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Abstract

Various types of uncertainty shocks can explain many phenomena in macroeco-
nomics and finance. But does this just amount to inventing new, exogenous, unobserved
shocks to explain challenging features of business cycles? This paper argues that three
conceptually distinct fluctuations, all called uncertainty shocks, have a common origin.
Specifically, we propose a mechanism that generates micro uncertainty (uncertainty
about firm-level shocks), macro uncertainty (uncertainty about aggregate shocks) and
higher-order uncertainty (disagreement) shocks from a common origin and causes them
to covary, just as they do in the data. When agents use standard maximum likelihood
techniques and real-time data to re-estimate parameters that govern the probability of
disasters, the result is that micro, macro and higher-order uncertainty fluctuate and
covary just like their empirical counterparts. Our findings suggest that time-varying
disaster risk and the many types of uncertainty shocks are not distinct phenomena.
They are outcomes of a quantitatively plausible belief updating process.

A recent literature starting with Bloom (2009) demonstrates that uncertainty shocks

can explain business cycles, financial crises and asset price fluctuations with great success

(e.g. Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry (2012), Ordonez (2011)

and Pastor and Veronesi (2012)). But what is the nature of these shocks and where do

they come from? The nature of uncertainty shocks varies from paper to paper. In some

papers, an uncertainty shock means that an aggregate variable, such as GDP, becomes

less predictable.1 We refer to this as macro uncertainty. In other papers, an uncertainty

shock describes an increase in the variance of idiosyncratic shocks to firms, which manifests

∗Please send comments to nic.j.koz@nyu.edu. We are grateful to Virgiliu Midrigan, Simon Mongey, and
Tom Sargent for useful discussions and suggestions. We thank seminar participants at the SED meetings
in Warsaw and the AEA meetings in San Francisco. The views expressed herein are those of the authors
and do not necessarily reflect the position of the Board of Governors of the Federal Reserve or the Federal
Reserve System.

1For macro uncertainty shocks see, for example, Basu and Bundick (2012) and Bianchi, Ilut, and Schnei-
der (2012) on business cycles, and Bansal and Shaliastovich (2010), Pastor and Veronesi (2012) in the asset
pricing literature.
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itself in an increase in the cross-sectional difference in firm outcomes.2 We call this micro

uncertainty. Higher-order uncertainty describes the uncertainty about others’ beliefs that

arises when forecasts differ.3 These three types of uncertainty are conceptually different.

While macro uncertainty comes from aggregate shocks, micro uncertainty depends on firm-

specific shocks, and higher-order uncertainty arises from private signal noise. In principle all

of these shocks could be independent. But they are not: these different types of uncertainty

strongly covary, so much so that they are sometimes conflated. The fact that all three are

not obviously related and yet covary strongly suggests that they may have a common cause.

This paper is a search for the common cause of uncertainty shocks.

Our main argument is that if firms re-estimate a model with disaster risk each period

before choosing inputs and producing, their macro, micro and higher-order uncertainty

will covary in a realistic way. The reason that disaster risk can affect all three uncertainty

measures originates from the fact that disasters arise infrequently, making their probabil-

ity difficult to assess and the scope for disagreement large. When the risk of disasters

rises, these errors and disagreements are amplified. Less accurate forecasts raise macro

uncertainty. Divergent forecasts create higher-order uncertainty. Firms with divergent

forecasts choose different inputs and obtain different outputs. This rise in the dispersion

of firm output shows up as higher micro uncertainty. All three forms of uncertainty and

their covariance can be explained in a unified framework that ties all three to disaster risk.

This unification brings us one step closer to understanding what causes business cycle

fluctuations.

Section 1 begins with measurement. It defines our measures of micro, macro and higher-

order uncertainty and documents the strong positive correlation between them. Then it

2For micro uncertainty shocks see, for example, Arellano, Bai, and Kehoe (2012), Christiano, Motto,
and Rostagno (2014), Gilchrist, Sim, and Zakraǰsek (2013), Schaal (2012), Bachmann and Bayer (2013)
and Bachmann and Bayer (2012). The last two papers dispute the importance of these shocks for aggregate
activity. Some papers such as Bloom (2009) and Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry
(2012) use micro and macro uncertainty shocks.

3On the role of higher-order uncertainty see Angeletos and La’O (2014), Angeletos, Collard, and Dellas
(2014) and Benhabib, Wang, and Wen (2015).
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investigates the hypothesis that these types of uncertainty covary just because they are all

countercyclical. We find that there is more to it than this because the correlation between

them holds up even after controlling for the business cycle.

To explain why re-assessing tail risk can cause many forms of uncertainty to comove,

Section 2 presents a production economy with firms that are uncertain about aggregate

productivity (TFP). The firms face exogenous changes in productivity and its variance,

which changes all three types of uncertainty endogenously. The model has three key fea-

tures: First, stochastic volatility of TFP growth is essential because it is the source of

our uncertainty fluctuations. Second, heterogeneous signals create heterogeneity amongst

firms which is necessary to generate higher-order uncertainty and micro uncertainty. We

can either assume heterogeneous beliefs or provide heterogeneous information. The latter

generates more insight and endogenous fluctuations. The third ingredient is non-normal

innovations. This is what creates a role for time-varying disaster risk. Normal distribu-

tions have thin tails, which makes disasters incredibly unlikely. In order to have meaningful

changes in tail probabilities, we use a stochastic process that allows TFP to have condi-

tional skewness and thick tails.

Each period our agents observe past data, re-estimate the parameters of this non-normal

model and then receive private signals to update their beliefs about TFP growth. On the

basis of their beliefs firms choose their labor input for production and forecast GDP growth.

Since TFP growth has stochastic volatility and agents must re-estimate the model each

period, the precision of agents’ prior beliefs, and macro uncertainty, varies over time. This

causes the weight that they place on their heterogeneous signals to vary causing changes

in the dispersion of their forecasts and labor choices. This shows up as micro and high-

order uncertainty shocks. This mechanism generates correlation between the three types of

uncertainty, but can’t explain their countercyclicality or magnitude. This is where disaster

risk comes in. Because disaster probabilities are difficult to assess, a rise in disaster risk

creates both uncertainty about aggregate outcomes (macro uncertainty) and disagreement.
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When firms disagree, they make different input choices and have heterogeneous outcomes

(micro uncertainty). They also make different forecasts (higher-order uncertainty). Thus,

it is that fact that disasters are rare and difficult to predict that drives all three forms of

economic uncertainty.

The strength of the disaster risk mechanism comes from how it creates disagreement

about tail risk.4 Specifically, because tail probabilities are so sensitive to changes in skew-

ness, small differences in skewness estimates produce large disagreement about disaster risk.

Thus accounting for the skewness we see in the data causes higher-order, macro and micro

uncertainty to fluctuate more, covary more negatively with the business cycle, and covary

more positively with each other. Thus the message is that, while types of uncertainty are

not obviously related, real-time estimation of disaster risk can produce fluctuations in the

many types of uncertainty, in a way that explains the uncertainty data.

Related literature There is a growing literature studying the importance of uncertainty

shocks for understanding business cycles and financial markets. In his seminal paper Bloom

(2009) showed that various measures of uncertainty are countercyclical and studied the

ability of uncertainty shocks to explain business cycle fluctuations. Several other papers

have further investigated uncertainty shocks as a driving force for business cycles including

Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry (2012), Basu and Bundick (2012),

Bianchi, Ilut, and Schneider (2012), Arellano, Bai, and Kehoe (2012), Christiano, Motto,

and Rostagno (2014), Gilchrist, Sim, and Zakraǰsek (2013), Schaal (2012), Bachmann and

Bayer (2012) and Bachmann and Bayer (2013). A related strand of literature studies the

impact of uncertainty shocks on asset prices (see, for example, Bansal and Shaliastovich

(2010) and Pastor and Veronesi (2012)). Our paper complements this literature by asking

what are the origins of the uncertainty shocks that most of these papers take as exogenous

are.

4We use the term disagreement here to mean differing Bayesian estimates. It does not mean differences
in priors.
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A few recent papers also study the origins of uncertainty shocks. Some seek to explain

why the cross-sectional dispersion of firm outcomes is countercyclical. Bachmann and

Moscarini (2012) focus on the dispersion of prices and argue that recessions cause greater

price dispersion because it is less costly for firms to experiment with their prices during

bad economic times. Decker, D’Erasmo, and Moscoso Boedo (2013) argue that during

recessions firms access fewer markets, which have idiosyncratic demand shocks, so they are

less diversified and have more volatile outcomes. Others explain why uncertainty rises in

recessions. In Nimark (2014), only outlier events are reported. Thus, the publication of

a signal conveys both the signal content and information that the true event is far away

from the mean, which increases macro uncertainty. Benhabib, Liu, and Wang (2016) show

how endogenous information acquisition can generate countercyclical uncertainty. In Van

Nieuwerburgh and Veldkamp (2006) and Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2013), less economic activity generates less data, which increases uncertainty. Ludvigson,

Ma, and Ng (2016) use statistical projection methods to argue that output fluctuations

can cause uncertainty fluctuations or the other way around, depending on the type of

uncertainty. Our paper differs because it explains why ncertainty can be explained by the

business cycle and why dispersion across firms and forecasters is connected to uncertainty

about aggregate outcomes.

A handful of papers have explored the importance of learning from past observations

and its impact on second moments (Adam, Marcet, and Nicolini, 2016). While the idea

of learning about tail risk has its origins in Orlik and Veldkamp (2014), this paper focuses

on heterogeneity, a topic that the previous, representative agent forecasting model could

not address. The model in this paper pushes that idea further: It adds heterogeneous

information and then builds a production economy with these dispersed beliefs at its core.

The new insight is that time-varying disaster risk, when paired with heterogeneous signals,

can explain fluctuations in belief heterogeneity and firm output dispersion as well. With its

macroeconomic predictions and realistic forecast dispersion, this model is more amenable
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to empirical evaluation and can explain why different types of uncertainty covary.

Our work on cyclical uncertainty fluctuations complements the literature studying long

run trends in aggregate and firm level volatility. In the past 30 years, aggregate volatility

has declined while firm volatility has increased (Comin and Philippon, 2005). Comin and

Mulani (2006) argue that these long-run trends come from a shift from general-purpose

technology to more specific technology development. Our paper explains the cyclical fluc-

tuations around these long-run trends.

1 The Empirical Puzzle

Since the objective of the paper is to uncover the link between the different types of

uncertainty, we start in this section by defining our three measures of uncertainty and

documenting some of their empirical properties. We document that the three types of

uncertainty are positively correlated, that the relationships are statistically significant and

that their covariance exceeds that which the business cycle alone can explain.

Throughout the paper we measure micro uncertainty with the cross-sectional interquar-

tile range (IQR) of firm sales growth.5 The growth rate of firm i in quarter t is computed

as

gqit ≡
Qi,t+4 −Qit

1
2(Qi,t+4 +Qit)

, (1)

where Qit is the sales of firm i in quarter t. Micro uncertainty in quarter t is the cross-

sectional IQR of these growth rates:

MiUt ≡ IQR(gqit). (2)

The data comes from Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry (2012) and

covers 1962Q1–2009Q3. It is based on observations for all public firms with at least 100

5We use the IQR in order to make contact with an existing literature, e.g., Bloom, Floetotto, Jaimovich,
Sapora-Eksten, and Terry (2012), which uses the IQR to measure micro uncertainty.
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quarters of data in Compustat between 1962 and 2010. The sample contains 2,465 firms.

Since Comin and Mulani (2006) have already explained the long-run uncertainty trends,

we focus on cyclical fluctuations by removing trends. We detrend micro uncertainty using

a HP filter with smoothing parameter equal to the standard value for quarterly data (1600)

and compute percentage deviations of the data from trend. The data is presented in Figure

1.

We measure higher-order uncertainty with the cross-sectional standard deviation of real

GDP growth forecasts from the Survey of Professional Forecasters. These are one-period-

ahead forecasts of real GDP: forecasts of quarter t + 1 real GDP made after the end of

quarter t. From here on, we use the term GDP to refer to real GDP. Let Qt ≡
∫
Qitdi

denote aggregate GDP in quarter t. Let Iit be the information set of agent i at the end

of quarter t, and define GDP growth as ∆qt = 400(logQt − logQt−1) so that the units are

annualized percentage growth. We compute approximate forecasts of GDP growth using

the GDP forecast data as follows:

E[∆qt+1|Iit] ≡ 400(log(E[Qt+1|Iit])− logQt). (3)

We compute approximate forecasts because the data only provides forecasts of the level of

GDP, not the growth rate of GDP. Higher-order uncertainty for quarter t is measured with

the cross-sectional standard deviation of the forecasts in (3):

HUt ≡
√

1

Nt

∑
i∈Ωt

(E[∆qt+1|Iit]− Ēt)2 (4)

where Ēt = 1/Nt
∑

iE[∆qt+1|Iit] is the average growth forecast, i indexes forecasters, Ωt

is the set of forecasters at the end of period t and Nt is the number of forecasters in

this set.6 The higher-order uncertainty series covers 1968Q3–2011Q3. We detrend this

series using the same method as we used for the micro uncertainty series in order to

6The average number of forecasters in SPF in a quarter is 41, with a standard deviation of 17
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remove variation in the series at frequencies that we do not seek to explain. When we

want to assess the relationship between higher-order uncertainty and micro uncertainty we

need to make an adjustment for the fact that micro uncertainty is based on four quarter

growth rates while higher-order uncertainty is based on one quarter growth rates. The

adjustment we make is to average higher-order uncertainty over four quarters: ĤU t ≡

1
4

∑3
i=0HUt+i. ĤU t is comparable in terms of timing to MiUt. We also focus on the

percentage deviation from trend for this series, which is presented in Figure 1. When

evaluating the relationship between micro uncertainty and GDP growth we make a similar

adjustment by using ∆̂qt+1 ≡ 1
4

∑4
i=1 ∆qt+i for GDP growth. Our real GDP data is from

the BEA.

Conceptually we think of macro uncertainty of agent i at the end of period t as the stan-

dard deviation of that agents’ beliefs about GDP growth in the next period:
√
V [∆qt+1|Iit].

To get an aggregate measure of macro uncertainty we average macro uncertainty across

agents:

MaUt ≡
1

Nt

∑
i∈Ωt

√
V [∆qt+1|Iit]. (5)

As for higher-order uncertainty, when we’re comparing macro uncertainty to micro un-

certainty we need to average it over four quarters. Let M̂aU t ≡ 1
4

∑3
i=0MaUt+i so that

M̂aU t is comparable to MiUt in terms of timing. A difficulty with using this definition

of macro uncertainty is that we don’t have a good measure of it in the data. To measure

this directly we would need detailed information on the probability that forecasters in the

economy place on various outcomes for GDP growth, but such information is not available.

Therefore to make progress empirically we use a proxy for macro uncertainty that we take

from Bloom (2009). This proxy is based on the CBOE’s VXO which utilizes the implied

volatility of the S&P100 from options prices.7 This quarterly series provides our empirical

7This proxy is constructed as follows. For 1986 onwards the series is the CBOE’s VXO. This series is
the expected variance of the S&P100 over the next 30 days, as implied by options prices. Since the VXO
isn’t available prior to 1986 a normalized version of the realized volatility of the S&P500 is used for the
pre-1986 period. Specifically Bloom takes the monthly standard deviation of the daily S&P500 index and
normalizes the series so that for the period in which it overlaps with the VXO (1986 onwards) the two series
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Figure 1: Shades of uncertainty. Micro uncertainty is MiUt, higher-order uncertainty is ĤU t and

the macro uncertainty series is the empirical proxy for M̂aU t. All series are presented as the percentage
deviation from trend.

proxy for MaUt from which we can compute M̂aU t as described above. The MaUt series

covers 1962Q2–2008Q2. As for the other uncertainty series we focus on the percentage de-

viation from trend. The percentage deviation from trend of the empirical proxy for M̂aU t

is presented in Figure 1.

Having defined the three types of uncertainty, we now turn to discussing the relation-

ship between them. The correlation of micro and higher-order uncertainty is 0.43 and

regressing micro uncertainty on higher-order uncertainty shows that they have a positive

relationship which is significant at the 1% level—see column (1) of the first panel of Ta-

ble 1. The coefficient of 0.281 means that when higher-order uncertainty deviates from

trend by one additional percentage point, micro uncertainty deviates from trend by an

additional 0.281 percentage points. Both types of uncertainty are also countercyclical: mi-

cro and higher-order uncertainty have correlations of −0.52 and −0.28, respectively, with

GDP growth. The second and third panels of Table 1 shows that similar results hold for

the relationships between macro uncertainty and higher-order uncertainty, and between

have the same mean and variance. This produces a monthly series and we follow Bloom in averaging the
series across the months of each quarter to get a quarterly series.
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Micro Uncertainty (1) (2)

Higher-order uncertainty 0.281∗∗∗ 0.134∗∗∗

(0.047) (0.046)
GDP growth −2.549∗∗∗

(0.357)
Obs 165 165
Sample 1968Q3–2009Q3

Higher-order uncertainty (1) (2)

Macro uncertainty 0.350∗∗∗ 0.277∗∗

(0.110) (0.111)
GDP growth −1.949∗∗∗

(0.706)
Obs 160 160
Period 1968Q3–2008Q2

Macro uncertainty (1) (2)

Micro uncertainty 0.461∗∗∗ 0.252∗∗

(0.102) (0.108)
GDP growth −2.301∗∗∗

(0.533)
Obs 182 182
Period 1962Q2–2007Q3

Table 1: Uncertainty shocks are correlated in the data, even after controlling
for business cycles. Micro uncertainty is MiUt. Higher-order uncertainty is ĤU t in the first panel

and HUt in the second panel. Macro uncertainty is MaUt in the second panel and M̂aU t in the third panel.
GDP growth is ∆qt in the second panel and ∆̂qt in the other panels. We multiple GDP growth by 400 so
that its units are the annualized percentage growth rate. Standard errors are in parentheses. ∗∗∗, ∗∗ and ∗

denote significance at the 1%, 5% and 10% levels respectively.
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macro and micro uncertainty. Column (1) shows that there is a positive and statistically

significant relationship between both of these pairs of uncertainty at the 1% level. Macro

uncertainty is also countercyclical, with a correlation with GDP growth of −0.26. Several

other papers starting with Bloom (2009) have documented similar facts.

One reason why the three types of uncertainty could comove is that they are all driven

by the business cycle. We test this hypothesis by running the three regressions controlling

for the business cycle with real GDP growth. The results are presented in column (2)

of Table 1. The main result is that the types of uncertainty have a significant positive

relationship even after controlling for the business cycle. Taken together, these findings

suggest that micro, macro and higher-order uncertainty share some other common source

of variation.

2 Model

We want to explore why micro, macro and high-order uncertainty comove. To do this,

we feed in exogenous acyclical stochastic volatility shocks that mechanically move macro

uncertainty and then look to see how and why micro and higher-order uncertainty respond.

Since micro uncertainty is measured in the data using firm growth rates, we have firms

making production decisions in the model. Since higher-order uncertainty is about differ-

ences in beliefs, we need to give these firms heterogeneous information on which to form

different beliefs. This dispersed information is the source (and the only source) of firm

heterogeneity. That is a limitation of the model that we’ll return to.

In order for the transmission of macro to micro and higher-order uncertainty to be

strong enough to resemble the data, we need firms to use their heterogeneous information to

re-evaluate disaster risk each period. This amplifies changes in uncertainty in part because

uncertainty is a variance and variance is very sensitive to changes in the probability of

events far away from the mean. Re-evaluating disaster risk requires a non-normal model

because normal distributions have infinitesimal probabilities of disasters (thin tails). We
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introduce non-normality by taking a GARCH process for the state and then subjecting

it to a simple non-linear transformation. We introduce learning about this distribution

by allowing firms to re-estimate the parameters of the distribution each period. In what

follows, we set up this model formally, describe its solution, and then describe a similar

model without skewness. We use that model, which we’ll call the normal model, later to

isolate the role that the skewed distribution plays in the results.

A different way to introduce disaster risk would be to have a discrete disaster state and a

regime-switching process. But this type of setup won’t work for our purposes. For disaster

risk to constantly fluctuate, we need for events in normal times to cause a reassessment of

disaster risk. Thus normal events must be informative about disaster probabilities. Normal

events can only be informative if the same parameters the govern ordinary events also

govern disaster events. Discrete state disaster models have separate parameters governing

ordinary and disaster states. In such a model disaster probability and severity estimates

only experience shocks when disasters are realized. Thus a theory that encompasses time-

varying disaster risk can either assume that such risk varies exogenously, or can link it to

non-disaster outcomes with a non-normal distribution that covers the whole state space.

To better understand why disaster risk varies we take the latter approach.

2.1 Environment

Time is discrete and starts in period 0. There is a unit mass of firms in the economy with

each firm comprised of a representative agent who can decide how much to work. Agent

i’s utility in period t depends on his output Qit and the effort cost of his labor Lit:

Uit = Qit − Lγit (6)

for some γ > 1. Output depends on labor effort and productivity At:

Qit = AtLit. (7)
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Aggregate output is Qt ≡
∫
Qitdi and GDP growth is ∆qt ≡ 400(logQt − logQt−1). We

define GDP growth in this way in anticipation of the fact that we will calibrate to quarterly

data so that the units are the annualized percentage.

A key feature of our model is that the growth rate of productivity at time t, ∆at ≡

log(At)− log(At−1) has stochastic volatility. This stochastic volatility process is the source

of our uncertainty shocks and takes the form of a general autoregressive conditional het-

eroskedasticity (GARCH) model. We use GARCH because it is simple to estimate and

makes it feasible to add more richness to the rest of the model. Then we use an expo-

nential transformation of this GARCH process to introduce non-normality and disaster

risk:

∆at = c+ b exp(−Xt), (8)

Xt = σtεt, (9)

σ2
t = α+ ρσ2

t−1 + φσ2
t−1ε

2
t−1. (10)

where εt ∼ N(0, 1) with draws being independent from each other and over time. Note

that in equation (8) we multiply Xt by −1 so that when b < 0, as it will be under the

calibration, ∆at is increasing in Xt.

We assume that agents know the GARCH structure of the process for Xt, equations

(9)-(10), and the parameters b and c, but have to estimate the parameter values α, ρ and

φ.8 Notice that the fundamental state of the economy Xt which is conditionally normally

distributed is mapped into aggregate productivity growth. This change-of-variable proce-

dure allows our forecasters to consider a family of non-normal distributions of TFP growth

and convert each one into a linear-normal filtering problem with unknown parameters that

8We make this assumption about b and c for simplicity. When we calibrate the model we need to simulate
it each time we adjust parameters and this requires estimating the process for Xt 400,000 times. When b
and c are known, this can be done efficiently using maximum likelihood techniques. Assuming agents do
not know b and their beliefs about it change over time creates an additional source of time-variation in
disaster risk that amplifies uncertainty shocks. Results available on request.
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can be estimated jointly. The structural form of the mapping in (8) is dictated by a couple

of observations. First, it is a simple (that is, computationally feasible) yet flexible formula-

tion that allows us to focus our attention on conditionally skewed distributions. Note that

skewness in this model is most sensitive to b because that parameter governs the curvature

of the transformation (8) of the normal variable. Any function with similar curvature, such

as a polynomial or sine function, would deliver a similar mechanism. Second, the historical

distribution of GDP growth is negatively skewed which can be achieved by setting b < 0.

Third, Orlik and Veldkamp (2014) show how a similar formulation reproduces important

properties of the GDP growth forecasts in the Survey of Professional Forecasters (SPF).

Agent i makes his labor choice Lit at the end of period t − 1. His objective is to

maximize expected period t utility.9 The agent makes this decision at the end of period

t− 1, which means that he does not know productivity At. However, at the end of period

t− 1 he observes an unbiased signal about the fundamental state Xt:

zi,t−1 = Xt + ηt−1 + ψi,t−1, (11)

where ηt−1 ∼ N(0, σ2
η) and ψi,t−1 ∼ N(0, σ2

ψ). The public noise shock ηt−1 is i.i.d. over

time and the private noise shock ψi,t−1 is i.i.d. across agents and over time.10 Note that

there is common and idiosyncratic signal noise. The information set of firm i at the end

of period t − 1 is Ii,t−1 = {At−1, zi,t−1}, where At−1 ≡ {A0, A1, . . . , At−1}. Agents know

the history of their private signals as well, but since signals are about Xt which is revealed

after production at the end of each period (an agent that knows Qit can back out Xt using

9Decisions at time t have no effect on future utility so the agent is also maximizing expected discounted
utility.

10As in Lucas (1972), we assume that there is no labor market, which means that there is not a wage
which agents can use to learn about Xt or ∆at. While a perfectly competitive labor market which everyone
participates in could perfectly reveal ∆at, there are many other labor market structures with frictions in
which wages would provide no signal, or a noisy signal, about ∆at (e.g. a search market in which workers
and firms Nash bargain over wages). An additional noisy public signal would not provide much additional
insight since we already allow for public noise in the signals that agents receive. It would however add
complexity to model, so we close this learning channel down. Also note that if agents traded their output,
prices would not provide a useful signal about TFP growth because once production has occurred, agents
know TFP exactly.
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the production function (7) and the productivity growth equation (8)), past signals contain

no additional relevant information.

2.2 Solution to the firm’s problem

The first-order condition for agent i’s choice of period t labor is:

Lit =

(
E[At|Ii,t−1]

γ

)1/(γ−1)

. (12)

In order to make his choice of labor the agent must forecast productivity. He forms a prior

belief about the state Xt that governs TFP growth and then updates using his idiosyncratic

signal. He knows that Xt follows the process specified in equations (9)–(10) but does not

know the three parameters of that process. To form his prior about Xt at the end of period

t−1 he uses the data At−1 to estimate the parameters of the process by maximum likelihood.

This prior is normally distributed with mean E[Xt|At−1] and variance vt−1 = V [Xt|At−1].

When the agent receives his signal at the end of period t − 1 he updates his beliefs

according to Bayes’ law:

E[Xt|Ii,t−1] =
v−1
t−1E[Xt|At−1] + (σ2

η + σ2
ψ)−1zi,t−1

v−1
t−1 + (σ2

η + σ2
ψ)−1

.

Note that (σ2
η +σ2

ψ)−1 is the precision of that signal. Let the posterior variance be denoted

Vt−1[Xt] ≡ [v−1
t−1 +(σ2

η+σ2
ψ)−1]−1. Note that this variance is common across agents because

all agents receive signals with the same precision. If we define ωt−1 ≡ [(σ2
η + σ2

ψ)(v−1
t−1 +

(σ2
η +σ2

ψ)−1)]−1 we can write agent i’s forecast of Xt as a weighted sum of prior beliefs and

the signal:

Ei,t−1[Xt] = (1− ωt−1)E[Xt|At−1] + ωt−1zi,t−1. (13)

Once the agent has beliefs about the fundamental state Xt and TFP growth, he computes
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his expected value of TFP using the fact that At = At−1 exp(∆at):

E[At|Ii,t−1] = At−1E
[

exp
(
c+ b exp(−Xt)

)
|Ii,t−1

]
(14)

and makes his labor choice according to equation (12). The right hand side of this equation

cannot be evaluated analytically so for quantitative results we will compute it numerically.

2.3 Beliefs about GDP

In the quantitative section of the paper we will make use of GDP forecast data, so we

present the equations needed to compute these forecasts here. Using equations (7) and

(12) firm i’s output in period t is

Qit = At

(
E[At|Ii,t−1]

γ

)1/(γ−1)

(15)

and aggregate output is

Qt = At

∫ (
E[At|Ii,t−1]

γ

)1/(γ−1)

di. (16)

Using this equation we can take an individual agent’s expectation to compute his GDP

forecast and then his GDP growth forecast is computed according to equation (3). Since

each agent’s TFP forecast must be computed numerically, we also must also compute GDP

growth forecasts numerically.

2.4 Simplified models for comparison

Our results in Section 4 will focus on the role of two features of our model: learning about

the state Xt with imperfect information and the skewed shocks to TFP growth. We will

refer to the first feature as the learning mechanism and the second feature as the disaster

risk mechanism. In order to understand the roles of these features we will present results
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for two simplified versions of the model. From now on we will refer to the main model as

the disaster risk model. In the simplest version of the model, which we call the no learning

model, we turn off both the learning and disaster risk mechanisms. To do this we make the

TFP shocks normally distributed, eliminating disaster risk, and assume that agents know

Xt at the end of period t− 1 when making their labor decisions and forecasts so that they

have perfect information. Formally there are two changes to the disaster risk model. We

change the TFP growth process by dropping the change of measure in equation (8) so that

the TFP growth process is now:

∆at = c+Xt, (17)

where Xt follows the same process as in equations (9) and (10). To endow agents with

perfect knowledge of Xt we set both signal noises to zero: ση = 0 and σψ = 0.

For the second simplified model we turn the learning mechanism on and leave the

disaster risk mechanism off. Formally we assume that ∆at follows the process in equation

(17) and in this model there will be signal noise: we allow ση, σφ > 0. We call this model the

normal model. Comparing results for the no learning and normal models will demonstrate

the role of the learning mechanism, while comparing results for the normal and disaster

risk models will show what disaster risk does.

The solution methods for the no learning and normal models are exactly the same as for

the disaster risk model. For these models GDP growth forecasts can be solved analytically.

For the normal model we present these in the appendix. In the no learning model they are

trivial since there is perfect information.

3 Calibration and Simulation

The disaster risk model has eight parameters: a parameter controlling the disutility of labor

(γ), a parameter for the level of TFP growth (c), a parameter controlling the curvature

of the change of measure function (b), three parameters for the GARCH process (α, ρ
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and φ), and public and private signal noise (ση and σψ respectively). We set γ = 2,

which corresponds to a Frisch labor supply elasticity of one. This is within the range

of Frisch elasticities that Keane and Rogerson (2012) argue are reasonable at the macro

level. The remaining parameters are calibrated to target seven moments of the data for

1968Q4–2011Q4: the mean, standard deviation, skewness and kurtosis of GDP growth (all

real GDP); the standard deviation of the absolute difference between GDP growth and its

mean, std(|∆qt−∆q|) where ∆q is average GDP growth for the sample; the average cross-

sectional standard deviation of GDP growth forecasts (defined in (4)); and the average

(over forecasters and over time) absolute error of GDP growth forecasts, which is

1

T

T∑
t=1

1

Nt

∑
i∈It

|E[∆qt|Ii,t−1]−∆qt|, (18)

where T is the number of periods in the data.

To calibrate the parameters of the model excluding γ we use simulated method of

moments. We assume that agents in the economy have access to data going back to

1947Q2, so when simulating the model we provide the agents with the same number of

observations of TFP as they would have had in the real economy under this assumption.

Full details of the calibration procedure are in the appendix. The calibrated parameter

values are reported in Table 2 and the values of the target moments are reported in column

(2) of Table 3, along with the corresponding values for the data in column (3) (calibration

targets are marked with †’s). The model does a good job of getting close to the calibration

targets.11 For computing results we simulate the model 2000 times for a number of quarters

11The model is not able to hit the calibration targets exactly. In particular the standard deviation of
GDP growth is a little high while the kurtosis of GDP growth, the average standard deviation of GDP
growth forecasts (higher-order uncertainty mean) and the average absolute error of these forecasts are a
little low. This is because the Bayesian learning mechanism limits what the model can attain. To illustrate
this, if you hold the weight that agents place on their signals (ωt−1) fixed, then increasing ση and σφ will
increase the variance and average absolute error of forecasts. But increasing these parameters reduces the
weight that agents place on their signals, offsetting these effects. Alternatively you could adjust parameters
of the GARCH process so that when agents estimate this process they have less precise prior beliefs about
TFP growth and place more weight on their signals. But the moments of GDP growth that are targeted
limit how much this can be done. The calibration balances these tradeoffs.
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Parameter Normal Disaster risk
model model

non-normality b n/a −0.0767
TFP growth level c 0.0034 0.0804
mean volatility α 2.03e-5 4.36e-4
volatility persistence ρ 0.2951 0.7419
volatility innovation var. φ 0.1789 0.1937
private signal noise σψ 0.0090 0.1106
public signal noise ση 0 0

Table 2: Parameter values for the disaster risk and normal models

equivalent to 1947Q2 to 2011Q4, compute moments of the simulated data over periods

equivalent to those used for computing moments of the actual data and then average each

moment across the simulations. Further details are in the appendix.

We target moments of GDP growth rather than moments of TFP growth because

our forecast data is for GDP growth, so we want the GDP growth process in the model

to match the data, even if our production economy is simple. Matching the forecast

dispersion ensures that we have the right mean level of higher-order uncertainty, but leaves

fluctuations in higher-order uncertainty as a free moment. Likewise, the average absolute

forecast error is related to the average amount of macro uncertainty, but does not discipline

the uncertainty shocks. Thus our calibration strategy allows the time variation in all three

types of uncertainty, their correlations with the business cycle and their correlations with

each other to be endogenously determined. The only cyclical properties we calibrate to

are the standard deviation, skewness and kurtosis of GDP growth but not the cyclical

properties of the different uncertainty time series which we seek to explain.

For the calibration of the normal model there is one less parameter to calibrate. Relative

to the disaster risk model we don’t have to calibrate b which controls the curvature of the

change of measure function. In terms of calibration targets we drop the skewness and

kurtosis of GDP growth and add the autocorrelation of the absolute difference between

GDP growth and its mean, ac(|∆qt−∆q|). We drop skewness and kurtosis because without
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Models Data

Normal Disaster risk
(1) (2) (3)

GDP growth
Mean∗† 2.72 2.71 2.71
Std.∗† 3.68 3.76 3.42
Skewness† 0.00 −0.33 −0.32
Kurtosis† 3.61 4.68 5.08
std(|∆qt −∆q|)∗† 2.30 2.48 2.41
ac(|∆qt −∆q|)∗ 0.23 0.30 0.23

Higher-order uncertainty
Mean∗† 1.50 1.45 1.54

GDP growth forecasts
Av. absolute error∗† 2.14 2.01 2.23

Table 3: Calibration targets. Calibration targets for the normal model are marked with ∗’s.
Calibration targets for the disaster risk model are marked with †’s. Higher-order uncertainty, GDP growth
forecasts and GDP growth are defined in Section 1. The period for the GDP growth data and GDP growth
forecasts data is 1968Q4–2011Q4. The period for the higher-order uncertainty data is 1968Q3–2011Q3.
The model samples are simulated to be the same length, as described in the appendix. The two models
are described in Section 2. The mean of higher-order uncertainty is computed using the HUt series before
detrending.

the non-normal distribution the model is not capable of matching these features of the data.

We follow the same simulated method of moments procedure for calibration that we used

for the disaster risk model. The parameter values are presented in Table 2 and the values

of the target moments are in column (1) of Table 3 (calibration targets are marked with

∗’s). The model is able to match the target moments well.12 We do not do a separate

calibration for the no learning model. It is sufficient for our purposes to use the parameter

values of the normal model and change the signal noises to ση = σψ = 0.

Our numerical solution method uses two approximations to keep the problem tractable.

First, when agents estimate the TFP process and use the estimate to construct prior

beliefs about TFP growth, they would optimally consider the whole distribution of possible

parameter values, conditional on the data set. For this they would require Bayesian Monte

Carlo methods to estimate the parameters. For the number of parameters we have to

estimate each period this procedure is quite slow. Therefore we approximate the solution

12The normal model is not able to hit the calibration targets exactly for the same reasons that have been
discussed for the disaster risk model.
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by replacing the distribution of each parameter with its mean—the maximum likelihood

estimate. This understates uncertainty slightly. However, when we experiment with lower-

parameter versions of our model we find that uncertainty fluctuations are quite similar in

the true and approximate model. Second, we put zero weight on heterogeneous signals

when estimating parameters. We do this because if estimated distributions differ across

agents then keeping track of the distribution of distributions is too memory-intensive. The

quantitative effect is tiny because the data history is a long string of public signals and

the private signal is only one noisy piece of information. The weights agents place on

the heterogeneous signals would typically be less than one percent and thus create very

small differences in beliefs. Experiments with fewer agents and periods confirm that the

heterogeneous parameter effect we neglect is negligible.

4 Results: Uncertainty Comovement

Our main result is that the combination of learning and disaster risk can explain why

micro, macro and higher-order uncertainty fluctuate together. We begin by showing that

the model generates uncertainty shocks of a similar size and with similar covariances to

those in the data. We present results for both the normal and disaster risk models so

that we separate the roles of learning and disaster risk in generating the results. We show

that both mechanisms are important for generating uncertainty shocks of the size that we

see in the data, that learning is important for getting the right correlation between the

different uncertainty shocks and that disaster risk is critical for generating countercyclical

uncertainty shocks. Getting the cyclicality right is important because uncertainty shocks

are typically used to explain downturns, not booms. We also replicate the estimation of

the linear relationships between uncertainty measures, controlling for GDP growth, that

we performed for the data in Table 1. We do this using simulated data from the model in

order to understand whether the model answers the original motivating question: Why do

uncertainty measures, that are conceptually distinct, covary above and beyond what the
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Models Data

No learning Normal Disaster risk
(1) (2) (3) (4)

(a) Macro uncertainty
Std. 0 11.93 15.15 20.87
Corr. with GDP growth 0 0.00 −0.18 −0.26
Period 1962Q2–2008Q2

(b) Higher-order uncertainty
Std. 0 19.99 24.68 31.13
Corr. with GDP growth 0 0.00 −0.12 −0.28
Corr. with Micro Unc. 0 0.43 0.68 0.43
Corr. with Macro Unc. 0 0.99 0.98 0.24
Period 1968Q3–2011Q3

(c) Micro uncertainty
Std. 0 11.68 15.08 11.58
Corr. with GDP growth 0 0.00 −0.06 −0.52
Corr. with Macro Unc. 0 0.44 0.68 0.32
Period 1962Q1–2009Q3

Table 4: Simulation results and data counterparts. The three models are described in
Section 2. Macro uncertainty, higher-order uncertainty and micro uncertainty are defined in Section 1. All
results are computed using the detrended series. As for the empirical results in Section 1 the correlation of

micro uncertainty with higher-order uncertainty, macro uncertainty and GDP growth use ĤU t, M̂aU t and
∆̂qt+1 respectively. The periods are the periods for the data. The model samples are simulated to be the
same length, as described in the appendix.

business cycle predicts? The fact that our model can explain these covariances is important

because it supports the idea that the fluctuations we call uncertainty shocks arise in part

from using real-time data to learn about the risk of disasters.

As a starting benchmark it is useful to consider the results for the no learning model,

which are presented in column (1) of Table 4. Since agents receive signals that inform

them perfectly about the aggregate state Xt agents all make the same decisions and can

forecast GDP growth perfectly, so there is no micro, macro or higher-order uncertainty.

We will now consider how the learning and disaster risk mechanisms generate each type of

uncertainty shock, starting with macro uncertainty.
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4.1 Macro Uncertainty

The results for macro uncertainty are presented in panel (a) of Table 4. Column (3) shows

that the disaster risk model is able to generate uncertainty shocks that are about 75% of

the size of those in the data (measured with the standard deviation of macro uncertainty),

have a similar countercyclicality to in the data and are positively correlated with micro

uncertainty as in the data. To understand how the model generates these results we will

start with the role of the learning mechanism and then turn to the disaster risk mechanism.

The contribution of the learning mechanism is shown by comparing the results for

the no learning and normal models in Table 4. This shows that the learning mechanism

generates about half of the macro uncertainty shocks that we see in the data. This is

because once agents must learn about the aggregate state Xt they have uncertainty about

what GDP growth will be. There are two reasons that this uncertainty fluctuates over

time. The main reason is that Xt has stochastic volatility so the prior beliefs of agents

about Xt have varying precision. The precision of these prior beliefs will also vary because

agents don’t know the parameters of the Xt process. Their changing estimates of these

parameters will affect the precision with which they think they can forecast Xt. In the

appendix we show that it is stochastic volatility that generates the vast majority of the

macro uncertainty shocks in the normal model. Changing uncertainty about Xt feeds

directly through to changing uncertainty about GDP growth. To see this analytically we

can use the closed form solution for the normal model presented in the appendix. We can

express the uncertainty of agent i at the end of period t− 1 about GDP growth in period

t as:

√
V [∆qt|Ii,t−1] = 400

√√√√(γ − 1 + ωt−1)2vt−1σ2
ψ + (γ − 1)2vt−1σ2

η + ω2
t−1σ

2
ησ

2
ψ

(γ − 1)2(vt−1 + σ2
ψ + σ2

η)
. (19)

This shows that an agent’s uncertainty about GDP growth is a function of the param-

eters of the model, the variance of his prior beliefs about TFP growth vt−1 and the
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weight that he places on his signals, ωt−1, which is also a function of vt−1. For γ > 1,

d
√
V [∆qt|Ii,t−1]/dvt−1 > 0 showing that macro uncertainty is increasing in the variance

of prior beliefs.

To the extent that these macro uncertainty shocks are caused by the stochastic volatility

of Xt they are exogenous. However this does not mean that it was a given that this

mechanism would generate uncertainty shocks with a magnitude similar to in the data.

Recall that we did not calibrate the model to any moment of the data that ensured that

we got time variation in uncertainty. Therefore the fact that the uncertainty shocks that

have resulted are sizable relative to the data is evidence that our information mechanism

is relevant for understanding uncertainty shocks.

Turning next to the correlation of macro uncertainty with GDP growth, the learning

mechanism generates zero correlation. The reason is that the volatility of Xt is not corre-

lated with its level, so macro uncertainty is just as likely to be high when the economy is

booming as when it is in a bust. If this were the only mechanism in the model this result

would be particularly problematic since much of what researchers want uncertainty to ex-

plain is the onset of recessions, crashes or crises. Next we’ll show that it is the presence of

disaster risk that firms have to learn about that is key to generating countercyclical macro

uncertainty.

Disaster risk in the model comes from the change of variable function in equation

(8). When we calibrate it we find that the coefficient b is negative, meaning that the

transformation is concave. In part this is driven by the fact that GDP growth is negatively

skewed in the data. A concave change of variable makes extreme, low realizations of TFP

growth more likely and makes very high realizations less likely. In other words, a concave

transformation creates a negatively skewed variable. The concavity, and thus degree of

negative skewness determines the probability of negative outlier events or, in other words,

the level of disaster risk.

Figure 2 illustrates the effect of the concave change of variable on uncertainty. It plots

24



State (X)0

∆a

X uncertainty

∆a uncertainty

Figure 2: Change of variable function and counter-cyclical forecast dispersion.
A given amount of uncertainty about X creates more uncertainty about TFP growth when X is low than
it does when X is high.

a mapping from X into TFP growth, ∆a. The slope of this curve is a Radon-Nikodym

derivative. For illustrative purposes suppose that an agent has beliefs about X that are

uniformly distributed. We can represent these beliefs by a band on the horizontal axis

in Figure 2. If that band is projected onto TFP growth (the ∆a-space), the implied

uncertainty about (width of the band for) ∆a depends on the state X. When X is high

the mapping is flat and the resulting band projected on the ∆a-axis is narrow. This

means that uncertainty about TFP growth and therefore GDP growth is small, so macro

uncertainty is small. When X is low the opposite it true: the band projected on the ∆a

axis is wider and uncertainty is higher. If we now return to thinking about an agent with

posterior beliefs about X that are normally distributed, using properties of the log-normal

distribution we can express the variance of his beliefs about TFP growth as

V [∆at|Ii,t−1] = b2
(

exp(Vt−1[Xt])− 1
)

exp
(
Vt−1[Xt]− 2E[Xt|Ii,t−1]

)
.

From this formula we can see that the agent’s uncertainty about ∆at is decreasing in his

expected value of Xt.

The ability of disaster risk to generate countercyclical uncertainty is tied closely to the
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fact that with a skewed distribution conditional variances are not independent of means.

In the normal model agents have normally distributed prior beliefs about TFP growth

and receive normally distributed signals. In this world the variance of an agent’s posterior

beliefs are independent of the value of the signal he receives and the cross-sectional variance

of the mean posterior beliefs of agents are independent of the state Xt. This is no longer

true when there is skewness. With negative skewness the variance of posterior beliefs is

higher when the state is lower and there is a greater risk of disaster. The basic intuition is

that when the economy is doing badly and is in the left tail, it is more sensitive to shocks

and agents are more uncertain given a fixed amount of information. Thus the presence of

disaster risk generates countercyclical fluctuations in macro uncertainty.

Quantitatively the disaster risk mechanism does a good job of bringing macro uncer-

tainty in the model in line with the data. It increases the size of macro uncertainty shocks

so that the model generates about three quarters of the shocks that are in the data and

generates a negative correlation between macro uncertainty shocks and GDP growth that

is about two-thirds as large as in the data.

Note that we have not reported results for the mean of macro uncertainty. The reason

for this is that the model and the data are not comparable for this moment. Recall from

Section 1 that in the model we measure macro uncertainty consistently with its theoretical

notion as the average standard deviation of beliefs about quarterly GDP growth. We

don’t have an empirical counterpart for this so we are using a proxy based on the monthly

volatility of aggregate stock market indexes. The construction of these measures is different

so there is no reason that their means should be equal.13 To compare their standard

deviations and correlations we have, as described in Section 1, detrended them and the

series that we have worked with are their percentage deviations from trend.

13For completeness, the mean of macro uncertainty is 2.50 in the disaster risk model and the mean of the
empirical proxy is 19.12.
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4.2 Higher-order Uncertainty and Micro Uncertainty

The results for higher-order and micro uncertainty are presented in panels (b) and (c),

respectively, of Table 4. The results for the disaster risk model in column (3) show that

our model explains 80% of the magnitude of higher-order uncertainty fluctuations (stan-

dard deviation) and has micro uncertainty fluctuations that are slightly larger than their

empirical counterparts. Both uncertainty series are countercyclical and the correlations

between all three pairs of uncertainty are positive.

To understand these results first consider the contribution of the learning mechanism.

For this we can focus on the normal model. Learning generates higher-order and micro

uncertainty fluctuations as follows. The precision of the prior beliefs of agents vary over

time for the reasons discussed in the explanation of the macro uncertainty results. When

agents have imprecise prior beliefs (high vt−1) they weight their heterogeneous signals more.

With more weight on the heterogeneous signals (higher ωt−1) there is more dispersion in

beliefs, forecasts, labor choices and growth rates. That is, they generate more higher-order

and micro uncertainty. Thus learning generates fluctuations in higher-order and macro

uncertainty and these fluctuations are positively correlated with each other. They are also

positively correlated with macro uncertainty because macro uncertainty also rises when

the precision of prior beliefs increases.

We can see the relationship between learning and higher-order and micro uncertainty

in the normal model analytically using results derived in the appendix. Higher-order un-

certainty, the cross-sectional standard deviation of GDP growth forecasts, is

√
V [log(E[Qt|Ii,t−1])− logQt−1] = σψωt−1

√
1 +

(
1

(γ − 1)[σ2
ψ(vt−1 + σ2

η)
−1 + 1]

)2

. (20)

Let the log growth rate of firm i at time t be ∆qit ≡ logQit − logQi,t−1. An alternative

measure of micro uncertainty (which we use here because it is more analytically tractable

than the main measure we use) is the cross-sectional variance of firm growth rates in period
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t: ∫
(∆qit −∆qt)

2di =
( 1

γ − 1

)2
σ2
ψ(ω2

t−1 + ω2
t−2), (21)

where ∆qt ≡
∫

∆qitdi. These expressions show that when prior beliefs are relatively

imprecise so that vt−1 and ωt−1 are relatively high, both micro and higher-order uncertainty

increase. Agents weight their heterogeneous signals more, which amplifies the effect of the

idiosyncratic signal noise (captured by the σψ term).

Column (2) of Table 4 shows the contribution of the learning mechanism to explain-

ing the micro and higher-order uncertainty data. It generates about two-thirds of the

higher-order uncertainty shocks (standard deviation) and about the same amount of micro

uncertainty shocks as we see in the data. It also generates a positive correlation between

all three types of uncertainty. The problem with this mechanism is that it doesn’t generate

countercyclical higher-order and micro uncertainty shocks. The reasons for this are exactly

the same as those for why learning does not generate countercyclical macro uncertainty

shocks, which we discussed above. It is the presence of disaster risk that is key to being

able to generate this countercyclicality.

To understand the role of disaster risk in generating higher-order and micro uncertainty

shocks return to Figure 2. Because of idiosyncratic signals there will be a distribution of

beliefs about the state of the economy each period. For getting intuition assume that this

distribution is uniform and represent it with the bands on the horizontal axis in the figure.

Due to the changing slope of the change of measure function a fixed dispersion in beliefs

about the state will generate greater dispersion in beliefs about TFP growth when the

economy is performing worse (lower X). When the economy is doing poorly small differ-

ences in information and beliefs about the state generate far more disagreement about TFP

growth than when the economy is doing well because the distribution of TFP growth is

much flatter. Greater disagreement about TFP growth generates more dispersion in labor

choices and firm growth rates (micro uncertainty), and more dispersion in GDP growth

forecasts (higher-order uncertainty). Thus disaster risk generates countercyclical fluctua-
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tions in these two types of uncertainty in the same way as it does for macro uncertainty.

Comparing the results in columns (2) and (3) of Table 4 shows the quantitative effect of

adding disaster risk to the model. It increases the size of higher-order and micro uncer-

tainty shocks so that the model generates about 80% of the higher-order uncertainty shocks

and a little more micro uncertainty shocks than are in the data. It also makes uncertainty

shocks countercyclical as they are in the data.

So far we have not reported results for the mean of micro uncertainty. This is because

the model is not setup to match this moment of the data. There are many dimensions of

heterogeneity amongst firms that we are not modeling (e.g., size, age, industry, geography)

which are likely to affect the growth rates of firms. The only source of firm heterogeneity

in the model is information. It is therefore expected that the model generates significantly

less micro uncertainty on average than there is in the data. This is the case: the mean

level of micro uncertainty in the disaster risk model is 0.51 compared to 18.59 in the data.

In the appendix, we show that we can extend the model to match this moment of the

data. We omit these extensions from our main model because they are not essential to our

main point about uncertainty covariance and introduce significant additional complexity.

As described in Section 1 we have detrended the uncertainty series and worked with the

series for percentage deviations from trend to make the model and data comparable.

4.3 The Role of Parameter Updating

In the discussion of the macro uncertainty results we mentioned that one reason why

the precision of prior beliefs varies over time, which is an integral part of the learning

mechanism, is because agents don’t know the parameters the process for Xt and must re-

estimate them each period. Having agents who do not know the true model parameters and

estimate them in real time is both realistic and helps modestly to amplify the uncertainty

fluctuations. In the appendix we quantify the contribution of parameter updating for both

the normal and disaster risk models by presenting results for modified versions of these
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models under the assumption that agents know the parameter values for the Xt process.

Agents updating their beliefs about these parameters over time increases the standard

deviations of micro, higher-order and macro uncertainty by 8–14% in the two models.

4.4 Do Uncertainty Measures Covary Beyond the Business Cycle?

Our original question was why uncertainty measures varied above and beyond what the

business cycle predicts. To determine whether our model offers a plausible explanation we

regress micro uncertainty on higher-order uncertainty, higher-order on macro uncertainty

and macro uncertainty on micro uncertainty in exactly the same way as we did for the data

in Table 1. As in the regressions for the data we also control for the business cycle using

GDP growth. We estimate regression coefficients in each of the 2000 simulations of the

model and then report the mean and standard deviation of each coefficient. The first panel

of Table 5 reports the relationship between micro uncertainty and higher-order uncertainty.

When higher-order uncertainty deviates from trend by one additional percentage point,

micro uncertainty deviates from trend by an additional 0.56 percentage points in the model.

In the data it is 0.28 percentage points (see Table 1). When we control for the business

cycle micro and higher-order uncertainty still have a significant positive relationship that

is stronger in the model than in the data.

The second panel of Table 5 reports the relationship between higher-order uncertainty

and macro uncertainty, and the third panel reports results for regressing macro uncertainty

on micro uncertainty. We find that that there is a significant positive relationship between

both pairs of uncertainty and that this relationship survives controlling for the business

cycle.

These results reveal that our mechanisms, learning and disaster risk, are more than

strong enough to explain the empirical comovement of uncertainty measures, above what

the business cycle can explain. In fact weakening the relationship between higher-order

and micro uncertainty, by adding more unpredictable variation in micro uncertainty, might
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Micro Uncertainty (1) (2)

Higher-order uncertainty 0.546∗∗∗ 0.544∗∗∗

(0.074) (0.076)
GDP growth 0.014

(0.373)
Obs 165 165

Higher-order uncertainty (1) (2)

Macro uncertainty 1.625∗∗∗ 1.648∗∗∗

(0.084) (0.070)
GDP growth 0.374∗∗

(0.180)
Obs 160 160

Macro uncertainty (1) (2)

Micro uncertainty 0.507∗∗∗ 0.496∗∗∗

(0.123) (0.123)
GDP growth −0.400

(0.463)
Obs 182 182

Table 5: Uncertainty shocks are correlated in the model, even after controlling
for business cycles. These regressions results are summary statistics from 2000 simulations of the
model. For each simulation regressions were run to replicate those performed for the data. The reported
coefficients are the averages across the simulations. The numbers in parentheses are the standard deviations
of the coefficients across the simulations. Significance levels are computed using the fraction of simulations
for which each coefficient is above zero. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5% and 10% levels
respectively (two-tail tests). Micro uncertainty is MiUt. Higher-order uncertainty is ĤU t in the first panel

and HUt in the second panel. Macro uncertainty is MaUt in the second panel and M̂aU t in the third
panel. GDP growth is ∆̂qt in the first and third panels and ∆qt in the second panel. Each series uses the
simulation periods that are analogous to the periods that the corresponding data series covers, as discussed
in detail in the appendix. The rows titled Obs provide the number of periods of simulated data used in
each regression.

offer an even better fit to the data.

4.5 Does Micro Uncertainty Measure Uncertainty?

Micro uncertainty measured with earnings dispersion (equation (2)), or something similar,

is commonly used as a measure of the uncertainty that firms have about their own eco-

nomic outcomes. In this subsection we investigate how earnings dispersion relates to the

uncertainty of firms about their growth rates. To do this we use the normal model because

that allows us to derive uncertainty expressions in closed form. The variance of a firm’s

beliefs about its output growth in period t prior to receiving its signal at the end of period
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t− 1, derived in the appendix, is

V [∆qit|At−1] = V [∆at|At−1] +
( 1

γ − 1

)2
ω2
t−1(σ2

η + σ2
ψ).

Note that all firms condition on the same information set so they have the same variance

of beliefs. We can see that there are three sources of variance in firms’ beliefs about their

growth rates: variance in beliefs about aggregate TFP growth, variance due to public

signal noise (ση) and variance due to private signal noise (σψ). Comparing the variance

due to private signal noise, (1/(γ − 1))2ω2
t−1σ

2
ψ, to the expression for measured micro

uncertainty—equation (21)—we see that measured micro uncertainty is the same except

for one extra term, ωt−2. If you ignore this term for a moment, this tells us that measured

micro uncertainty is capturing the uncertainty that firms have about their growth rates

that is due to the private noise in their signal.

The reason that ωt−2 shows up in measured micro uncertainty but not in the variance

of firms’ beliefs about their growth rates is because there is dispersion in firm output in

period t−1 that does not contribute to a firm’s uncertainty about its own growth rate, but

does show up when you measure the cross-sectional variance of growth rates. However, if

ωt−2 has a reasonably high correlation with ωt−1 then measured micro uncertainty will be

highly correlated with the uncertainty of firms about their growth rates that arises because

of private signal noise. Thus the model tells us to interpret the cross-sectional dispersion

of firms growth rates as an approximate measure of the uncertainty that firms face because

of idiosyncratic shocks.

5 Conclusions

Fluctuations in tail risk, micro, macro and higher-order uncertainty have been used to

explain recessions, asset price drops and financial crises. Risk and uncertainty are moments

based on beliefs. If we are going to use beliefs to explain these important phenomena
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perhaps we should stop to ask: Why might beliefs change so much?

It is possible that each form of belief shock has its own distinct cause. However, the

strong comovement of the various shocks suggests that something links them. It suggests

that one should look for a common cause to these various forms of belief shocks. This

paper explores such a common cause.

We argue that beliefs change because the true distribution of outcomes is unknown.

Each period, when a new piece of data is observed, agents re-estimate that distribution.

When weak macro outcomes make agents re-assess their beliefs about the skewness of the

shocks they face, uncertainty of all types move in a correlated, volatile and counter-cyclical

way. The skewness of the distribution is a crucial part of the story because when we allow

the distribution of TFP growth to be negatively skewed, the probability of disasters surges.

Uncertainty shocks become amplified, countercyclical and positively correlated with each

other. By offering a unified explanation for the origin of uncertainty shocks, our results

support the growing literature that uses uncertainty to explain some of the most important

recent events in the macroeconomy.
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A Solution of the normal model

In this section we present closed form solutions for GDP growth forecasts, micro uncer-

tainty, higher-order uncertainty and macro uncertainty for the normal model.

GDP growth forecasts In the normal model the prior belief of agents about TFP

growth are normally distributed and are summarized by E[∆at|At−1] and vt−1 = V [∆at|At−1].

Agents receive signals zi,t−1 about Xt which can be transformed into signals about ∆at:

z̃i,t−1 ≡ c + zi,t−1. These signals are normally distributed. The mean and variance of the

posterior beliefs of agent i about TFP growth are therefore

E[∆at|Ii,t−1] = (1− ωt−1)E[∆at|At−1] + ωt−1z̃i,t−1 (22)

and Vt−1[∆at] ≡ [v−1
t−1 + (σ2

η + σ2
ψ)−1]−1, respectively, where ωt−1 has the same definition

as for the disaster risk model. Agent i’s forecast of period t TFP growth in the normal

model is then

E[At|Ii,t−1] = At−1E[exp(∆at)|Ii,t−1] = At−1 exp
(
E[∆at|Ii,t−1] +

1

2
Vt−1[∆at]

)
. (23)

Note that because signals are normally distributed in the cross section, TFP growth fore-

casts and TFP forecasts are also normally distributed.

GDP is given by the same expression as the for the disaster risk model, equation (16).

Using equation (23) and the fact that TFP growth forecasts are normally distributed in

the cross section, it follows from equation (16) that:

Qt = Atγ
1/(1−γ) exp

[
1

γ − 1

(
logAt−1 + (1− ωt−1)E[∆at|At−1] + ωt−1(∆at + ηt−1)

+
ω2
t−1σ

2
ψ

2(γ − 1)
+

1

2
Vt−1[∆at]

)]
. (24)
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Note that ω2
t−1σ

2
ψ is the cross-sectional variance of firms forecasts of TFP growth in period

t. Separating the terms in equation (24) that are known at the end of period t − 1 from

those that are unknown,

Qt = Γt−1 exp[f(∆at, ηt−1)], (25)

where f(∆at, ηt−1) ≡ ∆at + (ωt−1

γ−1 )(∆at + ηt−1) and

Γt−1 ≡ γ1/(1−γ)At−1 exp

[
1

γ − 1

(
logAt−1+(1−ωt−1)E[∆at|At−1]+

ω2
t−1σ

2
ψ

2(γ − 1)
+
Vt−1[∆at]

2

)]
.

Now consider agent i’s forecast of GDP. Under agent i’s beliefs at the end of period

t − 1, ∆at + ηt−1 is normally distributed. Therefore f(∆at, ηt−1) is normally distributed

under these beliefs so we can express agent i’s forecast of period t GDP as

E[Qt|Ii,t−1] = Γt−1 exp
(
E[f(∆at, ηt−1)|Ii,t−1] +

1

2
V [f(∆at, ηt−1)|Ii,t−1]

)
. (26)

To evaluate E[f(∆at, ηt−1)|Ii,t−1] we need the mean of agent i’s posterior belief about

∆at + ηt−1. This can be computed by Bayes’ law:

E[∆at + ηt−1|Ii,t−1] =
(vt−1 + σ2

η)
−1E[∆at|At−1] + σ−2

ψ z̃i,t−1

(vt−1 + σ2
η)
−1 + σ−2

ψ

.

Therefore

E[f(∆at, ηt−1)|Ii,t−1] = (1− ωt−1)E[∆at|At−1] + ωt−1z̃i,t−1

+
( ωt−1

γ − 1

)((vt−1 + σ2
η)
−1E[∆at|At−1] + σ−2

ψ z̃i,t−1

(vt−1 + σ2
η)
−1 + σ−2

ψ

)
. (27)

Let Λt ≡ [∆at − E[∆at|At−1], ηt−1]′. Then the variance term in equation (26) is

V [f(∆at, ηt−1)|Ii,t−1] =

[(
1 + ωt−1

γ−1

)
ωt−1

γ−1

]
V [Λt|Ii,t−1]

[(
1 + ωt−1

γ−1

)
ωt−1

γ−1

]′
(28)

37



where

V [Λt|Ii,t−1] =

vt−1 0

0 σ2
η

−
vt−1

σ2
η

 (vt−1 + σ2
ψ + σ2

η)
−1

[
vt−1 σ2

η

]
. (29)

Together equations (26), (27), (28) and (29) define agent i’s forecast of period t GDP.

Micro uncertainty Let the log growth rate of firm i in quarter t be ∆qit ≡ logQit −

logQi,t−1. Using equation (15), firm i’s growth rate can be expressed as a function of i’s

beliefs about TFP, E[At|Ii,t−1], the true change in productivity ∆at and the preference

parameter γ:

∆qit = ∆at +
1

γ − 1

(
log(E[At|Ii,t−1])− log(E[At−1|Ii,t−2])

)
.

Making use of equations (15), (22) and (23), the cross-sectional variance of firm growth

rates in period t is

∫
(∆qit −∆qt)

2di =
( 1

γ − 1

)2
σ2
ψ(ω2

t−1 + ω2
t−2),

where ∆qt ≡
∫

∆qitdi. This is an alternative measure of micro uncertainty to the IQR

measure in equation (2). We use this for analytical work since it has a more tractable

expression.

Higher-order uncertainty Using equations (26), (27) and (28) we can evaluate the

cross-sectional variance of GDP growth forecasts::

V [log(E[Qt|Ii,t−1])− logQt−1] =

[
1 +

(
1

(γ − 1)[σ2
ψ(vt−1 + σ2

η)
−1 + 1]

)2]
σ2
ψω

2
t−1.

38



Macro uncertainty Evaluating macro uncertainty, using equations (25), (28) and (29)

gives

√
V [∆qt|Ii,t−1] = 400

√√√√(γ − 1 + ωt−1)2vt−1σ2
ψ + (γ − 1)2vt−1σ2

η + ω2
t−1σ

2
ησ

2
ψ

(γ − 1)2(vt−1 + σ2
ψ + σ2

η)
.

Firm uncertainty about own growth rate The variance of a firm’s beliefs about

its output growth in period t prior to receiving its signal at the end of period t − 1 is

V [∆qit|At−1]. This can be evaluated using equations (15), (22) and (23) to be

V [∆qit|At−1] = V [∆at|At−1] +
( 1

γ − 1

)2
ω2
t−1(σ2

η + σ2
ψ).

B Calibration and Simulation Details

Calibration For the disaster risk model we have seven parameters to calibrate, excluding

γ which we calibrate externally, and we use seven moments of the data to pin these down,

as discussed in the main text. The calibration procedure is simulated method of moments.

We divide the moment conditions by the value of the relevant moment of the data and

use an identity weighting matrix so that we’re minimizing the sum of squared percentage

deviations of the model moments from their data counterparts. Since agents in the model

are assumed to not know the parameters of the GARCH process, it is important that the

model is simulated for the same length of time as the data that agents would have access

to in the economy. We assume that agents have access to post-war data so each simulation

of the model is for 259 periods, corresponding to 1947Q2 to 2011Q4. The moments of the

data that we are using for calibration are based on GDP growth in 1968Q4 to 2011Q4, so

agents who are making decisions for the first of these quarters (1968Q4) have 86 quarters

of data to use when they are first estimating the Xt process. They get an extra quarter of

data for each subsequent quarter. To calculate the moments of the model we simulate it

2000 times, calculate the moments of the model for each simulation and then average each
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moment across the simulations. Note that we calculate moments for periods 87–259 of

the simulation so that the moments are analogous to the data series for GDP growth and

higher-order uncertainty. Each simulation consists of: simulating the Xt process for 259

periods; estimating the Xt process for periods 87–259 using only the data available up to,

but not including, the relevant period; using these estimations of the process to construct

prior beliefs about TFP growth for periods 87–259; computing the path for TFP using the

simulated path for TFP growth, normalizing TFP in the first period to be 1; computing

GDP growth making use of equation (16) and then computing the five moments of GDP

growth that we use for calibration; computing higher-order uncertainty using equations

(3), (4) and (16) and then computing its mean; and computing the average absolute error

of GDP growth forecasts for each period using equations (3), (16) and

1

Nt−1

∑
i∈Ωt−1

|E[∆qt|Ii,t−1]−∆qt|

and then averaging over the relevant periods.

Key to being able to calibrate the model in a reasonable amount of time is that all

of the calibration moments can be computed using Gaussian quadrature rather than by

simulating the model for a large number of agents and aggregating their decisions. This

can be done because in each period of the model, the only source of heterogeneity amongst

agents is the realization of their idiosyncratic signal noise, ψit. Since this random variable

is normally distributed and draws are i.i.d. across agents, we can use Gaussian quadrature

to compute aggregate moments.

For the normal model the calibration procedure is exactly the same. There is one

less parameter to calibrate and the moments of GDP growth that we use as calibration

targets are different, as discussed in the main text, but neither of these changes affect the

calibration procedure.
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Results simulation To simulate the model for computing results we follow the same

procedure as for the simulations performed during the calibration. The difference is that

in addition to computing GDP growth, higher-order uncertainty and the average absolute

error of GDP growth forecasts, we also need to compute micro uncertainty and macro un-

certainty. Macro uncertainty can be computed by Gaussian quadrature using equations (5)

and (16). The measure of micro uncertainty cannot be computed by Gaussian quadrature.

Instead for each simulated sample we compute sample paths for 2000 firms and compute

micro uncertainty using equation (2). Computing sample paths requires drawing signals

for each firm each period and computing their output decisions. The moments of macro

uncertainty and micro uncertainty are computed using the periods of each sample path

that are analogous to the periods for these series in the data. For example, the micro

uncertainty series covers 1962Q1 to 2009Q3 in the data, so we use periods 60–250 of each

simulation.

C Separating the roles of state uncertainty and parameter

updating

This section separates the roles of state uncertainty in the GARCH process and parameter

updating for the learning mechanism in our model. As discussed in the main text both of

these elements of the model cause time variation in the variance of agents’ prior beliefs,

vt−1, which affects the weight that agents place on their signals. We demonstrate the

separate contributions of the GARCH process and parameter updating to this mechanism

by presenting two versions of each of the normal and disaster risk models. In one version

we turn parameter updating off by assuming that agents know α, ρ and φ. Under this

assumption agents do not have to reestimate these parameters at the end of each period and

instead form their prior beliefs about Xt using these known parameters and the structure of

the Xt process given in equations (9) and (10). In the second versions parameter updating
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is on and the models are exactly as described in Section 2 of the main text.

The results for these models are presented in Table 6. We also present the results for

the no learning model in which agents know Xt at the end of period t− 1 for comparison.

First look at the results for the normal model, in columns (2) and (3) of the table. In

column (2) parameter updating is off and in column (3) it is turned on. Comparing

the results in these columns shows that the main function of parameter updating is to

generate additional uncertainty shocks. The standard deviations of micro uncertainty,

higher-order uncertainty and macro uncertainty increase by 14%, 8% and 11%, respectively,

when parameter updating is turned on. This shows that it is the GARCH process that

generates most of the variation in the variance of prior beliefs and that parameter updating

just provides some additional kick.

The results for the two versions of the disaster risk model, presented in columns (4) and

(5) of Table 6, tell the same story. Turning parameter updating on increases the standard

deviations of micro uncertainty, higher-order uncertainty and macro uncertainty by 9%,

9% and 10%, respectively.

D Extended Model with Firm Heterogeneity

In this section we address the inability of the models presented in the main text to match

the mean level of micro uncertainty that is observed in the data. We use an extension of

the normal model for this purpose. We use the normal model rather than the disaster risk

model to reduce the burden of the calibration. While this means that the model will not

match all of the uncertainty moments of interest it will be sufficient to demonstrate the

main point of this section: that we can extend our model to match the mean level of micro

uncertainty.

The change that we make is to modify the TFP growth process to allow for additional
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Model No learning Normal Disaster risk

Parameter updating n/a Off On Off On
(1) (2) (3) (4) (5)

(a) Macro uncertainty
Std. 0 10.74 11.93 13.77 15.15
Corr. with GDP growth 0 0.00 0.00 −0.19 −0.18
Period 1962Q2–2008Q2

(b) Higher-order uncertainty
Std. 0 18.49 19.99 22.69 24.68
Corr. with GDP growth 0 0.00 0.00 −0.12 −0.12
Corr. with Micro Unc. 0 0.42 0.43 0.75 0.68
Corr. with Macro Unc. 0 0.99 0.99 0.98 0.98
Period 1968Q3–2011Q3

(a) Micro uncertainty
Std. 0 10.29 11.68 13.83 15.08
Corr. with GDP growth 0 0.00 0.00 −0.06 −0.06
Corr. with Macro Unc. 0 0.43 0.44 0.76 0.68
Period 1962Q1–2009Q3

Table 6: Separating the roles of state uncertainty and parameter updating. Macro
uncertainty, higher-order uncertainty and micro uncertainty are defined in Section 1. All results for these
series are computed using the detrended series. As for the empirical results in Section 1 the correlation of

micro uncertainty with higher-order uncertainty, macro uncertainty and GDP growth use ĤU t, M̂aU t and
∆̂qt+1 respectively. Parameter updating off means that agents know the values of α, ρ and φ. When it is
off agents don’t know these parameters and estimate them each period. The periods are the periods for the
data. The model samples are simulated to be the same length, as described in the appendix.
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heterogeneity amongst firms. Specifically, TFP is assumed to be idiosyncratic and to follow

the process:

∆ait = cit + θiXt, (30)

where cit ∼ N(c, σ2
c ) and is i.i.d. across agents and over times, θi ∼ N(1, σ2

θ) and is i.i.d.

across agents and Xt follows the same process as in equations (9) and (10). This process

contains two changes relative to the normal model in the main text. θi captures the idea

that firms differ in their sensitivity to aggregate shocks. This sensitivity is firm specific

and fixed over time. The fact that cit is now a random variable rather than a constant

captures the idea that firms experience transitory idiosyncratic shocks in addition to being

affected by aggregate shocks. The structure of signals is given by equation (11) and the

remainder of the model is exactly the same as in Section 2.

This model has two more parameters to calibrate than the normal model. These are

the variance of transitory idiosyncratic shocks, σ2
c , and the variance of firm sensitivity

to aggregate shocks, σ2
θ . The targets that we use for these parameters are the mean and

standard deviation of micro uncertainty. The rest of the calibration targets are the same as

for the normal model. The calibration procedure is identical to that for the normal model

with two exceptions: we need to compute micro uncertainty and do this in the same way

as described in Appendix B; and since this model is much more computationally intensive

than the standard model we use 20 simulated samples instead of 2000. Tests show that

increasing the number of samples does not significantly affect the results.

The parameter values are presented in Table 7 and the results in Table 8. The results

show that the model is capable of matching the mean and standard deviation of micro

uncertainty and simultaneously generates a standard deviation of higher-order uncertainty

that’s very similar to the value for the data. Simulation experiments indicate that the

correlations between the different types of uncertainty and their cyclicality can be brought

closer to the data by adding the disaster risk mechanism to this model.
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Parameter Value

TFP growth level c 0.0048
Std. transient idiosyncratic shocks σc 0.1459
Std. sensitivity to agg. shocks σθ 4.9414
mean volatility α 5.59e-7
volatility persistence ρ 0.1179
volatility innovation var. φ 0.0086
private signal noise σψ 0.0020
public signal noise ση 0.0061

Table 7: Parameter values for the extended model

Extended Data
Model

Micro uncertainty
Mean 14.21 18.59
Std. 11.11 11.58
Corr. with GDP growth 0.02 −0.52
Corr. with Higher-order Unc. 0.02 0.43
Period 1962Q1–2009Q3

Table 8: Simulation results for extended model and data counterparts. Micro
uncertainty is defined in Section 1. The means of micro uncertainty is computed using the MiUt. The
rest of the results are computed using the detrended series. As for the empirical results in Section 1
the correlation of micro uncertainty with higher-order uncertainty and GDP growth use ĤU t and ∆̂qt+1

respectively. The periods are the periods for the data. The model samples are simulated to be the same
length, as described in Appendix B.
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