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ECONOMETRIC MODELING AS INFORMATION AGGREGATION

by

Ray C. Fair and Robert J. Shiller

I. Introduction

Structural econometric models often make use of large information sets

in forecasting a given variable. The information sets used in large-scale

macroeconometric models are typically so large that the number of

predetermined variables exceeds the number of observations available for

estimating the model. Estimation can proceed effectively only because of

the large number of a-priori restrictions imposed on the model, restrictions

that do not work out to be simple exclusion restrictions on the reduced form

equation for the variable forecasted. The
a-priori restrictions make the

model an aggregator of information, an aggregator that could not have been

produced without the restrictions.

Are these restrictions basically right in producing derived reduced

forms that depend on so much information? Is the large amount of

information being applied usefully, for the purpose of forecasting, or is

most of it extraneous? With enough
observations, it is possible to test all

the overidentifying restrictions of a model. One need only compare the

unrestricted estimate of the reduced form against the restricted reduced

form. The problem with this approach in practice is that with large-scale

econometric models there are not enough observations to estimate the

unrestricted reduced form, even if this can in principle be done.1 Also,

11n practice most structural macroeconometric models are nonlinear,
which means that analytic expressions for the reduced form equations are
generally not available.
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for present purposes we are not interested in testing models against such

general alternatives. We would like to test models against much simpler

alternatives. We cannot, of course, compare a structural model against all

possible simpler alternatives, but parsimony and a sense of relative

importance of predetermined variables may lead to a specification of an

information set that would be in most simple models.

What variables should one include in a simple model to test a more

complicated model against? Advocates of autoregressive forecasting models

are one possible source of such an information set. Nelson (1972) and

Cooper and Nelson (1975) argued that a simple univariate autoregression

would be a good forecaster of real GNP, in which case the information set

consists only of lagged values of real CNP. Vector autoregressive

techniques restrict the elements of the vector of explanatory variables by

excluding all but the most "important" variables. Importance is apparently

judged intuitively. Thus, for example, Sims (1980) confines the elements in

his vector to real CNP, the GNP deflator, the unemployment rate, the nominal

wage, the import price deflator, and the money stock (all these variables

except the unemployment rate are in logs). Litterman (serial) before August

1984 confined the elements of his vector to real GNP, the GNP deflator, the

unemployment rate, real nonresidential fixed investment, the money stock,

and the three-month Treasury bill rate. In August 1984 Litterman (1984)

added the value of the trade weighted U.S. dollar and the Standard and

Poor's 500 stock price index. This is the VAR model that is now being used

by Sims (serial) for periodic forecasts. In these and other cases the list

of variables included sounds like the list of variables in a simple textbook

macroeconomic model.
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The model-free forecasting methods are motivated by a great mistrust of

the overidentifying restrictions imposed by macroeconometric modelers - - see

for example Liu (1960), Sims (1980), (1986). No case, however, has ever

been made that the overidentifying restrictions are so inaccurate that one

is better off restricting the forecasting equations as done in the vector

autoregressive methodology. We examine this issue below.

In Section II we describe our methodology for testing models. The

models that are tested are discussed in Section III. In this section we

introduce an "autoregressive components" (AC) model, which is a

nontheoretical simple model that is based on the idea that there may be

important information in the components of GNP. The results of the tests

are presented in Section IV.

II. Tests of Models as Information Agregators

Consider an econometric model forecast made with information through

period t-1. Let Z denote a small information vector of dimension k (small

relative to the number of predetermined variables
in the model), where the

variables in Z are known as of the end of period t-1. Consider the

regression equation:

(l) + ZS + u , t =
T1, ..., T

where EYu and EZu equal zero and where -y is a scalar and S is a k x

vector of coefficients.2 We will estimate such
regression equations below.

2We refer to equation (1) as a regression 'equation' rather than as a
regression 'model' to avoid confusion with the econometric model that gave

rise to Y. The equation may be considered as just the projection or
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There are four possible outcomes when this equation is estimated: 1) neither

the estimate of -y nor the estimate of S is statistically significant, 2)

both estimates are significant, 3) the estimate of -y but not of 5 is

significant, and 4) the estimate of S but not of -y is significant. We first

explore the meaning of each of these outcomes.

Consider first the extreme case in which the true model is simply Y =

Z6 + u, so that E(YtIYt, Zt) Z5. If the model under consideration uses

only information in Z or in a subset of Z and if Y is simply a linear

combination of some or all of the variables in Z, then and Z will be

perfectly correlated and the coefficients in equation (1) cannot be defined

uniquely. If is (incorrectly) based on variables not in Z, then the

perfect collinearity is broken, and (the true in the theoretical

regression (1)) will be zero. Therefore, if the true model is very simple -

- remember that Z is meant to be a small subset of the predetermined

variables in a typical macroeconometric model - - -y will either be zero or

not capable of being determined. This implies that rejecting the null

hypothesis H01 that -y = 0 can be construed as showing that the true model

contains variables other than those in Z and that the model under

consideration captures at least some of these additional variables.

Now relax the assumption that the true model is simple. Consider the

case where Y E(YlI), where is a vector of information variables that

includes as elements the elements of Z and other variables. In this case

is not perfectly collinear with Z, and in the theoretical regression -y

A

theoretical regression of Y onto and Z . That is, the coefficients -y
and S in the theoretical regression are dehned as coefficients that

minimize Eu.
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is one and 6 is zero. This implies that
rejecting the null hypothesis H02

that S = 0 can be construed as showing that the model under consideration is

missing some information included in
Z.

Although the hypotheses and H02 are fairly straightforward to test,

they are extreme in that they disregard estimation error in the model that

produced Y.3 We now turn to the realistic case in which the forecast is

based only on estimates of the coefficients of the model, not the true

values themselves.

Since we do not want to take account of the estimation method used to

produce the model that gave rise to Y, it is essential that the model be

estimated with information only through period t-l.4 In order for the

forecast to be based only on information through period t-l, the model

generating the forecast must not be estimated beyond period t-l. One

possibility, which we will call "full sample rolling regression," is to use

the maximum available number of observations for each period to estimate the

model each period: for the forecast for period T1 the model is estimated

classical statistics, the forecast Y from a model is not
regarded as the conditional expectation E(YjI), but rather as an estimate

of this conditional expectation. In Bayesian statistics, the forecast
may indeed be regarded as E(YII ), but in this case the expectation
operator E is construed as operating over parameter values as well as values
of the noise term u. Thus, the parameters -y and 6 have their hypothesized

values under H02 only if the Eu is minimized over the prior distribution
as well. In real world data, we observe only one drawing from the prior
distribution.

4For example, suppose the sample period used to estimate the model
extends through the sample used to estimate (1). Suppose the estimation
method for the model uses up all degrees of freedom and obtains a perfect
fit in its forecasts. Our estimates of (1) would show a spurious domination
of the model over the information set Z. As long as we regard the
estimation method for the model as a black box, there is no way to take
account of the degrees of freedom used up in estimation of the model.
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using data from T0 through T1-l, for the forecast for period T1+l the model

is estimated using data from T0 through T1, and so on. (Given the data set,

T0 is meant to be the first observation that can be used in the estimation,

after accounting for lags.) This is the procedure followed for the

empirical results in Section IV. Another possibility is a "fixed sample

size rolling regression," where the starting observation is increased by one

each time the ending observation is. A third possibility is simply to

estimate the model once through period T1-l and use this version for all the

future forecasts. We have chosen the full sample rolling regression because

it makes maximum use of the available data. Unless otherwise noted,

"rolling regression" in what follows will refer to full sample rolling

regression.

Having a forecast be based only on information through the previous

period may lead to a situation in which, paradoxically, a model seems to be

dominated by its own information set. Assume again that the true model is

simply Z& + u and that the model under consideration is specified

correctly. Assume that Y Z81, where 8t-l is estimated by rolling

regressions. Even though the structural model makes use of the same

information as in Z, we will not observe perfect collinearity between

and Z, as we would if there were no estimation error, since the parameter

used to define is stochastic. In this case -y in the theoretical

regression will be zero. Thus, the rolling regression forecast j. dominated

by its own information set in the sense that there is a linear combination

of the information variables that does a better job forecasting than does

the rolling regression. When data are used to estimate -y and 8, Z has an

advantage over because the regression can choose the coefficients of Z
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to fit the current observations, while
the rolling-regression coefficients

that determine
are determined by past observations.

Let us again relax the assumption that the true model is simple. We

saw above that when =
E(YtII ), where I includes and other variables,

then y = 1 and 8 0 in equation (1). What can we say in the presence of

estimation error? In this case -y tends to be less than one even though the

model uses more information than that
contained in Z. To see this, it is

useful to regard Y as equal to E(YjI) + where is the "estimation

error." Assume that the estimation error is uncorrelated with current

information I and with the current residual u in (1). This assumption

seems likely to be a good approximation. In the case where the econometric

model is a linear regression model of
Y onto a vector I with i.i.d. errors

independent of all past, present, and future values of I, we can prove the

assumption. In this case =
-fi), where (fl. -) is a linear function

of lagged error terms in the regression over the entire estimation period

for It follows that is uncorrelated with I and u. With this

assumption, we can use standard errors-in-variables
results (as applied to

theoretical regressions rather than regression estimates) to assess the

impact of estimation error on equation (1).

So long as I includes relevant information not in Z (so that a

regression of on E(YtJIt) and Z would produce -y 1 and 8 0), then we

would expect to see a positive coefficient on In fact, the coefficient

of will equal 1 -
2xll/(l+v2x11) where is the variance of

, x11
is the upper-left corner element of E(Xxt)1, and [E(YtII) ZJ.
Thus, the coefficient of Y must lie between zero and one. Moreover, if one

then expands Z to include another element also in It' -y can never increase
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5 .

and will generally fall. We will see this happening in the tables below,

by comparing rows with different numbers of Z variables.6 As one continues

to add other variables to Z that are in the coefficient -y will tend to

fall until, when all are included, y will equal zero as long as is not

zero. We test the hypothesis -y 0 and not y = 1, because only the former

hypothesis tells us something important even in the presence of estimation

error.

If i.'2 is small, then, other things being equal, -y will be close to one.

We may thus interpret a coefficient of close to one as consistent with

the notion that the model has small estimation error. If i.'2 is large,

will be close to zero.7

Under the above assumptions, S equals -i2/(l+i/2X11)X21, where x21 is

5Adding another. variable to a random vector can never decrease the
diagonal elements, corresponding to the original variables, of the inverse
of the covariance matrix. If we begin with an hxh positive definite
symmetric matrix A and add another row and column to produce an expanded
positive definite symmetric matrix B whose first h rows are [A cJ and whose

last row is [c' e], (e a scalar) then the upper-left hxh submatrix C of B1

is (A-ce 1c')1. Using the rule for inverting the sum of two matrices, C

-l -l -l -l . . -1A + A c(e-c'A c)c'A . By Schwartz's inequality c'A c � e, so the

second term in the expression for C has nonnegative diagonal elements.

60f course, the results for the theoretical regression do not imply
that estimated must fall in all samples as variables are added.

7mis result is an application of the simple errors in variables
results for multiple regressions. Recall that if there is an error in a
single variable in a multiple regression, the coefficient of that variable
is biased towards zero. This result is not normally useful in a multiple
regression context, since usually errors in variables are not confined to a
single variable. If there are errors in more than one variable, then the
direction of bias for any variable cannot be predicted. In our application,
we need only assume that the we observe the variables in the information set

without error, not that they measure correctly what they purport to
measure.
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the k x 1 vector consisting of the
second through k÷lth element of the first

column of (E(X'x))* This coefficient is small if is small, and it

approaches as is increased.8 Thus, the larger is the variance

of the estimation error in the more likely it is that Z will be

significant in our tests of
H02 even when Z is used properly in the model.

We thus see that if the true model contains more variables than those

in Z and if the model under consideration
captures at least some of these

additional variables, then the estimate of -y is likely to be significant

with a big enough sample. We will refer to the test of the hypothesis
H01

that y equals zero as the "information
aggregation" (IA) test. If the

hypothesis is rejected, i.e. the estimate of -y is significant, this is

evidence that the model is a useful information
aggregator. The IA test is

more important than a test of
H02 because only H01 is not affected by

estimation error: if -y 0 with the true model, then
-y 0 with the

estimated model. The estimate of 6 may also, of course, be significant,

since even if the model uses correctly the information in Z, the forecast

has the disadvantage of not being based on the model estimated through

period T. If the estimate of 6 is not
significant, this may mean that the

variables in Z affect Y nonlinearly and that the model adequately captures

this nonlinearity. It may also mean that the variables in Z simply do not
affect after the model has accounted for all the variables in its

8Note the
identity x21x11 -

M221M21 where M = E(XXt) is

partitioned conformably to E(XI'X)1. Thus, as is increased, S
approaches the vector of projection of

E(YII) onto Z.
A

is as we

would expect from Theil's specification error theorem if were omitted
from the regression. Indeed, putting a measurement error onto E(YtIIt) with
a very large variance is equivalent to dropping it from the regression.
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information set.

We can summarize the implications of this discussion for estimation of

equation (1) as follows. If both the estimates of -y and 6 are

insignificant, then either there is a collinearity problem among Y and Z

or neither the variables in the model nor those in Z seem to affect If

the estimate of & but not of -y is significant, the model may still be

correctly specified if the truth is simply Z16 + u and the model

correctly captures this. On the other hand, this result does suggest that

the truth is not very complicated and that a simple model is all that is

needed. If both the estimates of -' and 6 are significant, this is evidence

in favor of the proposition that the model incorporates relevant information

not in Z. This conclusion is also true if the estimate of -y but not of 6

is significant. The only difference if the estimate of 6 is insignificant

is that the variables in do not seem to affect Y in a linear way and may

in fact not affect Y at all.

Estimation Methods

For the estimation of (1), and Z are assumed to be uncorrelated

with u. In the empirical work below we have been careful to make sure that

is based only on information through period t-1 and thus not to be based

on variables that may be correlated with u. We are also assuming that

is serially uncorrelated. We shall include in Z a constant term and lagged

values of Y as well as current and lagged values of other variables. If

there are enough lags included in Z, then under H lagged values of Ut may

be regarded as in Z, so that since u is uncorrelated with Z, u is

uncorrelated with its own lagged values as well. Presumably the structural
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model is good enough that the forecast errors - are not themselves

serially correlated, so that under H02 the residuals u are serially

uncorrelated.

Lack of serial correlation of u and lack of correlation between and

and between Z and u does not, however, imply that u is independent of

Y and Z or even that u is uncorrelated with future values Y . and Z .,t t t t+J t+J
j > 0. Thus, the traditional assumptions of the regression model, which

would assure that ordinary least squares gives unbiased estimates of the

coefficients -y and 5, are not assured here. Moreover, there is no

implication of these assumptions that the error term u should be

homoskedastjc.1° To take account of possible heteroskedasticity, our

hypothesis tests will be Wald tests of the restrictions using an estimate of

the asymptotic variance of X'u/Jn, along the lines described in White

(1982), where X is the k-i-i x T-T1-l matrix whose tth row is Zt), u is

the (T-T1-l)-element vector whose tth element is u, and T-T1-l is the

number of observations. We are assuming that Euu' is diagonal, and so the

estimate of the variance of X'u/Jn is

9Granger and Newbold (1986, p. 281) have warned that serial
uncorrelation of u is not valid for many real world models. Uncritical
application of our method to models with serially correlated errors could
thus lead to a spurious rejection of

H02.

101n fact, it seems likely that the error term will be heteroskedastic.
If, for example, in equation (1) -y — 1 and S 0, then the error term is
simply the forecast error from the model, and in general forecast errors are
heteroskedastic For the case in which the model is the classical linear
regression model, the nature of the heteroskedasticity can be inferred from
the X matrix. Ramsey's (1969) RESET specification test deals with
heteroskedasticity by regressing Theil's (1965) BLUS residuals on
information variables (in his case, variables related to powers of the
fitted values). We cannot use such a procedure here because we are
regarding the model as a black box for which BLUS residuals cannot be
calculated. In addition, we are using rolling regressions, which does notfit into the procedure.
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A in
(2) V = n XeeX

t=l

where e - X [8 (X'X)X'Y)] is the residual in an ordinary least

squares regression of Y on X. The Wald test statistic for a hypothesis that

RU = 0 (where R is a q x k+l matrix) is:

(3) W = n'R'(R(X'X/n)1V(X'X/n)1R')1R

Other assumptions are also needed for the asymptotic distribution theory for

the Wald test to imply that W is asymptotically x. Such assumptions (see,

for example, White [1984], p. 125) do not seem unreasonable in the present

context, except in special cases) The assumptions required concern such

things as the asymptotic independence of [X u) from [Xt u] (so that,

for example, the relation of u to future dies out appropriately with

n), the convergence of EX'X/n to a positive definite matrix (so that, for

example, all of our observations of independent variables do not become zero

after a certain time period), and the finiteness of certain moments. The

assumptions rule out Unit roots for the time-series representations of the

processes. We assume for the most part that all processes are stationary

around a trend, although results will also be reported below for differenced

information sets Z.

Note that the use of the asymptotic distribution theory in connection

11
A

In the special case noted above in which is generated by a full-
sample rolling regression on Z, the X'X/n matrix will not have a

nonsingular probability limit.
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with (1) is straightforward in connection with the fixed sample length

rolling regression case, but not the full-sample rolling regression case

that we actually use. In the former, we might assume that the variables

discussed above in connection with the theoretical regression equation (1)

are jointly stationary. On the other hand, the case we actually apply, that

of full-sample rolling regression, would generally imply if the true model

is unchanging that ii declines with time and that Y is getting better and

better through time as a forecast. Ultimately, the estimation error

disappears completely, so that asymptotic distribution theory would predict

that if makes use of some information not in Z, then plim = 1.0. Some

Monte Carlo experiments where the true model generating Y is a simple

linear regression model do confirm that nonetheless in finite samples the

coefficient -y does tend to lie between 0 and 1 when includes some but not

all the variables used in a rolling regression to determine The

experiments also show that i tends to fall as more variables are added, in

accordance with our theoretical results above. The only anomaly that was

found was that the estimated -y showed a tendency to become negative when Z

included all variables used to determine We suspect that this

'2One experiment, with 10,000 replications, was a follows. In each
replication a new 20x2 matrix Z was generated, where the elements of the
first column are i.i.d. standard normal variables and the elements of the
second column are all 1.0. An independent 20-element column vector u of
i.i.d. standard normal variables was created. Y was defined as Z[l 0]' + u.
Rolling regressions of Y on Z were run with samples l,...,j, j = 10,..., 19,

A
and the estimated coefficient vector was denoted .. A 10-element vector Y
was generated whose ith element is Z .3 .. Whei the bottom 10-elementl0+i 9+i

A

subvector of Y was regressed on Y together with the bottom lO-element
A

submatrix of Z, the average value of the coefficient of Y was -3.3 and of
A

the random variable in Z was +4.3. The coefficient of Y was negative in 91%
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anomalous result is analogous to the small sample bias that tends to produce

a negative coefficient when white noise is regressed on its own lagged

value.

Comparisons of Different Forecasts

Nothing that we have said so far precludes Z being replaced by a

forecast from a second model. If the coefficient estimate for one forecast

is significant and the coefficient estimate for the other forecast is not,

one forecast can be said to "dominate" the other. Under the hypothesis that

the coefficient of one forecast is one and the coefficient of the other

forecast is zero, the one forecast is said to "encompass" the other in the

13
terminology of Chong and 1-lendry (1986, p. 677). When equation (1)

consists of two forecasts, our procedure of comparing models is similar to

that of Nelson's (1972) and Cooper and Nelson (1975). These studies,

however, allowed the sample period used to estimate the model to overlap

with the sample period used to estimate equation (1). The forecasts they

used for period t were not based only on information through period t-l. In

the comparisons below we use rolling regressions for all models, and the

forecasts from all models are based only on information through the previous

period. The studies also did not account for the likely heteroskedasticity

of the replications, although a conventional t-statistic on the
A

coefficient of Y was significant at the 5% level in only 17% of the

replications.

13Testing whether a model encompasses another is not the same as
comparing the size of the forecast errors. Hendry and Richard (1982, p. 19)
emphasize that an encompassing model will variance dominate but a variance
dominating model need not encompass.
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of the error term in equation (1), which we do here.14

III. The Models

In order to carry out the above tests, we need forecasts from models

that are based only on information
through the period prior to the forecast

period (through period t-l for a forecast for period t). There are four

ways in which future information can creep into a current forecast. The

first is if actual values of the
exogenous variables for period t are used

in the forecast. The second is if the coefficients of the model have been

estimated over a sample period that includes observations beyond t-1. The

third is if information beyond t-l has been used in the specification of the

model even though for purposes of the tests the model is only estimated

through period t-l. The fourth is if information
beyond period t-l has been

used in the revisions of the data for
periods t-l and back, such as revised

seasonal factors and revised benchmark
figures.

The way we have handled the
exogenous-variable problem is to add

autoregressive equations for the exogenous variables to the model. For each

exogenous variable in the model an eighth-order
autoregressive equation

(with a constant term and time trend included) has been postulated. When

these equations are added to the model, the model effectively has no

exogenous variables in it. This method of
dealing with exogenous variables

in structural models was advocated
by Cooper and Nelson (1975) and McNees

(1981). McNees, however, noted that the method handicaps the model: "It is

14Cooper and Nelson (1975) emphasized that their forecasts usingstructural models were "ex ante"
predictions. By this, however, they meant

only that exogenous variables were forecast
using autoregressions and thusthat actual future values of the exogenous variables were not used. Their

forecasts were not ex ante in the estimation error.
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easy to think of exogenous variables (policy variables) whose future values

can be anticipated or controlled with complete certainty even if the

historical values can be represented by covariance stationary processes; to

do so introduces superfluous errors into the model solution." (McNees 1981,

p. 404). The Fair model is thus to some extent handicapped in the following

tests.

For the coefficient-estimate problem, we use rolling regressions. For

the forecast for period t, we estimate the model through period t-l; for the

forecast for period t+l, we estimate the model through period t; and so on.

By "model" in this case we mean the model inclusive of the exogenous-

variable equations. The beginning observation is not changed for the

regressions, and so in the terminology of the previous section we are doing

"full sample rolling regressions."

The third problem - - the possibility of using information beyond period

t-l in the specification of the model - - is more difficult to handle.

Models are typically changed through time, and model builders seldom go back

to or are interested in "old" versions. We have, however, attempted to

account for this problem in this paper regarding the Fair model. We

consider two versions of the Fair model, the current version and the version

that existed as of the second quarter of 1976. By comparing the results for

the two versions, we can see in some sense how important the specification

changes that have been made since 1976 are.

We have done nothing about the data-revision problem in this paper.

The data that have been used are the latest revised data. It would be

extremely difficult to try to purge these data of the possible use of future

information, and we have not tried. Note that it is not enough simply to
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use data that existed at any point in time
(say period t-l) because data on

the one-period-ahead value (period t) are needed to estimate equation
(1).

We would have to try to construct data
for period t that are consistent with

the old data for period t-.1.

We now discuss the various models used for the tests in this paper.

The models consist of the two versions of the Fair model, an "autoregressive

components" model, and three versions of a VAR model.

Th Fair Model - - Current Version (FAIR-CUR)

The Fair model as it existed in 1984 is described in Fair (1984). A

few changes have been made to the model over time as it has been updated and

reestimated. The version used here is based on data through 1986 II. The

model consists of 30 stochastic
structural equations and 98 identities. For

purposes of this paper two stochastic equations had to be changed. The

interest rate reaction function,
an equation explaining the behavior of the

Federal Reserve, has a dummy variable in
it to pick up a possible change in

Fed behavior between 1979 IV and 1982 III. This dummy variable was dropped

because it contained future information
for any sample period that ended

prior to at least 1983 I.
Likewise, the equation explaining capital

consumption has a number of dummy variables in the
l980's to try to pick up

the changing effects of depreciation laws. These dummy variables were also

dropped.

Dropping the above-mentioned dummy variables left the model with 97

exogenous variables. For each of these variables an eighth order

autoregessive equation was postulated with a constant term and time trend
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included.15 When these equations are added to the model, there are 127

stochastic equations, and this is the version that was used.

For the results below the model was estimated 57 times. For each of

the estimation periods the beginning observation was always 1954 I. The

first estimation period ended in 1972 I, the second in 1972 II, and so on

through the 57th in 1986 i.16 (The estimation techniques are two stage

least squares for the 30 structural equations and ordinary least squares for

the exogenous-variable equations.) This allowed 57 one-quarter-ahead

forecasts to be made, starting in 1972 II, each forecast based only on

estimates through the end of the previous quarter.

The Fair Model -- Old Version (FAIR-OLD)

The first version of the Fair model was presented in Fair (1976). This

version was based on data through 1975 I. One important addition that was

made to the model from this version was the inclusion of the interest rate

reaction function in the model. This work is described in Fair (1978),

which is based on data through 1976 II. Some changes have been made to the

15Simpler equations were estimated for four exogenous variables. For
three of the variables the equations merely consisted of a constant term,
and for the fourth variable the equation was a fourth-order rather than an
eighth-order autoregressive equation. This was done because of collinearity
problems. For the early sample periods there were not enough non-zero
observations to allow eighth-order equations to be estimated. The four
variables are a dummy variable for 1971 IV, a dummy variable for 1972 I,
wage accurals less disbursements of the state and local government sector,
and housing investment of the financial sector. The latter variable is the
one for which a fourth-order equation was estimated.

16The import equation contains a number of dummy variables to pick up
the effects of dock strikes. The last dummy variable is for 1972 I, and
this is the main reason the first estimation period was chosen to end in
1972 I. The last estimation period ended in 1986 I because the overall
sample period ended in 1986 II.
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model since 1976 II, and it is of interest to know how important these

changes have been. Fortunately, we can work with this early version of the

model to examine this question.

The version of the model in Fair (1976) consists of 26 structural

stochastic equations. With the addition of the interest rate reaction

function, there are 27 stochastic equations)-7 There are 106 exogenous

variables, and for each of these variables an eighth order autoregressive

equation with a constant and time trend was added to the model. This gave a

model of 133 equations, and this is the version that was used.

The first estimation period ended in 1976 II, which is the quarter in

which the model could definitely be said to exist. This allowed the model

to be estimated 40 times (through 1986
I).

To conclude, the forecasts front FAIR-OLD can be said to be forecasts

that are truly based only on information
through the previous period (except

for the data revision problem))-8
This may be the first time that a model

this old has been tested.

compares to 30 structural stochastic equations for the currentversion of the model. In other words, three more variables are endogenous
in FAIR-CUR than are endogenous in FAIR-OLD.

18Thjs statement needs to be qualified slightly. Although the
structural stochastic equations used for FAIR-OLD here are exactly as in
Fair (1976) and (1978) - - same left hand side and right hand side variables- - the data revisions in the National Income Accounts since 1976 have
required slight modifications to some of the identities in the model. Also,
the identities in Fair (1976) for the government sector are for the total
government sector, whereas in FAIR-OLD here there are separate identities
for the federal government sector and the state and local government sector.
This disaggregation of the government sector does not affect anything exceptthat it means that there are

more exogenous variables (and thus more
exogenous-variable equations) in FAIR-OLD than there were in Fair (1976).
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The Autoregressive Components Model (AC)

Time series models like VAR models typically ignore the components of

GNP. For example, the current VAR model used by Sims (serial) includes only

nonresidential fixed investment among the various components. Including

many components in a VAR model rapidly uses up degrees of freedom, and this

is undoubtedly one of the main reasons the components are seldom used. A

possible alternative to the VAR approach, but one that also does not use

much economic theory, is to model each of the components of real GNP by a

simple autoregressive equation and then determine GNP as the sum of the

components.

For present purposes we have used a slightly more sophisticated version

of what we will call the "Autoregressive Components" (AC) model. Each

equation for a component is an eighth order autoregressive equation with a

constant and time trend added and with the first four lagged values of real

CNP added. The components are three consumption categories, eight

investment categories, imports, exports, and four government spending

categories. All the 17 components are in real terms. (No logs were taken

for the AC model.) Real GNP is determined by the GNP identity. Each

stochastic equation of the AC model has only 14 coefficients to estimate,

and so there is no serious degrees of freedom problem. The reduced form

equation for CNP has 136 lagged components in it, but this equation is never

estimated and so there is no problem.

The AC model was estimated 57 times using the same sample periods as

were used for FAIR-CUR. The model was then used to make 57 forecasts of

real GNP.

The AC model is of interest in two respects. First, if the Fair model



22

turns out to dominate the VAR models (which it does), it is of interest to

know if this is due simply to the fact that the Fair model is dealing with

the components of GNP. If this is the case, then the AC model should do

better than the Fair model, and this can be tested. The AC model carries

the components idea even further by including eight lags of the components,

which the Fair model does not. Second, the AC model is to some extent a

competitor of the VAR model within the class of non theoretical models, at

least regarding the predictions of GNP. Both models are based on very

little economic theory. It is thus of interest to see if one model

dominates the other.

The VAR Models (VAR4. VAR2. and VAR1)

We consider three VAR models in this paper. The first, VAR4, is the

same as the model used in Sims (1980) except that we have added the three-

month Treasury bill rate to the model. There are seven variables in the

model: real GNP, the GNP deflator, the unemployment rate, the nominal wage

rate, the price of imports, the money supply, and the bill rate. All but

the unemployment rate and the bill rate are in logs. Each equation consists

of each variable lagged one through four times, a constant, and a time

trend, for a total of 30 coefficients to estimate.

The second VAR model, VAR2, uses only the first two lags of each

variable, for a total of 16 coefficients in each equation. The third model,

VAR1, uses only each variable lagged once, for a total of 9 coefficients.

Litterman (1984) points out that large VAR models seem to suffer from

overparameterization, and this is the reason we have tried VAR1 and VAR2 in
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addition to VAR4.19

The same sample periods and procedures were used for the VAR models as

were used for the AC and FAIR-CUR models.

The Information Set: the Variables in Z

We have chosen to use the 28 variables in the VAR4 model as potential

variables in the information set, i.e., as potential variables in Z. One

of the main questions we are interested in is whether the forecasts from the

Fair model contain useful information not in these variables.

IV. The Results

We first consider the results for FAIR-CUR, which are presented in

Table 1. All the regressions in Table 1 are for the 1972 II - 1986 II

period, for a total of 57 observations. The dependent variable is the log

of real GNP. All the equations in the table were estimated by ordinary

least squares with the White correction for heteroskedastity. The W-

statistic is the Wald statistic for the test of the hypothesis that all the

coefficients except the coefficient of the forecast are zero. In other

words, the test is a test of the hypothesis that 6 in equation (1) is zero.

S is taken to include the constant term.

The first equation includes the log of the forecast, whose coefficient

is denoted -y, and the constant term. The estimate of -y is .984 with a t-

statistic of 123.73. The estimate of the constant term is not quite

19Another possibility is to use Bayesian priors for VAR4 to lessen the
overparamaterization problem, which is what Litterman (1984) does. Our
preference is to exclude lags rather than use priors, but priors could
easily be used within the present procedure. This is clearly of interest to
try in future work.



TABlE 1

Estimates of Equation (1) arxi Tests of
H01 ani 1102•

Results for FAIR-CUR. Depenient Variable is log Y.
Sanple period 1972 II - 1986 II, 57 observations.

A

Equation log Y const. Other Variables WALD SE R LA

1 .984 .124 3.78 .00835 .99284 2.00
(123.73) (1.94)

2 .808 .636 T, logY 1' ••• log Y 10.09 .00789 .99361 2.18
(5.92) (1.66)

—

3 .966 .266 T, log P . .., logP 9.26 .00802 .99340 2.12
(18.65) (0.80)

—

4 .788 1.578 T, U , ..., U 17.73*k .00709 .99485 2.28
(9.99) (2.70)

—l

5 .963 .258 T, log B4 1' • log EM 11.69 .00804 .99338 2.07
(22.49) (0.84)

—

6 .975 —.020 T, log W , ..., logW 6.64 .00817 .99315 1.99
(19.88) (0.07)

—

7 .990 .357 T, log Ml ..., log Ml 8.49 .00817 .99315 1.96
(20.56) (0.94)

—

8 .839 1.181 T, r
1'

• r 37.24** .00724 .99483 2.15
(19.59) (3.75)

—

9 .902 2.494 T, all 1 13.81 .00755 .99415 2.04
(4.01) (1.26)

—

10 .761 6.503 T, all 1 2 62.l5** .00596 .99636 2.00
(5.55) (2.09)

—

11 .607 10.747 T, all 1 —2 3 llo.58** .00557 .99682 1.93
(3.20) (3.20)

—

12 .590 9.199 T, all 1 20l.59** .00503 .99740 1.92(302) (209) ' '
A

Y = forecast of real QP frai FAIR-CUR.

Notes: The test statistic (IA 'est) for H1 is the t-statjstjc for
the coefficient of log Y.
The test statistic for H02 is the WALD test statistic.
* significant at 5 percent level.

significant at 1 percent level.
t-statistics in absolute value in parentheses.
Y real (NP.
T — tine trer1, 1952 I = 1.
P QP deflator.
U urploynnt rate -

IM inport price irex.
W= ixininal wage rate -

ML nry supply.
r three-north Treasury bill rate.

all. = log Y, log P, U, log }M, log W, log Ml, r.

Estimation technique Ordinary least squares with Wulte correlation for
heteroskedasticity.
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significant at the 5 percent confidence level.20 The equation shows no

signs of serial correlation of the error terms.

For the second equation in Table 1 the time trend and the first four

lagged values of the log of real GNP have been added. The estimate of -y is

.808 and is significant. The additional six variables are not significant

as a group as revealed by the W-statistic. In other words, the lagged

values of GNP do not contribute significantly to the explanation of GNP once

the FAIR-CUR forecast is included in the equation.

Equations 3 through 8 in Table 1 have added to them the time trend and

the first four lagged values of one of the variables in the information set.

The GNP deflator, the price of imports, and nominal wage, and the money

supply are not significant. The unemployment rate and the bill rate are

significant at the 1 percent level. In all cases the coefficient estimate

of the FAIR-CUR forecast is significant. In equation 9 the time trend and

all seven variables lagged once are included. They are not as a group

significant. In equation 10 the time trend and all seven variables lagged

once and twice are included. Equation 11 adds one more lag of each

variable, and equation 12 adds yet one more. In all three of these cases

the variables as a group are significant and the FAIR-CUR forecast is

significant. In going from equation (9) to (12) the estimate of -y falls, as

is expected from the theoretical results in Section II.

The overall results in Table 1 are quite supportive of FAIR-CUR being a

useful aggregator of information. The coefficient estimate of -y is always

significant. The IA test has strongly rejected the hypothesis that -y is

20By "significant" in what follows is meant significant at the 5
percent confidence level unless stated otherwise. A variable is said to be
significant if its coefficient estimate is significant.
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zero.

We next want to compare FAIR-CUR with FAIR-OLD to see if the good

results for FAIR-CUR are due to information used after 1976 in the

specification of the model. The results in Table 2 are for FAIR-CUR over

the shorter sample period beginning in 1976 III. Table 2 is the same as

Table 1 except that the regressions are over 40 observations rather than 57.

The results in Table 2 are similar to those in Table 1 except for the last

three equations, where the estimates of are not significantly different

from zero. These last three
equations have only 23, 16, and 9 degrees of

freedom, respectively, and so it is not clear that much confidence should be

put on the results for these three equations.21
We discussed above that in

small samples the estimate of -y will tend to be much less than one or even

negative even when the theoretical model used to produce is absolutely

correct. It is difficult to generalize from the
few specific Monte-Carlo

experiments we ran, but it seenis likely that when degrees of freedom are

very small, there may be a tendency for a small or negative value of .

Table 3 is the same as Table 2 except that the results are for FAIR-

OLD rather than FAIR-CUR. The results
for FAIR-OLD are quite similar to

those for FAIR-CUR. If anything,
FAIR-OLD does slightly better. The

changes that have been made to the model since 1976 thus do not seem to be

very important, at least regarding the forecasting
accuracy of the model.

The results in Table 4 are for the AC
model. The sample period in

Table 4 is the same as in Table 1,
namely the longer period of 57

give an example of how fickle the results are when the number of
degrees of freedom is small, when equation 10 is reestimated with the wage
rate and the price of import variables dropped, the estimate of goes froman insignificant - .447 to a significant .504.



TABLE 2

Estimates of &juation (1) and Tests of H and H02.

Results for FAIR-CUR for Shorter Sanle Period. Deper1ent Variable is log Y.
Saile period 1976 III - 1986 II, 40 observations.

A 2
&uation log Y const. Other Variables WATJ) SE R LW

1 .969 .247 44* .00886 .98216 2.00

(63.96) (2.01)

2 .862 .734 T, log Y1, ..., logY 9.57 .00836 .98413 2.34

(3.82) (1.72)

3 .867 .778 T, log P1, ..., logP 8.30 .00831 .98430 2.11

(6.72) (1.08)

4 .574 3.203 T, U 1' 37.94** .00626 .99110 2.50

(3.56) (2.65)

—

5 1.014 —.084 T, log }M.1, ..., log FM 7.54 .00809 .98513 2.30

(14.63) (0.17)

6 .879 —.092 T, log w ..., logW 7.18 .00818 .98479 1.92

(10.48) (0.28)

—

7 .975 .471 T, log Ml 1' log Ml 5.03 .00874 .98265 1.97

(17.35) (0.90)

—

8 .821 1.327 T, r 1' r 47•33** .00742 .98750 2.31

(17.14) (3.73)

—

9 1.358 3.507 T, all 1 15.42 .00763 .98680 1.94

(3.22) (1.68)

—

10 —.447 7.113 T, all 1 2
l67.50** .0(Yi-78 .99480 2.45

(0.95) (2.4.6)

—

11 —.133 14.548 T, all 1 2 3
263.6l** .00400 .99637 2.18

(0.34) (3.63)
— '

12 .225 26.608 T, all 1 3
l318.8l* .00266 .99840 2.47

(087) (546)
— '

A

Notes: Y = forecast of real Q1P from FAIR-Qfl.
See Notes, Table 1.



TABLE 3
Estimates of Equation (1) ard Tests of 01 H02.

Results for FAIR-OLD. Deperxlent Variable is log Y.
Sanple period = 1976 III - 1986 II, 40 observations.

A

Equation log Y const. Other Variables WALD SE R

1 .978 .177 2.44 .00870 .98281 2.06
(70.25) (1.56)

2 .879 .560 T, log Y , ..., log Y 10.82 .00820 .98472 2.43
(4.66) (1.49)

—l

3 .928 .480 T, log P1, ..., log P 4.90 .00849 .98363 2.13
(6.75) (0.63)

4 .629 2.793 T, U , . .., U 43.84** .00623 .99119 2.47
(4.14) (2.45)

—l

5 1.011 —.051 T, log R4 , ..., log RI 4.45 .00841 .98395 2.14
(13.24) (0.10)

—

6 .928 .040 T, log W1, ..., logW 3.63 .00839 .98403 1.91
(11.38) (0.12)

7 .969 .328 T, log Ml 1' •• logM1 4.15 .00855 .98342 2.00
(15.45) (0.69)

—

8 .834 1.226 T, r , ..., r 49.79** .00737 .98766 2.33
(18.75) (3.72)

—

9 1.111 2.202 T, all 6.56 .00813 .98498 1.87
(2.69) (1.01)

—l

10 —.042 7.144 T, all 1 2 226.21** .00485 .99466 2.45
(0.14) (2.28)

—

11 .348 15.747
T, all_1 —2 3 3l1.57** .00395 .99645 2.23

(1.04) (3.60)
12 .391 28.198 T, all , , _, 1328.21** .00260 .99847 2.42

(1 68) (5 55)
A

Notes: Y forecast of real CP frQn FAIR-OLD.
See Notes, Table 1.



TABLE 4

Estimates of Equation (1) ar Tests of H01 ai H02.

Results for AC. Deper]ent Variable is log Y.

Saiqle period 1972 II - 1986 II, 57 observatiors.

A 2
Equation log Y const. Other Variables TJ) SE R IYJ

1 1.000 —.002 0.00 .00942 .99090 2.18
(93.95) (0.02)

2 .563 .760 T, logY1, ..., logY 4.57 .00908 .99154 2.09
(2.10) (1.64)

3 .922 .423 T, log P1, ..., log P 7.20 .00906 .99158 2.12

(16.86) (1.19)

4 .751 1.849 T, Ti ..., 15.47* .00837 .99282 2.15

(7.38) (2.44)

—

5 .932 .455 T, log ..., log Ht 21.22** .00883 .99201 2.16

(21.52) (1.47)

—

6 .933 —.234 T, log W 1' log W 8.77 .00894 .99181 2.04
(22.11) (0.71)

—

7 .922 .228 T, log Ml ..., log M1 9.38 .00913 .99147 2.14

(21.75) (0.59)

—

8 .840 1.166 T, r 1' r 20.08** .00839 .99279 2.14

(14.98) (2.82)

—

9 .585 3.400 T, all 1 15.75 .00824 .99304 2.12
(1.86) (1.43)

—

10 .065 5.967 T, all 1
59.60** .00680 .99526 1.97

(0.21) (1.93)

—

11 .153 9.830 T, —1 —2 3 156.ll** .00596 .99635 2.05

(0.58) (2.55)

12 .248 7.515 T, all1 , . 235.78** .00536 .99706 2.02
(0 89) (1 50) '

A

Notes: Y forecast of real (P fran AC mDdel.
See Notes, Table 1.
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observations. Comparing equation 1 in Tables 1 and 4, it can be seen that

the AC model is not as accurate as FAIR-CUR. The estimated standard error

is .00942 for AC and .00835 for FAIR-CUR.
Also, the estimates of -y are

insignificant in equations 9-12 for AC, which is not the case for FAIR-CUR.

It is interesting, however, that the estimates of -y for the first 8

equations in Table 4 are significant, which means that the AC model does

carry information not in the Z vector and suggests that part of the success

of the Fair model in forecasting might come from this disaggregation.

The best of the VAR models was VAR2, and so the results for VAR2 will

be emphasized here. The results for VAR2 are presented in Table 5, which is

the same as Tables 1 and 4 except for a different model. The results for

VAR2 are not as good as those for AC (and thus a fortiori for FAIR-CUR).

For example, the estimate of is not significant in equation 2, where the

lagged values of GNP are added. Also, the standard error of equation 1 is

greater for VAR2 than it is for AC. Equations 11 and 12 are not presented

for VAR2 because for these equations the number of variables in the

information set exceed the number of variables in the VAR2 model. The model

is quite likely to be dominated in these cases (which it was). In equation

10 the variables in the information set and the variables in the model are

the same. We know in this case that the forecast is likely to be dominated

by the information variables, and our
monte-carlo experiments suggest that

the coefficient of the forecast is likely to be negative. This is what we

indeed observe in Table 5, equation 10. The estimate of -y is - .487, with a

t-statistjc of 1.16 in absolute value.



TABLE 5

Estliriates of Equation (1) arxl Tests of H ard H02.

Results for VAR2. Deper1ent Variable is log Y.
Sanpie period — 1972 II - 1986 II, 57 observations.

A 2
Equation log Y const. Other Variables WAIJ) SE R LJ

1 .954 .377 24.65** .00963 .99049 1.66

(101.18) (4.96)
2 .417 .703 T, log Y1, ..., log Y 35. 68** .00922 .99129 2.00

(1.49) (1.44)

3 .952 .295 T, log P , ..., logP 30.20k* .00939 .99095 1.71

(14.63) (0.74)
—1

4 .845 1.180 T, U ..., U 32.62** .00924 .99124 1.75

(6.39) (1.21)

—

5 1.016 —.047 T, log IM 1' log FM 38.06* .00943 .99089 1.83

(16.72) (0.11)

—

6 .969 —.017 T, log W , ..., logW 32.05** .00918 .99136 1.82

(19.43) (0.05)
—1

7 .995 .422 T, log Ni , ..., log N1 32.43* .0094 .99083 1.67

(16.13) (1.05)
—l

8 .830 1.278 T, r 1' r 48.65* .00870 .99223 1.73

(11.99) (2.52)

—

9 .435 2.195 T, all 1
55.32* .00849 .99262 2.06

(1.52) (1.03)

—

10 —.487 5.416 T, all 1 2
105.53** .00673 .99536 1.93

(1.16) (1.84)

—

A

Notes: Y — forecast of real QP frcn VAR2 nxxel.
See Notes, Table 1.
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piTiparisons of the Forecasts

The results in Table 6 compare the forecasts from the various models.

For each equation the log of real CNP is regressed on a constant term and

the logs of two or more forecasts.
(These equations are also estimated

using the White correction for heteroskedasticity.) One forecast is said to

dominate another if its coefficient estimate
is significant and the other's

is not. Equations 1 through 8 in Table 6 are for the longer sample period

of 57 observations, and equations 9 through 14 are for the shorter period of

40 observations. Remember that all the forecasts are based on rolling

regressions, and so all of them use only information
through the previous

period for the forecast of the current period.

Equations 1 through 4 show that FAIR-CUR dominates
the AC, VAR1, VAR2,

and VAR4 models.22 Equations 5 and 7 show that AC dominates VAR1 and VAR4.

In equation 6 both the AC and VAR2 forecasts
are significant, although the

AC forecasts has a larger coefficient
estimate and a higher t-statistic. In

equation 8 FAIR-CuR dominates both AC and VAR2. It is interesting to note

in this case that even though AC is
better than VAR2 in equation 6, VAR2 has

a larger coefficient estimate in equation 8 than does AC (although both

estimates are insignificant). This is an indication that the AC forecast is

correlated more with the FAIR-CUR forecast than is the VAR2 forecast. This

is as expected since both FAIR-CUR and AC estimate equations for the

components of GNP.

Equations 9 through 13 show that FAIR-OLD dominates AC, VAR1, VAR2, and

22Cooper and Nelson (1975) also found coefficients near one for a
structural forecast of real GNP from the FMP model in analogous regressions
were the autoregressive forecasts were univariate autoregressions for realGNP.



T&E 6

Regression of the log of actual (N' on the log of the forecasts fran t or nrenodels.

Results for All Models. Deperent Variable is log Y

A

Fpa- log Y
tion const. FAIR-CUR FAIR—OLD AC VAR1 VAR2 VAR4 SE I) Sample

1 .093 .779 .209 .00827 2.10 722-862
(1.26) (4.43) (1.16)

2 .154 .836 .144 .00828 2.06 722-862
(1.98) (4.48) (0.80)

3 .189 .697 .279 .00807 2.05 722-862
(2.44) (4.43) (1.85)

4 .179 .775 .202 .00815 1.99 722-862

(2.15) (5.32) (1.46)

5 .097 .704 .284 .00922 2.12 722-862

(0.80) (3.15) (1.34)

6 .161 .546 .434 .00894 2.02 722-862

(1.43) (3.09) (2.62)

7 .125 .678 .306 .00905 2.05 722-862

(1.04) (3.87) (1.87)

8 .186 .690 .013 .274 .00807 2.06 722-862
(1.84) (3.92) (0.07) (1.57)

9 .103 .726 .261 .00861 2.16 763-862

(0.59) (2.44) (0.83)

10 .178 .973 .004 .00870 2.06 763-862
(1.37) (3.96) (0.02)

11 .276 .703 .263 .00851 2.03 763-862

(2.30) (3.60) (1.39)

12 .253 .744 .225 .00850 1.91 763-862

(2.03) (4.11) (1.30)

13 .230 .633 .113 .225 .00850 2.08 763-862

(1.00) (2.20) (0.30) (0.96)

14 .197 .330 .645 .00864 2.06 763-862
(1.85) (0.57) (1.10)
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VAR4. The conclusion regarding FAIR-OLD is thus the same as the conclusion

regarding FAIR-CUR. In equation 14 both the FAIR-CUR and FAIR-OLD forecasts

are included. Neither coefficient estimate
is significant, but FAIR-OLD has

a coefficient estimate that is about twice the size of the FAIR-CUR

coefficient estimate. FAIR-OLD is thus slightly better than FAIR-CUR in

this sense. This is encouraging in that it shows that the changes in

structure of the Fair model made between 1976-li and 1986-li did not

contribute to the success it has in forecasting over this period.

First Differenced Results

Note that the regressions in Table 6 do not include a time trend. If

the forecasts must be differenced
to induce stationarity, then the

regressions are in the form of "cointegrating
regressions" (Engle and

Granger [1987]), for which the usual
asymptotic distribution theory does not

apply (Phillips and Durlauf [1986]). We reestimated the equations using

differenced data, and the results are presented in Table 7. Table 7 is the

same as Table 6 except that the dependent variable is log Y - log Y1 and
the forecast variables log

Y are replaced by log ' - log Y-1 The
results in Table 7 are very similar to those in Table 6. The main

difference is that in Table 7 the VAR models do not do quite as well against

the others as they do in Table 6.

As a final test for FAIR-CUR,
we estimated equation (1) in first

differenced form. We regressed log Y - log on log - log a

constant, and the first differences of the various variables. The results

are presented in Table 8. Table 8 is the same as Table 1 except for the

different functional forms. The results in Table 8 are similar to those in



TABLE 7

Regression of actual log (P changes on forecasted changes fran two or nore models.

Results for All Fkxlels. Deperent Variable is log Y.

A

Equa- log Y - log Y1
tion const. EAIR—U]R FAIR-OLD AC VARI VAR2 VAR4 SE IM Sample

1 - .0027 .736 .284 .00835 2.12 722-862

(1.46) (4.93) (1.54)

2 - .0018 .889 .030 .00847 1.95 722-862

(1.14) (5.31) (0.17)

3 - .0014 .804 .174 .00837 1.96 722-862

(0.93) (5.24) (1.22)

4 - .0018 .834 .109 .00841 1.92 722-862

(1.17) (5.22) (1.00)

5 - .0004. .755 .183 .00927 2.11 722-862

(0.19) (4.09) (1.08)

6 .0001 .669 .292 .00908 2.06 722-862

(0.07) (3.95) (2.29)

7 - .0006 .711 .214 .00913 2.04. 722-862

(0.30) (3.88) (1.84)

8 - .0022 .679 .242 .142 .00828 2.12 722-862

(1.27) (4.19) (1.43) (1.07)

9 - .0044 .751 .427 .00860 2.31 763-862

(1.44) (2.91) (1.57)

10 - .0032 1.047 - .097 .00880 2.02 763-862

(1.20) (4.70) (0.40)

11 - .0027 .880 .137 .00877 2.02 763-862

(0.99) (3.60) (0.71)

12 - .0030 .856 .144 .00874 1.92 763-862

(1.06) (3.68) (0.92)

13 - .0040 .683 .405 .101 .00856 2.28 763-862

(1.43) (2.39) (1.53) (0.56)

14 - .0035 .257 .769 .00879 2.05 763-862

(1.28) (0.41) (1.24)



TABLE 8

Estimates of Equation (1) arxl Tests of
H2.

Results for FAIR-CUR. DeperJent Variable is &og Y.
Sanple period = 1972 II - 1984 II, 57 observations.

Equation log Y — log Y1 const. Other Variables WALL) SE R2

1 .904 —.0029 1.34 .00847 .40840 1.93(6.85) (1.16)
2 .873 —.0033 &og Y1, ..., Laog Y 8.00 .00819 .44708 2.16

(8.05) (2.10)
3 .880 .0037 Alog P1, . .., AIog P 6.47 .00819 .44626 2.03

(6.59) (1.09)4 .746 —.0003 LiJ 1' 9.40 .00766 .51558 2.31
(5.68) (0.18)

—

5 .809 —.0001 &og EM1, ..., Llog EM 10.91 .00825 .43897 1.96
(4.83) (0.03)

6 .912 .0025 AIog W1, ..., AIog W 6.61 .00804 .46667 1.92
(6.99) (0.64)

7 .919 —.0009 AIog Ni1, ..., &og Ni2 6.39 .00833 .42739 1.87(6.28) (0.33)
8 .786 —.0008 Ar , ..., Ar4 22.l4** .00804 .46667 1.93

(5.25) (0.52)
—

9 .933 —.0003 all
1 23.09** .00749 .53736 1.85

(8.03) (0.11)
—

10 .709 —.0012 all
1 64. 97** .00704 .59098 2.07

(4.87) (0.35)
— ,—2

11 .725 —.0025 all
1 3 88.88** .00651. .65069 1.95(4.52) (0.37)
—

,—2,—

12 .903 —.0012 all 1 2 3 244. 25*k .00602 .70113 2.10
(5.54) (0.14)

— '

Notes: Y = forecast of real QJP fran FAIR-aiR.
See Notes, Table 1.
all = Alog Y, Alog P, AU, Alog EM, Alog W, Alog MI, Ar.
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Table 1. The coefficient estimate of the forecast variable is always

significant. First differencing thus makes little difference.

IV. Conclusion

A general method has been proposed in this paper for examining models

as information aggregators (the IA test) and for comparing alternative

models. The IA test results show that the Fair model is a useful aggregator

of information. The overall results also show that the Fair model dominates

the nontheoretical AC and VAR models and that the AC model tends to dominate

the VAR models. Since the AC model resembles the Fair model in its use of

lagged values of the components of GNP, this suggests that some but not all

of the information that the Fair model uses to dominate the VAR models is in

the lagged values of the components.
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