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ABSTRACT

The hedonic pricing method is one of the fundamental approaches used to estimate the economic 
value of attributes that affect the market price of an asset. In environmental economics, such 
methods are routinely used to derive the economic valuation of environmental attributes such as 
air pollution and water quality. For example, the Ricardian approach is based on a hedonic 
regression of land values on historical climate variables. Forecasts of future climate can then be 
employed to estimate the future costs of climate change. This extensively-applied approach 
contains an important implicit assumption that current land markets ignore current climate 
forecasts. While this assumption was defensible decades ago (when this literature first emerged), 
it is reasonable to hypothesize that information on climate change is so pervasive today that 
markets may already price in expectations of future climate change. We show how to account for 
this with a straightforward empirical correction (called the Forward-Looking Ricardian Approach) 
that can be implemented with readily available data. We apply this empirically to agricultural land 
markets in the United States and find evidence that these markets already are accounting for 
climate change forecasts. Failing to account for this would lead a researcher to understate climate 
change damages by 36% to 66%.
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1 Introduction
One of the greatest contributions of applied econometrics has been to provide empirical meth-
ods for estimating the economic consequences of anticipated future changes. The canonical
application centers around the estimation of cross-sectional hedonic regressions using market
outcome data to estimate the response of asset prices to exogenous variation in a variable of
interest and that is expected to change in the future (due to change in policy, regulations, or
other factors).1 With the estimated relationship in hand, it is straightforward to predict the
costs or benefits associated with expected future changes in any variable of interest, i.e. to
project the expected change in the state variable on the empirically estimated price gradient.
This broad approach has been used in prominent papers to value potential future regulatory
changes to the Clean Air Act (Chay and Greenstone 2005), policies that are expected to
reduce crime rates (Linden and Rocko� 2008), and policies that are expected to improve
local school quality (Black 1999), among numerous others.

One branch of this literature that has had a tremendous policy impact focuses on the
economic consequences of climate change. In that context, the method is known as the
Ricardian approach, following the seminal paper of Mendelsohn, Nordhaus, and Shaw (1994)
(hereafter MNS). The key empirical component of the Ricardian approach is a cross-sectional
regression of land values on historical climate conditions and other relevant variables to
estimate how the value of an asset (a parcel of land) is a�ected by climate.2 Using the
Ricardian estimates of the climate-price gradient, the analyst then uses scientific predictions
of future changes in temperature and precipitation (and possibly other climate variables) to
estimate the economic impact of climate change.

These hedonic analyses contain an important implicit assumption that economic assets
do not already capitalize the future change that is now anticipated by the researcher. In the
climate change example, this amounts to assuming that current land markets fail to account
for climate change forecasts. While this was quite plausible for land market data in the
1980’s and 1990’s, it is reasonable to wonder whether that is still the case.

1. Most empirical applications build on the seminal work of Rosen (1974) and derive estimates of household
willingness to pay for an array non-market amenities.

2. The Ricardian regression specification typically includes historical average precipitation and historical
average temperature. For illustrative power, our theoretical exposition focusses on a single climate variable:
average temperature. The critique we present in this paper applies to other climate variables that enter the
land pricing equation, such as precipitation, and are accounted for in our empirical work. Deschênes and
Greenstone (2007) and Massetti and Mendelsohn (2011) have extended the cross-sectional Ricardian method
to the panel data framework.
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If land markets already capitalize available information on climate change, then the stan-
dard Ricardian approach will be biased. When a valuation method relies on asset markets,
it must consider the fact that current asset prices rationally account for expected future
changes in all relevant variables that determine its value (e.g., the state variables). As we
show, ignoring the forward-looking nature of asset markets leads to a mis-specified empirical
regression model, biased estimates of the price gradients for the relevant state variables,
and ultimately biased predictions regarding the economic e�ects of the anticipated future
changes in the state variables. We illustrate these issues in the context of the Ricardian
approach and argue that future applications of the method must be modified to account for
the simple, yet powerful, stylized fact that asset markets capitalize information. Put sim-
ply, because climate information is so pervasive, current land prices should reflect expected
future climate, not just the currently observed climate.

Our review of the literature indicates that existing theoretical presentations and empirical
implementations of the Ricardian approach indeed implicitly assume that the current asset
market ignores possible future change in the climate or other state variables.3 We label those
applications the myopic Ricardian approach. We show that this critique applies generally,
except when either (1) the market does not capitalize any expectation of future change
in climate or other determinants of land value, or (2) a technical condition wherein the
product of the correlation between current and future climate and the ratio of their standard
deviations is precisely equal to one. To our knowledge, no theoretical or empirical treatment
exists on this issue.

This paper attempts to make several contributions. First, we present a simple model
of asset valuation that allows for market capitalization of information about future state
variables to show that asset values should reflect expected future changes in the state vari-
ables. When applied to the Ricardian context of land values and climate, our model shows
that observed land values should reflect expected future climate variables. This is in sharp
contrast with current applications of the Ricardian method, which rely on regressions of land
values on observed historical climate variables.4

3. The same is broadly true in the broader literature that has studied economic valuations of air quality,
school quality, etc. A group of recent papers beginning with Kennan and Walker (2011) and Bishop and
Murphy (2011) are an exception, providing a structural approach that accounts for moving frictions and
expected future amenities or labor market conditions.

4. A recent search revealed that MNS has been cited in >1,300 publications on Google Scholar and has
been used to examine the e�ects of climate change in various contexts; none of the most cited papers
incorporate information. The Ricardian method has been used broadly to look at the agricultural e�ects of
climate change worldwide: in Africa (Kurukulasuriya et al. 2006; Seo and Mendelsohn 2008b), in Asia (Seo,
Mendelsohn, and Munasinghe 2005; Liu et al. 2004; Chang 2002), in South America (Seo and Mendelsohn
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Second, we derive conditions under which the bias occurs for two related misspecifications
of the pricing equation. The first misspecification retains the dynamic structure of the pricing
process. The second corresponds to the approach of much of the Ricardian literature, and
is entirely static. We describe the theoretical direction of these biases and the factors that
lead them to have a large or small magnitude. The direction and magnitude of the bias
hinge on the correlation between past and future states and on the variances of those states
(climate in our example) and can generally be positive, negative, or zero. Bias is likely to
occur anytime that climate change is expected to cause di�erent changes in di�erent places.

Third, we derive a flexible, straightforward correction that can be implemented with
readily available data and can accommodate a degree of uncertainty as to precisely what
information the market regards as the forecast. This approach accounts for market informa-
tion, the timing of information acquisition, the stream of revenues associated with various
state variables, and the possible divergence of information between the market and the an-
alyst. Without such a correction, the myopic Ricardian method generally leads to biased
estimates of the relationship between climate and land values, and thus biased predictions
about the future economic consequences of climate change.

We illustrate these issues and implement the proposed forward-looking Ricardian re-
gression to the now seminal framework of MNS. This illustration provides the first empirical
analysis that documents to what extent current land markets are capitalizing future expecta-
tions about climate. We find clear evidence that current asset markets capitalize information
about the future climate, suggesting that estimates of climate change impacts in the litera-
ture reflect the bias created by using the myopic Ricardian model. This bias is economically
important: depending on the choice of future climate trajectory, applying the myopic Ri-
cardian approach (i.e. ignoring current market information about future climate change)
could underestimate the damage from climate change by 36% to 66%. Finally, using a new
county-level data set on perceptions over climate change from Howe et al. (2015), we find
that land values are more strongly related to future climate predictions (as opposed to past
climate normals) in counties with higher beliefs in climate change.

2008a), and in Europe (Madison 2000; Reidsma, Ewert, and Oude Lansink 2007). These, and Ricardian
studies in general, either utilize the value of agricultural production directly or as estimated from the value
of agricultural land. Our critique is most relevant when these estimates rely on land values, but apply
anytime information may play a role in asset price formation.
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2 The role of information in the Ricardian literature
In a competitive setting, rational agents with well-defined property rights price assets to
reflect the expected stream of rents generated from the asset. In non-commodity markets,
variation in the characteristics of an asset determines the market valuation of the asset and
thus the price at which similar assets are sold. A large literature utilizes this sort of variation
to estimate the willingness to pay for a wide variety of non-transacted goods. Using market
data to determine the otherwise unobservable preferences on packages of characteristics
of agents with respect to non-transacted goods is termed hedonic valuation (Rosen 1974).
This methodology has been extensively used to estimate the economic value of climate and
other non-transacted amenities in land and housing markets (Albouy et al. 2016; Blomquist,
Berger, and Hoehn 1988; Cragg and Kahn 1997; Roback 1982; Sinha and Cropper 2013).

The hedonic method has also been applied widely to study the e�ect of various climate
amenities on agricultural land prices. By estimating these e�ects, the monetary impact
of changes in future amenity levels (like climate) can be estimated. By assuming that
farmers are profit maximizing and so adjust farming decisions in response to shifts in amenity
levels, the hedonic method recalls David Ricardo’s seminal work and is commonly referred
to as the Ricardian method. This method, first proposed in MNS, is based on a cross-
sectional regression of land values on a variety of historical climate variables (such as average
temperature and precipitation) and interprets the results as the e�ect of these variables on
agricultural productivity. The impact of climate change is calculated by taking the linear
combination of these regression coe�cients and predicted (rather than historical) future
climate. MNS concluded that a uniform 5 degree change in temperature and 8% increase in
precipitation is estimated to cause from a 4-5% loss to a 1% gain in farmland values (a loss
of $6-8 billion per year to a gain of $1-2 billion per year, based on 1982 revenue), depending
on weighting scheme.

Agriculture in the western portion of the United States is predominately irrigated, and
western farmers respond in a qualitatively di�erent manner to climate conditions than in
regions dominated by non-irrigated (dryland) agriculture. Schlenker, Hanemann, and Fisher
(2005) and Schlenker, Hanemann, and Fisher (2006) refine MNS by restricting attention
to dryland counties, as well as providing agronomically motivated functional relationships
between climate variables. They find the impact of climate change in dryland counties to be
between -$5 and -$5.3 billion per year (1982 dollars) (Schlenker, Hanemann, and Fisher 2005),
and between -$3.1 and -$7.2 billion per year using improved weather specifications (Schlenker,
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Hanemann, and Fisher 2006).5 The hedonic approach in this context can be sensitive to
specification, potentially indicating misspecification or omitted variables. Deschênes and
Greenstone (2007, 2012) approach the question of climate change’s e�ect on US agriculture
in a di�erent manner, using annual variation in temperature to identify a lower bound on
the e�ect of climate change. They conclude that climate change will lead to a reduction of
agricultural profits by $4.5 billion per year (in 2002 dollars) by the end of the century.

While asset markets generally capitalize the expected future levels of relevant state vari-
ables, the timing at which information about future changes is absorbed by the market is
critical. In the context of global climate change, the accumulation and dissemination of
evidence regarding the predicted rise in temperatures began in the 1990s. For example,
the IPCC’s First Assessment Report was published in 1990 and predicted an increase in
global mean temperature of about 0.3 Celsius per decade. Thus, land value data from the
preceding decades are unlikely to reflect future climate change. As public knowledge about
climate change advanced over the 1990s and 2000s, it is reasonable to wonder whether these
anticipated impacts are reflected in current land values.6 This is the key premise underlying
this paper.

In Ricardian studies that use the US Census of Agriculture (Mendelsohn, Nordhaus, and
Shaw 1994; Schlenker, Hanemann, and Fisher 2005, 2006; Deschênes and Greenstone 2007),
the value of agricultural land is farmers’ (self-reported) estimate of the market value of the
land. This value capitalizes information about future market and amenity conditions. The
intuition underlying this is straightforward: suppose it is well known that a parcel of farmland
would experience a large exogenous decrease in soil quality the year after a proposed sale.
Its value in a market with symmetric information and rational actors would be lower than an
otherwise equivalent parcel with constant soil quality. Failure to incorporate information into
the hedonic model amounts to an implicit assumption that market participants are myopic.
In the Ricardian literature, this is akin to assuming that farmers (or any participant in land
markets) are myopic in their valuation of land even while maintaining the assumption of
sophisticated profit-maximizing behavior. Market prices for a productive asset reflect beliefs
about the future productivity (or stream or benefits) of the asset. That assets should be

5. Their analysis uses 1982 dollars – throughout the present paper we adjust inputs to 2005 dollars using
a CPI adjustment.

6. The initial application of the Ricardian approach (MNS) was based on land market data from 1978
and 1982. As a result, the results in MNS are most likely immune to the critique presented in this paper.
However, the continued application of the myopic Ricardian method to market data from the 2000s and
2010s may no longer be appropriate if markets capitalize expectations about changing future climates, as
our empirical results will suggest.
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priced to reflect the discounted flow of profits in combination with expected future sale price
is central to arbitrage pricing and dividend discount models in finance.

The notion that land markets capitalize expected rents regarding land development,
subsidies, and irrigation is recognized in related literature. In particular, the option to de-
velop land for non-agricultural use greatly influences agricultural land value. For example,
Plantinga, Lubowski, and Stavins (2002) estimate that 80% of agricultural land values in
New Jersey are attributable to development potential.7 Irrigation, and expectations related
to water withdrawals therefrom, impact land prices significantly in the relatively dry region
above the Ogallala aquifer (Hornbeck and Keskin 2014). Land markets have also been shown
to capitalize irrigation subsidies, the value of which may be up to two and a half times the
value of the land (Schlenker, Hanemann, and Fisher 2006). This, in combination with uncer-
tainty over irrigation related property rights dictates restricting attention to non-irrigated
counties (Schlenker, Hanemann, and Fisher 2005, 2006).

While the capitalization of potential land development and irrigation rights in agricultural
land market has been demonstrated empirically, our reading of the literature indicates that
expectations over future climate have not been incorporated when estimating the economic
impacts of climate change. This is despite explicit discussion of land value formation in the
Ricardian literature. For example, MNS note “[f]arm value is the present value of future
rents,” and Mendelsohn, Nordhaus, and Shaw (1996) argue that their covariates control
for “speculative future land uses.” Schlenker, Hanemann, and Fisher (2005) exclude urban
counties because of concerns that development potential would confound estimates of the
climate-price gradient. Schlenker, Hanemann, and Fisher (2006) compare coe�cients on the
hedonic model from 1982 and 1997 to conclude that farmer expectations had not changed
over that period. While this was quite plausible in 1997 (with data collected primarily in
1995), public knowledge of climate change has increased dramatically in recent decades as
scientific forecasting of impacts has become more sophisticated and widely disseminated.

A recent empirical literature has begun to address and model the role of uncertainty and
future predictions in consumer behavior, generally by finding proxies for the probability that
some uncertain (binary) event will occur. These proxies serve to approximate consumer or
market perception of risk. Meng (2013) uses prediction market prices to capture market
beliefs relating to the risk of climate regulation in order estimate the cost to firms of climate
change legislation. Gallagher (2014) models learning about uncertain, infrequent flooding

7. In studies of agricultural land prices, the e�ect of development pressure is controlled for by including
population density or distance to urban centers as controls, or by excluding urban and suburban counties.
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events in the United States. Davis (2004) finds the marginal willingness to pay to avoid
the risk of pediatric leukemia using hedonic techniques. Deryugina (2013) finds that survey
respondents update beliefs about climate change in a rational manner. Our paper extends
and complements this new focus on incorporating the e�ects of information into applied
economic analysis.

3 Asset prices and information
Here we describe a simple model of an asset price (P ) based on the stream of rents it
generates (p) when forecasts of the future state variables are available to the market. By
state, we refer to potentially time-varying characteristics of an asset that contribute to price
formation. In our motivating application, the state variable is climate. Climate has a strong
agronomic connection to the agricultural profits that can produced on a given parcel of land.
Similar parcels of land under di�erent climate regimes produce di�erent rents, and thus have
di�erent prices.

We treat land as an asset that is rented to firms in order to produce globally traded
commodities. A firm can produce any of K products on a parcel of land at any time t. Use
k generates gross revenue v

kt

(x, ¸, S
t

) that depends on inputs x, land characteristics ¸, and
the state variable S

t

; the cost of using input vector x is captured by c
t

(x). For any use k,
firms select inputs to maximize net revenue:

r
kt

(S; ¸) = max
x

v
kt

(x, ¸, S
t

) ≠ c
t

(x) (1)

The subscripted t captures the fact that factors influencing revenue and costs (i.e. prices)
may be time varying. Perfect competition among producers implies zero profits for firms on
any parcel of land and ensures that firms chose the use of land that maximizes net revenue.8

The zero profit condition pins down the rental rate, p, of the parcel (suppressing the fixed
land characteristics so that r

kt

(S; ¸) = r
kt

(S)):

max
k

{r1t

(S
t

), . . . , r
Kt

(S
t

)} ≠ p
t

(S
t

) = 0 (2)

where we have implicitly assumed that there are zero adjustment costs between uses. While
this may be a strong assumption for sectors with high levels of fixed capital, in agriculture

8. In this framework, incumbent landowners are the residual claimants of the economy and the value of
their assets could be used to calculate welfare in a general equilibrium analysis.
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many non-land inputs are variable and change year to year (seed, water, fertilizer). In
fact, Kelly, Kolstad, and Mitchell (2005) find that adjustment costs in the US midwest for
agricultural in response to climate change are small, well under 1% of the asset value of land.
Burke and Emerick (2013) identify little adjustment in agricultural practices to changing
climate, either because there are limited options for adjustment or because adjustments costs
are too high to be profitably employed. Excluding adjustment costs allows us to collapse
dynamic pricing concerns into simple, net present value indices for future climate.9

Land is bought and sold in a competitive market, and it is assumed there are no arbitrage
opportunities. Thus the price P of the parcel is the present discounted value of future rents
and depends on the evolution of the state variable. Given a deterministic future sequence of
states {S0, S1, . . . }, the asset price is

P (S0, S1, . . . ) =
Œÿ

t=0
p

t

(S
t

)”t (3)

where ” œ [0, 1) is the discount factor. Thus, the price of land is simply a function of the
stream of rents associated with land rental. Equation (3) is a discrete time version of the
classic capitalization model of Ricardo (1821) treating land as a fixed factor of production
(Nickerson and Zhang 2014). Rearranging the zero profit condition (Equation 2) reveals that
the rental rate p is equal to the envelope of land uses. As in MNS, we assume that this forms
a continuous, di�erentiable function of the state variable. This permits approximation of
price with standard linear (and quadratic) predictors. Denote the linear approximation of
the rental rate by:

p
t

(S
t

) ¥ a + bS
t

(4)

where b = ˆp/ˆS is the instantaneous change in rental rates due to shifts in the state
variable, and a captures the value of fixed determinants of p.10 For simplicity, we model p

as a constant function up to the state variable.11 For a deterministic path of future states,
the price of the asset at time t = 0 is approximated by the present discounted value of the

9. Several papers examine adjustment costs in the context of residential relocation: Bayer et al. (2016);
Bishop and Murphy (2011); Bishop (2015); Kennan and Walker (2011).

10. We implement this as a quadratic approximation in multiple climate variables, following MNS. Note
that this can interpreted as a restricted multivariate Taylor series approximation with no interaction between
di�erent climate variables. In principal, estimation could allow for these interactions. We abstain to maintain
comparability with MNS and the related literature.

11. Relaxing this assumption would require general equilibrium analysis of the changes in crop prices and
the prices of inputs, which we consider beyond the scope of this paper.
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linear approximation of future rents:

P (S0, S1, . . . ) ¥
Œÿ

t=0
(a + bS

t

)”t (5)

Note that in the case of a constant state S0, the price of the asset is simply P = aD + bDS0

where D © qŒ
t=0 ”t = 1/(1 ≠ ”).

Now suppose that the future sequence of states is uncertain, but that the market antici-
pates the possibility of change in the state. Market information about the evolution of states
at time t = 0 is public and denoted by �. Belief formation over the evolution of the state
space is the process of mapping information to a set of probability spaces. These probability
spaces share support � (the state space) and an appropriate ‡-algebra, but possess poten-
tially di�erent probability measures for each period from t = 0 until the market’s horizon
T periods later.12 Beliefs about period t ”= 0 formed in period t = 0 are represented by a
probability density function over states: f

t

. Thus, market beliefs are the mapping:

� æ {f0, f1, . . . , f
T

}

The market information set is the product of a series of distributions from the current
period into the future; given a set of realizations (one from each period), prices would be
deterministic. Market beliefs, in the form of this sequence of distributions, can take any path.
For example, if climate change implied local warming with constant variance, then f

t+1 would
stochastically dominate f

t

in each period. Under no arbitrage, the market capitalizes this
information in an e�cient manner and the pricing function can be recast as an expectation
that now depends on the information set �:

P (�) = E0[
Œÿ

t=0
”tp(S

t

)] =
Œÿ

t=0

3
”t

⁄

sœ�
p(s)f

t

(s)ds
4

Rewriting this in terms of the linear approximation and simplifying gives:

P (�) = aD + b
Œÿ

t=0
”tE0[St

] (6)

Under uncertainty about future states, our implicit assumption of risk neutrality implies

12. In principle, T could be Œ. In practice, we restrict T to be about 100 years. For reasonable values of
”, the role of periods beyond 100 years in the future is minimal.
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that the market prices the asset according to the expectation of the evolution of the state.13

Thus, only the path of mean beliefs determine prices.
Under the assumptions of this simple model, the path of mean forecasted states {E0[St

]}Œ
t=0

and knowledge of the slope of the rental function p with respect to the state are su�cient to
describe prices. Further, if asset rental rate Equation (4) is quadratic in the state variable (as
modeled in MNS and virtually all other applications of the Ricardian method), a variant of
this su�ciency holds with one additional assumption: If V ar(S

t

) is constant (or exogenous)
across observations, then again only the mean belief path matters.14 However, if places with
systematically higher draws of S

t

also experience systematically higher or lower variance than
S

t

, then Equation (6) should be augmented to include a variance and covariance terms, as
in Kelly, Kolstad, and Mitchell (2005). Instead, we include spatially delineated fixed e�ects
in our empirical analysis to limit the impacts of the variance term.

Consider two di�erent scenarios, one describing a world with a constant state (S
t

= S0

’t) and the other where a distribution of potential state changes is anticipated. These
scenarios motivate two di�erent models to represent land prices. As we show, both models
di�er from the standard Ricardian method. To proceed, it will be convenient to define a
simple index, the infinite stream of states associated with each of the two scenarios.15 Let

I ©
Œÿ

t=0
S0”

t (i.e., the No Change index) (7)

Y ©
Œÿ

t=0
E0[St

]”t (i.e., the Mean Forecast index) (8)

Each of these indices captures, in a single variable, the present value magnitude of a forecast
about the future state. Substituting into Equation (6), the No Change and Mean Forecast
indices can be used to construct two di�erent asset prices:

P (I) ¥ aD + bI (the No Change asset price) (9)
P (Y ) ¥ aD + bY (the Mean Forecast asset price) (10)

13. While individual farmers may be risk averse, the presence of crop insurance means that they are
somewhat protected from annual fluctuations in weather, mitigating the e�ects of risk. Further, we use
spatially delineated fixed e�ects to control for the potentially correlated e�ects of variability; see below.

14. In the quadratic case, P =
qŒ

t=0 ”

t(a + b0E[St] + b1E[S2
t ]), which can be expressed as P =

qŒ
t=0 ”

t(a +
b0E[St] + b1(V ar[St] + E[St]2)). We include the squared expectation term in our specifications. Thus only
the variance term is troubling, and this impacts empirics only if the variance of beliefs about climate in each
year varies across location in a way that is systematically correlated with expected climate.

15. The only assumption needed to guarantee that this is feasible for ” < 1 is that | limtæŒ E[St]| < Œ.
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Note the correspondence between the prices associated with each scenario: P (Y ) = P (I) ≠
b(I ≠ Y ). The di�erence (I ≠ Y ) captures deviations of future expectations from the current
state. If markets do capitalize expectations, observed asset price data correspond to P (Y ).
In that case, the No Change asset price P (I) is unobserved. Equation (10) can be used as
the basis for empirical analysis based on observed land value data:

P
i

(Y
i

) = – + bY
i

+ Á
i

(11)

where i indexes observations, – = aD, and Á
i

captures unobserved determinants of prices
that are uncorrelated with Y

i

.

The Ricardian approach in context

As stated earlier, when markets capitalize expectations, observed asset price data correspond
to P (Y ), and P (I) is unobserved. As a result, interchanging prices between Equations (9)
and (10) generally misspecifies the theoretical relationship between price and states. In
contrast, the standard Ricardian regression ignores the market expectation about the future
climate specifies a model linking land values to observed historical climate:16

P
i

(Y
i

) = – + —S0i

+ u
i

(12)

Thus, the standard Ricardian regression assumes that the state is constant and reports
coe�cients — that describe the marginal e�ect of the state on net present value of rents. The
di�erence between this coe�cient and b (the marginal e�ect of the state on single period
rents) warrants additional caution when predicting the impacts of change in a state: impacts
should either be expressed in annual terms or in net present value. This scaling issue can
be trivially addressed. We next show how misspecifying Equation (12) by replacing Y

i

by I
i

(or S0i

) leads to bias in the empirical estimate of the parameter b.

3.1 Ignoring beliefs biases estimates of Ricardian parameters

As the previous section shows, the standard Ricardian approach misspecifies the theoretical-
lly correct land value equation when markets capitalize expectations about future climate.

16. Before proceeding, we make a brief note on the form of this regression. The dependent variable in this
analysis is the price of land per acre, as in MNS. Many other analyses use the natural logarithm of price
per acre. However, the additive nature of the present discounted value calculations precludes using that
transformation. Estimates using log price are similar to those reported in our empirical analysis.
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This results in an omitted variable bias in empirical implementations. To develop intuition
about this bias, we first derive a simple analytic expression for its magnitude and direction
when the misspecified equation utilizes the present value magnitude of a forecast (i.e., using
I

i

instead of Y
i

to predict land values). The algebraic simplicity of this bias calculation is
muddied when considering the bias generated by estimating the traditional Ricardian regres-
sion (where the single state S0i

is substituted for present value index I
i

), but the intuition
is similar.

Suppose that an analyst takes full account of the dynamics of asset markets (and so uses
I

i

instead of S0i

), but implicitly assumes that the market fails to capitalize any expectation
about future climate. In that setting, the analyst would incorrectly estimate the marginal
impacts of a constant state when using prices that reflect expectations:

P
i

(Y
i

) = – + bI
i

+ e
i

(13)

The resulting parameter estimates of b are biased owing to an omitted variable problem.
Substituting from Equation (11) it is straightforward to show that e

i

= Á
i

+ b(Y
i

≠ I
i

).
Denote the OLS estimator of b by b̃. It follows that:

b̃
p≠æ Cov(I

i

, P
i

(Y
i

))
V (I

i

) = Cov(I
i

, – + bI
i

+ Á
i

+ b(Y
i

≠ I
i

))
V (I

i

) = b
Cov(I

i

, Y
i

)
V (I

i

) = b
fl

IY

‡
Y

‡
I

(14)

where fl
IY

is the correlation between the No Change and Mean Forecast descriptions of the
state, ‡

I

is the standard deviation of I
i

, and ‡
Y

is the standard deviation of Y
i

.17 Given a
sample of data on I

i

and Y
i

the standard deviation and correlation coe�cient ‡
I

, ‡
Y

, and
fl

IY

can all be estimated. Thus the magnitude and sign of the bias in the empirical estimate
of b reflects the joint distribution of the forecasts I

i

and Y
i

. This leads to the following
observation:

Result 1. The incorrect specification of the land value equation that ignores expectations
results in a consistent estimate of b (b̃ p≠æ b) only if fl

IY

‡
Y

/‡
I

= 1. In general, the relative
bias is equal to fl

IY

‡
Y

/‡
I

.

This formula for bias deserves a few notes. First, there is one special case where
fl

IY

‡
Y

/‡
I

= 1 by necessity. When the Mean Forecast description of the state of the world
is simply the No Change description plus a constant additive term, fl

IY

= 1 and ‡
I

= ‡
Y

,

17. Extending the bias calculation to the multivariate case is slightly less straightforward as it involves the
covariances of omitted variables. The intuition is similar, however.
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so relative bias is equal to one and b is identified by a regression of P
i

(Y
i

) on I
i

. Second,
most climate change forecasts do not predict a ‘reversal of fortunes’: warmer locales will
likely become warmer than cooler locales, implying that 0 < fl

IY

< 1. Thus, if the ratio of
standard deviations ‡

Y

/‡
I

is less than one, the bias in the standard Ricardian regression
will lead to an understatement of the climate change e�ects. In particular, if current and
predicted climate are not very correlated (as |fl

IY

| approaches 0), current climate is a poor
proxy for predicted climate and b̃ is attenuated.18 At the same time, it is possible that the
method overstates damages if ‡

Y

/‡
I

>> 1, as would be the case if cross-sectional variation
in predicted climate were much larger than in current climate.

Suppose, instead, that the analyst ignores dynamics altogether and estimates the stan-
dard Ricardian model directly (Equation 12). If this regression were correctly specified,
then there would be no issue as it we be easy to transform estimates of the marginal net
present value of the state to marginal rental impacts: b̂ = —̂/D. However, when Equation
(12) is estimated but Equation (11) describes the true pricing process (due to that market’s
capitalization of expectations about future states), then —̂ is biased and dividing by D does
not return a consistent estimate for b. As long as S0i

is correlated with Y
i

, the standard
application of the Ricardian method will produce biased estimates of — (or b) due to an
omitted variables bias similar to that in Equation (14).

To illustrate this result, we derive the correlation between S0i

and Y
i

. This requires
assuming a model describing how expectations about the future state are formed so that
we can derive a practical expression for Y that can be implemented with available data.
For simplicity, consider the case where beliefs have discrete support, assigning probabilities
with positive measure to a finite number of (potentially time-varying) values in the state
space.19 Equation (11) can be partitioned into a component that depends on the current
state (S0i

), and a component derived from alternative expectations about S
ti

. Define by
fi

t

= Pr(S
ti

= S0i

) the probability that the current state is realized in period t. Then:

Y
i

=
A Œÿ

t=0
”tfi

t

B

S0i

+
A Œÿ

t=0
”t(1 ≠ fi

t

)E[S
ti

|S
ti

”= S0i

]
B

18. In fact, if flIY = 0, then b̃ = 0 regardless of b or ‡I , ‡I .
19. In the climate change example, this would be like assigning a (potentially time-varying) probability to

each path of climate change available in the IPCC reports.
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and so

P
i

(Y
i

) = – + b

A Œÿ

t=0
”tfi

t

B

S0i

+ b

A Œÿ

t=0
”t(1 ≠ fi

t

)E[S
ti

|S
ti

”= S0i

]
B

+ ÁY

i

(15)

If the analyst proceeds following the standard Ricardian approach (omitting the second term
in parentheses in the equation above), the bias in the regression estimate of — is given by:

—̂
p≠æCov(S0i

, b (qŒ
t=0 ”tfi

t

) S0i

+ b (qŒ
t=0 ”t(1 ≠ fi

t

)E[S
ti

|S
ti

”= S0i

]))
V (S0i

)

= b
Œÿ

t=0
”t

Q

afi
t

+ (1 ≠ fi
t

)Corr(S0,E[S
t

|S
t

”= S0])
ı̂ıÙV (E[S

t

|S
t

”= S0])
V (S0)

R

b (16)

This reveals that the parameter estimate —̂ depends on the true parameter b as well as the
magnitude of and confidence in alternative forecasts.

Result 2. The standard Ricardian approach gives a consistent estimate of — (‚—
p≠æ —) only if

one or both of the following are true: (1) The market places no probability on the possibility of
change (1 ≠ fi

t

= 0) for all t, or (2) the product of the correlation term and ratio of standard
deviations in Equation (16) precisely equals one. Note that in that case ‚—

p≠æ — © bD.

Both of these conditions seem unlikely in most applications, even in scenarios that in-
tuition from standard OLS indicates should not cause concern. For example, (i) even if
the omitted variable (representing mean alternative beliefs) is orthogonal to the observed
(historical) covariate, there could still be bias. There could still be bias (ii) even if there is
no variation in the expected state across space. In both cases, estimates are attenuated.20

Just as with Result 1, there is one important case in which bias does not arise: If beliefs are
the current state plus an additive term that is constant across observations in each period.21

We can use this machinery to hypothesize about the direction of this bias. Recall that
— © b

qŒ
t=0 ”t = bD, and note that V (S

t

) is an upper bound on the numerator of the term
under that radical. In general the term under the radical can be any nonnegative value,
however, for median climate models it is reasonable to imagine this as roughly equal to
one.22 The correlation term is strictly less than one, and likely positive. Thus, in most

20. If (i) were true, Corr(S0,E[St|St ”= S0]) = 0. If (ii) were true, then V (St) = 0. In either case,
—̂

p≠æ b

qŒ
t=0 ”

t
fit Æ bD.

21. In this case, V (E[St|St ”= S0]) = V (S0) and Corr(S0,E[St|St ”= S0]) = 1 in each period, so —̂

p≠æ
b

qŒ
t=0 ”

t(fit + (1 ≠ fit)) = bD and there is no bias.
22. In the Hadley data, the ratio of average standard deviations is roughly 0.9-0.95, although extreme
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cases estimates of — that fail to account for expectation will be biased toward zero and the
e�ect underestimated. Indeed, our empirical example indicates that the myopic approach
understates e�ects and impacts.

3.2 The economic cost of anticipated future change

The information contained in prices can be used to determine both the net present value
(NPV) impact of change in the state (e.g., change in the climate) as well as annual impacts
to rents. In many ways, the NPV impact of change is the more policy relevant one, for
example, in cost-benefit analysis. We therefore focus on the NPV impacts. While it is
straightforward to scale between the two impacts given an appropriate measure of b, doing
so requires an understanding of the market’s discount rate, ”. Furthermore, it may be that
society’s discount rate di�ers dramatically from that of the market, a fact which should
be accounted for in analysis that compares outcomes and investments over the long term
(Weitzman 1998). In our application, we assume that ” = 0.03 and investigate the robustness
of the results to alternative discount rates.

Estimation of the economic costs of anticipated future change proceeds in two steps. The
information (forecasts) used in the two steps can be identical or can di�er. The first step
is to estimate how asset prices responds to the expected path of future states; this amounts
to correctly estimating b. For the second step, any set of forecasts can be used to derive
counterfactual prices and estimate the impact of the change predicted by the forecast and
some baseline state. In the case of climate change, estimation requires data on market beliefs
about the mean path of climate variables. Given a consistent estimate b̂, the impact of any
path of state changes can then be predicted.

Predictions of the costs of future changes are made relative to some counterfactual. A
relevant counterfactual compares outcomes under some forecast with outcomes had there
been no change at all. In the climate change example, this is akin to comparing the prices
of land given some change in climate with prices if climate were to remain constant. This
counterfactual is found simply by estimating the unobserved prices associated with the No
Change scenario, P

i

(I
i

). Given data across observations on the current state S0i

, the expected
path of future states {E[S

ti

]}’t

, and prices P
i

(Y
i

), it is straightforward to generate estimates
‚P

i

(I
i

). First, under the assumptions of our model, the following regression gives consistent

values are closer to 0.5 (for winter precipitation) or 1.2 (summer precipitation).
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estimates of b:
P

i

(Y
i

) = – + bY
i

+ Á
i

Estimates of the No Change price can be constructed with the No Change index and b̂:

‚P
i

(I
i

) = P
i

(Y
i

) ≠ b̂(Y
i

≠ I
i

)

Once an estimate of the counterfactual price is constructed, the impact of any change in
state can be estimated. Recall however that the true Y

i

is unobserved. We return to this
issue in Section 5.

The second step requires the analyst to consider a specific path of state changes. This
could either be the same mean beliefs that market uses to form prices (E[S

t

]), or any other
path that reflects either the mean path of an alternative set of beliefs or a di�erent forecast.
Let E[S Õ

t

] represent the alternative set of beliefs or forecast. Define Y Õ © qŒ
t=0 E[S Õ

t

]”t to be
an Alternative Forecast index constructed in the same manner as the Mean Forecast index.
A counterfactual estimate of the price associated with the alternative forecast Y Õ

i

can be
obtained as follows:

‚P
i

(Y Õ
i

) = P
i

(Y
i

) + b̂(Y Õ
i

≠ Y
i

)

The NPV of the predicted price change associated with the Alternative Forecast relative the
No Change case for observation i is simply ‚P

i

(Y Õ
i

) ≠ P
i

(Y
i

) = b̂(Y Õ
i

≠ I
i

). The aggregate NPV
is obtained by summing across all observations:

NPV of impact given beliefs {f Õ
t

} =
ÿ

i

b̂(Y Õ
i

≠ I
i

) (17)

A particular case of interest is estimating the impact of change given the market’s current
beliefs. That is, it would be useful to estimate damages (or benefits) by comparing market
expectations to counterfactual prices that reflect no change in state. This is special case of
the aggregate impact formula above with Y Õ

i

= Y for all observations. In this case, only one
set of predicted prices needs to be used for this simplified estimate:

NPV of impact given current market beliefs =
ÿ

i

P
i

(Y
i

) ≠ ‚P
i

(I
i

) =
ÿ

i

b̂(Y
i

≠ I
i

) (18)

The empirical analysis below will illustrate how this NPV can be estimated using readily
available data.
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3.2.1 Predicting prices vs. estimating impacts

The preceding method for estimating the impact of anticipated changes should not be con-
fused with techniques that predict prices. While our method utilizes ‘counterfactual prices’,
these prices are formed from a well defined set of beliefs. Generally, predictions of how prices
evolve require an assumption on the evolution of information. For example, if prices today
are formed under information �

t=0, then prices tomorrow will be formed under information
�

t=1. Thus, predicting prices tomorrow requires a prediction about �
t=1.

4 Data
The previous section shows that if the land market capitalizes expectations of future cli-
mate change, the standard Ricardian regression produces biased estimates. In the context
of climate change, these damage estimates are important inputs into policy construction
and debate. This and the following sections make three primary empirical contributions.
First, we assemble a comprehensive dataset and test whether land markets capitalize readily
available climate forecasts; this is the first test of its kind. Second, we use the results of the
empirical analysis to re-estimate the economic impact of climate change on the US agricul-
tural sector; this has important policy implications since current estimates of the damage
from climate change contain the bias we have identified. Finally, to close the link between
our theoretical and empirical findings, we estimate the bias in damage estimates that arises
from (incorrectly) assuming that markets fail to capitalize predictions of future changes in
climate by comparing predictions under both assumptions.

To implement the analysis, we have collected a data set with observations on agricultural
land values for 2007, monthly average temperature and total precipitation (defined over the
period the previous 30 years, i.e., 1976-2006), monthly climate predictions for the period
1900-2099 from two di�erent climate models, soil quality indicators, as well as other deter-
minants of land values. The goal is to construct an updated sample that mimics the one used
by MNS. In addition, we also make use of data from the 1987-2007 Census of Agriculture
data to further test some of the implications of the theoretical model. The next section
describes these data and reports some summary statistics.
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4.1 Census of Agriculture Data

The primary data on agricultural land values are from the 2007 Census of Agriculture. By
law, all farms and ranches that produce and sell (or normally would produce and sell) more
than $1,000 of agricultural products are required to submit a census form. Counties are
the finest publicly available geographic unit of observation. The two key variables are the
average values of agricultural land and buildings in a county (interpreted in the literature as
farmland value, following MNS), and the total acres in farmland in each county. From these
we construct average agricultural land values per acre of farmland. This is the dependent
variable analyzed in most US applications of the Ricardian approach (Mendelsohn, Nordhaus,
and Shaw 1994; Schlenker, Hanemann, and Fisher 2005, 2006; Deschênes and Greenstone
2007; Massetti and Mendelsohn 2011). We also use the same variables from the 1987-2007
Census of Agriculture in order to examine whether trends in estimated beliefs are broadly
consistent with public information regarding climate change.

4.2 Historical Weather Data

Weather station data are drawn from the National Climatic Data Center (NCDC) Global
Historical Climatology Network-Daily (GHCN-Daily), which is an integrated database of
daily climate summaries from land surface stations that are subjected to a common set of
quality assurance checks. According to the NCDC, GHCN-Daily contains the most complete
collection of U.S. daily climate summaries available. The key variables for the analysis are
the daily maximum and minimum temperature as well as the total daily precipitation. We
select weather stations that have no missing records in any given year from 1976-2006.
The station-level data is then aggregated to the county level by taking an inverse-distance
weighted average of all the measurements from the selected stations that are located within
a fixed 200 km radius of each county’s centroid. The weight given to the measurements from
a weather station is inversely proportional to the squared distance to the county centroid,
so that closer stations are given more weight.

In order to construct historical climate variables, we follow the definitions in Massetti and
Mendelsohn (2011). Specifically, we define the climate as the monthly average temperature
and total precipitation calculated over the previous 30 years of the relevant weather variables,
For example, for the 2007 Census of Agricultural data, the climate is defined over 1976-
2006 and we implicitly assume the climate has not changed over this period. Furthermore,
we follow convention and include a single measure of seasonal climate in the models for
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land values. Specifically, we include a quadratic in average temperature and precipitation
for the winter (December-February), spring (March-May), summer (June-August), and fall
(September-November).

4.3 Future Climate Prediction Data

All climate predictions are those used in the IPCC Fourth Assessment Report (Climate
change 2007: Synthesis report 2007).23 Our preferred set of climate predictions are ob-
tained from the Hadley Centre Coupled Model, version 3 (Hadley 3), which is a coupled
atmospheric-ocean general circulation model. The changes in temperature and precipitation
in non-irrigated US states are roughly in the middle of the ensemble of models used for the
IPCC Fourth Assessment Report (Burke and Emerick 2013). Predictions of climate change
from this and other models used in the IPCC Fourth Assessment Report are available for
several emission scenarios, corresponding to ‘storylines’ describing the way the world (popu-
lation, economies, etc.) may develop over the next 100 years. We focus on the A2 scenario, a
“business-as-usual” scenario, which is the proper baseline scenario to consider when evaluat-
ing policies to restrict greenhouse gas emissions. As such, predictions from the A2 scenario
feature some of the largest predicted increases in global temperature.

Additional climate predictions are obtained from National Center for Atmospheric Re-
search’s Community Climate System Model (CCSM) 3, also a coupled atmospheric-ocean
general circulation model included in the IPCC 4th Assessment Report (NCAR 2007). We
focus on the A2 scenario to maintain consistency with the Hadley 3 model. Relative to
Hadley 3, CCSM 3 predicts roughly the same level of warming with a greater increase in
precipitation (Burke and Emerick 2013).

We use inverse-distance weighted averaging to assign gridded predictions to counties in
the same manner as for station-level weather data. All grid points located in a pre-specified
radius of a county’s centroid are used to assign the climate prediction, with measurements
from grid points located further away from the centroid receiving less weight. A radius of
200 kilometers ensures that every county gets a prediction. From these daily grid point level
data we construct the same measures of seasonal climate for average temperature and total
precipitation for every county and year.24

23. See http://www.ipcc-data.org/sim/gcm_monthly/SRES_AR4/index.html for all data on future cli-
mate predictions.

24. The inverse distance weighting approach to assign future climate to counties created a few anomalous
assignments. These counties, primarily in Michigan, are excluded from this analysis. Consolidated cities in
Virginia were also excluded. In total, 39 counties are excluded; full details are in Appendix I.
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Any given climate model may systematically over or under-predict climate in a particular
geographical location. In order to correct for inherent aggregate model bias that takes e�ect
at the county level, we use model predictions of historical climate and actual historical climate
to create corrected climate predictions following Au�hammer et al. (2013). In particular, we
utilize the climate of the 20th centuries runs used for Hadley 3 and CCSM 3 and average the
period 1900-2000 for each climate variable and county i (S1900≠2000

i

). We correct using the
corresponding 100-year average for historical weather (Ī1900≠2000

i

) from the data described in
Section 4.2 as follows:

Scorrected

i,t

= Spredicted

i,t

+
1
S

1900≠2000
i

≠ Ī1900≠2000
i

2

4.4 Public Opinion Data on Climate Change

To provide an additional test of our model, we utilize high resolution (county-level) estimates
of climate change perceptions from Howe et al. (2015). This dataset contains estimates
of climate change perceptions constructed using multiple climate surveys and multilevel
regression and poststratification (MRP) techniques. The underlying survey data is taken
from twelve nationally representative surveys conducted by the Yale Project on Climate
Change Communication and George Mason Center for Climate Change Communication
between 2008 and 2013. Because these are modeled beliefs estimated using survey data in
combination with demographic and geographic predictors, Howe et al. (2015) perform both
internal cross-validation and external validation with independent, sub-national surveys to
verify the strength of their approach. MRP techniques in combination with validation have
been found to more accurately predict public opinion at disaggregated geographies than
other methods (Warshaw and Rodden 2012).

4.5 Other Predictors of Agricultural Land Value

We also include soil quality variables in this analysis, specifically measures of susceptibility
to floods, soil erosion (K-Factor), slope length, sand content, irrigation, and permeability.
The underlying data come from the National Resource Inventory (NRI). The NRI is a large-
scale survey of soil samples and land characteristics from roughly 800,000 sites in the United
States. These variables are calculated as weighted averages across sites used for agriculture,
where the weight is the amount of land the sample represents in the county. See Deschênes
and Greenstone (2007) and Deschênes and Greenstone (2011) for more details. Finally, we
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follow MNS and include linear and quadratic controls for per capita income and population
density in the Ricardian regression.

4.6 Sample Construction and Summary Statistics

Our sample consists of all counties located east of the 100th meridian with valid measurement
on farmland values in the 2007 Census of Agriculture. We restrict the analysis to counties
located east of the 100th meridian following Schlenker, Hanemann, and Fisher (2006) since
those counties rely primarily on rainfall as opposed to irrigation like the counties in the
American West. Because climate likely has a di�erent e�ect on urban land prices, and
urban land prices can a�ect agricultural land prices through the potential for development
(Plantinga, Lubowski, and Stavins 2002), we follow Schlenker, Hanemann, and Fisher (2005)
and exclude counties with a density of more 400 people per square mile or a population
greater than 200,000 at any point in our sample. The final sample consists of 2,112 counties.
Table 1, Panel 1 reports the average value of land and buildings per acre is $2,346 (in 2005
dollars).

Table 1 also reports county-level summary statistics on the climate variables for the 2007
cross-section. Panel 2 shows the average of seasonal average temperature (oF) and total
precipitation (inches). The well-known seasonality in average temperature and precipitation
is evident, with the summer season being the warmest and wettest. Panel 2 displays the
average of the historical climate indices. These entries correspond to Equation (No Change
Index) are simply given by the entries in Panel 2 multiplied by the proportionality factor
32.1, reflecting our choice of a discount rate of 3% to construct the indices in our primary
specifications.

5 Empirical application
We now turn to implementing the theoretical asset pricing model to determine whether
expectations regarding climate change play a significant role in agricultural land pricing in
the United States. To do this, we update the framework of MNS. Hedonic-like estimation
methods potentially su�er from many pitfalls, and addressing all of these is beyond the scope
of this paper. Instead, we focus on understanding the role expectations of climate change
may already be playing in the market.
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5.1 Empirical specification

Ideally, we could directly implement an empirical version of Equation (11) in the theoretical
model. This model is similar to that of MNS, and includes various other covariates to control
for land prices at the county level. The infeasible regression is:

P
is

= – + Y Õ
i

b + X Õ
i

› + “
s

+ Á
is

(19)

where P
is

is the observed price per acre of land in county i in state s. Other county and land
characteristics are included in X

i

. This includes both variables that are potentially exogenous
with respect to our measures of climate (such as soil salinity and slope), and variables
that may be correlated with land values (such as development pressure and other demand
variables). Our preferred specification includes state fixed e�ects (“

s

) to capture state-
specific unobserved factors that predict land values (and may be correlated with climate)
such as agricultural policy, taxes, uncertainty, etc. Since there is a limited extent of climatic
variation within states (both historically and in terms of future climate predictions from
GCMs), we also report estimates from models that exclude state fixed e�ect. In general,
both sets of estimates are similar.

Recall that Y © qŒ
t=0 E[S

t

]”t. The central issue in implementing the theoretically correct
Equation (11) is that while the state space is observable in the form of a collection of climate
forecasts, actual market beliefs over the state space are not observable by the econometrician.
Thus, we do not observe Y . It follows that implementing the regression model underlying
Equation (11) requires assuming a model for Y (i.e., a model that describes how expectations
about the future state are formed).

5.2 Testing whether land markets capitalize expectations

Though the analyst does not directly observe Y , data are readily available on current climate
as well as for many climate forecasts. These climate forecasts have been developed in part
for the IPCC’s Assessment Reports, and have been reported by various media markets and
discussed extensively by policy makers and scientists.25 While individuals may not be directly
aware of all this information, the forward-looking market should have capitalized some of
the information into the average county prices we observe. Thus, it seems reasonable to

25. In fact, the IPCC has ensured that the results of thousands of climate change simulations performed
by seventeen scientific collaborations are available in common format to the general public.
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use these data to develop estimates of climate change beliefs, although alternative data and
information sets surely are used by rational market agents.

Instead of taking a firm stance on which forecast best represents mean beliefs, we utilize a
flexible parametric model that permits linear mixing of di�erent climate scenarios to choose
a ‘belief’ parameter that weights di�erent scenarios to best match observed prices. To
maintain tractability, we select two climate change scenarios: the ‘no-change’ scenario (S0i

represented by historical climate variables that are used in the standard application of the
Ricardian method), and the ‘stochastic change’ scenario (S

it

, represented by the data from
either the Hadley 3 or CCSM 3 Scenario A2 models). We assume that markets beliefs are a
weighted average of these no-change and stochastic change scenarios.26 Specifically, suppose
we consider data dated from 2007 to 2099 and let Ŷ

i

be the constructed beliefs for county i:

Ŷ
i

(fi) =
2099ÿ

t=2007
fiS0i

”t≠2007 +
2099ÿ

t=2007
(1 ≠ fi) S

it

”t≠2007

= fiI
i

+ (1 ≠ fi)
2099ÿ

t=2007
S

it

”t≠2007 (20)

Thus beliefs are specified up to a scalar parameter fi that can be estimated jointly with
the other parameters of the model (but maintaining an assumed value of ”). This struc-
tural parameter defines the weighting the market places on each of the two climate change
scenarios.

An added advantage of parametrizing beliefs as we have is that it permits testing whether
or not land markets are capitalizing expectations. Because the constructed market beliefs
above include historical (no change) climate as one of the climate scenarios, the parameter
fi œ [0, 1] can be interpreted as the weight the market places on the possibility that climate
will not change. If fi = 1, then the market places no weight on expectations about the
future climate. This is implicitly the assumption made in current applications of the stan-
dard Ricardian method. Alternatively, if fi < 1, then the market places some weight on
expectations, and beliefs about climate change are being capitalized in the land market.

The feasible version of Equation (19) incorporating the parametric model of beliefs is
given by:

P
is

= – + Ŷ Õ
i

(fi)b + X Õ
i

› + “
s

+ Á
is

(21)

Since the vector of parameters b and the scalar parameter fi enter multiplicatively, we esti-

26. We focus on two scenarios, but adding additional scenarios is straightforward.
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mate Equation (21) using non-linear least squares (NLLS) to jointly estimating the b and fi.
Since fi enters Equation (21) linearly, calculation of the marginal e�ects is not complicated by
non-linearities in fi. However, the interpretation of the marginal e�ects need qualifications::
b captures the e�ect of marginal changes in market beliefs Ŷ (fi), not of historical climate.
Finally, since we interpret fi as a probability, estimates of fi that fall outside of the unit
interval are problematic for interpretation. Thus for the estimation we use a transformation
that ensures all values of fi lie in the [0, 1] interval:

fi = g(fĩ) = 1
1 + exp (fĩ)

where Âfi can take any value on the real number line.

6 Empirical Results and Discussion
We now illustrate the forward-looking Ricardian method empirically by estimating two ver-
sions of Equation (21) (each version uses a di�erent climate forecasts to estimate beliefs,
Y

i

(fi)) and presenting the parameter estimates and the predicted climate change damages.
We have three specific objectives. First, we test to what extent land markets capitalize ex-
pectations about future climate. This amounts to estimating the parameter fi in Equation
(21) and performing the required statistical test. Second, we report the theoretically correct
climate-price gradient parameters b. Third, we use the empirical estimates of b and fi to
derive the predicted damage of climate change on U.S. agriculture. We also compare the
damage estimates obtained from the theoretically correct forward-looking Ricardian method
and the ‘myopic’ versions based on Equations (12) and (13). We then use spatial hetero-
geneity in perceptions of the likelihood of climate change to determine whether variation
in county-level climate change perceptions impact the relationship between climate and the
price of agricultural land. Finally, we pool data on land values, climate, and climate expec-
tations over 1987-2007 to estimate how the climate change belief parameter (fi) has evolved
time. Overall, this section illustrates that the proposed forward-looking Ricardian method
is empirically relevant and simple to implement with readily available data.

At the same time, we also acknowledge that there are a large number of factors that
a�ect land values, and as such, the cross-sectional regression estimates we report here may
still reflect omitted variable bias.27 The approach we propose theoretically and empirically

27. Recent research demonstrates that cross-sectional hedonic regressions may produce unreliable estimates
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identifies and addresses a new primary source of bias. It also suggests that commonly used
approaches for addressing omitted variables bias (such as including fixed e�ects) may be
insu�cient in the case of outcomes of forward-looking markets. Since our empirical model
does not control for unobserved land value determinants that may be correlated with climate,
we do not claim that the empirical estimates reported in the paper correspond to ‘causal’
estimates of the climate-price gradients. To minimize concern about spatially correlated
omitted variables, some specifications include state fixed e�ects (Kumino�, Parmeter, and
Pope 2010).

6.1 Estimates for US agricultural land east of 100th meridian

Our primary specification utilizes cross-sectional data from the 2007 Agricultural Census
for the agricultural counties located east of the 100th meridian. By 2007, the possibility
of climate change was plausibly in the information set of farmers and market participants,
particularly given the broad media attention given to the topic throughout the early 2000s.
Various polls suggest that the American public is concerned about the possibility of climate
change (for example, Leiserowitz (2007); Howe et al. (2015)). As such it is reasonable to
assume that observed land values reflect expectations about the future climatic conditions
associated with each county. Table 2 reports the NLLS regression parameters estimates from
Equation (21) along with the estimated standard errors.

Columns (1a) - (1d) correspond to the estimates based on the model the assumed belief
equation Y

i

(fi) is formed using the Hadley3 A2 climate predictions, and columns (2a) - (2d)
correspond to the case where Y

i

(fi) is based on CCSM3 A2. In each case, the (a) and (c)
columns report the parameter estimate, and the (b) and (d) columns report the estimated
standard error. The (a) and (b) columns are from models that exclude state fixed e�ects,
and the (c) and (d) columns are from models that include them. In each regression, there
are 16 climate parameters, corresponding to the average temperature and total precipitation
variables, by season, and including a linear and quadratic term. These parameters reflect
the marginal e�ect of a weighted sum of the “No change” index I

i

and the “Mean forecast”
index Y

i

given by one of two climate models, where the weight fi is empirically determined
by the NLLS regression.

The first row in Table 2 reports the estimate of the parameter fi, the weight assigned
by the market to the ‘No change’ and ‘Stochastic change’ scenarios. Recall that fi captures

in a variety of settings (Black 1999; Chay and Greenstone 2005; Deschênes and Greenstone 2007).
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the market belief that climate change will not occur; 1 ≠ fi represents the market belief that
climate change will occur (as represented by either the Hadley or CCSM models). In all
specifications the estimated parameter is relatively small (i.e. 0.08 - 0.22) and is statistically
di�erent than both 0 and 1 at conventional levels. The models that include the state fixed
e�ects produce larger estimates of fi. A test of the hypothesis that fi = 1 is rejected with a
p-value less than 0.001 in all models. Thus it is evident that expectations about the future
climate appear to already be priced in the agricultural land markets. Moreover, though the
point estimates for fi from both specifications (1) and (2) are statistically indistinguishable
from each other.

The next rows of Table 2 report the climate-price gradient parameters. For each model
of belief formation, these correspond to the marginal e�ect of individual component of Y

i

(fi)
(the composite index of future climate expectation, in present value term) on land values.
The F-statistics reported in the bottom of Table 2 indicate the land market capitalizes the
information about future climate that is contained in our composite index Y

i

(fi). These
test the joint significance of the 16 climate index variables that are included in the NLLS
regressions. In the case of beliefs based on Hadley 3 (1a), the F-statistics are 28.89 and 11.90,
while for beliefs based on CCSM 3 (2a), the F-statistics are 20.01 and 6.36. In all cases the
p-values associated with these tests are 0.001 or less. Examination of the coe�cients reveals
that the inclusion of the state fixed e�ects tends to reduce the (absolute) magnitude of
the estimated temperature and precipitation coe�cients. The estimated coe�cients further
illustrate that farmland values are sensitive to beliefs, but not to the particular forecast
used to estimate beliefs. In particular, comparison of the coe�cients in (1a) and (2a), and
(1c) and (2c) reveals marginal e�ects that are generally of same sign and similar magnitude
across the two models of belief formation. It is also notable that the inclusion of the state
fixed e�ects, while reducing the magnitude of the estimated coe�cients, does not generally
alter the statistical significance: most of the statistically significant coe�cients in columns
(1a) and (2a) remain significant in columns (1c) and (2c). Given this, we now focus on the
specification with state fixed e�ects as it appears well identified in the data, and provides
better control against omitted variables bias.

Table 3 reports the total present value of the climate change impacts as well as the
corresponding annualized impacts. The annualized impacts are calculated by scaling the
total present value impacts by the proportionality factor implied by the discount rate of 3%.
The annualized impact is interpreted as the average yearly impact of climate change over the
period 2007-2099, while the total present value is simply the cumulative sum of the impacts
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over 2007-2099, discounted to 2007. We report estimates corresponding to three di�erent
models of beliefs about future climate change: beliefs given by the weighted sum of the ‘No
change’ index I

i

and the Hadley3 A2 ‘Mean forecast’ index Y
i

(with weight corresponding
to the empirical estimate of fi in (1a)), beliefs given by the weighted sum of the ‘No change’
index I

i

and the CCSM3 A2 ‘Mean forecast’ index Y
i

(with weight corresponding to the
empirical estimate of fi in (2a)), and beliefs based only on the ‘No change’ index I

i

. This
final set of beliefs corresponds to the approach taken in all previous applications of the
Ricardian method that implicitly assume fi = 1. The total present value of the change in
farmland values associated with climate change across all counties is given by the application
of Equations (18) and (20) to a specific model for belief formation, and the related empirical
estimate of fi, denoted by Ŷ

i

(fî):

ÿ

i

(Ŷ
i

(fî) ≠ I
i

)Õb̂ = (1 ≠ fî)
ÿ

i

(Y Had3A2 or CCSM3A2
i

≠ I
i

)Õb̂

Table 3 indicates that if beliefs are estimated using the Hadley 3 forecast and this model
indeed describes how climate indeed evolves, the total present value damage of climate change
is $998.6 billion over the next century, annualized to $31.1 billion (column (1), rows 1 and
3). On the other hand, if beliefs are estimated with the CCSM 3 forecast and the future
climate path follows CCSM 3, the predicted total present value damage of climate change
is almost the same at $968.0 billion (column (2), rows 2 and 4). These estimates, like all
others reported in Table 3, are statistically significant at the conventional level. The other
predicted impacts in columns (1) and (2) correspond to the case where beliefs are modeled
on one climate model, but the realized future climate path evolves according to the other.
These estimates are qualitatively similar to the others.

By comparison, estimates of the present value of damages up to 2099 from the application
of myopic Ricardian approach (the ‘No change’ index in column 3) range from $600.2 to
$711.1 billion. The standard Ricardian estimates of the impact of climate change that
ignore the fact that the land market capitalizes expectations about future climate understate
damages by 36% to 66%, depending on the specifics of the model.28 Notably, all estimates in
Table 3 are negative (indicating net losses from climate change) and are relatively large (the
entire value of US agricultural farmland, buildings, and holdings in 2007 was $1.74 trillion,
while total production and payments to the agricultural sector was about $297 billion in

28. Comparing the results for the Hadley path formed under Hadley beliefs with those of the No Change
model, the estimated impacts are 1 ≠ (998/600) = 66%.
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2007).29 The bias demonstrated in the theoretical section is economically important: In
dollar terms, the bias in the myopic Ricardian model (i.e. comparing column (3) to (2) and
(1)) is large and corresponds to as much as 22% of total US agricultural farmland, buildings,
and holdings in 2007.30

Given the estimates from Table 2, we can estimate any number of climate paths (rows in
Table 3). To illustrate, the diagonal elements of Table 3 assume that beliefs are modeled on
the true (mean) path climate will take, whereas the o�-diagonal assume the alternatives are
realized. It is encouraging that two correct-belief estimates (in the diagonals of Table 3) are
very similar in magnitude, indicating that the flexibility given by letting fi vary empirically
works as expected.

6.2 Varying the discount rate

The empirical implementation of the forward-looking Ricardian model requires an assump-
tion about the discount rate. In the preceding analysis, we have assumed a discount rate
of 3% to reflect the long run nature of rural land investments. For policy analysis relating
to climate change or other multi-generational phenomena, economic arguments justify using
discount rates that more closely equate distant future and near term time horizons (Weitz-
man 1998). In this case 3% may be too large or small, so we estimate damages over a range
of discount values from [0.5%,6.5%]. This covers a wide range of horizons. For example, a
constant revenue stream reaches 95% of its discounted value after 98 years with a discount
rate of 3%, while this takes 297 years with a discount rate of 1% and 58 years with a discount
rate of 5%.

Figure 1 shows the estimated market beliefs and climate change impacts associated with
a wide range of discount rates. As in the prior analysis, these results are shown for beliefs
constructed from the Hadley 3 and CCSM 3 data. The estimated parameters corresponding
to the market belief on the ‘No change’ scenario (fi) are obtained from estimating versions of
Equation (19) that are constructed using the di�erent assumptions on the discount rate (in
order to form Y (fi)) and that include state fixed e�ects and all the other control variables.
Overall, we find that the estimated market belief parameters are similar for the range of
discount rates we consider. For the beliefs constructed using the Hadley 3 data the estimates
of fi range from 0.17 to 0.21, while for the beliefs constructed using the CCSM 3 data, the
estimates of fi range from 0.20 to 0.22. Thus it is evident that these results are not driven

29. These values are from the 2007 US Census of Agriculture.
30. That is, (998-600)/1740=22%.
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to a first order by the choice made on the discount rate.
Figure 2 graphically reports the estimated climate change impacts associated with the

various discount rates. These are obtained from the same regressions underlying Figure 1.
The entries are in billions of 2005 dollars. Several noticeable patterns emerge from Figure
2. As expected, it is evident that predicted damages are larger when the discount rates
are smaller. For example, the damages associated with a discount rate of 1% are around
negative $1100 billion for both sets of constructed beliefs. A discount rate of 3% returns
the same damage estimates as those reported in Table 3 (-$998.6 for Hadley and -$968.0
for CCSM). For larger discount rates, the gap between the Hadley-based and CCSM-based
damages grows: for example when the discount rate is 6.5%, the Hadley damage is 57%
larger than the CCSM-based damage.

6.3 Heterogeneity in climate change beliefs

There is substantial heterogeneity in the degree to which di�erent economic agents assess the
likelihood of climate change. Even among rural farmers in the US Midwest, there is variation
in opinions over the likelihood of severe climate change and its causes (Arbuckle et al. 2013).
Such di�erences could confound our estimates if beliefs are correlated with the mean path
of climate evolution. The existence of heterogeneity also suggest an additional test of our
hypothesis that land markets capitalize future climate expectations: land values in counties
where climate change is thought to be more likely should reflect future climate forecasts
more strongly than in counties where beliefs over the likelihood of climate are weaker.

To this end, we again estimate Equation (21), but now incorporate the estimated per-
centage of each county’s population who think that ‘global warming is happening’ (Howe
et al. 2015 terminology).31 We incorporate this variable in two ways. First, we include it
as a linear predictor of land values in the vector X. This provides a simple test of whether
climate change perceptions are correlated with land prices. Second, we allow the parameter
fi to vary across counties as a function of the local level of belief in climate change. This
amounts to interacting beliefs with climate levels:

fi
i

= 1
1 + exp (◊0 + ◊1SCCH

i

)

where SCCH
i

denotes the share of each county’s population who think that global warming

31. The variable ‘happening’ in Howe et al. (2015).
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is happening, taken from the Howe et al. (2015) data. If ◊1 is positive, then higher local
perceived likelihood of climate change is associated with a lower value of the parameter fi

and higher weighting on future climate, supporting our hypothesis.
Results from this analysis are shown in Table 4. All models include state fixed e�ects.

Columns (1) and (4) reproduce columns (1c) and (2c) in Table 2 and restrict the market
belief parameter fi to be same across all counties. Columns (2) and (5) maintain this restric-
tion, but introduce the county-specific climate change perception (SCCH) as an additional
predictor of land values. In both specifications, the coe�cient on the share of population
‘believing climate change is happening’ is positive but statistically insignificant. The esti-
mated market belief parameter fi are essentially the same as in the baseline specification
of columns (1) and (4). In columns (3) and (6) we consider specifications where local per-
ceptions of the likelihood of climate change can a�ect the market belief parameter, as in
the above equation. Specifically, we estimate the parameters ◊0 and ◊1 (in addition to the
climate price gradient parameter vector b), and then construct predicted market beliefs as
a function of SCCH (share of population ‘believing climate change is happening’). These
predicted values (and standard errors) are reported in the lower panel of Table 4 for low
(SCCH=45), mean (SCCH=57.7), and high (SCCH=76) perceptions of the likelihood that
climate change is happening. In both the (3) and (6) specifications, there is a clear in-
verse relationship between the predicted market belief parameter fi and the county-level
perception of climate change. Counties where climate change is perceived as a low likelihood
(SCCH=45) have estimates of fi in the 0.36-0.37 range, while counties where climate change
is perceived as a high likelihood (SCCH=76) have estimates of fi in the 0.06-0.08 range (and
statistically indistinguishable from 0). This evidence suggest that land values in counties
with higher population shares believing that climate change is happening are priced with a
higher weight on future climate expectations (represented empirically by the Hadley 3 and
CCSM 3 predictions) as opposed to the historical climate.

6.4 Evolution of climate change beliefs over time

Using data on land values, county agricultural characteristics, and climate indices from prior
years, we explore the evolution of the market belief parameter over time. This approach
provides a simple specification test of the assumptions of our model and its empirical cred-
ibility. Naturally, we should expect that the market belief for the ‘No change’ scenario (fi)
grows larger as it is estimated from older data when public information on the prospects of
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climate change was not as widespread. In other words, we expect the estimate of fi for 2007
to be smaller than the corresponding estimate for 1987 (reflecting a stronger market belief
in the likelihood of climate change in 2007 than in 1987).

Specifically, we estimate an augmented version of regression Equation (21), but pool
the data from 1987 to 2007 and include year fixed e�ects. The market belief parameter fi

is permitted to vary over time; all other parameters are restricted to be the same across
periods (with the exception of year fixed e�ects). The constructed climate belief index
Y (fi) are constructed in the same manner as Equation (20), with the exception that indices
for earlier periods are discounted back to the relevant year (e.g., the indices for 1987 are
discounted to 1987).

Table 4 reports the coe�cient estimates for the market belief parameters, when beliefs
are constructed from the Hadley (columns 1a and 1b) and CCSM (columns 2a and 2b)
data. The F-statistics at the bottom of the table test the equality of the market belief
parameters over the period 1987-2007. For both sets of constructed beliefs, the hypothesis of
equality is rejected by the data at the 1% level or better. It is also evident that the patterns
in the estimated parameters correspond to our intuition regarding the salience and public
knowledge about ongoing climate change. In earlier years, fi is larger, and as time moves
forward, fi decreases as the market incorporates the greater threat and likelihood of climate
change. Overall, this simple test supports our working hypothesis about the land market
incorporating more information over time about expected future climate change in pricing
agricultural land.

7 Conclusion
A fundamental underpinning of capital asset theory is that anticipated changes in future
benefits associated with an asset will be capitalized into its current price. This key insight
is routinely applied in hedonic regressions designed to value non-market attributes in order
to assess the impact of expected future changes. For example, climate can a�ect agricul-
tural land values, zoning regulations can a�ect housing markets, and financial or workplace
regulations can a�ect a company’s valuation.

The canonical application uses historical data to estimate the response of asset prices
to exogenous variation in a variable of interest that is expected to change in the future.
Given an empirical estimate of the relationship between asset values and the variable of
interest, it is straightforward to predict the costs or benefits associated with expected future
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changes in this variable. This approach has been applied across numerous economic assets
in many sectors, and reported in hundreds of papers. The primary purpose of this paper
is to show that the empirical component of this approach to economic valuation contains
a fundamental assumption that is unlikely to hold in today’s information-rich society. The
implicit assumption is that the market is completely ignorant of the future change that is
now anticipated by the analyst. We propose and test a straightforward correction that allows
current asset markets to capitalize future expectations.

In climate change applications, scientists often predict increasing temperatures and chang-
ing precipitation patterns, but all empirical applications of the Ricardian method in the
literature implicitly assume that current land markets ignore these predictions. While this
assumption was quite plausible in the 80’s and 90’s, it is reasonable to wonder whether
land markets are starting to account for publicly available climate forecasts. Ignoring this
possibility leads to bias in the standard Ricardian regression. We derive the direction and
magnitude of the bias, and show how it can be corrected. The direction and magnitude of
the bias turns out to hinge on the correlation between past and future states and on the
variances of those states. The bias can be positive, negative, or (in very special cases) zero.

Indeed, we find clear evidence that current agricultural land markets do capitalize expec-
tations about future climate: Future climate indices derived from climate predictions from
the Hadley 3 and CCSM 3 global circulation models are shown to be important predictors
of current land values, conditional on historical climate indices, state fixed e�ects, soil char-
acteristics, and other predictors of farmland values typically used in standard application of
the Ricardian method. Thus, while the theoretical points we derive here are relevant whether
or not current markets actually capitalize future climate, we have also shown that this ef-
fect may already be unfolding across the United States. Our simple empirical illustration
indeed suggests that ignoring the capitalization of future climate expectations in the Ricar-
dian method may lead us to underestimate damage by 36% to 66%. Future research should
continue to investigate this important question as more detailed and refined information on
farmers’ and markets’ information sets and expectations become available.
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Appendix I: Excluded counties and county equivalents
The inverse distance weighting method used to translate gridded climate data from Hadley
3 and CCSM 3 to county centroid data experienced minor issues in some counties at the
geographic edge of our sample in Michigan and Florida. Independent cities (which are
county equivalents) in Virginia are also excluded; these are typically smaller in land area
and urbanized. Weighting failed to produce estimates for one county in Missouri. By state,
these counties and county equivalents are:

FLORIDA: Miami-Dade, Monroe.
MICHIGAN: Alcona, Alpena, Charlevoix, Cheboygan, Chippewa, Emmet, Keneenaw,

Luce, Mackinac, Montmorency, Ostego, Preqsue, Sanilac, Schoolcraft.
MISSOURI: Ste. Genevieve.
VIRGINIA: Albemarle, Alleghany, August, Bedford, Campbell, Carroll, Dinwiddie, Fair-

fax, Frederick, Greensville, Henry, Montgomery, Pittsylvania, Prince George, Prince William,
Roanoke, Rockbridge, Rockingham, Southampton, Spotsylvania, Washington, Wise.
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Figure	1:	Estimated	Market	Belief	Parameters	in	Climate	Not	Changing	(π )	as	a	Function	of	the	
Discount	Rate	

	

	

	 	



Figure	2:	Estimated	Present	Discounted	Value	of	Estimated	Climate	Change	Impacts	as	a	Function	of	
the	Discount	Rate	

	 	



Table	1:	Summary	Statistics	on	Historical	Climate	Variables		

	
Notes:	Sample	means	and	standard	deviations	for	2,112	counties	in	main	estimation	sample	(counties	east	of	
100th	meridian)	in	2007.	Discounted	indices	based	on	3%	discount	rate.	See	the	text	for	more	details.	
	 	

Mean Std	Dev Minimum Maximum

1.	Average	Farmland	Value	Per	Acre 2,346.0 1,254.5 449.4 20,173.7

2.	Historical	Climate	Variables 									 									 									 											
Winter	Temperature 33.0 12.0 7.4 65.4
Spring	Temperature 54.7 8.2 38.3 75.0
Summer	Temperature 75.3 5.0 63.1 86.3
Fall	Temperature 56.4 7.9 39.9 76.8
Winter	Precipitation 2.1 1.4 0.4 5.7
Spring	Precipitation 3.5 0.9 1.4 5.7
Summer	Precipitation 3.8 0.8 2.1 8.2
Fall	Precipitation 3.0 0.9 1.2 6.0

3.	Discounted	Historical	Climate	Indices 									 									 									 											
Winter	Temperature 1,059.3 385.7 239.4 2,100.2
Spring	Temperature 1,756.3 262.0 1,230.5 2,410.1
Summer	Temperature 2,420.8 161.1 2,026.2 2,773.2
Fall	Temperature 1,813.9 252.7 1,281.1 2,468.2
Winter	Precipitation 69.0 45.2 13.5 183.4
Spring	Precipitation 111.3 30.1 44.8 183.9
Summer	Precipitation 122.0 24.3 66.9 264.9
Fall	Precipitation 97.1 29.0 38.0 193.8



Table	2:	Estimated	Marginal	Effects	from	Forward-Looking	Ricardian	Regressions,	2007	Cross-Section	

Notes:	Dollar	figures	in	2005	constant	dollars.	 	All	entries	are	from	farmland	value	regressions	on	quadratics	in	eight	constructed	future	climate	expectation	
index	(equation	18).		Standard	errors	are	clustered	on	state.	Asterisks	denote	p-value	<	0.05	(*),	<0.01	(**),	<0.001	(***).	See	the	text	for	more	details	on	the	
other	control	variables	included	in	the	regressions.	

Beliefs	based	on	Hadley	3	A2 Beliefs	based	on	CCSM	3	A2

Parameter (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

0.08* (0.04) 0.18* (0.08) 0.17* (0.07) 0.22** (0.08)

-25.67* (12.25) -17.50 (12.81) -39.30* (14.84) (10.82)
71.20 (37.32) -8.02 (21.35) 87.82* (41.60)

-19.16 
5.99 (22.75)

2.03 (66.11) 44.83 (55.05) -52.50 (46.09) (44.17)
40.35 (67.16) 78.29 (59.26) 116.64 (89.53)

-8.48 
94.24 (58.46)

(104.97) -196.20** (58.02) -163.61 (81.60) -175.52** (63.87)-327.06** 
49.14 (35.50) 41.63 (36.43) 25.97 (30.22) 30.00 (31.57)

-117.33*** (31.99) (20.41) -129.88*** (33.87) -69.01*** (19.70)
351.60*** (72.88)

-82.44*** 
216.20*** (56.92) 215.15* (79.15) 191.56*** (55.44)

0.37* (0.17) 0.26 (0.19) 0.42* (0.20) 0.27 (0.17)
-0.74* (0.32) 0.00 (0.17) -0.72* (0.35) -0.09 (0.18)
-0.08 (0.39) -0.31 (0.34) 0.18 (0.29) 0.01 (0.28)
-0.23 (0.56) -0.65 (0.51) -0.78 (0.73) -0.76 (0.49)

34.45* (14.27) 25.23** (8.92) 28.02** (9.62) 24.57*** (6.82)
-3.93 (3.86) -3.32 (4.22) -3.34 (3.54) -2.07 (3.48)

11.18** (3.59) 8.11*** (2.10) 11.30** (3.61) 6.08** (2.01)
-33.81*** (7.97) -24.50** (7.28) -29.20** (9.71) -23.97*** (6.27)

28.89 11.90 20.01 6.36
[0.001] [0.001] [0.001] [0.001]

π

Linear	winter	temperature	index 
Linear	spring	temperature	index 
Linear	summer	temperature	index 
Linear	fall	temperature	index

Linear	winter	precipitation	index 
Linear	spring	precipitation	index 
Linear	summer	precipitation	index 
Linear	fall	precipitation	index

Quad	winter	temperature	index 
Quad	spring	temperature	index 
Quad	summer	temperature	index 
Quad	fall	temperature	index

Quad	winter	precipitation	index 
Quad	spring	precipitation	index 
Quad	summer	precipitation	index 
Quad	fall	precipitation	index

F-statistic	on	16	indices
[p-value]

State	Fixed	Effects No	 No Yes Yes No	 No Yes Yes



Table	3:	Estimated	Impacts	of	Climate	Change,	Main	Estimation	Sample,	Discounted	to	2007,	Billions	of	2005	Dollars	

Notes:	 The	 estimated	 impacts	 of	 climate	 change	 are	 derived	 from	 the	 state	 fixed	 effects	 regressions	 summarized	 in	 Table	 2,	 with	
corresponding	 column	 numbers,	 i.e.,	 columns	 (1)	 and	 (2)	 in	 Table	 3	 correspond	 to	 columns	 (1c)	 and	 (2c)	 in	 Table	 2.	 The	 future	 climate	
expectation	 indices	 underlying	 the	 regressions	 are	 constructed	 with	 a	 discount	 rate	 of	 3%	 and	 so	 implicitly	 the	 reported	 impacts	 are	
discounted	assuming	a	3%	discount	rate.	Standard	errors	 in	parentheses	are	 linear	combination	of	regression	standard	errors	clustered	by	
state.	Asterisks	denote	p-value	<	0.05	(*),	<0.01	(**),	<0.001	(***).	

Model	of	Beliefs
Composite	index Composite	index

based	on	Hadley3	A2	(Y i (π ) ) based	on	CCSM3	A2	(Y i (π ) ) No	Change	index	(I i )
(1) (2) (3)

Present	Value	of	Climate	Change	Impacts

Hadley	3 -998.6*** -783.5** -600.2***
(282.3) (279.6) (172.8)

CCSM	3 -1,290.7*** -968.0** -711.1**
(383.1) (363.2) (234.9)

Annualized	Value	of	Climate	Change	Impacts

Hadley	3 -31.1*** -24.4*** -18.7***
(8.8) (8.7) (5.4)

CCSM	3 -40.2*** -21.7*** -24.0**
(10.5) (11.3) (7.3)



Table	4:	Impact	of	Geographical	Heterogeneity	in	Climate	Change	Perception	on	Estimated	Market	Belief	Parameters	(π ),	2007	Cross-Section	

	
Notes:	Dollar	figures	in	2005	constant	dollars.		All	entries	are	from	farmland	value	regressions	on	quadratics	in	eight	constructed	future	
climate	expectation	index	(not	reported)	interacted	with	the	market	belief	parameter	π.		Specifications	in	columns	(3)	and	(6)	allow	the	
market	belief	parameter	to	depend	on	county-specific	perceived	likelihood	of	climate	change.	Standard	errors	are	clustered	on	state.	
Asterisks	denote	p-value	<	0.05	(*),	<0.01	(**),	<0.001	(***).	See	the	text	for	more	details	on	the	other	control	variables	included	in	the	
regressions.	

(1) (2) (3) (4) (5) (6)

Share	believing	climate	change --- 10.68 37.86* --- 13.71 41.59**
is	happening	(SCCH) (7.17) (14.47) (7.56) (13.20)

Market	belief	parameter	(π ) 0.18* 0.18* --- 0.22** 0.21** ---
(0.08) (0.08) (0.08) (0.08)

Predicted	π 	as	function	of	SCCH
low	SCHH	(SCHH=45) --- --- 0.37*** --- --- 0.36***

(0.10) (0.104)

mean	SCHH	(SCHH=57.7) --- --- 0.18* --- --- 0.21**
(0.088) (0.07)

highest	SCHH	(SCHH=76) --- --- 0.06 --- --- 0.08
(0.05) (0.05)

F-statistic	on	16	indices 11.90 11.82 14.33 6.36 6.69 6.82
[p-value] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

State	Fixed	Effects Yes Yes Yes Yes Yes Yes

Beliefs	based	on	Hadley	3	A2 Beliefs	based	on	CCSM3	A2



Table	5:	Evolution	in	Estimated	Market	Belief	Parameters	(π ),	1987-2007		

	
Notes:	The	estimated	market	belief	parameters	are	from	a	pooled	regression	for	1987-2007	data	that	includes	year	and	state	fixed	
effects	and	quadratics	in	eight	constructed	future	climate	expectation	index	(equation	18).		Standard	errors	are	clustered	on	state.	
Asterisks	denote	p-value	<	0.05	(*),	<0.01	(**),	<0.001	(***).	See	the	text	for	more	details	on	the	other	control	variables	included	in	
the	regressions.	
	
	

Beliefs	based	on	Hadley	3	A2 Beliefs	based	on	CCSM	3	A2
Market	belief	parameter	(π ) (1a) (1b) (2a) (2b)

1987 0.25* (0.10) 0.29** (0.10)

1992 0.24* (0.09) 0.28*** (0.08)

1997 0.27* (0.10) 0.28*** (0.08)

2002 0.17* (0.08) 0.09 (0.07)

2007 0.02 (0.09) 0.00 ---

F-statistic	testing	parameter	equality 3.89 4.13
[p-value] [0.010] [0.007]
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