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1. Introduction

In	 an	 increasingly	 knowledge‐based	 U.S.	 economy,	measuring	 intangible	 assets,	 including	

research	 and	development	 (R&D)	assets,	 is	 critical	 to	 obtaining	 a	 complete	picture	of	 the	

economy	and	explaining	its	sources	of	growth.	Corrado	et	al.	(2007)	pointed	out	that	after	

1995	intangible	assets	reached	parity	with	tangible	assets	as	a	source	of	growth.	Despite	the	

increasing	 impact	 of	 intangible	 assets	 on	 economic	 growth,	 it	 is	 difficult	 to	 capitalize	

intangible	 assets	 in	 the	 national	 income	 and	 product	 accounts	 (NIPAs)	 and	 therefore	 to	

measure	their	impacts	on	economic	growth.	The	difficulties	arise	because	the	capitalization	

involves	several	critical	but	difficult	measurement	issues.	One	of	these	is	the	measurement	

of	the	depreciation	rate	of	intangible	assets,	including	R&D	assets.		

The	 depreciation	 rate	 of	 R&D	 assets	 is	 required	 for	 capitalizing	 R&D	 investments	 in	 the	

NIPAs	for	two	reasons.	First,	the	depreciation	rate	is	needed	to	construct	knowledge	stocks	

– it	is	the	only	asset‐specific	element	in	the	commonly	adopted	user	cost	formula.	This	user

cost	 formula	 is	 used	 to	 calculate	 the	 flow	 of	 capital	 services	 (Jorgenson,	 1963,	 Hall	 and

Jorgenson,	 1967,	 Corrado	 et	 al.,	 2007,	 Aizcorbe	 et	 al.,	 2009),	 which	 is	 important	 for

examining	how	R&D	capital	affects	the	productivity	growth	of	the	U.S.	economy	(Okubo	et

al.,	2006).	Second,	the	depreciation	rate	is	required	in	order	to	measure	the	rate	of	return	to

R&D	(Hall,	2005).

As	 Griliches	 (1996)	 concludes,	 the	 measurement	 of	 R&D	 depreciation	 is	 the	 central	

unresolved	problem	in	the	measurement	of	the	rate	of	return	to	R&D.	The	problem	arises	

from	 the	 fact	 that	 both	 the	 price	 and	 output	 of	 R&D	 capital	 are	 generally	 unobservable.	

Additionally,	there	is	no	arms‐length	market	for	most	R&D	assets	and	the	majority	of	R&D	

capital	 is	 developed	 for	 own	 use	 by	 the	 firms.	 Therefore	 it	 is	 difficult	 to	 independently	

compute	the	depreciation	rate	of	R&D	capital	(Hall,	2005;	Corrado	et	al.,	2007).	Moreover,	

unlike	 tangible	 capital	 which	 depreciates	 partly	 due	 to	 physical	 decay	 or	 wear	 and	 tear,	

R&D	capital	depreciates	mainly	because	its	contribution	to	a	firm’s	profit	declines	over	time.	

The	 driving	 forces	 are	 obsolescence	 and	 competition	 (Hall,	 2005),	 both	 of	 which	 reflect	

individual	 industry	 technological	 and	 competitive	 environments.	 Given	 that	 these	

environments	can	vary	immensely	across	industries	and	over	time,	the	resulting	(private)	

R&D	depreciation	rates	should	also	vary	across	industries	and	over	time.		
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In	 response	 to	 these	measurement	 difficulties,	 previous	 research	has	 adopted	 four	major	

approaches	 to	 calculate	 R&D	 depreciation	 rates:	 patent	 renewal,	 production	 function,	

amortization,	 and	 market	 valuation	 (Mead,	 2007).	 As	 noted	 by	 Hall	 et	 al.	 (1986)	 and	

summarized	by	Mead	(2007),	all	approaches	encounter	the	problem	of	insufficient	variation	

in	 R&D	 spending	 over	 time	 and	 thus	 cannot	 separately	 identify	 R&D	 depreciation	 rates	

without	 imposing	strong	 identifying	assumptions.	As	discussed	 in	Mead	(2007),	estimates	

from	 amortization	 models	 (Lev	 and	 Sougiannis,	 1996;	 Ballister	 et	 al.,	 2003)	 are	 derived	

from	a	more	general	set	of	models	that	attempt	to	explain	the	returns	on	R&D	investment.	

However,	the	estimates	are	subject	to	concerns	related	to	the	strong	assumptions	such	as	an	

assumed	 relationship	between	 the	 amortization	 rate	of	R&D	 capital	 and	 its	 earnings,	 and	

operating	income	serving	as	a	proxy	for	R&D	benefits	(Lev	and	Sougiannis,	1996).			

Given	the	fact	that	firms’	propensities	to	patent	vary	across	industries	and	technology	areas,	

the	 patent	 renewal	 approach	 cannot	 capture	 all	 innovation	 activities	 (Hall	 et	al.,	 2014).	

Moreover,	 innovations	may	 remain	 valuable	 even	 if	 their	 patents	 have	 expired,	 given	 the	

other	ways	in	which	firms	capture	returns	to	R&D	(Levin	et	al.,	1987).	The	patent	renewal	

approach	also	suffers	from	the	failure	to	observe	the	right	hand	tail	of	a	very	skewed	value	

distribution	due	to	the	relatively	low	level	of	renewal	fees.	The	identification	problem	can	

be	mitigated	by	using	citation‐weighted	patent	data,	but	there	is	a	truncation	bias	problem	

arising	due	to	an	incomplete	observed	citation	life	of	patents	(Hall	et	al.,	2000).		

Using	 the	 production	 function	 and	 market	 value	 approaches	 has	 the	 advantage	 of	

incorporating	all	R&D	rather	than	 just	 that	which	 is	patented.	However,	 these	approaches	

generally	rely	on	the	assumption	that	the	average	realized	rate	of	return	is	the	same	as	the	

expected	 rate	 of	 return	 (Hall,	 2005).	 This	 assumption	 allows	 one	 to	 back	 out	 the	

depreciation	rate	which	makes	the	two	consistent.	We	use	a	similar	approach	here,	in	that	

we	assume	a	normal	rate	of	return	to	R&D	when	computing	the	profit	function,	although	we	

do	not	explicitly	require	it	to	be	equal	to	the	realized	rate.		

An	 additional	 complication	 is	 the	question	of	 a	 gestation	 lag	 for	 the	output	 of	R&D.	Most	

earlier	research	has	failed	to	deal	with	the	issue	of	gestation	lags	by	treating	them	as	zero	or	

one	year	to	calculate	the	R&D	capital	stock	(Corrado	et	al.,	2007,	but	see	Hall	and	Hayashi,	

1989	for	an	exception).	Because	the	product	development	life	cycle	varies	across	industries,	

this	treatment	is	questionable	for	R&D	assets	so	we	explore	the	use	of	a	gestation	lag	here.		
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This	paper	 introduces	a	new	approach	by	developing	a	 forward‐looking	profit	model	 that	

can	be	used	to	calculate	both	constant	and	time‐varying	industry‐specific	R&D	depreciation	

rates.	The	model	 is	built	 on	 the	 familiar	 concept	 that	R&D	capital	depreciates	because	 its	

contribution	to	a	firm’s	profit	declines	over	time.	Our	forward‐looking	profit	model	rests	on	

some	 relatively	 simple	 assumptions	 that	 are	 plausible	 given	 the	 nature	 of	 the	 data	 and	

allows	us	 to	 estimate	R&D	depreciation	 rates	by	using	only	data	on	R&D	 investment	 and	

sales	or	industry	output,	which	is	often	the	only	data	available	to	statistical	agencies	for	this	

purpose.		

The	 model	 is	 applied	 to	 the	 BEA‐NSF	 industry‐level	 dataset	 to	 calculate	 constant	 R&D	

depreciation	 rates	 for	 all	 ten	 R&D	 intensive	 industries	 identified	 in	 BEA’s	 R&D	 Satellite	

Account	 (R&DSA).	 This	 dataset	 contains	 BEA‐NSF	 NAICS‐based	 establishment‐level	

industry	output	and	R&D	investments	in	ten	R&D	intensive	industries.	The	estimates	show	

that	 the	 derived	 R&D	 depreciation	 rates	 are	 consistent	 with	 the	 conclusion	 from	 recent	

studies	 that	 the	 rates	 should	 be	 higher	 than	 the	 traditional	 assumption	 (15	percent)	 and	

vary	 across	 industries.	 We	 also	 apply	 the	 model	 to	 estimate	 the	 industry‐specific	 time‐

varying	 R&D	 deprecation	 rates	 for	 the	 ten	 R&D‐intensive	 industries.	 The	 results	 are	 in	

general	consistent	with	industry	observations	on	the	pace	of	technological	change	or	reflect	

the	 appropriability	 condition	of	 its	 intellectual	 property,	 although	 in	 some	 cases	 they	 are	

quite	noisy	due	to	the	limited	number	of	observations	available.		

The	 remainder	 of	 this	 paper	 is	 organized	 as	 follows.	 Section	 2	 sets	 out	 our	 new	 R&D	

investment	model.	Section	3	presents	a	firm	and	industry‐level	data	analysis	that	assumes	

constant	depreciation	 rates	over	 time.	 Section	4	presents	 time‐varying	depreciation	 rates	

for	five	selected	BEA’s	R&D	intensive	industries.	Section	5	presents	the	first	cross‐country	

comparison	 of	 R&D	 depreciation	 rates	 between	 the	 U.S.	 and	 Japan	 for	 several	 key	 R&D	

intensive	industries,	and	concluding	remarks	are	given	in	Section	6.		

2. Model  

Our	 model	 assumes	 that	 business	 R&D	 capital	 depreciates	 because	 its	 contribution	 to	 a	

firm’s	profit	declines	over	time.	R&D	capital	generates	privately	appropriable	returns;	thus,	

it	depreciates	when	its	appropriable	return	declines	over	time.	This	assumption	ignores	any	

spillover	benefits	that	may	continue	past	the	life	of	the	R&D	assets	in	generating	profits,	but	

is	 an	 appropriate	 assumption	 when	 measuring	 the	 private	 rate	 of	 return	 to	 R&D	
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investments.	The	expected	R&D	depreciation	rate	is	a	necessary	and	important	component	

of	a	firm’s	R&D	investment	model.	A	profit‐maximizing	firm	will	invest	in	R&D	such	that	the	

expected	marginal	 benefit	 equals	 the	marginal	 cost.	 That	 is,	 in	 each	 period	 t,	 a	 firm	will	

choose	 an	 R&D	 investment	 amount	 to	 maximize	 the	 net	 present	 value	 of	 the	 expected	

returns	to	R&D	investment:		

	
0

( )(1 )
max [ ]

(1 )t

j
t j d t

t t t t j dR
j

q I R
E R E

r





 




 
    

  
 		 (1) 	 		 	

where	Rt	 is	 the	R&D	 investment	amount	 in	period	 t,	qt	 is	 the	sales	 in	period	 t,	I(Rt)	 is	 the	

profit	rate	due	to	R&D	investment,	δ	is	the	R&D	depreciation	rate,	and	r	is	the	cost	of	capital.	

The	parameter	d	is	the	gestation	lag	and	is	assumed	to	be	an	integer	which	is	no	less	than	

0.1	R&D	 investment	 in	 period	 t	will	 contribute	 to	 the	 profits	 in	 later	 periods	 but	 at	 a	

geometrically	declining	rate.	We	assume	that	the	sales	q	for	periods	later	than	t	grows	at	a	

constant	 growth	 rate,	݃.	 That	 is,	  1t

j

t jq q g   .	 This	 assumption	 is	 consistent	with	 the	

fact	that	the	output	of	most	R&D	intensive	industries	grows	fairly	smoothly	over	time	(See	

Figure	A‐1	in	the	appendices).		

Place	figure	1	here.	

To	 resolve	 the	 issue	 that	 the	 prices	 of	 most	 R&D	 assets	 are	 generally	 unobservable,	 we	

define		I(R)	as	a	concave	function:	

	 ( ) 1 exp
R

I R I


        
		 (2)	 	

with	 I’’(R)	 <	 ᇱሺܴሻܫ	,.0 ൌ
ூಈ
ఏ
exp	ሺ

ିோ

ఏ
ሻ ൐ ᇱሺ0ሻܫ	,0 ൌ

ூಈ
ఏ
,	 and	limோ→ஶ ሺܴሻܫ ൌ 	Figure	ஐ.ܫ 1	 depicts	

how	the	function	I	gradually	increases	asymptotically	to	I,	with	R,	the	current‐period	R&D	

investment.	 This	 functional	 form	has	 few	parameters	but	nevertheless	 shows	 the	desired	

concavity	with	respect	to	R.	 In	this,	our	approach	 is	similar	to	that	adopted	by	Cohen	and	

Klepper	 (1996),	who	show	that	when	 there	are	 fixed	costs	 to	an	R&D	program	and	 firms	

																																																													

1	The	paper	has	defined	the	gestation	lag,	d,	as	how	long	the	R&D	investment	starts	contributing	the	

firm’s	 profit.	 This	definition	 follows	what	 is	 defined	 in	 the	U.S.	National	 Science	Foundation	 (NSF)	

2010	Business	R&D	and	Innovation	Survey	(BRDIS).	
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have	multiple	projects,	 the	resulting	R&D	productivity	will	be	heterogeneous	across	 firms	

and	 self‐selection	will	 ensure	 that	 the	 observed	 productivity	 of	 R&D	will	 vary	 negatively	

with	firm	size.	Our	model	incorporates	the	assumption	of	diminishing	marginal	returns	to	

R&D	investment	implied	by	their	assumptions,	which	is	more	realistic	than	the	traditional	

assumption	of	constant	returns	to	scale	(Griliches,	1996).	In	addition,	the	model	implicitly	

assumes	that	 innovation	 is	 incremental,	which	 is	appropriate	 for	 industry	aggregate	R&D,	

most	of	which	is	performed	by	large	established	firms.		

The	 function	 I	 includes	 a	 parameter		 	 that	 defines	 the	 investment	 scale	 for	 increases	 in	

R&D	 and	 acts	 as	 a	 deflator	 to	 capture	 the	 increasing	 time	 trend	 of	 R&D	 investment	 as	 a	

component	 of	 investment	 in	 many	 industries.	 The	 value	 of	 	 can	 vary	 from	 industry	 to	

industry,	 allowing	different	R&D	 investment	 scales	 for	different	 industries.	 In	 Figure	A‐2,	

the	 BEA‐NSF	 industry	 data	 show	 that	 the	 average	 R&D	 investment	 in	 most	 industries	

increases	greatly	over	a	period	of	two	decades,	and	therefore	we	expect	that	the	investment	

scale,	θ,	needed	to	achieve	the	same	increase	in	profit	rate	should	grow	accordingly.		

Using	 this	 function	 for	 the	 profitability	 of	 R&D,	 the	 R&D	 investment	model	 becomes	 the	

following:	

	

 

 
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

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 
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 
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  
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


		 (3)	

Note	that	we	have	assumed	that	d,	r,	and	δ	are	known	to	the	firm	at	time	t.	Because	θ	varies	

over	 time,	 we	 model	 the	 time‐dependent	 feature	 of	 		by	  0 1
t

t G   ,	 where	ܩ	is	 the	

growth	 rate	 of	 θt.	 To	 estimate	 G,	 we	 assume	 that	 the	 growth	 pattern	 of	 industry’s	 R&D	

investment	and	its	R&D	investment	scale	are	similar	and	we	estimate	G	by	fitting	the	data	

for	R&D	investment	to	the	equation,	  0 1
t

tR R G  .	This	approach	is	 justified	by	the	fact	

that	BEA	data	on	most	industry	R&D	grows	somewhat	smoothly	over	time	(See	Figure	A‐2),	

Using	this	assumption,	Equation	(3)	becomes:		

	
 

   Ω 1
0 (

1
x
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  
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      
     

		 (4)	
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Assuming	 profit	 maximization,	 the	 optimal	 choice	 of	ܴ௧	implies	 the	 following	 first	 order	

condition:	

௧ߨ߲
߲ܴ௧

ൌ െ1 ൅ ݌ݔ݁ ൤
െܴ௧

଴ሺ1ߠ ൅ ሻ௧ܩ
൨ ∙

Ωܫ
଴ሺ1ߠ ൅ ሻ௧ܩ

∙
௧ሺ1ݍ ൅ ݃ሻௗ

ሺ1 ൅ ݎሻௗିଵሺݎ ൅ ߜ െ ݃ ൅ ሻߜ݃
ൌ 0			ሺ5ሻ	

For	estimation,	we	add	a	disturbance	to	this	equation	(reflecting	the	fact	that	it	will	not	hold	

identically	for	all	industries	in	all	years)	and	then	estimate	θ0	and	the	depreciation	rate	.	

3. Estimation with constant R&D depreciation rates 

As	a	 first	 step	 in	our	 empirical	 analysis,	we	estimate	 the	 time‐constant	R&D	depreciation	

rates	based	on	the	 industry‐level	BEA‐NSF	dataset	 from	1987	to	2007.	The	BEA‐NSF	data	

that	we	use	are	designed	to	measure	true	industry	aggregates	(correcting	for	such	things	as	

firm	presence	in	multiple	industries	and	multiple	countries,	something	we	are	unable	to	do	

with	Compustat	data).	2	In	addition,	unlike	the	Compustat	dataset	which	contains	only	the	

data	 of	 large	 publicly	 traded	 firms,	 the	 BEA‐NSF	 data	 better	 represent	 the	 industry	 by	

including	firms	with	5	or	more	employees.3	

The	model	used	for	estimation,	based	on	equation	(5),	is	shown	below:	

௧ߝ ≡
൫1 ൅ ෠൯ܩ

௧

ஐܫ
݌ݔ଴݁ߠ ൥

ܴ௧

଴൫1ߠ ൅ ෠൯ܩ
௧൩ െ

௧ሺ1ݍ ൅ ො݃ሻௗ

ሺ1 ൅ ݎሻௗିଵሺݎ ൅ ߜ െ ො݃ ൅ ො݃ߜሻ
		ሺ6ሻ	

Where	 ĝ 	and	 Ĝ 	are	estimated	using	the	entire	time	period.	In	order	to	estimate,	we	need	

to	make	assumptions	about	IΩ,	r,	and	d.	The	value	of	IΩ	can	be	inferred	from	the	BEA	annual	

return	rates	of	all	assets	for	non‐financial	corporations.	As	Jorgenson	and	Griliches	(1967)	

argue,	in	equilibrium	the	rates	of	return	for	all	assets	should	be	equal	to	ensure	no	arbitrage,	

and	so	we	can	use	a	common	rate	of	return	for	both	tangibles	and	intangibles	(such	as	R&D	

assets).	For	simplicity,	IΩ	is	set	to	be	the	average	return	rates	of	all	assets	for	non‐financial	

corporations	during	1987‐2007,	which	is	8.9	percent.	In	addition,	in	equilibrium	the	rate	of	

return	should	be	equal	to	the	cost	of	capital.	Therefore,	we	use	the	same	value	for	r.	Later	in	

the	paper	we	perform	a	sensitivity	analysis	using	time‐varying	rates	of	return,	based	both	
																																																													

2	See	Hall	and	Long	(1999)	for	a	full	discussion	of	the	differences	between	NSF	and	Compustat	data.	
3	The	R&D	data	come	from	the	NSF’s	BRDIS.	BRDIS	is	a	nationally	representative	sample	of	all	
companies	with	5	or	more	employees	in	all	industries.	
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on	the	3	month	T‐bill	rate	plus	a	risk	adjustment	of	4	per	cent	and	on	the	BEA’s	own	time‐

varying	rate	of	return	to	assets.		

We	 use	 a	 2‐year	 gestation	 lag	 d,	 which	 is	 consistent	 with	 the	 finding	 in	 Pakes	 and	

Schankerman	(1984)	who	examined	49	manufacturing	firms	across	industries	and	reported	

that	gestation	lags	between	1.2	and	2.5	years	were	appropriate	values	to	use	(see	also	Hall	

and	Hayashi,	1989).	In	addition,	according	to	the	recent	U.S.	R&D	survey	conducted	by	BEA,	

Census	Bureau	and	National	Science	Foundation	(NSF)	in	2010,	the	average	gestation	lag	is	

1.94	years	for	all	industries.	4	We	also	report	estimates	using	a	gestation	lag	of	zero	years.	

Rt	 and	qt	 are	 taken	 from	 the	 data	 and	 also	 used	 to	 compute	 the	 average	 growth	 rates	 of	

output	(G)	and	of	R&D	(g),	so	the	only	unknown	parameters	 in	the	equation	are		and	0.	

Given	 these	 assumptions,	 	 and	 0	 are	 estimated	 by	 nonlinear	 least	 squares	 (NLLS)	 and	

nonlinear	generalized	method	of	moments	(GMM),	using	equation	(6).		

3.1 Nonlinear Least Squares Estimates 

This	section	of	the	paper	reports	the	results	of	NLLS	estimation	using	our	dataset.	Table	2	

shows	the	estimated	industry‐specific	constant	R&D	depreciation	rates	based	on	the	BEA‐

NSF	 establishment‐based	 data.	 The	 depreciation	 rates	 are	 consistent	 with	most	 industry	

observations.	 For	 example,	 the	 pharmaceutical	 industry	 has	 the	 lowest	R&D	depreciation	

rates	 in	 both	 sets	 of	 estimates,	 which	 reflects	 the	 long‐term	 nature	 of	 pharmaceutical	

research	and	the	fact	that	R&D	resources	in	pharmaceuticals	are	more	appropriable	by	the	

firms	 that	 fund	 the	R&D	 than	 those	 in	 other	 industries	due	 to	 effective	patent	protection	

and	 other	 entry	 barriers.	 Because	 a	 higher	 entry	 barrier	 works	 similarly	 as	 patent	

protection,	we	 expect	 the	R&D	depreciation	 rate	will	 be	 lower	 (De	Rassenfosse	 and	 Jaffe,	

2017).	 In	 addition,	 as	 mentioned	 earlier	 in	 the	 paper,	 two	 of	 the	 main	 drivers	 of	 R&D	

depreciation	rates	are	the	industry’s	pace	of	technological	progress	and	its	degree	of	market	

competition.	Therefore,	a	higher	entry	barrier,	in	general,	implies	a	lower	degree	of	market	
																																																													

4	The	average	gestation	lag	is	based	on	the	responses	from	6,381	firms	across	38	industries	in	the	
NSF	2010	Business	R&D	and	Innovation	Survey	(BRDIS).	Based	on	the	NSF	survey	in	2010,	the	
average	gestation	lag	is	1.94	years	for	6,381	firms	across	industries.	Only	1.35%	of	firms	have	
gestation	lags	larger	than	3	years.	The	pharmaceutical	industry,	0.9%	of	the	population,	has	the	
longest	gestation	lag,	which	is	4	years.	The	majority	of	firms	have	gestation	lags	around	or	less	than	2	
years.	
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competition,	which	may	 drive	 down	 the	 industry‐level	 R&D	 depreciation	 rate.	 Compared	

with	 the	 pharmaceutical	 industry,	 the	 various	 ICT	 sectors	 have	 higher	 R&D	 depreciation	

rates,	which	 is	 consistent	with	 industry	observations	 that	 the	 ICT	 industry	has	adopted	a	

higher	degree	of	global	outsourcing	to	source	from	few	global	suppliers	(Li,	2008).	Module	

design	and	efficient	global	supply	chain	management	has	made	the	products	introduced	in	

the	ICT	industry	more	like	commodities,	which	have	shorter	product	life	cycles.		

Place	tables	1	and	2	here.		

Table	1	showed	the	time‐constant	R&D	depreciation	rates	estimated	by	other	recent	studies.	

Comparing	Table	2	with	Table	1,	we	can	see	several	key	results	 from	this	study.	First,	 the	

estimated	 industry‐specific	 R&D	 depreciation	 rates	 are	 consistent	 with	 those	 of	 recent	

studies,	which	 indicate	 that	depreciation	 rates	 for	business	R&D	are	 likely	 to	 vary	 across	

industries	due	to	the	different	competition	environments	and	paces	of	technology	change.	

Second,	most	industries	have	R&D	depreciation	rates	higher	than	the	traditionally	assumed	

15	 percent	 that	 has	 been	 the	 benchmark	 for	 much	 of	 the	 empirical	 work	 (Griliches	 and	

Mairesse,	1984,	Bernstein	and	Mamuneas,	2006,	Corrado	et	al.,	2007,	Hall,	2007,	Huang	and	

Diewert,	2007,	Warusawitharana,	2010).	Third,	the	R&D	depreciation	rate	in	the	scientific	

research	 and	 development	 industry	 is	 much	 higher	 than	 that	 in	 the	 pharmaceutical	

industry.5	This	is	consistent	with	industry	observations	that	in	the	past	two	decades,	there	

has	 been	 little	 innovation	 in	 the	 traditional	 pharmaceutical	 industry	 and	

biopharmaceuticals	 has	 faster	 growth	 rate	 of	 innovation.	 For	 example,	 in	 1988,	 only	 5	

proteins	from	genetically	engineered	cells	had	been	approved	as	drugs	by	the	U.S.	FDA,	but	

the	number	has	skyrocketed	to	over	125	by	the	end	of	1990s	(Colwell,	2002).		

Among	the	R&D	depreciation	rates	in	the	ten	analyzed	R&D	intensive	industries,	the	values	

for	 the	 aerospace	 and	 auto	 industries	 are	 usually	 large	 compared	 to	 those	 for	 other	

industries.	For	example,	the	estimated	R&D	depreciation	rate	for	the	auto	industry	is	73.3	

percent.	This	 result	 is	not	 inconsistent	with	 the	 result	of	 the	UK’s	ONS	(Office	of	National	

Statistics)	 survey	 of	 the	 R&D	 service	 lives	 (Haltiwanger	 et	al.,	 2010).	 The	 average	 R&D	

service	 life	 for	 the	 auto	 industry	 in	 the	UK’s	ONS	 survey	 is	 4.3	 years,	which	 implies	R&D	

																																																													

5	According	to	NSF’s	BRDIS	in	2009,	biotech	firms	account	for	over	65%	of	R&D	investments	in	the	
scientific	research	and	development	industry.	Other	firms	related	to	physical,	engineering,	and	life	
sciences	account	for	around	34.5%	of	R&D	investments.		
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depreciation	at	a	geometric	declining	rate	of	40	percent.	Note	that	the	response	rate	of	the	

UK’s	ONS	survey,	however,	is	reported	to	be	low.6	

In	our	formulation	of	the	R&D	investment	model,	there	is	an	implicit	tradeoff	between	the	

assumed	 ex	 ante	 rate	 of	 return	 and	 the	 computed	 depreciation	 rate.	 Essentially	 the	

depreciation	rate	for	private	business	R&D	is	determined	by	the	competitive	environment	

of	 the	 firms	 that	 do	 it,	 and	 if	 the	 rate	 of	 return	 turns	 out	 to	 be	 lower	 than	 expected,	 the	

implication	 is	 that	the	value	of	 the	R&D	has	depreciated.	We	 illustrate	this	tradeoff	by	re‐

estimating	our	model	for	the	aerospace	and	auto	industries	with	an	assumed	rate	of	return	

to	R&D	of	1	percent.	This	is	justified	by	two	facts:	First,	the	U.S.	auto	industry	had	negative	

return	 rates	 during	 the	 data	 period.7	Second,	 in	 its	August	 2011	 report	 on	 the	Aerospace	

and	 Defense	 industrial	 base	 assessments,	 the	 Office	 of	 Technology	 Evaluation	 at	

Department	of	Commerce	reports	that	the	industry’s	profit	margin	is	around	1%	and	may	

be	 only	 10%	of	 the	 performance	 of	 high‐tech	 industries	 in	 Silicon	 Valley	 (Department	 of	

Commerce,	2011).8		

Table	 2	 reports	 estimates	 for	 these	 two	 industries	 that	 use	 the	 lower	 rates	 of	 return	 in	

italics	 and	 they	are	much	 lower,	 around	7‐15	percent,	 confirming	our	 intuition	 about	 the	

tradeoff	 between	 rates	 of	 return	 and	 depreciation.	 It	 is	 also	 worth	 noting	 that	 the	 data	

quality	of	R&D	expenses	in	the	auto	and	the	aerospace	industries	are	poor	and	the	R&D	data	

based	on	10‐K	&	10‐Q	reports	do	not	cover	the	industry	well.	For	example,	in	the	aerospace	

industry,	 some	 firms	 clearly	 report	 their	 own	 investment	 in	R&D,	 but	 others	 report	 R&D	

expenses	that	combine	federally	funded	and	company‐funded	R&D	(Hall	and	Long,	1999).	

																																																													

6	In	2011	and	2012,	the	UK’s	ONS	conducted	two	back‐to‐back	surveys	on	1701	firms	and	found	a	
median	R&D	service	life	of	6	years	for	all	industries.	Compared	with	2.1%	in	the	U.S.	similar	survey	in	
2010,	the	two	surveys	have	better	response	rates	at	around	43%.	However,	the	survey	result	has	a	
very	high	degree	of	uncertainty	(Kerr,	2014;	Li,	2014).	For	example,	the	average	answer	difference	
from	the	same	correspondent	for	the	same	company	is	3.9	years	and	the	average	difference	from	
different	correspondents	is	4.5	years.	The	UK’s	survey	result	is	consistent	with	the	U.S.’s	finding	that	
most	respondents	could	not	answer	questions	related	to	the	R&D	service	lives	correctly	(Li,	2012).	In	
the	end,	the	UK’s	ONS	adopts	16%	as	the	R&D	depreciation	rate	for	all	industries.		

7	Private	communication	with	Brian	Sliker	at	BEA,	an	expert	in	the	return	rate	of	industry	assets,	
confirmed	this	negative	trend	in	the	auto	industry.		

8	After	using	the	new	modified	model,	our	new	estimate	is	29%	higher	than	the	rate	in	Huang	and	
Diewert	(2007).	However,	in	the	later	section	of	cross‐country	comparison,	the	estimates	between	
the	U.S.	and	Japan	in	this	industry	are	reasonable.	Diewert	reports	in	private	communication	that	
they	found	computing	the	optimal	rate	in	this	sector	difficult.	
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Table	3	presents	the	results	of	a	sensitivity	analysis	for	the	gestation	lag	and	ex	ante	rate	of	

return.	 The	 first	 two	 sets	 of	 columns	 compare	 gestation	 lags	 of	 two	 and	 zero	 years.9	In	

general,	 the	estimated	depreciation	rates	do	not	differ	a	great	deal,	and	those	for	the	zero	

lag	 are	 slightly	 higher,	 except	 in	 the	 software,	 computer	 system	 design,	 and	 scientific	

research	and	development.	Interestingly,	these	three	sectors	are	the	only	service	sectors.	A	

possible	 interpretation	 of	 the	 general	 result	 is	 the	 following:	 if	 the	 gestation	 lag	 is	 zero	

rather	than	two,	effectively	there	is	a	greater	stock	of	R&D	over	which	to	spread	the	same	

profits,	so	it	must	depreciate	more	rapidly	to	explain	the	same	rate	of	return.	The	fact	that	

the	service	sectors	do	not	follow	this	pattern	is	somewhat	puzzling	but	is	doubtless	due	to	

the	specific	trends	in	R&D	and	output	in	those	sectors.		

Place	table	3	here.		

The	estimates	are	not	sensitive	 to	allowing	a	variable	cost	of	capital	 (although	as	we	saw	

earlier,	 they	are	sensitive	 to	a	change	 in	 the	overall	 level.	The	 last	 two	sets	of	columns	 in	

Table	 3	 show	 results	when	 the	 cost	 of	 capital/rate	 of	 return	 is	 set	 to	 (1)	 the	 risk	 free	 3‐

month	 treasury	 bill	 rate	 plus	 a	 risk	 premium	 of	 4	 percent	 or	 (2)	 BEA’s	 own	 measured	

average	rate	of	return	to	assets	during	the	year.	Figure	A‐3	displays	these	time	series.	There	

is	little	difference	in	the	estimates	across	these	columns.	Figure	2	graphs	the	sensitivity	of	

the	 estimated	 depreciation	 rate	 of	 R&D	 assets	 to	 the	 assumed	 cost	 of	 capital	 for	 each	

industry	separately.	There	are	clear	differences	across	the	industries,	with	autos,	computer	

hardware	and	services,	 aerospace,	 and	 instruments	 the	most	 sensitive	 to	 the	assumption,	

and	the	other	sectors	much	less	sensitive.		

Place	figure	2	here.	

3.2 Nonlinear GMM  

We	may	be	concerned	that	simultaneity	between	current	output	and	R&D	(due	to	cash	flow	

or	 demand	 shocks)	 could	 bias	 estimates	 of	 the	 relation	 in	 equation	 (6).	 To	 check	 this	

possibility	we	estimated	the	equation	using	nonlinear	GMM,	choosing	lagged	values	of	R&D,		

output,	 and	 the	 3‐month	 Treasury	 bill	 rate	 as	 instruments.	 The	 choice	 of	 instrument	

variables	is	based	on	the	assumption	that	(given	a	forward‐looking	profit	model)	previous	

																																																													

9	BEA	adopts	a	zero	gestation	lag,	on	the	grounds	that	when	a	firm	invests	in	R&D,	the	R&D	
investment	should	contribute	immediately	to	the	firm’s	knowledge	stock.		
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R&D	 investments	 and	 output	 are	 not	 related	 to	 any	 shocks	 (ε)	 to	 the	 optimal	 R&D	 plan	

described	 by	 equation	 (6).	 	 The	 T‐bill	 rate	 is	 included	 as	 a	 proxy	 for	 the	 lagged	 cost	 of	

capital,	which	is	similarly	unrelated	to	the	shocks.		

Place	table	4	here.		

Table	4	compares	the	estimates	based	on	nonlinear	least	squares	and	nonlinear	GMM,	both	

computed	with	a	 two‐year	gestation	 lag	 and	an	expected	 rate	of	 return	equal	 to	8.9%.	 In	

general,	 the	 nonlinear	GMM	estimates	 have	higher	 standard	 errors	 than	 those	 associated	

with	the	nonlinear	least	squares	estimates,	although	not	always.	With	the	exception	of	the	

motor	vehicle	 sector,	where	 the	estimated	depreciation	rate	 is	much	 lower,	 the	estimates	

are	somewhat	similar	to	those	obtained	using	nonlinear	least	squares.	The	main	difference	

is	a	much	lower	variance	in	the	estimates	across	the	sectors.	We	also	report	the	results	of	a	

test	of	the	over‐identifying	restriction	(degrees	of	freedom	equal	to	two),	which	passes	for	

all	 the	 sectors	 except	 software,	 computer	 system	 design,	 and	 motor	 vehicles.	 If	 future	

datasets	are	 larger	 in	size	and	we	are	able	 to	 find	better	 instruments,	 the	nonlinear	GMM	

approach	might	 provide	 a	more	 robust	 estimation,	 but	 for	 the	 current	 data	 these	 results	

suggest	that	the	nonlinear	least	squares	estimates	are	adequate.		

4. Estimation with time-varying R&D depreciation rates	 

Since	 the	 technological	 and	 competition	 environments	 change	 over	 time,	 the	 R&D	

depreciation	 rates	 are	 expected	 to	 vary	 through	 the	 21	 years	 of	 data	 studied.	 Therefore,	

there	 is	 a	need	 to	calculate	 industry‐specific	and	 time‐dependent	R&D	depreciation	rates.	

We	use	the	same	industry	output	and	R&D	investment	data	from	the	BEA‐NSF	dataset.	The	

time‐dependent	feature	of		was	obtained	by	minimizing	Equation	(6)	with	subsets	of	data.	

Instead	of	using	all	years	of	data,	we	performed	least	squares	fitting	over	a	five‐year	interval	

each	time,	with	a	step	of	2	years	in	progression.	As	a	result,	the	data‐model	fit	is	carried	out	

nine	 times	 for	 21	 years	 of	 data,	 and	 each	 estimated	 depreciation	 rate	 is	 assigned	 to	 the	

center	of	a	time	window.	The	values	of	d,	IΩ,	and	r	are	defined	in	the	same	manner	as	before.	

Although	 there	 are	 only	 5	 data	 points	 to	 estimate	 the	 two	 parameters,	 the	 estimates	

generally	 converged	well	 and	 the	 standard	error	 estimates	 are	not	 that	 large,	 except	 in	 a	

few	cases.		

Place	figure	3	here.	
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Figure	 3	 shows	 the	 best‐fit	 time‐varying	 R&D	 depreciation	 rates	 for	 all	 ten	 industries	

together	with	their	±	1	standard	errors;	the	figures	are	plotted	on	the	same	scale	to	facilitate	

comparison.	Based	on	±	3	standard	errors,	we	can	still	see	that	the	industries	differ	in	their	

volatility	considerably,	with	software,	pharmaceuticals,	semiconductors,	and	scientific	R&D	

being	 relatively	 stable,	 whereas	 the	 industries	 strongly	 affected	 by	 hardware‐related	

technical	 change	 during	 this	 time	 period	 are	 much	 more	 volatile	 (e.g.,	 communication	

equipment	 and	 computer	 system	 design).	 One	 concern	 with	 these	 results	 may	 be	 the	

underlying	 data:	 industries	 like	 semiconductors	 whose	 R&D	 is	 dominated	 by	 very	 large	

firms	may	be	somewhat	better	measured	than	the	communication	equipment	sector.		

Figure	 3	 also	 reveals	 some	 other	 facts	 about	 the	 industries	 we	 studied.	 First,	 the	

pharmaceutical	 industry	 has	 a	 somewhat	 declining	 depreciation	 pattern.	 The	 declining	

deprecation	 pattern	 could	 be	 either	 due	 to	 a	 slower	 pace	 of	 technological	 change	 or	 a	

reduced	degree	of	market	competition.	However,	the	history	of	technology	development	in	

this	 industry	 suggests	 that	 the	driving	 force	 is	 a	 slower	pace	of	 technological	 change.	 For	

example,	 stricter	 FDA	 approval	 guidelines	 have	 negatively	 affected	 the	 industry’s	

productivity	growth	in	R&D	in	recent	years.	As	a	result,	the	industry	has	been	experiencing	

a	negative	productivity	growth	 in	R&D	 in	 recent	years.	For	example,	during	 the	period	of	

1990	to	1999,	the	FDA	approved	an	average	of	31	drugs	per	year,	but	this	number	dropped	

to	 24	 during	 the	 period	 of	 2000	 to	 2009	 (Rockoff	 and	Winslow,	 2011)	 and	 further	went	

down	to	21	in	2010	(Lamattina,	2011).	In	addition,	Bloom	at	al.	(2017)	use	data	from	U.S.	

Food	and	Administration,	and	Pharmaceutical	Research	and	Manufacturers	of	America	and	

find	that	the	research	productivity	in	this	industry	has	fallen	by	a	factor	of	11	by	2007	and	

that	the	overall	decline	by	2014	is	a	factor	of	5.	However,	the	scientific	R&D	industry,	which	

contains	a	large	share	of	biotech	firms,	has	a	higher	level	of	depreciation	rates	that	has	not	

declined	since	1990.	This	echoes	the	fact	mentioned	previously	that,	in	the	past	two	decades,	

there	 has	 been	 little	 innovation	 in	 the	 traditional	 pharmaceutical	 industry	 and	 the	

biopharmaceuticals	industry	has	faster	growth	rate	of	innovation.	

Second,	 the	R&D	depreciation	 rate	of	 the	 semiconductor	 industry	 shows	a	 clear	declining	

trend	after	2000.	This	depreciation	pattern	is	consistent	with	several	research	results.	For	

example,	 since	2000,	 the	 rate	of	 technological	 change	 in	 the	microprocessor	 industry	has	

slowed	 (Flamm,	 2007).	 By	 combining	 our	 depreciation	 pattern	 with	 the	 evidence	 of	 a	

slower	pace	of	productivity	growth	in	the	semiconductor	industry	after	2000	(Jorgenson	et	
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al.,	2012),	we	find	that	our	result	supports	Jorgenson’s	hypothesis	(2001)	that	the	increase	

in	the	pace	of	technological	change	in	this	sector	is	positively	related	to	faster	productivity	

growth.		

Third,	 the	 communication	 equipment	 industry	 had	 a	 declining	 R&D	 depreciation	 pattern	

after	 	early	1990s.	 It	 is	helpful	 to	recall	 the	result	by	Hall	 (2005)	who	shows	a	pattern	of	

decreasing	 depreciation	 for	 the	 computers,	 communication	 equipment,	 and	 scientific	

instrument	industries	during	the	period	of	1989	to	2003.	Since	Hall’s	result	is	based	on	the	

data	including	two	additional	high‐tech	industries,	it	is	not	adequate	to	directly	compare	the	

depreciation	patterns	between	the	two	studies.		

Lastly,	 the	 R&D	depreciation	 of	 the	 software	 industry	 also	 experienced	 a	 declining	 trend	

during	the	period	from	early	1990s	to	early	2000s.	The	declining	trend	reflects	the	fact	that,	

compared	with	the	variable	technology	environment	during	the	period	from	1980s	to	early	

1990s,	the	Wintel	system	provided	a	more	stable	development	environment	starting	from	

mid‐1990s.10		

5. Cross-country Comparison: U.S. vs. Japan 

The	R&D	depreciation	rate	 is	one	of	 the	critical	elements	 in	computing	R&D	stock	 for	 the	

analysis	 of	 a	 country’s	 productivity	 and	 economic	 growth.	 At	 the	 present	 time,	 however,	

there	 is	 no	 consistent	 methodology	 to	 estimate	 industry‐specific	 R&D	 depreciation	 rates	

across	 countries.	 When	 no	 survey	 and/or	 research	 information	 is	 available,	 Eurostat	

recommends	 that	 a	 single	 average	 service	 life	 of	 10	 years	 should	 be	 retained	 (Eurostat,	

2012).	 As	 a	 result,	many	OECD	 countries	 adopted	R&D	depreciation	 rates	 close	 to	 either	

Eurostat’s	 recommendation	 (a	 10	 year	 service	 life	 corresponds	 roughly	 to	 a	 geometric	

depreciation	 rate	 of	 20	 percent)	 or	 the	 traditional	 assumed	 15	 percent.	 The	 lack	 of	

variations	 in	 R&D	 depreciation	 rates	 across	 countries	 and	 across	 industries	 implies	 that	

countries,	 no	 matter	 in	 technology	 frontier	 or	 not,	 have	 a	 similar	 pace	 of	 technological	

progress	and	degree	of	market	competition	across	countries.	This	result	contradicts	existing	

trade	and	growth	theories.		

																																																													

10 	Wintel	is	 a	 computer	 trade	 industry	 term	 for	 personal	 computers	 based	 on	 the	 Intel	
microprocessor	and	one	of	the	Windows	operating	system	from	Microsoft.	The	term	"PC"	has	often	
been	used	for	this	purpose.	http://searchwindowsserver.techtarget.com/definition/Wintel	
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Our	method	 is	 an	 attempt	 to	 provide	 a	 consistent	 and	 reliable	way	 to	 estimate	 industry‐

specific	R&D	depreciation	rates	across	countries	and	to	enable	cross‐country	comparisons.	

We	 applied	 our	 model	 to	 Japanese	 data	 on	 four	 R&D‐intensive	 industries:	 drugs	 and	

medicines,	electrical	machinery,	equipment	and	supplies,	 information	and	communication	

electronic	equipment,	and	transportation	equipment.	The	estimates	were	based	on	a	2‐year	

gestation	lag,	and	the	values	of	IΩ	and	r	are	assumed	to	be	0.06,	which	is	the	value	provided	

by	 Japan’s	 National	 Accounts	 Department	 for	 the	 rate	 of	 return.	 Table	 5	 shows	 the	

estimated	R&D	depreciation	rates	for	the	period	2002‐2012.	The	choice	of	period	is	dictated	

by	data	availability	limitations.		

Place	table	5	here.	

In	general,	the	estimates	in	Table	5	are	consistent	with	those	in	Table	2.	Unfortunately,	the	

electrical	 machinery,	 equipment,	 and	 supplies,	 and	 information	 and	 communication	

electronic	equipment	 industries	 in	 Japan	are	not	exactly	comparable	 to	 the	US	 industries,	

although	 the	 results	 do	 seem	 in	 the	 same	 range	 as	 those	 for	 computers	 and	 peripheral		

equipment,	 communication	 equipment,	 semiconductor,	 and	 navigational,	 measuring,	

electro‐medical,	 and	 control	 instruments	 industries	 in	 the	 US.	 The	 arithmetic	 average	

depreciation	rate	for	these	four	categories	of	IT	hardware	in	the	US	is	28%,	and	the	average	

for	Japan	is	34%.	In	the	case	of	the	US,	the	number	is	pulled	down	by	the	depreciation	rate	

in	the	communication	equipment	sector,	where	a	few	US	firms	are	able	to	sustain	relatively	

high	profits.		

The	 U.S.	 pharmaceutical	 industry	 has	 a	 lower	 R&D	 depreciation	 rate,	 implying	 that	 U.S.	

pharmaceutical	firms	have	a	slight	technology	edge	in	this	field	and	can	better	appropriate	

the	 returns	 from	 their	 investments	 in	 R&D	 assets.	 This	 result	 is	 consistent	with	 the	 U.S.	

International	 Trade	 Commission’s	 report	 on	 the	 global	medical	 device	 industry,	where	 it	

finds	that,	in	terms	of	technological	advantage,	the	U.S.	is	ranked	first	in	the	world	and	Japan	

is	 a	 close	 second	 (USITC,	2007).	 Second,	 Japan’s	 lower	R&D	depreciation	 rate	 in	 the	 auto	

industry	suggests	that	Japan	has	a	clear	technological	edge	and	can	better	appropriate	the	

return	from	its	investments	in	R&D	in	this	sector.	Note,	however,	that	we	also	show	results	

for	the	transport	equipment	sector	that	use	the	1%	rate	of	return	we	used	for	the	US,	and	in	

this	case	the	depreciation	rate	for	Japan	is	only	slightly	lower.	
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6. Conclusions  

R&D	depreciation	rates	are	critical	to	calculating	the	rates	of	return	to	R&D	investments	and	

capital	service	costs,	which	are	important	for	capitalizing	R&D	investments	in	the	national	

income	 accounts.	 Although	 important,	 measuring	 R&D	 depreciation	 rates	 is	 extremely	

difficult	because	both	the	price	and	output	of	R&D	capital	are	generally	unobservable.		

In	this	paper,	we	developed	a	forward‐looking	profit	model	to	derive	industry‐specific	R&D	

depreciation	 rates.	 Our	 model	 uses	 only	 data	 on	 R&D	 and	 output	 together	 with	 some	

assumptions	on	the	role	of	R&D	in	generating	profits	for	the	firm.	This	allows	us	to	calculate	

not	only	industry‐specific	constant	R&D	depreciation	rates	but	also	time‐varying	rates.	We	

used	both	nonlinear	least	squares	and	nonlinear	GMM	to	fit	the	model	to	the	data.	Both	gave	

similar	results,	although	GMM	passed	the	over‐identification	test	only	part	of	the	time	and	

resulted	 in	 fairly	 large	 standard	 errors.	 Future	 work	 would	 be	 useful	 to	 find	 better	

instruments	and	to	improve	the	quality	of	the	underlying	data.		

Our	research	results	highlight	several	promising	features	of	the	new	forward‐looking	profit	

model:	First,	 the	derived	constant	 industry‐specific	R&D	depreciation	rates	are	consistent	

with	the	conclusions	from	recent	studies	that	depreciation	rates	for	business	R&D	are	likely	

to	be	more	variable	due	to	different	competition	environments	across	industries	and	higher	

than	 traditional	 15	 percent	 assumption	 (Bernstein	 and	 Mamuneas,	 2006;	 Corrado	 et	 al.,	

2007;	 Hall,	 2005;	 Huang	 and	 Diewert,	 2007;	 Warusawitharana	 2010).	 Second,	 the	 time‐

varying	results	capture	 the	heterogeneous	nature	of	 industry	environments	 in	 technology	

and	 competition.	 Third,	 our	method	 provides	 a	 consistent	way	 to	 perform	 cross‐country	

comparisons	 of	 R&D	 depreciation	 rates,	 which	 can	 inform	 countries’	 relative	 paces	 of	

technological	 progress	 and	 technological	 environments	 as	 exemplified	 in	 the	 U.S.‐Japan	

comparison.		

Note	 that	 when	 capitalizing	 R&D	 investments	 into	 the	 U.S.	 national	 accounts,	 the	 U.S.	

Bureau	of	Economic	Analysis	adopts	the	concept	that	failed	research	projects	also	generate	

useful	knowledge,	so	all	R&D	is	included	in	R&D	capital,	not	just	successful	R&D.	Moreover,	

as	mentioned	earlier,	the	main	drivers	of	R&D	depreciation	rates	are	the	industry’s	pace	of	

technological	progress	and	 the	degree	of	market	competition.	To	understand	whether	 the	

failure	of	a	research	project	affects	the	firm‐level	R&D	depreciation	rate,	Li	(2015)	studied	

U.S.	 high‐tech	 industries	 and	 found	 that,	 in	 each	 industry,	 the	 R&D	 depreciation	 rates	 of	
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market	leaders	were	lower	than	those	of	market	followers.	This	pattern	is	present	in	all	U.S.	

high‐tech	 industries,	a	result	consistent	with	 the	resource	based	theory	(Barney,	1991)	 in	

that	market	 leaders	can	better	maintain	the	value	of	their	assets	than	their	followers.	The	

resource	 based	 theory	 tells	 us	 that,	 if	 a	 firm	 has	 a	 better	 competitive	 advantage	 in	 any	

resources,	 such	 as	 R&D	 assets	 and	 organizational	 capital,	 the	 firm	 is	 more	 capable	 of	

maintaining	the	value	of	its	assets	in	those	areas.	That	is,	a	 leading	firm	in	technology	will	

enjoy	a	smaller	(private)	depreciation	rate	of	its	technology	than	its	follower.	The	industry	

level	data	we	use	here	aggregates	over	both	leaders	and	followers.		

While	 this	 study	 provides	 the	 first	 complete	 set	 of	 industry‐specific	 business	 R&D	

depreciation	 rates	 for	 all	 ten	 R&D	 intensive	 industries	 identified	 in	 BEA’s	 R&D	 Satellite	

Account,	future	research	can	make	improvements	in	several	areas.	First,	current	estimation	

uses	nominal	R&D	and	output	data.	When	 the	 industry‐specific	price	 index	of	R&D	assets	

becomes	available,	we	can	improve	the	estimates	by	explicitly	incorporating	the	price	level	

change.	Second,	the	current	model	assumes	the	decision	maker	has	perfect	foresight.	Future	

research	can	relax	this	assumption	by	including	uncertainty	in	the	model.	Third,	the	current	

model	assumes	decreasing	marginal	returns	to	R&D	investments	and	that	 innovations	are	

incremental.	 This	 seems	 appropriate	 when	 dealing	 with	 National	 Income	 Account	 data.	

However,	future	research	could	explore	these	two	assumptions	and	potentially	modify	the	

model	to	be	applicable	to	the	industry	with	increasing	marginal	returns	to	R&D	investments	

and	 drastic	 innovations.	 Fourth,	 the	 current	 model	 assumes	 that	 the	 growth	 rate	 of	 	 is	

equal	 to	 that	 of	 R&D	 investment,	 but	 this	 assumption	 could	 be	 relaxed	 if	 better	 data	 are	

available	for	the	proper	estimation	of	the	growth	(or	decline)	of	R&D	productivity.11		

Lastly,	 it	 has	been	 argued	 that	 other	 intangible	 assets,	 such	 as	 organizational	 capital,	 can	

also	contribute	to	a	 firm’s	productivity	growth	(Lev	and	Radhakrishnan,	2005;	Corrado	et	

al.,	2009;	Eisfeldt	and	Papanikolaou,	2013).	 It	should	be	noted	that	 intangibles	other	 than	

R&D	and	software	are	not	 included	in	national	accounts,	and	measuring	 intangible	assets,	

including	resolving	the	critical	issue	of	data	availability,	is	still	a	topic	of	active	research.	As	

to	 the	 investment	 timing	of	R&D	assets	and	organizational	capital,	as	reported	 in	Lev	and	

Radhakrishnan	 (2005),	 market	 leaders	 tend	 to	 invest	 more	 in	 R&D	 assets	 and	

																																																													

11	We	are	grateful	to	a	referee	for	this	insightful	suggestion.	We	experimented	with	a	model	of	this	
type	in	Appendix	B.		
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organizational	capital	 in	a	recession	period.	Following	Lev	and	Radhakrishnan	(2005)	and	

Eisfeldt	and	Papanikolaou	(2013),	Li	(2016)	and	Li	et	al.	(2017)	use	the	selling	and	general	

administrative	(SG&A)	expenditure	as	a	proxy	for	the	investment	in	organizational	capital,	

and	 they	 applied	 the	 same	methodology	 to	 estimating	 the	 depreciation	 of	 organizational	

capital	 across	 all	 high‐tech	 industries.	 The	 estimated	 depreciation	 rates	 of	 organizational	

capital	are	very	different	from	those	of	R&D	assets	not	only	at	the	firm	level	but	also	at	the	

industry	 level.	 In	 general,	 the	 firm‐level	 and	 industry‐level	 depreciation	 rates	 of	

organizational	capital	are	found	to	be	much	smaller	than	those	of	R&D	assets,	implying	that	

changes	in	profitability	due	to	competition	in	the	market	are	not	the	main	drivers.	Future	

work	 can	 enrich	 the	 model	 to	 allow	 the	 flows	 of	 other	 types	 of	 tangible	 and	 intangible	

investments	 and	 the	 interactions	 between	 the	 investments,	 especially	 when	 the	 data	 is	

available.	
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Study Industry Estimate Method Data
Chemicals 11%
Electrical	equipment 13%
Industrial	machinery 14%
Scientific	instruments 20%
Transportation	equipment 14%
Chemicals 14%
Electrical	equipment 13%
Industrial	machinery 14%
Scientific	instruments 14%
Transportation	equipment 17%

Knott	et	al.	(2003) Pharmaceuticals 88‐100%
Production	
function

40	U.S.	firms	over	the	
period	of	1979	‐1998

Chemicals 18%
Electrical	equipment 29%
Industrial	machinery 26%
Transportation	equipment 17%
Computers	and	scientific	
instruments

‐5%

Electrical	equipment ‐3%
Chemicals ‐2%
Drugs	and	medical	
instruments

‐11%

Metal	and	machinery ‐2%
Computers	and	scientific	
instruments

31%

Electrical	equipment 36%
Chemicals 19%
Drugs	and	medical	
instruments

15%

Metal	and	machinery 32%
Chemicals 1%
Electrical	equipment 14%
Industrial	machinery 3%
Transportation	equipment 27%
Semiconudctors 34%
Computer	hardware 28%
Medical	equipment 37%
Pharmaceuticals 41%
Software 37%

Warusawitharana	
(2010)

Market	
valuation

U.S.	industries	over	
the	period	of	1987‐	

2006

Note:	With	the	exception	of	Berstein	and	Mamuneas	(2006)	and	Huang	and	Diewert	(2007),	all	of	the	studies	
are	based	on	US	Computstat	data.

Hall	(2005)
Market	
valuation

16750	U.S.	firms	
over	the	period	of	

1974‐2003

Huang	and	
Diewert	(2007)

Production	
function

U.S.	industries	over	
the	period	of	1953‐

2001

Berstein	and	
Mamuneas	(2006)

Production	
function

U.S.	industries	over	
the	period	of	1954‐

2000

Hall	(2005)
Production	
function

16750	U.S.	firms	
over	the	period	of	

1974‐2003

Table	1:	Summary	of	previous	estimates	of	R&D	depreciation	rates

Lev	and	
Sougiannis	(1996)

Amortization
825	U.S.	firms	over	
the	period	of	1975‐

1991

Ballester	et	al.	
(2003)

Amortization
652	U.S.	firms	over	
the	period	of	1985‐

2001



	 	

24	

	

Table	2:	Nonlinear	Least	Squares	estimates	of	the	R&D	depreciation	rate	
	

	
	
	 	

Time	period
Industry Estimate s.e.

Computers	and	peripheral	equipment 36.3% 3.8%

Software 30.8% 0.5%

Pharmaceutical 11.2% 4.8%

Semiconductor 22.6% 3.7%

Aerospace	products	and	parts 33.9% 6.5%

Aerospace	products	and	parts	with	ROR	=	1% 6.3% 0.6%

Communication	equipment 19.2% 3.3%

Computer	system	design 48.9% 7.9%

Motor	vehicles,	bodies	and	trailers,	and	parts 73.3% 2.9%

Motor	vehicles,	bodies	and	trailers,	and	parts,	with	ROR	=	1% 11.9% 0.4%

Navigational,	measuring,	electromedical,	and	control	instruments 32.9% 7.4%

Scientific	research	and	development 29.5% 2.6%

BEA‐NSF	Data
1987‐2007

Note:	Gestation	lag	is	2	years;	assumed	interest	rate	=	ex	ante	rate	of	return	=	8.9%
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Table	3:	Sensitivity	of	the	depreciation	rate	to	assumptions	
	

	
	 	

Gestation	lag	in	years
Interest	rate

Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Computers	and	peripheral	
equipment

28.7% 3.7% 24.0% 3.2% 24.4% 3.7% 23.5% 4.1%

Software 37.3% 0.7% 40.0% 0.8% 41.7% 0.6% 40.1% 0.7%

Pharmaceutical 17.4% 17.1% 16.9% 16.6% 23.5% 6.4% 20.4% 6.2%

Semiconductor 31.4% 13.4% 28.4% 12.2% 29.4% 12.1% 28.1% 16.3%

Aerospace 23.3% 4.5% 19.9% 4.0% 21.6% 5.1% 21.1% 4.7%

Communication	equipment 19.5% 3.4% 16.8% 3.0% 17.0% 2.7% 16.6% 2.3%

Computer	system	design 25.5% 5.1% 26.4% 5.3% 27.7% 3.3% 27.0% 3.7%

Motor	vehicles,	bodies	and	
trailers,	and	parts

31.3% 1.5% 27.7% 1.4% 29.5% 1.8% 27.8% 1.3%

Navigational,	measuring,	
electromedical,	&	control	
instruments

18.1% 3.9% 15.8% 3.5% 18.3% 4.0% 15.8% 2.5%

Scientific	research	and	
development

21.4% 4.9% 21.5% 5.0% 31.1% 5.0% 28.0% 3.7%

8.9% 8.9% Tbill	+	4% BEA	return

Method	of	estimation	is	nonlinear	least	squares.

0 2 2 2
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Table	4:	Comparing	estimation	methods	
	

	
	
	 	

Industry
Estimate s.e. Estimate s.e.

Computers	and	peripheral	
equipment

36.3% 3.8% 27.8% 5.5% 0.988

Software 30.8% 0.5% 33.5% 4.8% 0.045 *

Pharmaceutical 11.2% 4.8% 14.5% 11.7% 0.908

Semiconductors 22.6% 3.7% 31.3% 6.4% 0.039 *

Aerospace	products	and	parts 33.9% 6.5% 26.3% 5.0% 0.260

Communication	equipment 19.2% 3.3% 23.9% 18.3% 0.514

Computer	system	design 48.9% 7.9% 25.1% 12.4% 0.290

Motor	vehicles,	bodies	and	
trailers,	and	parts

73.3% 2.9% 33.1% 5.0% 0.018 **

Navigational,	measuring,	
electromedical,	&	control	
instruments

32.9% 7.4% 23.2% 11.1% 0.115

Scientific	research	and	
development

29.5% 2.6% 32.0% 2.0% 0.400

Notes:

Instruments	are	R&D	and	the	T‐bill	rate,	lagged	once	and	twice.

Estimates	shown	are	for	the	depreciation	rate	and	its	standard	error.

#	The	p‐value	of	a	test	for	overidentifying	restrictions	is	reported	in	these	columns.	*,	**,	***	denote	
significance	at	10%,	5%,	1%	respectively	

Assumed	gestation	lag	is	two	years;	interest	rate	is	8.9%.

NLLS NL	GMM
Test#
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Table	5:	Estimates	for	Japan	
 

	
	
	 	

Industry Estimate s.e.
(1)	Drugs	and	medicines 16.4% 5.4%
(2)	Electrical	machinery,	equipment,	and	
supplies

38.8% 7.6%

(3)	Information	and	communication	
electronic	equipment

28.4% 1.3%

(4)	Transportation	equipment 50.0% 2.0%
(4)	Transportation	equipment	(r=3%) 26.9% 1.0%

Notes:

1.	The	estimates	are	based	on	a	2‐year	gestation	lag,	and	an	interest	rate	of	6%.

2.	The	data	cover	the	period	2002	to	2012.
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Figure	1:	The	Concavity	of	ࡵሺࡰࡾሻ	
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Figure	 2:	 Sensitivity	 of	 the	 depreciation	 rate	 of	 R&D	 Assets	 to	 the	 Cost	 of	

Capital	
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Figure	3:	Time‐varying	R&D	Depreciation	Rates	

	

	

	 	

Estimated Time‐varying Depreciation Rate by Sector ‐ BEA‐NSF data
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Appendix A: Additional tables and figures 

Figure	A‐1	

	
 

Figure	A‐2	
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Figure	A‐3	
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Appendix B: a three parameter model 

In	the	main	body	of	the	paper,	we	estimated	the	profit	model	in	the	following	form:	
	 	

௧ߝ ≡
൫1 ൅ ෠൯ܩ

௧

ஐܫ
݌ݔ଴݁ߠ ൥

ܴ௧

଴൫1ߠ ൅ ෠൯ܩ
௧൩ െ

௧ሺ1ݍ ൅ ො݃ሻௗ

ሺ1 ൅ ݎሻௗିଵሺݎ ൅ ߜ െ ො݃ ൅ ො݃ߜሻ
	

The	parameters	to	be	estimated	were	δ	and	θ0,	while	Ĝ 	,	 ĝ 	,	and	r	=	IΩ	were	fixed	at	

plausible	values.	Thanks	to	a	suggestion	from	a	referee,	we	found	that		Ĝ ,	which	
corresponds	to	the	growth	or	decline	in	R&D	productivity	in	generating	profits,	was	also	
identified	in	our	data,	at	the	cost	of	some	additional	imprecision.	Estimates	for	this	three	

parameter	model	(Ĝ ,	δ	and	θ0)	are	shown	in	Table	B‐1,	using	a	gestation	lag	of	2	and	
interest	rate	of	8.9%.	The	estimated	depreciation	rates	are	somewhat	lower	than	those	in	
Table	2,	but	generally	similar.		
	

	
	

The	interpretation	of	the	G	and	θ0	estimates	are	the	following:	θ0	varies	across	industry	to	
the	extent	that	the	profit	productivity	of	R&D	varies.	The	industry	with	the	highest	value,	
pharmaceuticals,	is	the	industry	where	the	largest	amount	of	R&D	is	needed	to	generate	an	
additional	dollar	of	profit.	That	is,	θ0	is	related	to	but	not	the	same	as	the	R&D	intensity	in	
the	industry	(the	correlation	is	0.69).		G	measures	how	this	productivity	changes	over	the	
period,	with	a	positive	value	indicating	the	R&D	is	becoming	less	productive	and	a	negative	
value	the	reverse.	The	estimates	suggest	that	R&D	productivity	is	increasing	in	two	sectors:	
communication	equipment	and	instruments,	while	declining	in	others.	The	industries	with	
the	greatest	declines	in	the	ability	of	R&D	to	generate	profits	are	software,	semiconductors	
(the	slowdown	of	Moore’s	Law)	and	computer	system	design,	followed	by	pharmaceuticals.	
These	results	seem	plausible,	and	with	more	data,	worth	pursuing.		

	

Depreciation	
(delta)

s.e.
Inflation	
(growth	in	
theta)

s.e.
Base	theta	
(US$B)

s.e.

Computers	and	peripheral	equipment 35.4% 4.4% 1.1% 2.0% 7.37 2.42
Software 30.8% 0.6% 9.8% 2.4% 3.46 0.85
Pharmaceutical 6.7% 7.4% 4.9% 4.3% 48.71 39.02
Semiconductor 20.6% 9.3% 1.5% 8.9% 16.98 6.93
Aerospace 30.7% 5.6% 0.6% 1.1% 17.24 4.32
Communication	equipment 15.4% 2.8% ‐0.6% 2.7% 18.43 4.38
Computer	system	design 45.8% 9.4% 6.4% 2.9% 7.70 2.29
Motor	vehicles,	bodies	and	trailers,	and	parts 72.9% 3.2% 3.3% 0.8% 14.49 2.23
Navigational,	measuring,	electromedical,	&	
control	instruments

22.2% 4.6% ‐0.5% 1.5% 20.70 3.08

Scientific	research	and	development 22.1% 5.1% 10.8% 0.7% 5.34 2.07

Table	B‐1:	Estimation	of	the	three	parameter	model




