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ABSTRACT

This study examines whether the effect of job loss on body mass index (BMI) at older ages is 
moderated by genotype using twenty years of socio-demographic and genome-wide data from the 
Health and Retirement Study (HRS). To avoid any potential confounding we interact layoffs due 
to a plant or business closure—a plausibly exogenous environmental exposure—with a polygenic 
risk score for BMI in a regression-adjusted semiparametric differences-in-differences matching 
framework that compares the BMI of those before and after an involuntary job loss with a control 
group that has not been laid off.  Results indicate genetically-at-risk workers who lost their job 
before they were eligible for Social Security benefits, or before age 62, were more likely to gain 
weight. Further analysis reveals heterogeneous treatment effects by demographic, health, and 
socioeconomic characteristics. In particular, we find high risk individuals who gained weight 
after a job loss were more likely to be male, in worse health, single, and at the bottom half of the 
wealth distribution. Across the board, effects are concentrated among high-risk individuals who 
were not overweight prior to job loss, indicating unemployment at older ages may trigger weight 
gain in otherwise healthy or normal weight populations.
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Introduction  

 
High body mass index (BMI) continues to be a pressing public health concern in the 

United States. Obese adults are at risk for multiple chronic conditions, including type two 

diabetes, cardiovascular disease, and certain cancers (Bhaskaran et al. 2014; Lewis et al. 2009). 

Recent statistics show almost 75% of the adult population aged 20 years and older in the US is 

overweight (BMI ≥25 kg/m2)—42% of which are classified as obese (BMI ≥30 kg/m2) (Ogden, 

et al. 2012).  

Although in large part lifestyle changes have fueled the obesogenic environment and 

obesity epidemic in westernized societies over the past 30 years, more work is needed to 

understand the joint contribution of biological and social forces to life course trends in body 

weight.  In particular, research that incorporates genetic, behavioral, and social factors into the 

same framework may help to more accurately explain the complex etiology of cardiovascular 

risk factors like BMI.  This study takes advantage of twenty years of genetic and socio-

demographic data from the Health and Retirement Study (HRS) to examine whether a significant 

social stressor—an unexpected job loss at older ages—amplifies polygenic risk for weight gain.   

An aging population coupled with the recent economic downturn in an era of falling 

wages, rising earnings inequality, and high involuntary joblessness makes understanding the 

health effects of unemployment at older ages particularly important.  The US labor market has 

been plagued by high levels of unemployment since the 1980s, reaching crisis levels during the 

Great Recession.  Older workers in particular can no longer expect the same benefits accrued 

during the 1950s-1970s golden age of reliable growth and economic security.  Rates of job loss 

have risen considerably for all workers in recent years, but are increasing faster for older workers 

than younger workers.  Between 1981 and 2009, three-year job loss rates for workers aged 55 
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and over rose from 10% to more than 14% (Farber 2015).  Post displacement, older workers also 

have a harder time finding new employment and spend more time unemployed than their 

younger counterparts (Johnson 2012).  Workers aged 55-64 are about 16 percentage points less 

likely than workers aged 35-44 to be employed after a job loss and reemployed job losers aged 

45-64 take three to four weeks longer to find jobs than those aged 20-29 (Farber 2015).   

A growing body of evidence has linked late-career job loss to a range of adverse health 

and chronic disease outcomes in the US and abroad (Deb et al. 2011; Gallo et al., 2006; Gallo et 

al., 2004; Gallo et al. 2000; Marcus 2014; Strully 2009).  However, the majority of studies on the 

effect of job loss on health do not deal with the endogeneity of job loss, or the possibility that 

layoffs may be correlated with worker characteristics, health behaviors, or poor health (Burgard 

et al. 2007; Jusot et al. 2008; Roelfs et al. 2011).  In addition, while most studies have found 

adverse health effects from involuntary unemployment, there is no consensus, and several studies 

have not been able to uncover an average treatment effect (e.g. Salm 2009).  A major limitation 

of these studies is they are not able to account for heterogeneous treatment effects by genotype, 

or the possibility that changes in BMI induced by a job loss vary across the spectrum of genetic 

risk. 

That said, selection problems are further compounded with the addition of genetic data 

into the analysis.  The majority of gene-environment (G × E) interaction studies use endogenous 

measures of the environment that cannot adequately address both the non-random distribution of 

genes across environments and the possibility that genes may be acting as proxies for other 

unobserved gene-environment correlations (rGE) or G × E interactions.  In this case, endogenous 

measures of job loss could be intertwined with a host of unobserved genetic or environmental 

influences that are associated with health and changes in BMI.  Therefore, methods that exploit 
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exogenous measures of “G” and “E” are needed to properly identify G × E effects (Conley 2009; 

Fletcher and Conley 2013; Schmitz and Conley 2015).   

To address these shortcomings, we interact business closures—a plausibly exogenous 

environmental exposure— with a polygenic risk score for BMI in a regression-adjusted 

semiparametric differences-in-differences matching framework that compares the BMI of those 

before and after an involuntary job loss with a control group who has not been laid off.  Business 

closures are considered more exogenous than layoffs or firings because they are typically the 

byproduct of external, firm level decisions to restructure or relocate business.  However, it is still 

possible that workers with unhealthy behaviors or poor health, for example, could select into 

more vulnerable or volatile industries.  Combining propensity score matching with differences-

in-differences estimation makes the model more robust to selection on observables and 

unobservables with time invariant effects, such as ability or worker preferences.   

 Results show genetically-at-risk workers who were not overweight prior to job loss were 

more likely to gain weight than comparable high-risk workers who were continuously employed.  

These effects are concentrated among workers who are male, in worse health, single, and have 

below median net worth.  Across the board, weight gain is only significant in the population of 

older workers who are not eligible for Social Security (i.e. before age 62), indicating 

unemployment in the years leading up to retirement may be particularly detrimental to long-term 

cardiovascular health.  
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Background 

 
The Genetics of BMI 

BMI is an inexpensive, non-invasive measure of obesity that has been found to be as 

predictive of cardiovascular disease risk as other, more difficult to measure anthropomorphic 

measures such as abdominal adiposity (i.e. waist circumference [WC], waist-hip ratio [WHR], or 

waist-height ratio [WHtR]) (Taylor et al. 2010).  Twin studies on the genetic determination of 

BMI have found a strong heritable component  (h2 of ~40-70%) and previous meta-analyses of 

genome-wide association studies (GWAS) have identified more than 100 genome-wide 

significant loci associated with BMI (Locke et al. 2015; Shungin et al. 2015; Speliotes et al. 

2010).   

The largest cluster of highly significant loci is located in the FTO gene region (fat mass 

and obesity associated gene) on chromosome 16.  Growing evidence from epidemiological and 

functional studies suggests FTO increases obesity risk through subtle changes in food intake and 

preference.  The BMI-increasing allele of FTO SNPs has been found to be associated with 

increased intake of dietary fat or protein, increased appetite and reduced satiety, poor food 

choices and eating habits, and loss of control over eating (for a review see Loos and Yeo 2014).  

BMI-associated alleles also overlap with genes and pathways implicated in the central nervous 

system—particularly genes expressed in the hypothalamus and pituitary gland—that regulate 

appetite (Locke et al. 2015).  Most BMI-associated loci appear to have their largest impact early 

in life or during adolescence although a few loci, which have also been associated with type 2 

diabetes or coronary artery disease, exhibit stronger effects in older adults (Winkler et al. 2015).  

Established loci from the largest BMI GWAS to date (N ~340,000) account for only 

2.4% of the variation in BMI (Locke et al. 2015).  Explanations for the small proportion of 
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heritability explained by genetic association studies include underpowered discovery sample 

sizes, measurement error due to incomplete linkage between the measured and causal alleles, 

undiscovered rare or low-frequency variants with larger effects, epistasis, or G × E interaction.  

In particular, lifestyle and social context have been found to fuel the onset and persistence of 

BMI, including evidence of FTO by environment interactions of exercise on the attenuation of 

BMI (Kilpeläinen et al. 2011), possibly mediated by DNA methylation (Almén et al. 2012; Bell 

et al. 2010).  In the social sciences, gene-by-social environment interaction studies have linked G 

× E	effects on BMI to lifetime SES, social norms, historical period, and institutional policies 

(e.g. Boardman et al. 2012; Guo et al. 2015; Liu and Guo 2015).   An important insight from this 

line of research is the pervasive role the social environment may play in provoking underlying 

genetic risk.   However, with the exception of historical period (i.e. birth cohort) all the above 

studies deploy endogenous measures of environment, calling into question whether FTO or other 

genetic determinants of BMI are truly moderated by cross-sectional environmental contexts.  

Further research that elucidates specific socioeconomic stressors that aggravate polygenic risk 

for BMI is needed to better understand the biological processes that are involved in the 

regulation of body weight over the life course. 

 
Job Loss and Health 

The corrosive effects of job loss on health and health behaviors have been documented 

extensively in the social science literature.  For older workers in particular, the scarring effects 

from job loss are severe.  Research finds job loss at older ages is associated with longer periods 

of unemployment than any other age group (Johnson and Park 2011), insufficient retirement 

savings and lower levels of household wealth (Munnell and Sass 2009), higher rates of 

depression and anxiety (Bender and Jivan 2004; Bonsang and Klein 2012; Gallo et al. 2006), and 
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a sharp increase in the need for medical care due to heightened stress levels and gaps in health 

insurance coverage (Sudano Jr and Baker 2003; Tu and Liebhaber 2009).  Further, when 

reemployed, older workers suffer significant wage penalties and lower levels of employer-

offered pension and health insurance (Brand 2004; Farber 2004; Jacobson et al. 1993). All these 

factors could trigger chronic stress and lead to adverse changes in health behaviors, both of 

which aggressively deteriorate health (Hammarström and Janlert 1994; Laitinen et al. 2002). 

With respect to eating behavior, chronic life stress in particular seems to be associated with a 

greater preference for energy- and nutrient-dense foods that are high in sugar and fat, and 

evidence from longitudinal studies suggests that chronic life stress may be causally linked to 

weight gain (e.g. Torres and Nowson 2007).   

 To investigate the health effects of job loss, past studies have used exogenous shocks to 

employment such as a plant or business closure to control for reverse causality, or the possibility 

that sicker people are more likely to be unemployed (Deb et al. 2011; Falba et al. 2005; Gallo et 

al., 2006; Gallo et al. 2004; Gallo et al. 2000; Gallo et al. 2001; Salm 2009; Strully 2009).  

However, results from these studies have been mixed.  Using the HRS, Salm (2009) finds no 

causal effect of exogenous job loss on various measures of physical and mental health, whereas 

Gallo et al. (2006) find involuntary job loss is associated with increased depressive symptoms, 

but only for individuals with net worth below the median.  Gallo et al. (2004) find job loss 

increases the risk of stroke but not myocardial infarction.   

Other studies have found a positive association between involuntary job loss and harmful 

health behaviors like smoking (Falba et al. 2005; Marcus 2014), excessive alcohol consumption 

(Deb et al. 2011; Gallo et al. 2001; Marcus 2014), and weight gain (Deb et al. 2011; Marcus 

2014).  Using data from the German Socio-Economic Panel Study (SOEP), Marcus (2014) finds 
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involuntary job loss increases the probability of smoking initiation by three percentage points on 

average and also finds small (but statistically significant) changes in BMI (around 0.1 kg/m2).  

Using finite mixture models Deb et al. (2011) find substantial heterogeneity in the effect of 

business closures on BMI and drinking behavior; the escalation of unhealthy behaviors was 

found to be concentrated among workers who were already pursuing unhealthy behaviors pre-job 

loss, indicating the effects of job loss may be especially problematic for high-risk individuals. 

However, while these studies have modeled differential trajectories in health after unemployment 

by prior health behaviors, this study is the first to examine whether weight gain after an 

unexpected job loss is modified by polygenic risk.  

 
 
Data and Methods 

 
The Health and Retirement Study  
 
 Data are from the Health and Retirement Study (HRS)—a nationally representative, 

longitudinal dataset of individuals over the age of 50 and their spouses that began in 1992. 3   The 

HRS interviews approximately 20,000 participants every two years from the time of their entry 

into the survey until their death.  Every six years a new cohort of participants is added to keep 

the sample nationally representative of the US population over 50.  To maximize sample size, we 

compile data from 11 waves (1992-2012) of the HRS.  The HRS collects detailed demographic 

and socio-economic data on its participants, including information on changes in BMI, labor 

force participation, unemployment, physical and mental health, health related behaviors, income, 

																																																								
3 The Health and Retirement Study (HRS; accession number 0925-0670) is sponsored by the National 
Institute on Aging (grant numbers NIA U01AG009740, RC2AG036495, and RC4AG039029) and is 
conducted by the University of Michigan. Additional funding support for genotyping and analysis were 
provided by NIH/NICHD R01 HD060726. 
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and wealth.  In 2009, the HRS genotyped 12,507 participants who provided DNA samples in 

2006 and 2008. Our final data set compiles genotype data from the HRS Genotype Data Version 

1 File (2006-2008 samples), information on job loss and smoking behavior from the HRS 1992-

2012 Public Use Core Files, and socio-demographic data from the RAND HRS Data File (v.O) 

(see Table 1 for a list of all variables used in the analysis).4 

 After quality control (QC) analysis on the genotype data, 78,319 observations on 9,186 

individuals remained in the HRS sample.5  Since we are using results from a GWAS on 

individuals of European ancestry to construct our polygenic score (PGS – formerly known in the 

literature as a genetic risk score [GRS] or polygenic risk score [PRS]), we exclude observations 

on individuals who report being black (N=9,196), American Indian, Alaskan Native, Asian, or 

Pacific Islander (N=3,192), or who report being white but of Hispanic origin (N=5,058).6  This 

leaves us with 60,873 observations over time on 7,038 individuals. Additionally, since research 

has shown partial or full retirement may have positive effects on health (e.g. Coe and Zamarro 

2011; Neuman 2008), we exclude observations on working respondents if they were over the 

Social Security Early Eligibility Age (EEA) of 62 (4,680); similarly, because the HRS is only 

representative of the US population 50 plus, we exclude individuals if they were below age 50 at 

baseline (N=1,221).  Of the remaining 54,972 observations, 7,608 have missing baseline 

information or were not interviewed at baseline, 32,975 were not working for pay, 42 were 

missing information on work status, 5,101 were self-employed, 88 were missing information on 

																																																								
4 The RAND HRS Data file is an easy to use longitudinal data set based on the HRS data. It was 
developed in RAND with funding from the National Institute on Aging and the Social Security 
Administration.		
	
5 See “BMI Polygenic Risk Score (PGS)” section for QC specifics. 
 
6 This number also includes one individual with three observations who was missing information on 
Hispanic origin.  
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self-employment status, 1,055 were missing information on reason for job loss, 170 were missing 

information on BMI, and 2,172 observations were missing information on other key covariates 

(i.e. census region lived in, smoking status, health insurance status, household income, or 

household wealth).  After propensity score matching, an additional 40 observations were not on 

common support and 57 were not assigned a weight. The final analytic sample (Table 5, Column 

5) consists of 5,664 observations on 2,150 full and part time workers ages 50-60 at baseline that 

were working for pay at the time of the interview and were not self-employed. The sample can 

include multiple observations for the same individual over time. 

 
Treatment and Control Groups 

For each remaining observation, we use information from two waves—before and after 

treatment.  Before treatment (𝑡 − 1), all respondents were working for pay.  At the following 

interview two years later (𝑡), respondents in our treatment group report they are no longer 

working for their previous-wave employer.  These respondents were asked why they left their 

employer.  Possible answers included ‘business closed’, ‘laid off/let go’, ‘poor health/disabled’, 

‘quit’ or other reasons.7  Respondents could report up to three reasons.  Our definition of 

exogenous job loss includes 235 observations (4.15% of the total sample) that report being laid 

off due to a business closure.  Following Salm (2009), we exclude workers who in addition 

stated they quit or left for health reasons but include workers who also stated they were laid off 

or let go.  For the control group, we use individuals who report working with the same employer 

the entire time they are in the sample—i.e. we do not include individuals in the control group if 

they ever quit their job or were laid off for any reason between ages 50 and 62.  

																																																								
7 Other reasons include family care, better job, retired, family moved, sold business (own), strike, 
divorce/separation, transportation/distance to work, or early retirement incentive/offer. 
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Dependent variable
BMI Body mass index in kg/m2

Independent variables
Business closure 1=business closed between waves; 0=still working for previous wave employer

BMI PGS Body mass index polygenic risk score, standardized
Overweight 1=BMI>=25; 0=BMI<25

Female gender 1=Female; 0=Male

Age Age in years
Married 1=Married/partnered; 0=Divorced/separated/widowed/single 
Highest degree obtained Binary (0/1) variables for no degree or high school degree. The omitted category is 

associate's/bachelor's/professional degree.
Region dummies Binary (0/1) variables for Census region of residence: Northeast (New England and 

Mid Atlantic); Midwest (EN Central and WN Central); South (S Atlantic, ES 
Central, and WS Central). The omitted category is West (Mountain and Pacific).

Household income (log) Log of total (respondent + spouse) household income in 2010 dollars. Includes 
earnings, household capital income, income from all pensions and annuities, 
income from social security disability and supplemental social security income; 
income from social security retirement, spouse or widow benefits, income form 
unemployment or workers compensation, income from veteran's benefits, welfare 
and food stamps, alimony, other income, and lump sums from insurance, pension 
and inheritance. 

Household wealth ($100k) Total household income in 2010 dollars divided by 100,000 for scalar consistency. 
It is the sum of the value of primary residence, net value of real estate (not 
including primary residence), net value of vehicles, net value of businesses, net 
value of stocks, mutual funds, and investment trusts, value of checking, savings or 
money market accounts, value of CD, government savings bonds, and T-bills, net 
value of bonds and bond funds, and the  net value of all other savings, less the 
value of all mortgages/land contracts (primary residence), value of other home 
loans (primary residence), and the value of any other debt. 

Firm sizea Binary (0/1) variables for firm size categories: Less than or equal to 4 employees; 5-
14 employees; 15-24 employees; 25-99 employees; 100-499 employees. The 
omitted category is firm size greater than or equal to 500 employees.

Part time 1=works part time; 0=does not work part time.

Industrya Binary (0/1) variables for industry categories: agriculture, fishing, or farming; 
construction or mining; manufacturing; trade; public services; finance, insurance, 
or real estate; public administration. The omitted category is misc. services. 

Occupational statusa,b Binary (0/1) variables for blue collar and service workers. The omitted category is 
white collar workers. 

Job tenurea Current job tenure in years.

Health status 1=excellent or very good self-reported health; 0=good, fair, or poor self-reported 
health.

Health insurance 1=covered by a federal or employer-sponsored health insurance program; 
0=otherwise.

Exercise 1=exercises vigorously three or more times per week; 0=otherwise.

Ever smoke cigarettes 1=smoked 100 or more cigarettes in their lifetime; 0=otherwise.

Cigarettes per daya Total number of cigarettes smoked per day, excluding pipes or cigars. Variable is 
set equal to zero if respondent does not smoke. 

Drinks alcohol 1=drinks alcoholic beverages; 0=does not drink alcoholic beverages.

Doctor diagnosed psychiatric issuea 1=reports doctor diagnosed emotional or psychiatric problems; 0=otherwise.

Survey year Binary (0/1) variables for 1994-2012. The omitted year is 1992. 

Table 1. Variable definitions

aVariables with additional category for missing values. bOccupation groups are based on Meyer and Osborne three digit 
harmonized census occupation codes (Meyer and Osborne 2005).
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BMI Polygenic Score (PGS) 

We calculate a linear PGS for the HRS sample based on a genome-wide association 

(GWA) meta-analysis conducted by the Genetic Investigation of Anthropometric Traits 

(GIANT) Consortium on a total of 249,796 individuals of European ancestry (Speliotes et al. 

2010).  Specifically, we construct a genome-wide composite PGS composed of weighted effects 

of specific single nucleotide polymorphisms (SNPs) for BMI using original genotype (i.e. not 

imputed) data from the HRS Genotype Data Version 1 (2006-2008 sample) File.8  SNPs in the 

HRS genetic database were matched to SNPs with reported results in the GWAS. In the HRS 

genetic data set, 838,490 SNPs were available to construct the BMI score in the second-

generation PLINK software (Chang et al. 2015; Purcell and Chang 2015).  For each of these 

SNPs, a loading was calculated as the number of BMI-associated alleles multiplied by the effect-

size estimated in the original GWAS.  Loadings are then summed across the SNP set to construct 

the polygenic score.  Since pruning for linkage disequilibrium reduced performance of the score, 

our score includes all SNPs that passed quality control filters.  Or, the PGS is a weighted average 

across the number of SNPs (𝑛) of the number of reference alleles 𝑥 (zero, one, or two) at that 

SNP multiplied by the effect size for that SNP (𝛽): 

𝑃𝐺𝑆! = 𝛽!𝑥!"                                                                                                                 (1)
!

!!!

 

To increase the power of its predictive capacity, we do not impose a GWAS p-value 

threshold or cut-off for SNPs included in our PGS (Dudbridge 2013). Instead, SNPs with 

relatively large p-values or small effects are down weighted in the composite score.  The PGS is 

																																																								
8	Genotyping was performed on the HRS sample using the Illumina Human Omni-2.5 Quad beadchip 
(HumanOmni2.5-4v1 array). The median call-rate for the 2006-2008 samples is 99.7%.  
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standardized to have a mean of zero and a standard deviation of one for the population of white, 

non-Hispanic workers (i.e. those of European ancestry) in our analytic sample.   

The BMI PGS is predictive of cross-sectional measures of BMI in non-interactive main 

effects models for both the entire sample of white non-Hispanic respondents, and in our analytic 

sample (see Table 2).  In addition, since we are estimating changes in weight after a job loss, we 

also estimate whether the PGS is associated with BMI in a longitudinal framework by regressing 

BMI on the BMI PGS and BMI at baseline, or in 𝑡 − 1. We find the PGS is a positive and 

significant predictor of changes in weight in the HRS European ancestry sample, but not in our 

analytic sample. However, a further breakdown by treatment status in Table 3 reveals the score is 

associated with changes in weight in the sample of treated individuals who were not overweight 

prior to job loss.  

 To control for confounding by population stratification—or the non-random distribution 

of genes across populations—we use principal components.  The principal components measure 

the uncorrelated variation or dimensions in the data, accounting for ethnic or racial differences in 

genetic structures within populations that could bias estimates due to confounding with important 

environmental variation. We calculate the principal components using PLINK from the entire 

sample of genotyped respondents in the HRS, and include the first four in our regression 

analysis—a dimensionality that has generally proven adequate in the literature (Price et al. 

2006).   Controlling for the first four principal components accounts for any systematic 

differences in ancestry that can cause spurious correlations while also maximizing the power that 

is needed to detect true associations. 
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Table 2.  Main effect of BMI PGS on BMI and changes in BMI by sample 

  Analytic sample European ancestry 

  
BMI                  
Level 

BMI              
Change 

BMI                  
Level 

BMI              
Change 

BMI PGS 0.388*** 0.00171 0.414*** 0.0339*** 

 
(0.0724) (0.0258) (0.02240) (0.00918) 

BMI (t-1) 
 

0.952*** 
 

0.943*** 

  
(0.00481) 

 
(0.00170) 

N 5664 5664 52320 52320 
R2 0.00680 0.875 0.0057 0.855 
Analytic sample consists of white, non-Hispanic male and female workers who 
were not self-employed and between the ages of 50-60 at t-1.  All regressions 
include controls for population stratification in the genotype data.                             
†p<.10;  * p<.05;  ** p<.01; ***p<.001. 
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Empirical Strategy 

To investigate whether the effect of an involuntary job loss on BMI is moderated by 

genotype, this study uses differences-in-differences (DD) estimation combined with 

nonparametric kernel matching to estimate the average treatment effect on the treated (ATT) by 

genotype, or the G × E effect (Heckman et al. 1997; Marcus 2014).  This approach compares 

individuals who have been laid off due to a business closure with a group of (nearly identical) 

individuals who are still working for their same employer.  To construct a control group with a 

similar distribution of covariates as the treatment group, the kernel-based matching estimator 

uses a distance-weighted average of all propensity scores in the control group to construct a 

counterfactual outcome for each individual in the treatment group. These weights are applied to 

the DD regression model to obtain a balanced sample of treated and untreated individuals.  The 

coefficients from the DD regression are used to estimate the ATT by genotype, or the effect of 

job loss on changes in BMI by genotype for individuals who were actually laid off.  The same 

covariates used to estimate the propensity score, or the probability of treatment, are also used in 

the DD regression model.  Thus, coefficients from the regression-adjusted semiparametric DD 

matching estimator are considered “doubly robust” because the estimator will be consistent as 

long as either the regression model or the propensity score model is correctly specified (Imbens 

2004; Robins and Ritov 1997).   

In addition, the regression-adjusted DD matching estimator is considered more robust 

than a traditional DD estimator because it accounts for both selection on observables and 

selection on unobservables with time invariant effects.  Or, in other words, the model allows for 

systematic differences between treatment and control groups even after conditioning on 

observables (Smith and Todd 2005). A traditional DD setting assumes that after conditioning on 
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observed characteristics, the BMI of individuals in the treatment group would have evolved 

similarly over time to the BMI of individuals in the control group if they had never been laid off.   

If 𝑖! denotes an individual in the control group with the same characteristics as individual 𝑖 in the 

treatment group, this assumption can be expressed in formal notation as 

 
𝐸 𝐵𝑀𝐼!" − 𝐵𝑀𝐼!"!!|𝑋,𝐵𝐶 = 0 = 𝐸 𝐵𝑀𝐼!!! − 𝐵𝑀𝐼!!!!!|𝑋,𝐵𝐶 = 0                   (2) 

 
Which states that if a business closure (𝐵𝐶) did not occur, the change in BMI between 𝑡 

and 𝑡 − 1 evolves similarly between the treatment and control groups after conditioning on 

observables 𝑋. While conditioning on genotype and a rich set of covariates minimizes the 

possibility of violating this assumption, other systematic differences between the treated and 

control groups may remain even after conditioning on observables. Such differences may arise, 

for example, if an individual selects into an industry that is more likely to experience a business 

closure because of unmeasured characteristics like ability or childhood conditions, or because of 

unmeasured differences in local labor markets where participants or nonparticipants reside. To 

minimize potential confounding from unobservable characteristics, we relax this assumption and 

use the weights from propensity score matching to reduce unmeasured differences between the 

treatment and control groups that could bias estimates: 

 
𝐸 𝐵𝑀𝐼!" − 𝐵𝑀𝐼!"!!|𝑊(𝑋),𝐵𝐶 = 0 = 𝐸 𝐵𝑀𝐼!!! − 𝐵𝑀𝐼!!!!!|𝑊(𝑋),𝐵𝐶 = 0               (3) 

Our empirical strategy can be broken down into three parts.  First, we estimate the 

propensity score using a probit regression that regresses business closures on the PGS and a rich 

set of covariates (see Table 1).  These covariates are both standard in the job loss literature and 

satisfy the conditional independence assumption outlined in Eq. 2—i.e. they influence job loss 
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and/or changes in BMI (Dehejia and Wahba 1999; Heckman et al. 1997).  In addition, we only 

condition on observables that are unaffected by job loss (or the anticipation of it), or variables 

that are either fixed over time or measured in 𝑡 − 1 (Caliendo and Kopeinig 2008). To avoid 

losing observations with missing information on a covariate, we set missing values equal to zero 

and include an additional dichotomous variable that is equal to one if the observation is missing. 

As a result, matching is not only on observed values but also on the missing data pattern (Marcus 

2014; Stuart 2010).  Throughout, we restrict our analysis to the region of common support, or the 

subset of individuals in the control group that are comparable to individuals in the treatment 

group (Dehejia and Wahba 1999).9   

Next, we use the estimates from the probit regression to compute the weights for the 

control group with kernel matching—a nonparametric matching estimator that uses the weighted 

averages of all observations on common support to construct the counterfactual outcome 

(Heckman et al. 1997; Smith and Todd 2005).10  Specifically, the weight given to a non-treated 

individual 𝑗 is in proportion to the closeness of their observables to treated individual 𝑖: 

 

𝑤 𝑖, 𝑗 =
𝐾[(𝑃! − 𝑃!) 𝑏]

𝐾[(𝑃! − 𝑃!) 𝑏]!∈!"!!
                                                                                            (4) 

 
 

Where 𝑃 is the propensity score for individual 𝑖 or 𝑗 in the treated or control group, 

respectively, 𝐾[⋅] is the kernel function, and 𝑏 is the bandwidth parameter. The choice of 

bandwidth is thought to be more important than the choice of kernel function. High bandwidth 

values result in a smoother estimated density function, leading to a better fit and decreasing the 

																																																								
9 Specifically, we drop treatment observations whose propensity score is greater than the maximum or 
less than the minimum propensity score of the controls. 
 
10 We use the program psmatch2 (Leuven and Sianesi 2003) in Stata 14 to compute 𝑤(𝑗). 
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variance between the estimated and actual density function.  However, this may also bias 

estimates if underlying features of the distribution are obscured by a larger bandwidth.  

Following Heckman (1997), we use the Epanechnikov kernel function and a bandwidth of 0.06.11  

In addition, when computing the weights, we perform exact matching on survey year and 

overweight status in 𝑡 − 1 (e.g. Marcus 2014). This ensures 1) individuals who were laid off are 

matched with controls from the same macroeconomic time period, controlling for 

macroeconomic trends that might be highly correlated with job loss, and 2) treated individuals 

are grouped with non-treated individuals in the same pre-treatment BMI range, or individuals are 

matched based on whether or not they were above or below the Centers for Disease Control and 

Prevention (CDC) cut-off for overweight status (BMI>=25).   

In the final step, we incorporate the weights from propensity score matching into the DD 

regression model. Our linear DD model takes on the following form: 

 
𝐸 𝐵𝑀𝐼! 𝑊 𝑋 = 𝛼𝐵𝐶!"!! + 𝛾𝑃𝐺𝑆! + 𝛿𝐵𝐶!"!!×𝑃𝐺𝑆! + 𝜑𝐵𝑀𝐼!!! + 𝑋!!!𝛽               (5) 

 

Where BC is an indicator for job loss due to a business closing between waves 𝑡 − 1 and 

𝑡 for individual 𝑖 and 𝑋 is the vector of observable time variant and invariant characteristics 

measured at 𝑡 − 1 from propensity score matching, including the first four principal components 

for population stratification in the genotype data. Including the genotype fixed effect both 

controls for unobserved biological differences across individuals and captures any variance in 

treatment intensity by genotype.  In addition, we include 𝐵𝑀𝐼!!! to model changes in BMI or to 

control for BMI at baseline.  The corresponding parameters from the regression equation can be 

used to estimate the conditional mean functions for treated and untreated individuals as follows 

																																																								
11 Applying different bandwidths did not significantly change our estimates. Results are available from 
the authors upon request.  
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𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 1,𝑃𝐺𝑆 = 1 = 𝛼 + 𝛾 + 𝛿 + 𝜑 + 𝑋!!!𝛽                                           (6) 

𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 1,𝑃𝐺𝑆 = 0 = 𝛼 + 𝜑 + 𝑋!!!𝛽 

𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 0,𝑃𝐺𝑆 = 1 = 𝛾 + 𝜑 + 𝑋!!!𝛽 

𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 0,𝑃𝐺𝑆 = 0 = 𝜑 + 𝑋!!!𝛽 

 
Where, since the PGS is standardized to have a mean of zero and a standard deviation of one, a 

PGS=0 or PGS=1 indicates individuals with an average or high risk PGS, respectively.  From 

here, the ATT can be estimated by taking the difference in 𝐸[𝐵𝑀𝐼!|𝑊 𝑋 ] between treated and 

non-treated individuals 

 
𝐴𝑇𝑇!"#!! = 𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 1 − 𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 0 = 𝛼 + 𝛿                    (7)       

𝐴𝑇𝑇!"#!! = 𝐸 𝐵𝑀𝐼! 𝑊 𝑋 ,𝐵𝐶 = 1 − 𝐸 𝐵𝑀𝐼! − 𝐵𝑀𝐼!!! 𝑊 𝑋 ,𝐵𝐶 = 0 = 𝛼          

 
In addition, we also estimate models that include a three-way interaction term with 

overweight status in t-1. This differences-in-differences-in-differences (DDD) model takes into 

account the possibility that the impact of job loss and genotype on BMI varies by whether or not 

an individual was overweight (BMI>=25) prior to losing their job. Research has shown that 

particularly in the extremes of BMI distribution, there may be etiologically distinct subgroups 

(Harismendy et al. 2010).  Although analyzing the full distribution is generally more powerful, 

when treatment heterogeneity is present, constructing separate slopes for different BMI 

subgroups may increase power (Pütter et al. 2011).  For these models, we extend our strategy 

above to include an additional interaction term and calculate the ATT separately for 

underweight/normal weight individuals (BMI<25) and overweight/obese individuals 

(BMI>=25).   
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Finally, when estimating the variance of propensity score-based parameters, the literature 

is split on whether to account for uncertainty in the propensity score estimation (for a review see 

Stuart 2010).  Typically, bootstrapping is used to estimate standard errors when they are difficult 

to compute analytically or when the theoretical distribution of the statistic is unknown.  

However, under general conditions studies have found using estimated rather than true 

propensity scores leads to an overestimation of the variance and thus more conservative 

estimates of the standard errors (Rubin and Stuart 2006; Rubin and Thomas 1996).  Further, 

Abadie and Imbens (2006) show bootstrapping fails in the case of nearest-neighbor matching. 

Therefore, instead of bootstrapping, we follow Marcus (2014) and use robust standard errors 

from the weighted regressions. 

 

Matching Quality and Descriptive Statistics 

 
Table 4 shows the means and matching statistics for all covariates by the treatment group, 

control group, and matched control group.  We compare the means of the treated and control 

groups before and after matching to assess the quality of the matching procedure. Before 

matching, differences between covariates are expected, however after matching the covariates 

should be balanced with little to no significant differences remaining.  We include both the 

standardized bias and two-sample t-Tests for equality of the means to check for significant 

differences between covariates for both groups (Rosenbaum and Rubin 1985).  The standardized 

bias compares the distance between the marginal distributions, or the difference in sample means 

between the treated 𝑋!  and matched control 𝑋!  subsamples as a percentage of the square 

root of the average of the sample variances in both groups for a covariate 𝑋: 
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𝑆𝐵! = 100 ∙
𝑋! − 𝑋!

0.5 ∙ 𝜎!"! − 𝜎!"!
                                                                                                 (8) 

 
Generally, a standardized bias at or below 5% (after matching) is seen as sufficient (Caliendo 

and Kopeinig 2008).   

Before matching, individuals affected by a business closure have lower socioeconomic 

standing and worse health behaviors and outcomes than continuously employed individuals.  

Treated individuals were 17.8 percentage points less likely to have a college degree, are more 

likely to reside in the South, and have lower household income.  Labor statistics show they are 

more likely to work part time, for smaller firms, in the agriculture/fishing/farming, 

construction/mining, trade, or miscellaneous service industries, are less likely to be white collar, 

and have lower job tenure than individuals in the control group.  Treated individuals were also 

23.7 percentage points less likely to have health insurance and are 9.3 percentage points more 

likely to be diagnosed with a psychiatric condition.  They are 10.8 percentage points more likely 

to have ever been regular smokers, and among current smokers, smoke almost three cigarettes 

more per day than continuously employed individuals.  In terms of weight status, there do not 

appear to be any significant differences between the two groups, however the BMI PGS is 

slightly higher for workers who lost their job before matching.  

By and large, after matching the discrepancies between treated and control groups means, 

as measured by the t-Tests, largely disappear, and the standardized biases are at or below 5%.  

Notable exceptions include job tenure, trade and public administration industries, college 

education, household income, and access to health insurance. However, since we also adjust for 

these same covariates in our empirical model, any small remaining differences on these variables 

are further diminished via regression adjustment.  
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Table 4. Before treatment means of treated, controls, and matched controls 

	
Match 
status 

Means %bias t-test 
		 Treated Control t p>t 
Weight status 

      BMI  U 27.740 27.641 1.800 0.310 0.756 

 
M 

 
27.711 -0.800 -0.090 0.932 

BMI PGS U 0.112 -0.006 11.600 1.910 0.057 

 
M 

 
0.077 6.600 0.730 0.465 

Overweight  U 0.695 0.684 2.300 0.360 0.716 

 
M 

 
0.698 0.000 0.000 1.000 

Demographic 
      Female U 0.560 0.554 1.300 0.200 0.839 

 
M 

 
0.562 -2.700 -0.290 0.771 

Age U 55.465 55.480 -0.500 -0.080 0.934 

 
M 

 
55.556 -9.500 -1.040 0.300 

Married  U 0.811 0.832 -5.600 -0.930 0.351 

 
M 

 
0.834 -6.800 -0.730 0.465 

Education 
      No degree U 0.105 0.062 15.700 2.880 0.004 

 
M 

 
0.109 -1.000 -0.100 0.924 

High school degree U 0.669 0.534 27.800 4.380 0.000 

 
M 

 
0.639 6.900 0.760 0.445 

College degree U 0.225 0.404 -39.100 -5.920 0.000 

 
M 

 
0.252 -6.700 -0.780 0.434 

Regional Census division  
      Northeast U 0.149 0.186 -9.800 -1.520 0.128 

 
M 

 
0.154 -1.400 -0.160 0.871 

Midwest U 0.316 0.320 -0.800 -0.130 0.897 

 
M 

 
0.330 3.200 0.340 0.734 

South U 0.415 0.328 17.900 2.960 0.003 

 
M 

 
0.382 0.200 0.030 0.979 

West U 0.120 0.166 -13.100 -2.010 0.045 

 
M 

 
0.134 -3.000 -0.340 0.736 

Labor Market/Socioeconomic Status 
     Household income (log) U 10.953 11.353 -34.100 -7.140 0.000 

 
M 

 
11.145 -10.100 -1.180 0.239 

Household wealth ($100k) U 3.684 3.510 2.100 0.340 0.737 

 
M 

 
3.295 0.800 0.080 0.939 

Firm size<=4 U 0.095 0.027 28.500 6.410 0.000 

 
M 

 
0.072 9.100 0.840 0.400 

Firm size 5-14 U 0.116 0.054 22.500 4.380 0.000 

 
M 

 
0.128 2.800 0.250 0.802 

Firm size 15-24 U 0.055 0.025 15.200 2.990 0.003 

 
M 

 
0.052 3.700 0.340 0.737 

Firm size 25-99 U 0.098 0.101 -1.000 -0.160 0.873 

 
M 

 
0.109 1.800 0.190 0.852 
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Firm size 100-499 U 0.102 0.182 -23.200 -3.410 0.001 

 
M 

 
0.128 -2.500 -0.290 0.774 

Firm size>=500 U 0.331 0.599 -55.800 -8.880 0.000 

 
M 

 
0.399 -2.500 -0.270 0.790 

Missing firm size info U 0.204 0.011 65.200 22.950 0.000 

 
M 

 
0.111 -7.200 -0.760 0.446 

Part time U 0.178 0.120 16.300 2.860 0.004 

 
M 

 
0.156 4.000 0.420 0.675 

Industry 
      Agriculture/Fishing/Farming U 0.018 0.005 12.600 2.980 0.003 

 
M 

 
0.008 4.300 0.480 0.628 

Construction/Mining U 0.065 0.031 16.000 3.120 0.002 

 
M 

 
0.062 -4.900 -0.490 0.624 

Manufacturing U 0.211 0.184 6.900 1.140 0.254 

 
M 

 
0.224 2.500 0.260 0.794 

Trade U 0.269 0.113 40.400 7.780 0.000 

 
M 

 
0.227 10.700 1.040 0.299 

Public Services U 0.076 0.078 -0.500 -0.080 0.938 

 
M 

 
0.078 1.200 0.120 0.902 

Finance/Insurance/Real Estate U 0.055 0.063 -3.600 -0.570 0.569 

 
M 

 
0.053 2.700 0.290 0.769 

Public Administration U 0.004 0.072 -36.500 -4.390 0.000 

 
M 

 
0.024 -10.400 -1.800 0.072 

Misc. Services U 0.236 0.445 -45.000 -6.820 0.000 

 
M 

 
0.282 -4.800 -0.540 0.588 

Missing industry info U 0.065 0.010 29.600 8.230 0.000 

 
M 

 
0.043 -7.000 -0.770 0.444 

Occupation 
      White Collar U 0.615 0.708 -19.700 -3.300 0.001 

 
M 

 
0.621 1.000 0.110 0.914 

Blue Collar U 0.240 0.204 8.600 1.430 0.151 

 
M 

 
0.258 -0.500 -0.060 0.955 

Service U 0.087 0.082 1.900 0.310 0.757 

 
M 

 
0.088 3.600 0.380 0.707 

Missing occupation info  U 0.058 0.006 30.000 9.390 0.000 

 
M 

 
0.034 -7.200 -0.830 0.406 

Job tenure U 7.946 15.943 -80.100 -12.350 0.000 

 
M 

 
10.529 -19.400 -2.200 0.028 

Missing tenure info U 0.055 0.003 31.600 12.040 0.000 

 
M 

 
0.042 -14.900 -1.580 0.115 

Health status 
      Health excellent/very good U 0.611 0.649 -7.900 -1.300 0.194 

 
M 

 
0.588 4.300 0.450 0.650 

Health insurance U 0.556 0.793 -52.100 -9.330 0.000 

 
M 

 
0.644 -10.600 -1.070 0.286 

Exercise vigorously 3+ times/week U 0.371 0.356 3.100 0.510 0.610 
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M 

 
0.374 0.200 0.020 0.985 

Missing exercise info U 0.004 0.005 -1.400 -0.220 0.824 

 
M 

 
0.004 0.500 0.060 0.953 

Ever smoke cigarettes U 0.636 0.528 22.100 3.530 0.000 

 
M 

 
0.628 -0.600 -0.060 0.949 

Cigarettes per day U 5.840 3.079 29.300 5.410 0.000 

 
M 

 
5.735 1.100 0.100 0.919 

Missing cigarettes per day info U 0.004 0.004 0.000 0.000 0.998 

 
M 

 
0.002 4.300 0.520 0.606 

Drinks alcohol U 0.636 0.674 -7.900 -1.300 0.194 

 
M 

 
0.603 4.600 0.490 0.624 

Doctor diagnosed psychiatric issue U 0.167 0.110 16.600 2.940 0.003 

 
M 

 
0.159 -5.300 -0.550 0.580 

Missing psychiatric info U 0.004 0.003 0.900 0.160 0.876 

 
M 

 
0.001 -2.200 -0.550 0.585 

Survey year 
      1994 U 0.069 0.152 -26.700 -3.780 0.000 

 
M 

 
0.081 0.000 0.000 1.000 

1996 U 0.120 0.124 -1.200 -0.190 0.846 

 
M 

 
0.128 0.000 0.000 1.000 

1998 U 0.175 0.100 21.700 3.950 0.000 

 
M 

 
0.140 0.000 0.000 1.000 

2000 U 0.153 0.120 9.500 1.610 0.107 

 
M 

 
0.179 0.000 0.000 1.000 

2002 U 0.175 0.091 24.900 4.640 0.000 

 
M 

 
0.170 0.000 0.000 1.000 

2004 U 0.058 0.067 -3.600 -0.570 0.571 

 
M 

 
0.064 0.000 0.000 1.000 

2006 U 0.069 0.113 -15.200 -2.260 0.024 

 
M 

 
0.072 0.000 0.000 1.000 

2008 U 0.062 0.102 -14.800 -2.180 0.029 

 
M 

 
0.055 0.000 0.000 1.000 

2010 U 0.095 0.077 6.300 1.060 0.287 

 
M 

 
0.089 0.000 0.000 1.000 

2012 U 0.025 0.054 -14.600 -2.070 0.039 

 
M 

 
0.021 0.000 0.000 1.000 

Principal components 
      1 U 0.000 0.000 5.300 0.620 0.534 

 
M 

 
0.000 2.200 0.400 0.688 

2 U 0.000 0.000 2.900 0.340 0.737 

 
M 

 
0.000 0.700 0.130 0.894 

3 U 0.000 0.000 -3.300 -0.380 0.702 

 
M 

 
0.000 -1.200 -0.220 0.823 

4 U 0.000 0.000 -2.500 -0.300 0.766 

 
M 

 
0.000 -0.700 -0.130 0.897 

Notes: Analytic sample consists of white, non-Hispanic male and female workers who were not self-
employed and between the ages of 50-60 in t-1. 
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Results  

 
Differences-in-Differences (DD) Model 

 Table 5 shows the results from the DD model for the effect of a business closure on BMI 

across several different models and propensity score matching procedures.  Specifications (1)-(2) 

do not control for baseline BMI, while specifications (3)-(5) model the change in BMI, or control 

for BMI in t-1.  Specification (1) does not control for the BMI PGS while specification (2) shows 

the basic G × E results in the cross-section.  Specification (4) performs exact matching on survey 

year and overweight status in t-1 and specification (5) additionally includes all conditioning 

variables from propensity score matching as controls in the regression analysis.  We also report 

the number of individuals in the treatment group, the median standardized bias, and the percent 

of individuals off common support, or the share of individuals who are not considered in 

estimation due to inappropriate matches, for each specification.   

The results in (1) are similar in magnitude and direction to the HRS results reported by 

Deb et al. (2011), which find no main effect from business closures on BMI.  However, while 

matching on genotype and exact matching on survey year and baseline overweight status both 

substantially reduce median standardized bias, we find no evidence of a G × E	effect in the DD 

model.  After adjusting for all covariates in specification (5), we do find a slight protective effect 

for individuals who did not lose their job, indicating steady employment at older ages might 

actually curb weight gain among high-risk BMI genotypes. Specifically, the BMI PGS 

coefficient, which represents the effect of genotype on BMI for individuals who did not lose their 

job, is negative and significant at the 10% level.  
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Heterogeneity Analysis by BMI Subgroup 

There is no a priori reason to believe that individuals in different BMI subgroups will 

respond the same to the stress of job loss.  Obese or overweight individuals may consume more 

food in response to stress, but it is also possible that chronic stress may trigger weight gain in 

otherwise normal weight, genetically-at-risk individuals. To investigate whether the G × E effect 

differs by BMI subgroup, we estimate DDD models that include a three-way interaction between 

the treatment variable (business closure), the BMI PGS, and a dichotomous indicator for whether 

or not an individual was overweight prior to losing their job.  Here, the “Overweight” variable is 

set equal to one if an individual is at or above the CDC BMI cutoff of 25 in 𝑡 − 1, and zero 

otherwise.  In addition, we assess the potential moderating roles of the pretreatment covariates 

Without PGS With PGS Not in cells In cells Regression-
adjusted

(1) (2) (3) (4) (5)
Business closed 0.303 0.0516 -0.0259 0.0123 -0.0459

(0.404) (0.399) (0.159) (0.146) (0.135)
BMI PGS 0.250 -0.000344 -0.0448 -0.106†

(0.181) (0.0713) (0.0502) (0.0543)
Business closed × BMI PGS 0.358 0.0236 0.111 0.164

(0.351) (0.143) (0.150) (0.144)
BMI (t-1) 0.915*** 0.925*** 0.894***

(0.0286) (0.0275) (0.0385)
Overweight (t-1) 0.536*

(0.277)
N 5758 5756 5756 5664 5664
Treated (50-60) 272 270 270 235 235
Off common support (%) 1.09 1.82 1.82 14.55 14.55
Median standardized bias 4.3 3.3 3.2 2.5 2.5

Table 5. The effect of a business closure on BMI by genotype
Cross-sectional (BMI) Longitudinal (Change in BMI)

Notes: Analytic sample consists of white, non-Hispanic male and female workers who were not self-employed and 
between the ages of 50-60 at t-1.  Coefficients in each column are from separate regressions. Specifications (1)-(2) do 
not control for baseline BMI, while specifications (3)-(5) control for BMI in t-1. Specification (4) performs exact 
matching on survey year and overweight status in t-1 and specification (5) additionally includes all conditioning 
variables from the propensity score matching in Table 1 as controls in the regression analysis. The 'off common 
support' row reports the share of treated individuals who are not considered in the estimation due to inappropriate 
matches. Individuals are considered overweight if their BMI in t-1 was greater than or equal to 25. Robust standard 
errors are in parentheses. †p<.10;  * p<.05;  ** p<.01; ***p<.001.
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age, gender, prior health status, and socioeconomic status (i.e. education, occupation, and 

household wealth) within this framework.  

The DDD results are reported in Table 6 by age group and sex and in Table 7 by 

socioeconomic status and self-reported health.  To facilitate accurate comparisons, in addition to 

exact matching on survey year and overweight status, we also perform exact matching on each 

subgroup variable. In other words, we apply the same three-step procedure, but compute the 

weights separately for each combination of year, overweight status, and grouping variable.  

 

50-60 50-63 Male Female
(1) (2) (3) (4)

Business closure -0.0723 -0.0781 0.408 -0.341
(0.189) (0.176) (0.364) (0.220)

PGS -0.0835 -0.0850 -0.190 0.00518
(0.0913) (0.0768) (0.140) (0.111)

Business closure × PGS 0.458* 0.336 0.953** 0.207
(0.215) (0.204) (0.332) (0.218)

Overweight (t-1) 0.514† 0.569* 0.334 0.898*
(0.281) (0.246) (0.271) (0.425)

Business closure × Overweight (t-1) 0.0691 -0.0226 -0.419 0.325
(0.263) (0.242) (0.421) (0.401)

Overweight (t-1) × PGS -0.0303 0.0502 -0.00847 -0.00796
(0.113) (0.103) (0.163) (0.148)

Business closure × Overweight (t-1) × PGS -0.438 -0.428 -0.996** -0.271
(0.292) (0.275) (0.373) (0.400)

BMI (t-1) 0.895*** 0.902*** 0.946*** 0.839***
(0.0376) (0.0322) (0.0309) (0.0530)

N 5664 6707 2527 3137
R2 0.875 0.873 0.905 0.869

Table 6. Effect of a business closure, BMI genotype, and overweight status on changes in BMI 
by age and sex

Age (t-1) Sex

The table presents the effect of a business closure on changes in body weight by age group in t-1 
and sex.  The analytic sample consists of white, non-Hispanic male and female workers who 
were not self-employed and between the ages of 50-60 at t-1 in columns (1) and (3)-(4) or 
between the ages of 50-63 at t-1 in column (2). Regressions include controls for population 
stratification in the genotype data as well as all controls listed in Table 1. Robust standard errors 
are in parentheses.  †p<.10;  * p<.05;  ** p<.01; ***p<.001.
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 Following the logic outlined in Eq. 6, the coefficients reported in both tables represent 

the following marginal treatment effects: 

 
Table 8. Interpretation of Marginal Treatment Effects from the DDD Model 

 Coefficient  Business 
closed PGS Overweight 

Business closure 1 0 0 
PGS 0 1 0 
Business closure × PGS 1 1 0 
Overweight 0 0 1 
Business closure × Overweight (t-1) 1 0 1 
Overweight (t-1) × PGS 0 1 0 
Business closure × Overweight (t-1) × PGS 1 1 1 
Notes: The PGS is standardized to have a mean of zero (PGS=0) and a standard deviation of one 
(PGS=1).    

	
 
Where our main coefficients of interest are “Business closure × PGS” and “Business closure × 

Overweight (t-1) × PGS”, which represent the marginal effect of a business closure for 

individuals with a high-risk genotype (PGS=1) who were either normal weight/underweight  

(BMI<25) or overweight/obese (BMI>=25), respectively.12  

Results show significant heterogeneity by weight category for various demographic and 

socioeconomic subgroups. Overall, we find the G × E	effect is significant for genetically-at-risk 

individuals who were not overweight prior to job loss.  Specifically, we find stronger effects for 

normal weight individuals who are between ages 50-60, male, college educated, white collar, in 

poorer health, and who are below the median in household wealth.  Notably, results in Table 6 

reveal the effect on BMI is only significant for men and for individuals who are not eligible for 

early Social Security claiming.  For every one standard deviation increase in the BMI PGS, the 

BMI of all individuals aged 50-61 prior to job loss increased by an average of 0.458 kg/m2 after a 

business closure and by 0.953 kg/m2 for men.  This result is in line with multiple studies that 

																																																								
12 Less than 1% of individuals in our analytic sample report being underweight, or have a BMI<18.5.   
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have linked unemployment to poorer health behaviors in men (for a review see Roelfs et al., 

2011), as well as evidence from the Whitehall II study and other longitudinal studies that suggest 

chronic life stressors affect weight gain more in men than women (Kivimäki et al. 2006; 

Korkeila et al. 1998; Van Strien et al. 1985).  Particularly among the older birth cohorts we 

observe in the HRS, work may be more crucial to the identity of men, eliciting a stronger stress 

response.  The stress of displacement from a business closure may be further compounded if 

individuals have a harder time finding reemployment and/or are not yet eligible for retirement 

benefits.    

Using the marginal treatment effects from these regressions, we extend the logic 

presented in Eq. 7 and estimate the ATT for individuals with a PGS=1 or PGS=2 by overweight 

status and subgroup (Table 9).  We fail to find a significant ATT for all individuals aged 50-60, 

but do find a significant ATT for high-risk men.  Men who were not overweight prior to job loss 

gain approximately 1.238 to 2.386 kg/m2 after displacement.  To contextualize this finding, for a 

hypothetical male who is 5’11’’and weighs 170 lbs. prior to job loss (BMI=23.71), this is 

equivalent to a 9-17 lb. weight gain, which is enough to place them in the overweight category 

post job loss. We also find significant ATTs for college educated and white collar workers two 

standard deviations out in polygenic risk (PGS=2).  This could in part reflect the loss of a major 

social role or a stronger social stigma from job loss among high SES workers.  Particularly at 

older ages, individuals with a higher social standing may have greater employment commitment 

and stronger social networks culled over the lifetime of their career, exacerbating the emotional 

impact of job loss (e.g. Hayes and Nutman 1981; Turner 1995).  
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Subgroup (t-1) N PGS=1 PGS=2 PGS=1 PGS=2
Age group

50-60 235 0.386 0.844 0.0165 0.0363
(0.326) (0.518) (0.245) (0.403)

50-63 293 0.258 0.594 -0.193 -0.286
(0.323) (0.511) (0.233) (0.378)

Sex
Male 98 1.238* 2.386** 0.0436 0.0550

(0.537) (0.827) (0.242) (0.371)
Female 124 -0.286 -0.113 0.00798 0.00236

(0.316) (0.502) (0.418) (0.680)
Education

College 46 0.940 1.768* 0.131 -0.0693
(0.637) (0.882) (0.377) (0.643)

No college 181 0.486 1.064 0.156 0.288
(0.419) (0.705) (0.287) (0.471)

Occupational status
White collar 142 0.415 1.186* -0.0736 -0.0616

(0.383) (0.600) (0.332) (0.549)
Blue collar 79 -0.461 -0.918 0.368 0.298

(0.493) (0.871) (0.370) (0.563)
Marital status

Married/Partnered 187 0.243 0.511 -0.00559 -0.168
(0.339) (0.536) (0.252) (0.414)

Not Married/Partnered 34 1.356* 1.762† 0.387 1.197*
(0.573) (0.911) (0.332) (0.516)

Health Status
Excellent/Very Good 136 -0.00222 0.300 -0.0846 -0.274

(0.362) (0.591) (0.345) (0.552)
Good/Fair/Poor 88 1.197 1.938† 0.504† 1.003*

(0.731) (1.092) (0.279) (0.463)
Household wealth

Above median 96 0.161 0.205 -0.201 -0.109
(0.392) (0.603) (0.325) (0.542)

Below median 130 0.809† 1.881* 0.137 0.214
(0.478) (0.816) (0.351) (0.577)

Table 9. Treatment effects by overweight status and genotype for various demographic and socioeconomic 
subgroups 

Not Overweight Overweight

Notes: The table reports the effect of job loss on BMI by subgroup.  Each row contains the ATT for the 
subgroup by genotype and overweight status prior to job loss.  The number of treated observations on 
common support for each subgroup is displayed in the first column. In addition to survey year and 
overweight status, exact matching is also performed on the subgroup variable.  With the exception of the 
50-63 year old age group, ATT is calculated for white, non-Hispanic male and female workers who were 
not self-employed and between the ages of 50-60 at t-1. Regressions include controls for population 
stratification in the genotype data as well as all covariates listed in Table 1.  Robust standard errors are in 
parentheses. †p<.10;  * p<.05;  ** p<.01; ***p<.001.
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Not surprisingly, we find individuals who are not married/partnered at the time of job 

displacement—both in the normal weight and overweight categories—are more likely to gain 

weight.  Spouses often provide financial and emotional support, mitigating strain from a job loss.  

Furthermore, normal weight workers below the median in household wealth gain 0.809-1.881 

kg/m2 more than individuals who are not unemployed, a finding that resonates with Gallo et al. 

(2006) who find involuntary job loss in the HRS is associated with depression symptoms among 

individuals with below median net worth only.  Finally, we also find some evidence that 

individuals in the lowest self-rated health categories (good, fair, or poor) are significantly more 

likely to gain weight after a job loss, perhaps in part because job loss aggravates pre-existing 

adverse health behaviors (Deb et al. 2011).    

  
 
Endogenous Job Loss 

 As a counterpoint to our business closure estimates, we also present findings from job 

loss due to quitting, poor health, or lay offs/firings.  In all three cases, job loss is either tied to 

worker health, or may be linked to worker characteristics or worker incompetence, potentially 

biasing findings.  Particularly with the addition of genotype data, genes may be acting as proxies 

for other unobserved rGE or G × E phenomena.  For all three specifications, we use the same 

DDD matching strategy outlined above, with the exception that an individual is placed in the 

respective treatment group if they report no longer working for their previous wave employer 

because they quit, were in poor health, or were laid off/fired from their job.  

  

 

 



	 34 

 

The results presented in Table 10 paint a considerably different picture from the G × E 

model with business closures. We find no evidence of a G × E interaction for high-risk 

genotypes who quit or were laid off.  There is evidence of a small but significant weight loss 

(0.350 kg/m2) for individuals with average polygenic risk who quit or left their job voluntarily.  

For individuals who report leaving their job due to poor health, we find evidence of a G × E 

interaction that goes in the opposite direction of individuals who were displaced from a business 

closure. A one standard deviation increase in genetic risk reduces BMI by 0.895 kg/m2 for 

workers in poor health.  This outcome is not surprising given individuals afflicted with chronic, 

Quit Poor Health Laid Off
(1) (2) (3)

Treatment -0.350* 0.525 0.276
(0.175) (0.382) (0.294)

PGS -0.0719 -0.0977 -0.133
(0.0853) (0.129) (0.102)

Treatment × PGS 0.0103 -0.895* -0.0945
(0.162) (0.446) (0.364)

Overweight (t-1) 0.206 0.161 0.0603
(0.230) (0.339) (0.246)

Treatment × Overweight (t-1) 0.166 -0.235 -0.0971
(0.269) (0.457) (0.345)

Overweight (t-1) × PGS 0.0159 -0.00199 0.140
(0.112) (0.187) (0.128)

Treatment × Overweight (t-1) × PGS 0.282 0.531 0.0717
(0.266) (0.566) (0.398)

BMI (t-1) 0.923*** 0.936*** 0.967***
(0.0272) (0.0285) (0.0259)

N 5337 4797 5559
R2 0.880 0.890 0.857

Table 10.  Effect of job loss due to quitting, poor health, or a lay off on BMI

Notes: The table presents the effect of endogenous job loss on changes in body weight. 
"Treatment" referes to the specific type of job loss in the corresponding column.  Analytic sample 
consists of white, non-Hispanic male and female workers who were not self-employed and 
between the ages of 50-60 at t-1.  Regressions include controls for population stratification in the 
genotype data as well as the covariates listed in Table 1.  Robust standard errors are in 
parentheses. †p<.10;  * p<.05;  ** p<.01; ***p<.001..
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debilitating, or life-threatening illnesses at older ages generally experience significant weight 

loss.  Overall, these findings underscore the complexity of the social and biological mechanisms 

surrounding job loss and the importance of addressing selection bias in the environmental 

exposure to accurately capture G × E effects in observational data.  

  

Discussion 

 
 We find evidence that job displacement from a business closure at older ages exacerbates 

polygenic risk for weight gain in otherwise normal or healthy weight subgroups.  Men aged 50-

60 years one to two standard deviations out in polygenic risk gained 1.238-2.386 kg/m2 more 

than comparable men who were not displaced from their jobs.  This translates to a 9-17 pound 

weight gain for a hypothetical 5’11’’ male weighing 170 pounds before job loss.  Individuals 

who gained weight after a job loss were also more likely to be in worse health, single, and at the 

bottom half of the wealth distribution. In the long term, because weight gain is progressive and 

weight loss difficult to maintain, weight gain of this magnitude could have substantial long-term 

effects on cardiovascular health.  

 The high unemployment rate and tremendous job destruction experienced during the 

Great Recession have left an anemic labor market in its wake. More than five years after the end 

of the Great Recession, both mean and median duration of unemployment spells remain at 

unprecedented levels (Farber 2015).  Older adults in particular have faced longer stretches of 

unemployment and steeper wage losses once reemployed.  Half of unemployed adults aged 50 to 

61 experienced more than nine months of job search during the Great Recession, compared to six 

months for workers aged 25 to 34; similarly, median monthly earnings declined 23 percent after 

an unemployment spell for reemployed workers aged 50 to 61, compared with just 11 percent for 
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workers aged 25 to 34 (Johnson and Butrica 2012).  The substantial increase in the size of the 

older workforce and the severity of the recent recession makes understanding the effects of job 

loss on BMI crucial to deciphering current trends in cardiovascular health in the aging US 

population. 

Limitations of these analyses should be mentioned.  In general, there is significant 

complexity surrounding obesity and aging such that differences in BMI may not indicate an 

actual change in body fat. Higher BMI at midlife is a risk factor for age-related disease and early 

mortality, however at older ages it might be somewhat protective of mortality because age-

related diseases and aging itself are wasting conditions that induce significant weight loss.  

Therefore, while incrementally higher BMI in midlife is more likely a measure of risk for 

disease, later in life it may actually signal the absence of disease.  In addition, individuals 

generally lose muscle mass with increasing chronological age, meaning older individuals could 

maintain a constant BMI while simultaneously losing lean body mass and gaining a greater 

portion of adiposity (Kyle et al. 2003).  However, if anything we would expect any increases in 

BMI from a job loss alongside these countervailing trends to bias coefficients downward, which 

may in part explain the null findings we report for females and other subgroups (e.g. workers 

over age 62) in our sample.  

In addition, the relatively nominal findings we report for the entire population may in part 

reflect a greater culmination of environmental and lifestyle factors on adiposity in older adults 

that overwhelm any genetic effects.  The genomic influence on BMI has been shown to both 

weaken over the life course and increase in magnitude since the current obesity epidemic began 

in the mid-1980s (Guo et al. 2015).  While performing exact matching on survey year may in 

part account for differences in the obesogenic environment across cohorts, our sample size of 
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treated individuals is too small to explore more detailed cohort analysis.  Thus, similar studies 

that are able to test the impact of job loss on genetic moderation of anthropomorphic traits in a 

larger sample of both younger and older populations are needed.  In particular, identifying when 

in the life course job loss and genetic variants affect body weight the most may inform public 

health initiatives that target unemployed persons for more aggressive cardiovascular screening 

and interventions aimed at reducing long-term weight gain.  
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