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1 Introduction

A recent and growing area of research applies latent factor models to study the
development of skills in children. The goal of this research is to characterize the
optimal timing and form of interventions to improve children’s skills (Cunha and
Heckman (2007); Cunha et al. (2010); Cunha and Heckman (2008); Attanasio et al.
(2015a,b); Pavan (2015)).1 In these models, the stock of children’s skills develop
dynamically through childhood according to a specified skill production technology,
and children’s skills, and in some work investments in skills as well, are assumed to
be measured with error.

The identification of these models applies the techniques developed for cross-
sectional latent factor models to the dynamic models describing the development
of children’s skills.2 Some normalization is required in these models because the
latent variables have no natural units and no known location or scale. Much of the
recent literature “re-normalizes” the model every period, essentially treating each
period as a separate cross-section and the stock of children’s skills in each period as
a separate latent factor. In several papers, re-normalization takes the form of setting
the latent (log) stock of skills to be mean 0 in every period, and the factor loading
for one measure each period is assumed to be 1. This re-normalization approach is in
contrast to normalizing the latent variables to one particular period (say the initial
earliest period of childhood) and therefore locating and scaling all latent variables
to this initial period. Because the re-normalization approach treats the inputs and
outputs of the production process–the latent factors in all periods–as separate latent
variables, re-normalization has implications for the dynamic production relationships
implied by the technology of child development.

In this paper we show that re-normalization of dynamic latent factor model is
over-identifying and restrictive when used simultaneously with production technolo-
gies which already have a known location and scale (KLS). While in principle the
re-normalization approach is without loss of generality with general enough produc-
tion technologies, the parametric technologies estimated in practice are often already
sufficiently restricted to allow identification without re-normalization. KLS functions
include the Constant Elasticity of Substitution (CES) production technologies sev-
eral papers use in their estimation, as in the influential paper Cunha et al. (2010).

1Other recent work shows the importance of measurement issues to understanding the level and
growth of inequality in children’s skills, such as the black-white test score gap (see Bond and Lang,
2013a,b).

2For the early literature on factor models in economics see Anderson and Rubin (1956);
Jöreskog and Goldberger (1975); Goldberger (1972); Chamberlain and Griliches (1975); Cham-
berlain (1977a,b). For a more recent reference, see Carneiro et al. (2003).
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We show that these KLS production functions are already restricted in the sense that
their location and/or scale is fixed and known (does not need to be estimated) and
therefore further restrictions on the location and scale by re-normalizing the model
each period is unnecessary and over-identifying. In these cases, re-normalization is
not a set of normalizations imposed without loss of generality, but a set of testable
empirical restrictions on the underlying model of child development.

In addition to being unnecessary and over-identifying, we also show that in stan-
dard cases using KLS production technologies, re-normalizing the model each period
can actually bias the estimation of the production function. Rather than allow-
ing fully unrestricted non-parametric identification of the production technology,
re-normalization imposes a mean log-stationary restriction on the dynamics of the
latent skill stock, and this restriction is generally consistent only with particular
types of production technologies, such as the log-linear (Cobb-Douglas) production
technology, and not with more general technologies, such as the general CES tech-
nology which some of the previous work actually estimate. Even in the case where
the mean-log-stationary restriction is correctly imposed, re-normalization imposes
further restrictions on the measurement factor loadings and the scale of the latent
variables, which can also bias the estimates of the production function parameters.

The remainder of the paper is organized as follows. We first present a stylized
child development model and review the existing identification analysis based on
re-normalization. The second part of the paper presents our analysis in a series of
remarks. We conclude with a Monte Carlo simulation to demonstrate the validity
of our analysis and quantify the extent of the bias. In our Monte Carlo analysis, we
show that simple alternative estimators, which do not re-normalize the model and
instead impose a normalization on the initial period only, can recover the underlying
parameters.

2 Model and Measurement

In this section we present a stylized model of skill formation and measurement, a
simplified version of the influential model developed in Cunha et al. (2010). Several
subsequent papers follow this model. We conclude this section by briefly summarizing
the identification analysis under re-normalization restrictions.

2.1 Skill Formation Technology

Child development takes place over a discrete and finite period, t = 0, 1, . . . , T , where
t = 0 is the initial period (say birth) and t = T is the final period of childhood (say
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age 18). There is a population of children and each child in the population is indexed
i. For each period, each child is characterized by a stock of skills θi,t, with θi,t > 0
for all i and t, and a flow level of investments Ii,t, with Ii,t > 0 for all i and t. For
each child, the current stock of skills and current flow of investment produce next
period’s stock of skill according to the skill formation production technology:

θi,t+1 = ft(θi,t, Ii,t) for t = 0, 1, . . . , T − 1 (1)

(1) can be viewed as a dynamic state space model with θi,t the state variable for
each child i. The production technology ft(·) is indexed with t to emphasize that
the technology can vary over the child development period. Given some initial dis-
tribution of skills in the population, G0, and the sequence of investments in children
Ii,0, Ii,1, . . . , Ii,T−1 for all i, the technology (1) defines the dynamic process of skill de-
velopment producing the stock of skills from the birth to adulthood, θi,0, θi,1, . . . , θi,T
for all i, and the population distribution of skill stocks in all subsequent periods
G1, . . . , GT .

2.2 Measurement

The stock of skills θi,t is not observed in data directly. Instead we have a system of
skill measures given by

Zi,t,m = µt,m + λt,m ln θi,t + εi,t,m (2)

Our measurement system presumes panel data with 3 dimensions: children i, time
t, and measure m. We have Mt measures for latent skill in each period t, indexed
m = 1, . . . ,Mt. Zi,t,1, . . . , Zi,t,Mt are the measures, µt,1, . . . , µt,Mt are the measurement
intercepts, and λt,1, . . . , λt,Mt are the measurement “factor loadings,” with λt,m >
0 for all t,m. The measurement parameters µt,m and λt,m, vary over time and
across measures but are homogenous across children. Finally, εi,t,1, . . . , εi,t,Mt are the
measurement errors, with E(εi,t,m) = 0 for all t,m. Given the intercept µt,m, the
assumption of mean zero εi,t,m errors is without loss of generality. To focus on the
already complex identification issues involved with measurement error in skills, we
assume investments Ii,t are observed without error.3

For the remainder of the paper, we omit the children’s i subscript to reduce
notational clutter. All expectations operations (E, V ar, Cov, etc) are defined over

3To leave aside any issues with normalizations regarding investments, we set log investment to
be mean zero in all periods, E(ln Ii,t) = 0 for all t,m. In practice, if investments are truly observed
without error, this can be accomplished by simply de-meaning the investment data so that the
sample mean of ln Ii,t is zero in each period.
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the population of children (indexed i). For random variable Xi,t, we generically define
κt ≡ E(Xi,t) =

∫
Xi,tdFt, with Ft the distribution function for random variable Xi,t

in period t. For simplicity, we drop the i subscript and equivalently write this as
κt ≡ E(Xt).

Various assumptions about the dependence of the measurement errors with each
other and dependence of the measurement errors and the latent stock of skills and
investment play a limited role in our analysis here, but are otherwise important gen-
eral considerations in these types of measurement models. A sufficient assumption
we maintain in this paper is that measurement errors are independent contempora-
neously across measures (εt,m ⊥ εt,m′ for all m 6= m′ and all t), independent over time
(εt,m ⊥ εt′,m′ for all t 6= t′ and all m and m′), and independent of the latent stock of
skills and investments in any period (εt,m ⊥ θt′ for all t, t′ and all m and εt,m ⊥ It′
for all t, t′ and all m). These assumptions are sufficient, but not strictly necessary,
as weaker assumptions allowing for some forms of dependence among measures and
among measures and latent variables can be used for identification.

Because latent skills are unobserved and have no natural units, some normaliza-
tion is clearly necessary. We normalize the initial period as E(ln θ0) = 0 and λ0,1 = 1.
Under this normalization and with at least 3 measures in the first period, we identify
the remaining factor loadings for the period t = 0 measures λ0,2, λ0,3, . . . , λ0,M0 and
the µ0,1, µ0,2, . . . , µ0,M0 measurement intercepts. Following standard arguments, we
then identify the distribution of latent skills in the initial period, up to this normaliza-
tion. For the remainder of the paper, we maintain this initial period normalizations
and discuss normalizations and restrictions for periods only after the initial period
(for periods t > 0).

3 Identification of Dynamic Production Technolo-

gies

3.1 Location and Scale of Production Technologies

Much of our analysis centers on the classes of production technologies which can be
identified given that some inputs (latent skills) are measured with error and have
unknown scale and location. Central to our analysis is whether the production tech-
nology already has a known location and scale or whether the location or scale is
unknown in the sense that it depends on free parameters which need to be esti-
mated. If the production function already has a known location and scale, then
simultaneously imposing normalizations on the latent variables or restrictions on the
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measurement process to further restrict the scale and location is over-identifying.
We first define the concept of a production function with “known location and

scale”:

Definition 1 A production function ft(θt, It) has known location and scale (KLS)
if for two non-zero input vectors (θ′t, I

′
t) and (θ′′t , I

′′
t ), where the input vectors are

distinct (θ′t 6= θ′′t or I ′t 6= I ′′t ), the output ft(θ
′
t, I
′
t) and ft(θ

′′
t , I
′′
t ) are both known (do

not depend on unknown parameters), finite, and non-zero.

A production technology with known location and scale implies that we identify
the location of the production function at either known input vector, and for a change
in inputs from (θ′t, I

′
t) to (θ′′t , I

′′
t ) the change in output ft(θ

′
t, I
′
t) − ft(θ

′′
t , I
′′
t ) is also

known. Other points in the production possibilities set may be unknown, i.e. depend
on free parameters which then need to be estimated.

For example, consider the class of Constant Elasticity of Substitution (CES) skill
production technologies, the class of technologies estimated in a number of previous
studies such as (e.g. Cunha et al., 2010). The standard CES technology is

θt+1 = (γtθ
φt
t + (1− γt)Iφtt )1/φt . (3)

with γt ∈ (0, 1) and φt ∈ (−∞, 1], and φt → −∞ (Leontif), φt = 1 (linear), φt → 0
(log-linear, Cobb-Douglas). The elasticity of substitution is 1/(1−φt). The produc-
tion technology (3) satisfies Definition 1 because for any inputs It = θt = a > 0,
θt+1 = a. That is, for inputs which are known to be equal at any value a, we also
know the output is a as well. This property of known location and scale is related to
constant returns to scale property of this function, but constant returns to scale is
not sufficient property to satisfy Definition 1, as shown below. While the scale and
location of the production function (3) are known, other points in the production
possibilities set are determined by the free production function parameters γt and
φt, and these parameters need to be estimated.

Another example of KLS production technologies are those based on the translog
function, a generalization of the Cobb-Douglas production technology which does
not restrict the elasticity of substitution between inputs to be constant:

ln θt+1 = γ1t ln θt + γ2t ln It + γ3t(ln θt)(ln It) (4)

with
∑3

j=1 γjt = 1. Consider the points (θt, It) = (1, 1) and (e, e). For these points,
the output of the production technology is known at ln θt+1 = 0 and 1, respectively,
and thus this function satisfies Definition 1.
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In contrast, a class of technologies which does not have a known location is the
following CES function with a free Total Factor Productivity (TFP) term:

θt+1 = At(γtθ
φt
t + (1− γt)Iφtt )1/φt (5)

with At > 0 representing TFP.4 In this case the location (in logs) depends on the
unknown/free TFP term At.

Another class of technologies which does not satisfy Definition 1 are CES tech-
nologies without a known returns to scale:

θt+1 = (γtθ
φt
t + (1− γt)Iφtt )ψt/φt . (6)

where ψt > 0 is an unknown returns to scale parameter, with ψt = 1 constant returns
to scale, ψt < 1 decreasing returns to scale, and ψt > 1 increasing returns to scale.
In this case, ft(a, a) = aψt . For this function, while we know the point ft(1, 1) = 1,
we do not know a second point in the production possibilities set. This function then
has a known location but an unknown scale.

3.2 Under-Identification

We analyze the under-identification of the general model by examining a general
form for the production technology given by

ln θt+1 = αt + βt lnht(θt, It) (7)

where ht(θt, It) is a known location and scale (KLS) function, such as the CES
function (3). αt and βt > 0 are free (unknown) location and scaling parameters,
respectively, for the technology.

Substituting the latent technology equation (7) into the measurement equation
(2), we have the following:

Zt,m = µt,m + λt,m[αt + βt lnht(θt, It)] + εt,m

Re-arranging,

Zt,m = (µt,m + λt,mαt) + (λt,mβt) lnht(θt, It) + εt,m

= at + bt lnht(θt, It) + εt,m (8)

4Equivalently, one could write this function as θt+1 = (γ1tθ
φt

t + γ2tI
φt

t )1/φt , where γ1t + γ2t
does not equal a known constant. The previous case (3) is a special case of this function with
γ1t + γ2t = 1.
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From this expression, it is clear that we cannot separately identify the measurement
parameters µt,m, λt,m from the production function parameters αt, βt.

3.3 Observationally Equivalent Models

We conclude our discussion of the under-identification issue, by examining two al-
ternative models and show that they are observationally equivalent. We define a
“model” as a combination of assumptions about (i) the production technology ft,
(ii) the latent variables θt, and (iii) the measurement parameters µt,m, λt,m. For each
model, we assume the initial (t = 0) distribution of latent skills have been identified,
as outlined above. Recall that measures take the form:

Zt,m = µt,m + λt,m ln θt + εt,m.

The first model assumes the production technology is KLS, but leaves the latent
variables and measurement parameters free:

Model 1 (i) ln(θt+1) = ht(θt, It) (αt = 0, βt = 1)
(ii) E(ln(θt)) free for all t > 0
(iii) λt,m free for all t > 0

where ht(θt, It) is a known location and scale technology (Definition 1). The second
model leaves the production function free (αt, βt free production function parame-
ters), but restricts the latent variables and measurement parameters:

Model 2 (i) ln(θt+1) = αt + βth(θ0, I0)
(ii) E(ln(θt)) = 0 for all t > 0
(iii) λt,m = 1 for all t > 0

Model 1 and Model 2 are observationally equivalent models. The two mod-
els present observationally equivalent normalizations for the under-identified general
formulation (8). Model 1 normalizes the technology (sets αt = 0 and βt = 1) but
leaves the latent variables and measurement parameters free. Model 2 normalizes the
latent variables and measurement parameters (E(ln θt) = 0 for all t and λt,m = 1)
but leaves the production technology free. Note that in Model 2, the normalization
on the latent variable E(ln θt) implicitly fixes the measurement intercepts to be the
unconditional mean of the measures: µt,m = E(Zt,m).5

5There are of course other possible normalizations. One possibility is to replace Model 2 (ii)
with µt = 0 for all t.
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4 Re-Normalization

Our main argument is that while some normalization in this class of latent factor
models is clearly necessary, in practice prior papers “over-normalize” the model: they
simultaneously estimate production technologies that already have a known location
and scale and “re-normalize” the latent variables. In this section, we review the pre-
vious approaches, showing that these approaches impose over-identifying restrictions,
and showing that these over-identifying restrictions can bias the estimation.

4.1 Review of Identification with Re-Normalization

We define re-normalization as:

Definition 2 Re-Normalization:
(i) E(ln θt) = 0 for all t > 0
(ii) λt,1 = 1 for all t > 0

where we have labeled the arbitrarily chosen normalized measure in each period to
be measure m = 1. We continue to refer to re-normalization as a “normalization,”
but in fact we argue below that in common cases where the technology is already
a known location and scale technology, re-normalization is a set assumption with
empirical content and testable restrictions.

Under re-normalization, the latent skill stock in each period is treated as a sep-
arate latent factor and the measurement system is “re-normalized” every period.
Specifically, re-normalization (i) imposes that latent skills are mean log stationary:

E(ln θ0) = E(ln θ1) = · · · = E(ln θT ).

In addition, (ii) restricts latent skills to “load onto” one arbitrarily chosen measure
each period in the same way:

∂E(Z0,1| ln θ0)
∂ ln θ0

=
∂E(Z1,1| ln θ1)

∂ ln θ1
= · · · = ∂E(ZT,1| ln θT )

∂ ln θT
.

Below, we discuss each of these restrictions and argue that each can bias the estima-
tion of the production function parameters.

We first briefly review the identification analysis under re-normalization, following
the analysis in Cunha et al. (2010). It is useful to think of their identification
procedure as a three step procedure. In the first step, they recover the measurement
error parameters, µt,m and λt,m, for all periods. With Mt ≥ 3 measures for each
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period,6 re-normalization (ii) (λt,1 = 1 for all t) allows one to use covariances among
measures to identify the λt,m parameters for all t and all measures m:

λt,m =
Cov(Zt,m, Zt,m′)

Cov(Zt,m′ , Zt,1)
for all m 6= m′ 6= 1 and all t

The measurement intercepts are recovered using the mean log-stationarity assump-
tion, re-normalization (i) (E(ln θt) = 0 for all t):

µt,m = E(Zt,m) for all m and t.

In the second step, the cross-sectional distribution of latent skills and investments
for all periods are identified using the identified measurement parameters. For each
period, residual measures can be constructed, and each residual measure identifies
the latent skill up to the measurement error:

Z̃t,m = (Zt,m − µt,m)/λt,m

= ln θt + εt/λt,m for all m, t

The joint distribution of latent skills and investments for all periods (θ0, I0, θ1, I1, . . . , θT , IT ),
is then identified using these residual measures.

Finally, in the third step, Cunha et al. (2010) identify the production technol-
ogy linking latent skill stocks in period t + 1 (θt+1) to period t latent skill stocks
and investment (θt, It). The claim is that non-parametric identification of the pro-
duction technology follows because the joint distribution of all of the latent input
and output variables have been identified in the previous steps. As we detail be-
low, the re-normalization approach has already implicitly restricted the technology
in the previous steps. Therefore the distribution of latent variables identified in the
previous steps must satisfy the imposed re-normalization restrictions. These iden-
tification results therefore do not imply that any arbitrary production function can
be identified.

4.2 Over-Identification with Re-Normalization

We now turn to our first result. If the ft(θt, It) production functions characterizing
the skill development technology already have a known location and scale, then
further restrictions to fix the location and scale are unnecessary. We classify these
KLS models with re-normalization imposed as Model 3:

6While Mt ≥ 3 measures is sufficient for identification, it is not strictly necessary. Under some
conditions, as few as two measures can be sufficient.
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Model 3 KLS with Re-Normalization
(i) ln(θt+1) = ht(θt, It)
(ii) E(ln(θt)) = 0 for all t > 0
(iii) λt,m = 1 for all t > 0

This model “over-normalizes” the under-identified model (8), simultaneously restrict-
ing the technology and the latent variables and measurement parameters. Model 3
is not observationally equivalent to the Models 1 and 2, and Model 3 can be empir-
ically tested against those more general models. We summarize this conclusion in
the following remark:

Remark 1 Re-normalization is over-identifying when the production technology has
a known location or scale.

For example, Cunha et al. (2010) propose estimation of a KLS technology of
skill formation (CES production function) under re-normalization.7 In the models
considered by Cunha et al. (2010), the re-normalization assumptions are not without
loss of generality given the production technologies they consider already have a fixed
location and scale.

4.3 Identification of KLS Functions without Re-Normalization

A corollary of our result that re-normalization is over-identifying with known location
and scale functions is that point identification of these cases is possible without re-
normalization. We next consider a simple example which shows identification of a
KLS production technology without imposing the re-normalization restrictions.

Consider the Cobb-Douglas specification of the technology and a two period
model t = 0, 1:

ln θ1 = γ0 ln θ0 + (1− γ0) ln I0 (9)

7In a recent private email correspondence, the authors of Cunha et al. (2010) have revealed that,
although their identification and estimation description in the published paper indicates otherwise
(see p. 905 in particular which indicates that the latent distribution of log skills is assumed to
be mean 0 in all periods), their specific estimation algorithm did not actually impose the mean
log-stationarity assumption, re-normalization (i). This explains why their estimated elasticity of
substitution is not 1 (Cobb-Douglas) as would be necessarily imposed by the re-normalization
assumption (see discussion below). Cunha et al. (2010) have revealed that they did maintain in the
estimation the constant factor loading re-normalization restriction, re-normalization (ii), which we
show below is over-identifying and potentially biasing.
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with γ0 ∈ (0, 1). The Cobb-Douglas function is a KLS function, as shown above.
Our goal is to identify the primitive production function parameter γ0 and the mea-
surement parameters µ1,m and λ1,m.

Identification proceeds using empirical covariances of measures of skills and in-
vestments. The covariance between a measure of the stock of skills in period 1 Z1,m

and observed log investment in the initial period ln I0 is given by

Cov(Z1,m, ln I0) = λ1,mCov(ln θ1, ln I0)

= λ1,m[γ0Cov(ln θ0, ln I0) + (1− γ0)V ar(ln I0)] (10)

This covariance is a combination of the production function parameter γ0, the mea-
surement parameter (factor loading) for this measure λ1,m, and moments of the joint
distribution of initial skills and investments Cov(ln θ0, ln I0) and V ar(ln I0). Consider
a second covariance using squared log investment but the same measure of period 1
skills Z1,m:

Cov(Z1,m, (ln I0)
2) = λ1,mCov(ln θ1, (ln I0)

2)

= λ1,m[γ0Cov(ln θ0, (ln I0)
2) + (1− γ0)Cov(ln I0, (ln I0)

2)] (11)

The ratio of these two covariances is

Cov(Z1,m, ln I0)

Cov(Z1,m, (ln I0)2)
=

λ1,m[γ0Cov(ln θ0, ln I0) + (1− γ0)V ar(ln I0)]
λ1,m[γ0Cov(ln θ0, (ln I0)2) + (1− γ0)Cov(ln I0, (ln I0)2)]

=
γ0Cov(ln θ0, ln I0) + (1− γ0)V (ln I0)

γ0Cov(ln θ0, (ln I0)2) + (1− γ0)Cov(ln I0, (ln I0)2)
(12)

Taking the ratio of these covariances has eliminated the unknown measurement pa-
rameter λ1,m. Our approach here is an example of the general approach we develop
in a companion paper (Agostinelli and Wiswall (2016)). We treat the measurement
parameters as “nuisance parameters” and use particular transformations of observed
data moments to eliminate them, a method similar in spirit to that used to eliminate
fixed effects in standard panel data analysis.

Given the initial period normalizations (described above), we identify the initial
period moments, V ar(ln θ0), V ar(ln θ0), and Cov(ln θ0, ln I0). Solving (12) for the
production function primitive γ0 then shows that the production function parame-
ter is identified without imposing any restrictions on the measurement parameters
µ1,m, λ1,m or the latent distribution of θ1. One remarkable aspect of this identifica-
tion concept is that identification of the production function in this case requires
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only a single measure of period 1 skills, rather than the multiple measures typically
thought to be required.

Once γ0 has been identified, we can also then identify the parameters of the
measurement equation. The measurement factor loading λ1,m is identified from

λ1,m =
Cov(Z1,m, Z0,m)

λ0,m · Cov(ln θ1, ln θ0)
(13)

=
Cov(Z1,m, Z0,m)

λ0,m · (γ0V ar(ln θ0) + (1− γ0)Cov(ln θ0, ln I0))
, (14)

where λ0,m is identified up to the initial period normalization. We can also identify
the measurement intercept for Z1,m from

µt,m = E(Zt,m)− λt,mE(γ0E(ln θ0) + (1− γ0)E(ln I0)).

which in this Cobb-Douglas case is simply µt,m = E(Zt,m) given the initial period
normalization.

Agostinelli and Wiswall (2016) provide more general identification results and
other examples, including for general CES technologies. The Monte Carlo exercises
we conduct below show how to use these identification results to develop an estimator
that works well in practice.

4.4 Errors-in-Variables Formulation

To further understand the over-identifying nature of the re-normalization restric-
tions, it is useful to re-formulate the problem as a traditional errors-in-variables
linear regression model Chamberlain and Griliches (1975). For simplicity, we again
consider the Cobb-Douglas case (9). We proceed as before using the initial period
normalization and forming measures for the first period:

Z̃0,m =
Z0,m − µ0,m

λ0,m
= ln θ0 + ε̃0,m , where ε̃0,m =

ε0,m
λ0,m

.

We also have a single measure of period 1 skills θ1 given by

Z1,m = µ1,m + λ1,m ln θ1 + ε1,m

The measurement parameters µ1,m and λ1,m are treated as free parameters, and we
do not impose the re-normalization restriction.
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Substituting the production technology into the period 1 measurement equation,
we have

Z1,m = µ1,m + λ1,m[γ0 ln θ0 + (1− γ0) ln I0] + ε1,m

Substituting one of the measures for ln θ0, say Z̃0,m, we have

Z1,m = µ1,m + λ1,m[γ0(Z̃0,m − ε̃0,m) + (1− γ0) ln I0] + ε1,m

Re-arranging, we have

Z1,m = µ1,m + λ1,mγ0Z̃0,m + λ1,m(1− γ0) ln I0 + (ε1,m + λ1,mγ0ε̃0,m)

= β0 + β1Z̃0,m + β2 ln I0 + π1,m (15)

where β0 = µ1,m, β1 = λ1,mγ0, β2 = λ1,m(1− γ0), and π1,m = ε1,m + λ1,mγ0ε̃0,m. The
“reduced form” equation (15) now has the standard errors-in-variables form: (15)
is a linear regression of a measure of period 1 skills Z1,m on a measure for period 0
skills Z̃0,m and observed investment. The β1 and β2 coefficients are combinations of
the measurement factor loading λ1,m and the production function parameter γ0.

Identification takes two steps. First, the standard error-in-variables problem is
that the OLS regression estimands do not identify β1 and β2. We can solve this
problem using any number of standard techniques. In this setting with multiple
measures available satisfying independence assumptions, a second measure for period
0 skills (Z̃0,m′) can be used as an instrument for Z̃0,m. Using this instrumental
variables approach we identify β0, β1, and β2. Second, with β1 and β2 identified, we
can then solve for the underlying primitive parameters γ0, µ1,m, and λ1,m:

γ0 =
β1

β1 + β2
, µ1,m = β0 and λ1,m = β1 + β2.

The key to identification in this case is that this commonly used production func-
tion (9) has a known location and scale (i.e., the factor shares sum to 1 and there
is no free intercept) and hence we can identify the production function parameters
separately from the measurement parameters. The primitive restriction on the pro-
duction technology we consider here is quite similar to the proportionality restriction
(linear regression parameters are assumed proportional to each other) as considered
by Chamberlain (1977a) in a traditional “reduced form” error-in-variables model. In
contrast, in the more general case of a Cobb-Douglas function with unknown scale:

ln θ1 = γ0,θ ln θ0 + γ0,I ln I0, (16)
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where γ0,θ and γ0,1 are free parameters and do not sum to 1, the structural parameters
in equation 16 γ0,θ and γ0,I are not point identified because there would be four total
unknown parameters γ0,θ, γ0,I , µ1,m and λ1,m and only three regression coefficients
β0,β1, β2.

A similar issue arises if we omit the investment input altogether, and the tech-
nology takes the form of a simple panel AR(1) process for the latent stock of skills:

ln θ1 = γ0 ln θ0

Substituting measures as above, we have

Z1,m = µ1,m + λ1,mγ0Z̃0,m + (ε1,m + λ1,mγ0ε̃0,m) (17)

In this case, an additional assumption is required to separately identify the factor
loading λ1,m of the measurement equation from the primitive production function
parameter γ0.

4.5 Restrictions Implied by Re-Normalization: Mean Log-
Stationarity

Our previous results show that re-normalization restrictions are over-identifying when
the production technology already has a known location and/or scale. We next show
that in these cases, re-normalizing the model can also impose important biases in
the estimation of the primitive production function parameters.

First, we show that because re-normalization imposes mean log-stationarity it
restricts the dynamic relationships in skill development:

Remark 2 Re-normalization (i) restricts the permissible production technologies to
those that respect mean log-stationarity.

As an example, consider again the class of constant elasticity of substitution
(CES) technologies defined in (3). The stock of period t = 1 skills are given by

θ1 = (γ0θ
φ0
0 + (1− γ0)Iφ00 )1/φ0 ,

where γ0 ∈ (0, 1) and φ0 → 0 is the log-linear, Cobb-Douglas special case. Recall
that the initial conditions are normalized such that E(ln θ0) = 0 and E(ln I0) = 0
and we identify the joint distribution of initial latent skills and investment, which
we define as G0(θ0, I0).
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Consider the dynamics in skill development. Given the CES technology, the mean
of log skills in the next period, say period 1, is given by

E(ln θ1) =


γ0E (ln θ0) + (1− γ0)E (ln I0) if φ0 = 0

1

φ0

∫
ln
(

(γ0θ
φ0
0 + (1− γ0)Iφ00 )

)
dG0(θ0, I0) if φ0 6= 0

The log-linear production technology (φ0 → 0, Cobb-Douglas) is always con-
sistent with re-normalization for any distribution of skills and investments in the
initial period, G0(θ0, I0), with E(ln θ0) = 0 and E(ln I0) = 0 (as imposed in the
initial period normalization). For at least some non-log-linear technologies (with
φ0 6= 0), re-normalization (i) may not hold and mean log skills could grow or decline:
E(ln θ0) 6= E(ln θ1). Re-normalization (i) is therefore not without loss of general-
ity in an environment where the dynamics in children’s skills are generated by a
non-log-linear production technology. These technologies can imply either growth or
decline in mean log skills over time, and the dynamics depend on the curvature of
the production function as well as on the joint distribution of initial period skills and
investments.

4.6 Restrictions Implied by Re-Normalization: Constant Fac-
tor Loading

The second part of the re-normalization definition, re-normalization (ii), is that the
factor loading for one measure each period is normalized to be 1, λt,1 = 1 for all t,
where m = 1 is the (arbitrarily chosen) normalizing measure. This restricts skills
to “load onto” different measures in each period, where each of these normalizing
measures can have different scales. We have previously shown that if the production
technology has a known location and scale, then fixing the scale again through re-
normalization is not necessary, and the factor loadings λt,m for all t > 0 and all
m can be identified without fixing any of the factor loadings for periods after the
initial period. In addition to being unnecessary and over-identifying, we show that
this restriction on the factor loadings could also bias the estimation of production
function parameters.

Remark 3 Even when the technology respects mean log-stationarity, re-normalization
(ii) (constant factor loadings) can bias estimation of production function parameters.

Consider again the following simple example of a Cobb-Douglas production tech-
nology:
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ln θ1 = γ0 ln θ0 + (1− γ0) ln I0

where γ0 ∈ (0, 1). This production technology is a KLS function and yields a path
of skills which are always mean log-stationary. This function is therefore consistent
with the restrictions imposed by re-normalization (i): E(ln θ1) = E(ln θ0) for any
γ0 ∈ (0, 1).

The bias in the estimation depends on the particular estimator. Consider the
intuitively appealing idea of using the covariance between a log skill measure in period
1 Z1,m and log investment in period 0 ln I0. This moment captures the input-output
relationship and could be plausibly used to identify and estimate the production
function parameter γ0. To simplify the derivation, we further assume the initial
conditions are such that Cov(ln θ0, ln I0) = 0, V ar(ln θ0) = 1 and V ar(ln I0) = 1.
The covariance in the skill measure and observed investment is given by

Cov(Z1,m, ln I0) = λ1,mCov(ln θ1, ln I0)

Substituting the production technology and solving for γ0, we have

γ0 = 1− Cov(Z1,m, ln I0)

λ1,m

This expression indicates that the primitive parameter of the production technology
γ0 is a function of the covariance observed in data and the factor loading λ1,m for the
period 1 measure. The re-normalization constant factor loading assumption imposes
that λ1,m = 1, and therefore under re-normalization, the primitive parameter is
identified as γ0 = 1− Cov(Z1,m, Z0,m).

To see the problem with this approach, consider a new measure indexed m′,
which is a “scaled” version of the original measure m: Z1,m′ = δZ1,m. Using this
measure in the estimation implies a new value for the production function parameter:
γ′0 = 1 − Cov(Z1,m′ , Z0,m) 6= γ0. We conclude that under re-normalization, the
estimated γ0 value depends on the scale of the measure used: different measures
yield different estimates of the technology parameters. This is of course not an
attractive feature of the estimator.

As described above (Section 4.3), in the case with a KLS production technology,
a simple alternative estimator allows estimation of γ0 which is invariant to the scale
of the period 1 measure and the factor loading. Consider following the derivation
above (12) and constructing the following ratio using the measure Z1,m′ = δZ1,m:

16



Cov(Z1,m′ , ln I0)

Cov(Z1,m′ , (ln I0)2)
=

δCov(Z1,m, ln I0)

δCov(Z1,m, (ln I0)2)

=
δλ1,mCov(ln θ1, ln I0)

δλ1,mCov(ln θ1, (ln I0)2)

=
Cov(ln θ1, ln I0)

Cov(ln θ1, (ln I0)2)

Taking the ratio of covariances has eliminated the factor loading λ1,m and the “scal-
ing” factor δ. This equation can be solved to identify γ0 and can form an estimator
for γ0 which is invariant to the scale of the measures. This expression makes clear
that because the production technology already has a known scale, we can identify
the technology without re-normalizing the scale of the latent variables and imposing
restrictions on the measurement equations. Imposing re-normalization and λ1,m = 1
and using this restriction to estimate γ0 is not only unnecessary, but can also therefore
bias the resulting estimator if the true factor loading is not exactly 1. We examine
this type of bias in more detail in the Monte Carlo simulations we present below.

4.7 Age-Standardization

One common approach to dealing with various skill measures which have different
scales and locations is to “age-standardize” the measures. We show that this ap-
proach does not resolve the issues we have raised above.

Our previous measures Zt,m can be considered “raw” measures, with the mean
and variance of the raw measure unrestricted. Using the raw measures, researchers
often form age-standardized measures St,m:

St,m =
Zt,m − E(Zt,m)

V ar(Zt,m)1/2
(18)

St,m has mean 0 and standard deviation 1, by construction.8

Following the same measurement model as above, we can write the age-standardized
measure as a linear measure of the underlying latent skills:

8For example, to fix ideas, Zt,m could be a test score measure of skills with 76 items. Zt,m
provides the number of questions the child answered correctly on the test, ranging from 0 (no
questions answered correctly) to 76 (all questions answered correctly). Zt,m has a mean E(Zt,m) =
32, and a standard deviation of V (Zt,m)1/2 = 11. In this case, the standardized measure would
be constructed as St,m = (Zt,m − 32)/11, where St,m has mean 0 and standard deviation 1 by
construction.
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St,m = µS,t,m + λS,t,m ln θt + εS,t,m (19)

where the measurement parameters are can be written in terms of the original pa-
rameters for the raw measure:

µS,t,m = −λS,t,mE(ln θt),

λS,t,m =
λt,m

V (Zt,m)1/2
, and

εS,t,m = εt,m/V (Zt,m)1/2.

A key question is whether using age-standardized measures St,m, rather than the
raw measures Zt,m, would then imply that the re-normalization assumption holds
without any loss of generality. We find this is not the case, as we summarize in the
following remark:

Remark 4 Age-standardized measures do not necessarily imply re-normalization.

Note first that while E(St,m) = 0 by construction, this does not imply that
E(ln θt) = 0 for any period. It is important to distinguish the sample construction
of measures, which can be constructed to be mean 0 in the sample, from the latent
distribution of skills, which can evolve dynamically to have a non-zero mean. Second,
the factor loadings on the standardized measure, λS,t,m, are in general not equal
to 1, and λS,t,m can vary over time as the variance of latent skills V (ln θt), the
factor loading on the original raw measure λt,m, and measurement error variance
V (εt,m) vary over time. Age-standardization techniques therefore do not resolve the
issues raised above with re-normalization. We directly evaluate this approach in
the Monte Carlo exercises and show that estimators using re-normalization with
age-standardized measures are still biased, although the form of the bias using the
age-standardized measures can be different from that imposing re-normalization on
the raw measures directly.

4.8 Anchoring

Cunha et al. (2010) consider “anchoring” the latent skills to variables which might
be particularly meaningful from an economic or policy perspective. The idea is that
latent skills should be anchored to some adult outcome (e.g. adult earnings or adult
schooling) over which we might construct some sense of individual welfare. Their
approach uses an equation which relates some adult outcome Y , e.g. adult earnings,
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to final period latent skills of children at the “terminal” age T (e.g. age T = 14 in
their framework):

Y = µA + αA ln θT + εY (20)

where E(εY ) = 0 and ln θT and εY are independent.
Using these anchoring parameters, µA and αA, which are specific to the adult

outcome Y , we can then relate “unanchored” latent skills (what we have to this
point denoted θt) to anchored skills (which we now denote as θA,t).

ln θA,t = µA + αA ln θt (21)

Inverting the function, we can also write unanchored skills as a function of anchored
skills:

ln θt = −µA
αA

+
1

αA
ln θA,t (22)

And, we can re-formulate the production technology in terms of anchored skills:

ln θt+1 = −µA
αA

+
1

αA
ln ft(e

µA+αA ln θt , It), (23)

where the level of unanchored skills in period t is given by θt = eln θA,t = eµA+αA ln θt .
In this setting, we follow Cunha et al. (2010) and assume re-normalization continues
to hold for the unanchored skills, but there are no explicit conditions on the anchored
skills.

Formulating the technology in terms of anchored skills changes the interpretation
of the production function parameters, as they are now in terms of the anchored
skills rather than unanchored skills. In particular, the µA and αA parameters can
change the curvature of the production technology, possibly violating the assumption
of mean log-stationarity ( E(ln θ1) = · · · = E(ln θT ) = 0). We summarize this finding
in the following remark:

Remark 5 Re-normalization can restrict the anchoring and production function pa-
rameters.

Consider again the log-linear, Cobb-Douglas function, but now with anchoring:

ln θ1 = −µA
αA

+
1

αA
[γ0(µA + αA ln θ0) + (1− γ0) ln I0]
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=
µA
αA

(γ0 − 1) + γ0 ln θ0 +
1− γ0
αA

ln I0

With γ0 ∈ (0, 1), E(ln θ0) = 0 and E(ln I0) = 0, the re-normalization condition (i)
E(ln θ1) = 0 holds if and only if µA = 0. However, this can contradict the anchoring
equation (20) whenever E(Y ) 6= 0. Because re-normalization imposes E(ln θT ) = 0,
this implies that µA = E(Y ). Because we interpret the anchoring as an attempt to
give some specific scale and location to children skills, the anchoring measures could
in general have a non-zero mean.9 Of course, one can always de-mean the adult
outcome Y , so that E(Y ) = 0 by construction. But because the technologies are
in general non-linear, with transformations such as these the anchored latent skills
lose their specific meaning derived from the particular location and scale of the adult
outcome.

5 Monte Carlo Exercises

To support our analytic results, we simulate some simple versions of the child devel-
opment model to show that the remarks we derived hold in a simple data simulation
and to quantify the potential biases in estimation.

5.1 Two Period Cobb-Douglas Model

The first example assumes the technology of skill formation is of the Cobb-Douglas
form where the mean log-stationarity restriction, re-normalization (i), implicitly
holds. In this example, we focus on the implications of the factor loading restriction,
re-normalization (ii).

5.1.1 Data Generating Process

We consider a two period model T = 2, where the skill production technology is
given by

ln θ1 = γ0 ln θ0 + (1− γ0) ln I0, (24)

and γ0 ∈ (0, 1) is the production function parameter we want to estimate. The initial
log children’s skills and initial log investments are drawn from a Normal distribution:

9One example of an anchor in Cunha et al. (2010) is years of schooling. The sample mean
of this variable in their sample is 13.38 years, implying that the estimate of µA would be 13.38.
However, when Cunha et al. (2010) construct the anchor for log skills, they impose µA = 0 (private
email correspondence with Flavio Cunha).
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ln θ0 ∼ N(0, σ2
θ) , ln I0 ∼ N(0, σ2

I ), (25)

where ln θ0 and ln I0 are assumed independent. In these examples, we assume invest-
ment is also measured with error, and there are three latent variables: θ0, θ1, I0. We
have three measures for ln θ0 (Z0,1,θ, Z0,2,θ, Z0,3,θ), three measures for ln θ1 (Z1,1,θ, Z1,2,θ, Z1,3,θ),
and three measures for ln I0 (Z0,1,I , Z0,2,I , Z0,3,I). The measures take the following
form:

Zt,m,θ = µt,m,θ + λt,m,θ ln θt + εt,m,θ, (26)

Z0,m,I = µ0,m,I + λ0,m,I ln I0 + ε0,m,I , (27)

with εt,m,θ ∼ N(0, σ2
t,m,θ) and ε0,m,I ∼ N(0, σ2

0,m,I) for both periods t = {0, 1} and all
the measures m = {1, 2, 3}. The measurement errors are assumed to be independent
of each other. The full set of parameters we use are listed in tbe Appendix.

5.1.2 Estimation

We consider three estimators for γ0. In order to eliminate differences in estimation
results due to the other less central aspects of the estimation, all of the estimators
are based on simulated method of moments. All three estimators impose the initial
period normalization and compute the initial conditions in the same way, as described
above. The estimators only differ in the assumptions imposed on the subsequent
period.

• Estimator 1 (Re-Normalization) imposes re-normalization (ii): λ1,1,θ = 1.
We then compute the remaining factor loadings for period 1 as follows

λ1,2,θ =
Cov(Z1,2,θ, Z1,3,θ)

Cov(Z1,1,θ, Z1,3,θ)
and λ1,3,θ =

Cov(Z1,3,θ, Z1,2,θ)

Cov(Z1,1,θ, Z1,2,θ)

• Estimator 2 (Re-Normalization and Standardized Measures) first age-
standardizes all of the measures and then imposes re-normalization on the
standardized measures following Estimator 1. Estimator 2 is then the same as
Estimator 1 after age-standardizing the measures.
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• Estimator 3 (Initial Period Only Normalization) does not impose the
re-normalization assumption. Instead, for this estimator, we compute measure-
ment parameters consistently with any technology parameter (γ0) as follows:

λ1,m,θ =
Cov(Z1,m,θ, Z0,1,θ)

Cov(ln θ1, ln θ0)
for all m = 1, 2, 3, (28)

where ln θ1 and hence λ1,m,θ depend on the γ0 parameter.

To isolate the role of the re-normalization restrictions, all of the simulated method
of moments estimators use the same set of moments based on covariances between
skill measures in t + 1 and measures of inputs in period t (see Appendix). Each
estimator for γ0 minimizes the sum of the quadratic deviation between data and
simulated moments, weighting each moment equally. We simulate a dataset of 1,000
observations, using 1,000 simulation draws for each estimator. We use a robust grid
search over the parameter space to compute the estimator.

5.1.3 Results

In the first exercise (see Figure 1), we vary the true factor loading for one of the first
period measures, λ1,1,θ. The true value of γ0 is fixed at 0.5. For each value of the
factor loading, we compute the estimate for the production parameter γ0.

Several results are of note. First, the estimate of γ0 from Estimator 3 (Initial Pe-
riod Only Normalization), our preferred estimator, is invariant to the factor loading
λ1,1,θ. This is because Estimator 3 computes the factor loading to be consistent for
any value of the technology parameter γ0. Estimator 3 is able to recover the true γ0
estimate of 0.5.10

On the other hand, the estimate of γ0 from Estimator 1 (Re-Normalization) varies
depending on the true measurement parameter λ1,1,θ. Only when re-normalization
restriction actually holds (λ1,1,θ = 1), do we see that that the γ0 estimate is equal to
the true value of γ0. Estimator 2 uses the re-normalization assumption but first
age-standardizes the measures. Figure 1 shows that estimates of γ0 using age-
standardized measures and re-normalization are also biased.11

10Note that because of the discrete grid search and finite number of simulation draws used to
compute the simulated method of moments estimator, our estimates are not in all cases exactly
equal to the true value. But the deviations of the estimate from the true value are very small.

11A fourth estimator one could consider is Estimator 3 (Initial Period Only Normalization) using
age-standardized measures. In results not shown, but which directly follow our analytic results,
this estimator is also able to recover the primitive parameter because this estimator is invariant to
the location and scale of the period 1 measures.
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In Figure 2 we show the results from a second simulation in which we fix the
value of factor loading at a value different from 1 (λ1,1,θ = 0.65) and vary the true
value of the production function parameter γ0. It is clear that Estimator 3 (Initial
Period Only Normalization) is able to recover the true value of γ0 as we vary the
true value of γ0 over all possible values (γ0 ∈ (0, 1)). For Estimators 1 and 2, based
on imposing re-normalization restrictions, these estimators cannot recover the true
value of the primitive production function.

5.2 Two Period General CES Model

5.2.1 Data Generating Process

In this next set of exercises, we consider estimating a more general CES technology
of skill formation:

θ1 = (γ0θ
φ0
0 + (1− γ0)Iφ00 )1/φ0 (29)

In this specification, there are two unknown production function parameters we would
like to estimate, γ0 ∈ (0, 1) and φ0 ∈ (−∞, 1].

5.2.2 Estimation

In this exercise, we maintain both the initial conditions and the measurement equa-
tions as in the previous exercise. We compute the same simulated method of moments
estimators as above. We also consider a fourth estimator:

• Estimator 4 (Internally Consistent Estimator) is the estimator which is
internally consistent with re-normalization (i).

This estimator maintains the re-normalization assumption of mean log-stationarity,
imposing E(ln θ0) = E(ln θ1) = 0. As we show above, for this class of production
technologies, this restriction implies that the complementarity parameter must be
φ0 = 0 (Cobb-Douglas, log-linear).12

12As we discuss above, Estimator 4 is not really an estimator at all in the traditional sense,
but simply presented to emphasized that re-normalization biases the elasticity of substitution to a
particular value.
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5.2.3 Results

In these exercises, we assess the ability of the estimators to recover the complemen-
tarity parameter φ0. Results are shown in Figures 3 and 4. In Figure 3 we vary
the factor loading parameters λ1,1,θ and fix the true value of the complementarity
parameter at φ0 = 0.5 (elasticity of substitution 2) and share parameter at γ0 = 0.7.
As in the first exercise, Estimator 3 (Initial Period Only Normalization) is invariant
to the factor loading λ1,1,θ value and is able to recover the true complementarity
value of 0.5. Estimators 1 and 2 based on re-normalization, using either the raw or
age-standardized measures, are generally biased.

Figure 4 conducts the reverse exercise and fixes the measurement factor loading
at λ1,1,θ = 0.65 and varies the complementarity parameter φ0 (keeping the factor
share at γ0 = 0.7). Again, Estimator 3 (Initial Period Only Normalization) recovers
the true production function parameters, but the re-normalization based estimators
(Estimators 1 and 2) are biased. Estimator 4 (Internally Consistent Estimator)
maintains the value of φ0 = 0 as this estimator is constructed to satisfy the re-
normalization assumption of mean log-stationarity. This estimator too, while being
internally consistent, is clearly biased for true values of complementarity φ0 6= 0.13

6 Conclusion

Dynamic latent factor models are an important tool for modeling the dynamics of
skill development and incorporating the many varied and imperfect measures of skills
available. As is well known, because latent variables have no natural units, these la-
tent factor models require a normalization to fix the scale and location of the latent
variables. However, additional normalizations beyond what is required are restric-
tions which can reduce the generality of the model. We show that the now common
approach of “re-normalizing” latent skills each period in dynamic models of child
development–treating skills in each period as separate factors–is both unnecessary in
typical cases where the production technology already has a known location and scale
and can cause important biases. Emphasizing the over-identification of these restric-
tions, we show that simple estimators which do not impose these re-normalizations
restrictions can in fact identify the underlying parameters. We demonstrate our an-

13It should be noted that because of the moments selection we made, we are not fully assessing
the implications of re-normalization (i) on the bias for Estimator 1 and 2. This is because the
covariances we use in the moment conditions do not depend on the location of the latent skills,
which is restricted by re-normalization (i). Other estimators using different moments or those using
Maximum Likelihood Estimation, may produce even more biased estimators.
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alytic results in a series of Monte Carlo experiments. In our related work Agostinelli
and Wiswall (2016) we expand on these results, and characterize the conditions for
identification of various kinds of skill development technologies.
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Figure 1: Monte Carlo Results for Estimates of γ (varying λ)

Notes: The dashed line represents the true value of the parameter. The true value
and the Estimator 3 value are exactly equal and hence these lines overlap in the
figure.
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Figure 2: Monte Carlo Results for Estimates of γ

Notes: The 45 degree dashed line displays the true parameter. The true value and
the Estimator 3 value are exactly equal and hence these lines overlap in the figure.
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Figure 3: Monte Carlo Results for Estimates of φ (varying λ)

Notes: The dashed line represents the True value of the parameter. The true value
and the Estimator 3 value are exactly equal and hence these lines overlap in the
figure.
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Figure 4: Monte Carlo Results for Estimates of φ

Notes: The 45 degree dashed line displays the true parameter. The true value and
the Estimator 3 value are exactly equal and hence these lines overlap in the figure.
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APPENDIX

A Monte Carlo Details

The moments used in all estimators is given by

Cov(Z1,m,θ, Z0,m′,θ) = λ1,m,θλ0,m′,θCov(ln θ1, ln θ0)

Cov(Z1,m,θ, Z0,m′,I) = λ1,m,θλ0,m′,ICov(ln θ1, ln I0)

Cov(Z1,m,θ, (Z0,m′,θ)
2) = 2µ0,m′,θλ0,m′,θλ1,m,θCov(ln θ1, ln θ0)+

λ1,m,θλ
2
0,m′,θCov(ln θ1, (ln θ0)

2)

Cov(Z1,m,θ, (Z0,m′,I)
2) = 2µ0,m′,Iλ0,m′,Iλ1,m,θCov(ln θ1, ln I0)+

λ1,m,θλ
2
0,m′,ICov(ln θ1, (ln I0)

2)

Cov(Z1,m,θ, Z0,m′′,θ · Z0,m′,I) = µ0,m′,Iλ0,m′′,θλ1,m,θCov(ln θ1, ln θ0)+
µ0,m′′,θλ0,m′,Iλ1,m,θCov(ln θ1, ln I0)+
λ0,m′′,θλ0,m′,Iλ1,m,θCov(ln θ1, ln θ0 · ln I0)
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Table A-1: Parameters for the Monte Carlo Exercises

Parameter Value

σθ (Standard deviation initial skills) 1

σI (Standard deviation initial investment) 1

µt,m,θ (Constant for measurement equation) 1 ∀ t={0, 1}, m = {1, 2, 3}
µ0,m,I 1 ∀ m = {1, 2, 3}
λ0,m,θ (Factor loading for measurement equation) 1 ∀ m = {1, 2, 3}
λ1,m,θ 1 ∀ m = {2, 3}
λ0,m,I 1 ∀ m = {1, 2, 3}
σ0,m,θ (Standard deviation for measurement error) 0.15 ∀ m = {1, 2, 3}
σ1,m,θ 0.15 ∀ m = {1, 2, 3}
σ0,m,I 0.15 ∀ m = {1, 2, 3}

Notes: Table A-1 shows the values for the model parameters used in the Monte Carlo
exercise in Section 5.

The full list of Monte Carlo parameters is given in the following table:
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