percent increase in all 

customer incomes divided by 5 percent.  

6.  Counterfactual Price Schedules 

This section first quantifies the revenue risk reduction that is possible for the utility simply 

from gathering information on the demographic characteristics of its customers.  It then  reports 

on the computation of counterfactual price schedules to achieve two policy goals to demonstrate 

potential used of the model of demand.   

For VoM, I compute a counterfactual price schedule that is consistent with California’s 

current water demand reduction goals and unlikely to run afoul of Proposition 218, which requires 

that municipal water customers only pay for the cost of the water that they consume.   Specifically, 

I compute a price schedule which yields 25 percent less system-wide water sales than the existing 

price schedule with 95 percent probability and achieves the same system-wide expected revenue 

goals as the existing price schedule, while minimizing a measure of the financial burden of 

achieving these water consumption reduction goals across all classes of customers.  The price 

schedule chosen minimizes the weighted sum of the squares of the difference between expected 

payments by each household under the counterfactual schedule and the current price schedule 

weighted by the inverse of that household’s expected payments under the current price schedule.   

This objective function places the greatest burden to achieve water consumption reductions on 

households that currently have the largest water bills.  In solving this problem, the monthly fixed 

charge, FC, was reduced to achieve the goal of maintaining system-wide expected revenues equal 

to those under the current price schedule. 

For Cobb, I first compute a price schedule which yields the same or superior sales and 

revenue outcomes for the utility but minimizes aggregate revenue risk.  This price schedule 

minimizes the standard deviation of utility-wide water revenues subject to the constraints that the 

utility expects to sell no more water than it does under the current price schedule, and raises at 

least as much total revenue for the utility as the existing rate.  I then solve the same optimization 

problem subject to the same constraints, but now allowing the utility to set two price schedules 

that depend on value of the household’s NDVI.  Specifically, the utility is allowed to set a schedule 



 
 

23 
 

for households with an NDVI value less than 0.35 and one for households for an NDVI value 

greater than 0.35. For each of these counterfactual price schedules I impose two additional 

constraints.  First, the lowest marginal price in the counterfactual price schedule cannot be higher 

than the lowest marginal price in the actual price schedule.  Second, the highest marginal price in 

the counterfactual price schedule cannot be higher than the highest marginal price in the actual 

price schedule.   Each counterfactual price schedule is allowed to have as many marginal price 

steps as the actual price schedule subject to these two constraints.  For Cobb, the counterfactual 

price schedules did not change, FC, the monthly fixed charge that the household faces.   

Three main conclusions emerge from this counterfactual price schedule design exercise: 
 
1) The model of the household-level demand for a water utility can be used to reduce the system-
wide revenue or sales risk associated with achieving any water pricing goal. 
 
2) By compiling information on the demographic characteristics of their customers and building 
this information into the utility’s model of household-level water demand, utilities can 
significantly reduce (up to 96% for two utilities considered) both the water sales and revenue risk 
associated with any expected water sales and revenue goals. 
 
3) The customer-level model of demand incorporating demographic characteristics can be used 
to design a menu of price schedules that can be offered to households (that allows them to select 
which specific price schedule they would like to be on based on their NDVI index) to achieve a 
given water pricing goal for the utility. 
 
The price schedule optimization framework can readily incorporate constraints such as the 

majority of customers having the same or lower monthly water bills under the optimal price 

schedules compared to the current schedules. 

For both Cobb and VoM, the distribution of sales and revenues for each household is 

computed under three different assumptions about the distribution of demographic characteristics 

(in each zip code) in order to quantify the impact of compiling information on the demographic 

characteristics of each household in the utility’s service territory.  The first case assumes the 

demographic characteristics of each household are unknown, but drawn from the prior distribution 

for that zip code obtained from the PUMS data.  The second case assumes the household’s 

demographic characteristics are unknown, but drawn from the posterior distribution for that zip 

code obtained from the model estimated and equation (9).  The final set assumes the household’s 

demographic characteristics are known and set equal to the value of An with the highest posterior 

probability from equation (9). 
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Table 6(a) and 6(b) report the expected revenue and consumption per month per customer, 

the standard deviation of systemwide revenues, and the standard deviation of systemwide 

consumption per month for each of the three distributions of demographic characteristic for each 

household.  Two conclusions emerge from this table.  First, for both VoM and Cobb, the standard 

deviation in systemwide revenues for the case of known demographics is between 0.30 = 

(1711/5555) and 0.04 = (2143/59091) of the value for case that the demographics are drawn from 

the prior distribution of An. Second, using the posterior distribution instead of the prior distribution 

of An yields an estimate of systemwide standard deviation of revenues that is slightly larger than 

the value for the case where the vector of demographic characteristics is assumed to be known.  

Taken together, these results emphasize that even imperfect knowledge of the value of An, which 

is obtained from estimating the demand model and computing the posterior distribution of An, can 

significantly reduce the sales and revenue risk faced by each utility.   For this reason, all of our 

counterfactual computations are based on this posterior distribution for each utility. 

6.1.  VoM—Demographics Drawn from Posterior Distribution 

 This section considers a set of counterfactual price schedule choices that reflect policy 

goals and constraints relevant to California during the summer of 2015, the fourth consecutive 

summer of low water availability in the state.  As a consequence, in the spring of 2015, Governor 

Jerry Brown issued an executive order requesting a 25 percent reduction in state-wide urban water 

consumption relative to 2013.  A pre-existing legal constraint has further complicated the ability 

of municipal utilities to achieve this goal. 

Proposition 218 (The Right to Vote on Taxes Initiative) requires that municipal utility 

consumers only pay what it costs to provide them with the water that they consume.  AB 2882 

(Allocation-based conservation water pricing), signed into law in 2008, attempts to clarify how 

nonlinear pricing of water can be implemented to avoid running afoul of Proposition 218.  

However, a recent lawsuit filed by customers of the municipal utility in San Juan Capistrano and 

the resulting decision which struck down the utility’s increasing block rate structure has led to 

considerable uncertainty over the use of nonlinear pricing of water in California (Stephens, 2015).   

One possible solution to this problem is to determine a system-wide average cost of 

delivering a thousand gallons of water for the utility and then setting a nonlinear price schedule so 

that the revenues recovered from each type of household (as determined by their demographic 

characteristics) equal this average cost times the amount of water they consume.  Because this 
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average cost information is not available for VoM, an aggregate revenue constraint is imposed so 

that households in the utility service territory do not pay more under the new schedule than they 

were under the existing price schedule.  (The constraint implicitly assumes that the utility was only 

recovering the cost of the water supplied under the existing schedule.)  The other constraint on the 

counterfactual price schedule is that it reduces system-wide water consumption by 25 percent 

relative to expected consumption under the existing schedule with at least a 95 percent probability.   

The objective function assumed for the optimal tariff design problem is to minimize the 

weighted sum of squared differences between each household’s expected monthly bill under the 

current price schedule and the household’s expected monthly bill under the counterfactual price 

schedule (where the weight applied to each household-level squared difference is the inverse of 

that household’s expected monthly bill under the current price schedule).   This objective function 

is designed to obtain the largest revenue increases from households with the largest current water 

bills and the smallest revenue increases from households with the smallest current water bills.   

Finding this price schedule requires solving the following optimization problem: 

min θ(w) ∑ ሾ		ܧሺܴ௛൫ߠሺݓሻ൯
ு
௛ୀଵ െ  ሻ൯  (23)ݓ௘ሺߠሺܴ௛൫ܧ/ሿଶ		ሻ൯ݓ௘ሺߠሺܴ௛൫ܧ

subject to Prob( ∑ ௛ሺݍ
ு
௛ୀଵ ሻሻݓሺߠ ൏ ܳሺݎ݁ݐܽݓሻሻ 	൒ 0.95 

E( ∑ ܴ௛ሺ
ு
௛ୀଵ ሻሻݓሺߠ െ	ܴ௛ሺߠ௘ሺݓሻሻሻ ൑ 	0 

where θ(w) is the price schedule being solved for, θe(w) is the existing price schedule, Rh(൫ߠሺݓሻ൯ 

is the revenue received from household h under the price schedule θ(w), qh(θ(w)) is the quantity 

demanded by household h under the price schedule θ(w), and E(.) is the expectation operator. 

While there are many other possible objective functions one can optimize to obtain 

Governor Brown’s desired 25 percent reduction in system-wide water consumption with a high 

probability,   this one has the desirable property of putting less of the burden on households that 

are presently spending less on water.  

Figure 8(a) plots the actual price schedule and price schedule that solves (23).   This 

optimization problem also required reducing FC by 13 percent in order to achieve the expected 

revenue constraint.  Figure 8(b) plots the simulated distribution of household-level consumption 

under the current price schedule set by VoM and simulated distribution of household-level 

consumption under the counterfactual price schedule. 
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6.2.  Cobb—Demographics Drawn from Posterior Distribution 

 Figure 6(a) plots actual price schedule faced by customers in Cobb County.  This figure 

also plots two optimal counterfactual NDVI-based price schedules.  These price schedules are 

computed by minimizing the standard deviation of systemwide revenues subject to the constraints 

that expected revenues are at least as large as under the current price schedule and expected water 

sales are no larger than under the current price schedule.   Additionally, one price schedule will be 

assigned to customers with a NDVI value of less than 0.35 and the other is assigned to customers 

with a value less than 0.35.  Recall that the constraint that the lowest step of each of these schedules 

is constrained from below by the lowest price on the actual price schedule and the highest price 

step is constrained from above by the highest price on the actual price schedule.  This form of 

NDVI-based pricing reduces the standard deviation of systemwide revenues relative to the actual 

price schedule by 2 percent. 

 Figure 6(b) plots the two optimal NDVI-based price schedules and the single price schedule 

that minimizes the standard deviation of systemwide revenues subject to achieving at least as much 

expected revenues and no larger expected water sales than the actual price schedule.   This single 

price schedule achieves slightly more than a 1 percent reduction in the standard deviation of 

systemwide revenues relative to the actual price schedule.   

 A number of other counterfactual price schedules can be computed that depend on 

demographic characteristics, elements of Z, and combinations of these variables. Reductions in the 

standard deviation of systemwide revenues of over 10 percent are possible with greater 

differentiation of price schedules based on household characteristics.   

6.3.  Assessing the Relative Size of Optimization Error 

 This section provides an ex post check on the reasonableness of the assumption of the 

existence of optimization error or technological uncertainty associated with water use.  As shown 

in Section 5, the demand model can be used to compute the distribution of annual water 

consumption for each household in the VoM sample.  There are three sources of randomness in 

annual water consumption (AWC).  First, is uncertainty in the vector of demographic 

characteristics, A.  The second is uncertainty in unobserved heterogeneity, η. The third is the 

optimization error or technological uncertainty, ν.  Let ν(annual) equal the vector of values of ν 

for all billing cycles in the last year of the sample, and η(annual) equal the vector of values of η 

for all billing cycles in the last year of the sample.  For each household in the sample, compute the 



 
 

27 
 

variance in AWC integrating with respect to the distributions of ν(annual), η(annual) and prior 

distribution of A.  Conditional on the value of ν(annual) compute the variance of AWC for each 

household.  The ratio of Var(AWC|ν(annual)), the conditional variance of annual consumption 

given ν(annual), to, Var(AWC), the unconditional variance of annual consumption, quantifies the 

impact of optimization error or technological uncertainty on the variance of annual consumption. 

Figure 7 plots the histogram of values of Var(AWC|ν(annual))/Var(AWC) for each 

household in the VoM sample.  The average value of this ratio is 0.91, which implies less than 10 

percent of the variance in annual consumption can be attributed to optimization error. This 

histogram ranges from 0.85 to 0.95.  Values in this range are plausibly consistent with ν 

representing optimization error or technological uncertainty in the household’s water demand.     

7. Conclusions 

The model of demand can be used to simulate the distribution of the customer-level billing 

cycle level household demand for water for any increasing block price schedule.  This model can 

then be used to simulate the distribution of the system-wide demand for water for any nonlinear 

price schedule.  The model can then be used to set price schedules that achieve a wide range of 

water supply risk or revenue risk management goals in the utility’s rate design process.   

An important implication of this modeling and simulation exercise is to demonstrate the 

tremendous reduction in revenue risk the utility faces if it is has the information data on the 

demographic characteristics of its households.  For the case of Cobb, the measure of the variance 

of system-wide revenue conditional on the assumed knowledge of the vector of demographic 

characteristics was roughly 4% of the measure of the variance in system-wide revenues, assuming 

only the distribution of demographic in each Zip Code in the utility’s service area was known. 

The model was used to show that further revenue variance reductions could be achieved 

by demographics-based price schedules.  The household-level water demand model was used to 

solve for the optimal (minimum system-wide revenues) demographic-based price schedules.  

Again, significant variance reductions were possible without be used to compute the distribution 

expected demand and variance in demand conditional on demographics.  The model can even be 

used to assist the utility in managing water shortfall and potential revenue shortfalls.   

The results presented here demonstrate that there is significant value to be had for the utility 

from understanding the distribution of household level demand in designing price schedules to 

achieve competing policy goals.  In particular, by compiling demographic data on customers and 



 
 

28 
 

using such data in customer-level models of demand, utilities can significantly reduce the variance 

in both the system-wide revenues and the amount of water sold in achieving any price schedule 

design process.  This results implies up to a roughly 96% reduction in the revenue risk that the 

utility faces if demographic characteristics of its customers is known, suggesting significant 

economic benefits to water utilities from collecting demographic data on its customers and 

formulating household-level demand models for price schedule design. 
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Table 1:  Model Parameter Estimates and Standard Errors—Valley of The Moon, California 

Parameter Name Estimate

Standard Error 
(Outer Product of 
Gradients) 

Standard 
Error (White 
(1982) 
Formula) 

Constant in the income elasticity formula -0.31125 0.01867 0.09857 
Constant in the price elasticity formula -0.83170 0.10444 0.31342 
Std.dev. of household heterogeneity, η 0.27898 0.01190 0.08486 
Std.dev. of optimization error, ν 0.26800 0.01179 0.08305 
Constant -6.33831 0.38147 0.55999 
Average high temp in billing cycle 0.00782 0.00169 0.00111 
75th - 25th percentile of temperature in billing cycle -0.01843 0.00203 0.00239 
Total precipitation in billing cycle 0.00670 0.00459 0.00236 
75th - 25th percentile of precipitation in billing cycle -0.87861 0.37849 0.13993 
Number of people over 18 in house 0.11379 0.02726 0.01570 
Number of people under 18 in house 0.71123 0.02683 0.08927 
House acreage above 1 acre 0.00088 0.03371 0.00106 
Number of bedrooms in house 0.48981 0.07595 0.04090 
Price*temp -0.03615 0.00169 0.00862 
Price*precip 0.00792 0.00222 0.00108 
Price* # of adults 0.04054 0.03586 0.01603 
Price* # of children 0.42252 0.02051 0.02822 
Price* # of bedrooms 0.25201 0.01033 0.02526 
Income* # of bedrooms -0.02861 0.01493 0.00560 
Vegetation Index -0.15522 0.40903 0.00989 
Income*Vegetation Index 0.02361 0.01166 0.00903 
Price*Vegetation Index 0.05847 0.02878 0.00668 

 
Number of customers                                                     2001 
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Table 2:  Model Parameter Estimates and Standard Errors—Cobb County, Georgia 

Parameter Name Estimate 

Standard 
Error 
(Outer 
Product of 
Gradients) 

Standard Error 
(White (1982) 
Formula) 

Constant Term in income elasticity formula -1.76995 0.06094 0.10967 
Constant Term in price elasticity formula -0.21491 0.09163 0.17331 
Std.dev. of household heterogeneity, η 0.03006 0.02165 0.01576 
Std.dev. of optimization error, ν 0.35782 0.00149 0.00559 
Constant 0.40180 0.08892 0.13906 
Average high temp in billing cycle -0.00574 0.00113 0.00123 
75th - 25th percentile of temperature in billing cycle 0.00318 0.00156 0.00137 
Total precipitation in billing cycle 0.00448 0.00644 0.01009 
75th - 25th percentile of precipitation in billing cycle -0.40481 0.16279 0.16473 
Number of people over 18 in house 0.54096 0.02075 0.05288 
Number of people under 18 in house -0.33908 0.01233 0.04119 
House acreage above 1 acre -0.11647 0.03392 0.04544 
Number of bedrooms in house 0.28470 0.03759 0.08463 
Price*temp -0.00569 0.00039 0.00081 
Price*precip -0.00105 0.00140 0.00433 
Price* # of adults 0.08484 0.00425 0.00732 
Price* # of children 0.01378 0.00292 0.01437 
Price* # of bedrooms 0.50440 0.02261 0.02493 
Income* # of bedrooms 0.57176 0.02174 0.02191 
Vegetation Index -0.02372 0.06132 0.08541 
Income*Vegetation Index 0.51465 0.07720 0.19072 
Price*Vegetation Index 0.41746 0.07557 0.21559 

 
Number of customers                                                       1034 
 
 
 
 

Table 3:   Non-Nested  Test of Nonlinear Pricing Model Versus Alternative Price Model 
Utility Alternative Model  
 Actual Price Tier Average Variable 

Price 
Alternative Actual 
Price Tier 

Total Average 
Price 

Valley of the 
Moon 

17.83 16.56 16.78 11.66 

Cobb County 15.24 14.90 15.79 18.11 
Note:  Test statistic is asymptotically distributed as a N(0,1) random variable under null hypothesis.   All 
tests overwhelmingly reject null hypothesis in favor of nonlinear pricing model. 
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Table 4(b):   Revenue Uncertainty and Demographic Information—Cobb 
 E[Revenue 

per bill] 
sd[System-

wide revenue] 
E[Consumption per bill] sd[System-wide consumption] 

Demographics 
drawn from 

prior 

$73.86 $59091 6.82 TGAL 4560 TGAL 

Demographics 
drawn from 

posterior 

$55.01 $3434 5.34 TGAL 344 TGAL 

Demographics 
predicted 

$55.20 $2143 5.36 TGAL 213 TGAL 

Note:  TGAL = Thousands of gallons 
  

Table 4(a):   Revenue Uncertainty and Demographic Information--VoM 
 E[Revenue 

per month per 
bill] 

sd[System-
wide revenue] 

E[Consumption per month 
per bill] 

sd[System-wide consumption] 

Demographics 
drawn from 

prior 

$32.78 $5555 7.00 TGAL 1422 TGAL 

Demographics 
drawn from 

posterior 

$34.93 $2025 7.67 TGAL 485 TGAL 

Demographics 
predicted 

$35.29 $1711 7.76 TGAL 395 TGAL 
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Figure 1(a) 

 
Figure 1(b) 

  
Figure 1(c) 
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Figure 2(a) 

 
Figure 2(b) 
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Figure 3(a):   Histogram of NDVI for Valley of the Moon      

 
Figure 3(b):   Histogram of NDVI for Cobb County, Georgia 
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Figure 4(a):  Histogram of Price and Income Elasticities for VoM  
(Demographics Drawn from Posterior Distribution) 

 
 

Figure 4(b):  Histogram of Price and Income Elasticities for Cobb 
(Demographics Drawn from Posterior Distribution) 
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Figure 5(a):  Minimum Loss Conservation Price Schedules 
(Demographic Drawn from Posterior Distribution) 

 
Figure 5(b):  Histogram of Consumption Under Conservation Price Schedules 

(Demographics Drawn from Posterior Distribution) 
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Figure 6(b):  Vegetation Index-Based Price Schedules 
(Demographics Drawn from Posterior Distribution) 

 
Figure 6(b):  Vegetation Index-Based Price Schedules 

(Demographics Drawn from Posterior Distribution) 
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Figure 7:  Decomposition of Variance of Annual Consumption—VoM 
(Demographics Drawn from Prior Distribution) 

 




