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1 Introduction

Unemployment insurance programs in most Western countries follow a common design. The

benefits are set at a constant replacement rate for a fixed period, typically followed by lower

benefits under unemployment assistance. In such systems, the hazard rate from unemployment

typically declines from an initial peak the longer workers are unemployed, surges at unemploy-

ment exhaustion, and declines thereafter. This has been shown in a variety of settings, such

as in the United States (Katz and Meyer, 1990), Hungary (Micklewright and Nagy, 1999),

Austria (Card et al., 2007a), Slovenia (van Ours and Vodopivec, 2008), Germany (Schmieder

et al., 2012a), and France (Le Barbanchon, 2012).

It is well-known that a basic job search model a la Mortensen (1986) and van den Berg

(1990) is unable to match this pattern. This model predicts an increasing exit hazard up

until benefit expiration, with a constant exit rate thereafter. To match the time path, job

search models add unobserved heterogeneity among workers. More productive workers are

more likely to find a job initially, leading to a decrease in the hazard over time as the workers

still unemployed are predominantly of the less productive type.

In this paper, we propose, and test, a behavioral model of job search which can account

for this time path of unemployment even in the absence of unobserved heterogeneity. Namely,

we incorporate one of the best established facts in psychology, that people’s perceptions and

decisions are influenced by relative comparisons. We assume that workers have reference-

dependent preferences over their utility from consumption. As in prospect theory (Kahneman

and Tversky, 1979), workers are loss-averse with respect to consumption below a reference

point. Further, we assume that this reference point is given by recent earnings.

To fix ideas, consider a reference-dependent worker who was just laid off and assume,

for now, hand-to-mouth consumption. At the time of job loss, the reference point of the

unemployed is the previous wage, which is significantly higher than the unemployment benefit,

the new consumption level. The unemployed, therefore, finds the new state of unemployment

particularly painful given the loss relative to the reference point, and so she searches hard at

the beginning of a UI spell. Over the weeks of unemployment, however, the reference point

shifts as the individual adapts to the lower benefit level, and the loss is thus mitigated. Hence,

the worker’s search effort decreases. As the end of the UI benefits draws near, the worker, if

still unemployed, anticipates the loss in consumption due to the exhaustion of the benefits,

and searches harder. This force is at work also in the standard model, but it is heightened

by the anticipation of the future loss aversion. If the worker does not find a job by the UI

expiration, the worker once again slowly adjusts to the new, lower benefit level.

The hazard from unemployment for this reference-dependent worker decreases from the ini-

tial peak, increases at exhaustion, then decreases again. Hence, the predicted hazard matches
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the patterns documented above, even in absence of unobserved heterogeneity.

How would one distinguish the standard job search model from a reference-dependent

model? Consider two UI systems, the first offering a constant benefit path until period T ,

with the second offering higher initial benefits up to period T1 < T but lower benefits between

T1 and T (Figure 1a). The two systems have the same welfare benefit level after period T .

The standard model with no heterogeneity predicts that, starting from period T, the hazard

rate in the two systems would be the same, as the future payoffs are identical (Figure 1b).

Furthermore, the hazard rate in the periods right before period T will be higher in the system

with two-step benefits given the lower benefits at that point.

The reference-dependent model makes three different predictions (Figure 1c). First, right

after period T the hazard in the one-step system would be higher because of the higher loss

in consumption compared to the recent benefits. Second, this difference would attenuate over

time and ultimately disappear as the reference point adjusts to the lower benefit level. Third,

the hazard rate in the first UI system increases already in advance of period T, in anticipation

of the future loss aversion. Notice that, while these predictions are developed in the absence

of heterogeneity to highlight the intuition, we fully integrate heterogeneity in our estimates.

We evaluate a change in the Hungarian unemployment insurance system which is ideally

suited for a test of the above predictions. Before November 2005, the Hungarian system

featured a constant replacement rate for 270 days, followed by lower unemployment assistance

benefits. After November 2005, the system changed to a two-step unemployment system:

benefits are higher in the first 90 days, but lower between days 90 and 270, compared to the

pre-period (Figure A-1). There was no major change in the unemployment assistance system

taking place after 270 days. As such, this UI set-up corresponds to the hypothetical case

outlined above with period T corresponding to 270 days.

An important feature of the Hungarian reform is that the total benefits paid out until day

270 remain about the same after the reform. Hence, differences in savings and in selection in

the pre- and post- period are likely to be small, allowing for a more straightforward comparison.

We evaluate the reform by comparing the hazard rates into employment in the year before

and after the reform. The evidence is well in line with the predictions of the reference-

dependent model. In the weeks immediately preceding the 270-day exhaustion of benefits, the

pre-reform hazard rates rise above the post-reform hazard rates. In the months following the

exhaustion, the pre-reform hazard rates remain higher, and they ultimately converge to the

post-reform level only after a couple months. The observed pattern around the exhaustion is

consistent with the anticipation of, and then the direct effect of the higher loss in consumption

for individuals in the pre-reform. The ultimate convergence between the two hazards indicates,

in this interpretation, the timing of the reference point adjustment.
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We present several robustness checks. Controlling for a broad set of controls and alternative

definitions of our sample barely affects the estimated hazards. Also, an interrupted time series

analysis shows that the break in the hazards occurs immediately in the quarter of introduction

of the reform, and does not appear to reflect previous trends.

While the evidence is qualitatively consistent with predictions of the reference-dependent

model, it is important to compare the quantitative fit of the behavioral model with the fit of

the standard model allowing for unobserved heterogeneity. To do so, we structurally estimate

a model with optimal search effort, log utility, and unobserved heterogeneity in the form of

types of individuals with different search costs.1 Given that the reference-dependent model has

two extra parameters (loss-aversion and updating horizon for the reference point), we allow

for one less cost type, two versus three in the standard model, thus equating the number of

estimated parameters. We estimate the model with a minimum-distance estimator, matching

the empirical hazard rates in the pre- and post-reform to the predictions of the model.

The preferred estimate for the standard model does a relatively good job of fitting the

hazards in the first 200 days. More specifically, the presence of heterogeneous types allows

to qualitatively match the spike in the hazard at 90 days post-reform. The standard model,

however, is unable to capture the observed behavior leading up to, and following, the exhaus-

tion of benefits. In particular, the hazard rates from day 270 on in the pre- and post-period

are predicted to be almost identical, contrary to the empirical findings.

The reference-dependent model captures the spike at 90 days and the subsequent decrease,

similar to the standard model (and with a closer fit). Importantly, this behavioral model also

captures key features of the data which the standard model does not fit: the increase in

hazard in the month prior to the expiration of benefits in the pre-period, the spike at 270

days, the decrease thereafter, and the ultimate convergence of the hazard between the pre-

and post-period after a few months. The fit of the model is by no means perfect: the model

underpredicts the spike at 270 days and the difference in hazards in the following two months.

Still, it captures most of the qualitative features which the standard model does not fit at all.

An important caveat is that these estimates assume hand-to-mouth consumers. However,

reference-dependent workers should build precautionary savings to smooth the upcoming loss

utility due to a benefit decrease, eliminating the elevated hazards at benefit exhaustion. Thus,

the good fit of the reference-dependent model may depend crucially on an ad hoc assumption.

To address this concern, in our benchmark estimates we incorporate a consumption-savings

decision and estimate time preferences in addition to job search parameters.

The results point to an important interaction between reference dependence and impa-

tience. As the intuition above suggested, the reference-dependent model with optimal con-

1For tractability, the model does not allow for a reservation wage choice, a restriction we revisit later.
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sumption does not provide a good fit for the data if we impose high degrees of patience. Once

we allow for estimated discount rates, however, the reference-dependent model fits the data

well, as in the hand-to-mouth estimates. The point estimates indicate a significant weight

on gain-loss utility, slow updating of the reference point, and high impatience. The stan-

dard model, with similarly high estimated impatience, fits the data significantly worse than

the reference-dependent model and in fact somewhat worse than the hand-to-mouth stan-

dard model.2 Thus, the estimates with optimal consumption confirm the better fit of the

reference-dependent model, and additionally point to the role of impatience.

But are these estimates plausible? The estimate for loss aversion is in the range of the

previous literature, but the estimated discount factor is arguably implausibly small at 0.9 for

a 15-day period, leading to an annual discount factor of 0.08 (The estimated discount factor

for the standard model is similarly small). What appears to be extreme impatience may,

however, reflect mis-specified time preferences. Building on evidence in a large number of

settings, including job search (DellaVigna and Paserman, 2005), we allow for present-biased

time preferences (Laibson, 1997; O’Donoghue and Rabin, 1999), with an additional discount

factor β between the current period and the future.

The estimates allowing for present bias do as well (in fact, attain a better fit) as the

estimates with exponential discounting, but imply much more reasonable discounting. We

estimate a present-bias parameter β=0.58, well within the range of estimates in the literature,

for an implied annual discount factor of 0.52 for the first year and 0.88 for later years. The

fit of standard model instead does not improve if we allow for present-bias preferences. Thus,

the evidence appears to point, not just to reference dependence, but also to impatience and

likely present-bias among unemployed workers.

We then examine further the components of the reference-dependent model. The results do

not depend on unobserved heterogeneity: a reference-dependent model with no heterogeneity

provides nearly as good a fit. The results also do not depend on the exact reference-point

updating rule, as the fit is similar with an alternative AR(1) updating assumption. Further,

the fit does not depend on allowing for gain utility (achieved at reemployment). What is

critical for the results, as expected, is that loss aversion experienced as income decreases.

How does reference dependence compare to habit formation? Models a la Constantinides

(1990) and Campbell and Cochrane (1999), like the reference-dependent model, induce a

temporarily higher marginal utility of income following a benefit cut as consumption gets

closer to the habit. Thus, they could plausibly fit the patterns in the data. We highlight

2In the hand-to-mouth case, the best fit for the standard model is for a relatively high degree of patience.
Yet, for such level of patience, the workers should not go hand-to-mouth. Once we endogenize consumption,
such estimates with high patience are not optimal any more, given that they would lead the workers to save
and thus smooth the benefit jumps more than observed in the data. Thus, endogenizing the consumption
decision is an important check for the ability of the standard model to fit the observed patterns.
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a key difference. In the reference-dependent model, the impact of the loss on search effort

is approximately proportional to the size of the loss. Instead, in the habit-formation model

larger decreases in consumption have disproportionate effects. Given this, the habit-formation

model underpredicts the spike in hazard at 270 days, since the benefit step-down at 90 days

is proportionally larger. We also estimate habit-formation models with multiplicative habits

(e.g. Abel, 1990) that are equivalent to reference-dependent models with no loss aversion.

These models provide a better fit than the standard model, though not quite as good as the

reference-dependent model, confirming the role of loss aversion in our estimates.

Could alternative versions of the standard model fit the data as well as the reference-

dependent model? We allow for, among other assumptions, different starting assets, back-

ground consumption, time-varying search costs, and a delay between search effort and the

jobs start. We also estimate the model using different weights, using probability of exit in-

stead of hazard, and excluding the spikes from the moments. None of these changes sizeably

affect the fit of the standard model, or of the reference-dependent model.

We then examine alternative forms of unobserved heterogeneity. While in the benchmark

estimates we assume heterogeneity in search cost in the spirit of Paserman (2008), we allow

for more cost types, for heterogeneity in re-employment wage, or in the search elasticity with

respect to the returns to search. The first two forms of heterogeneity do not close the gap with

the reference-dependent model, but the model with heterogeneous search elasticity fits much

better, even outperforming the reference-dependent model. This model explains the observed

spikes by allowing for a type with such high search elasticity (over 50) that only searches once

benefits fall below a threshold.

But is the model with heterogeneous search elasticity plausible? We provide two implica-

tions and two additional pieces of evidence which, in our view, cast doubt on it. First, this

model fits the data well only for very high elasticities; if we restrict the elasticities to be no

higher than 5 (already quite high), the fit does not come close to matching the reference-

dependent model. Second, given the high elasticities, the model makes the unlikely prediction

that, if welfare benefits were lowered, or increased, by just 10 percent, search effort would

skyrocket, or conversely go to zero.

Further, we examine an earlier UI reform which lengthens the duration of unemployment

assistance. The impact of the reform on the hazard path is very limited, mostly shifting the

spike, consistent with out-of-sample predictions for the reference-dependent model. Instead,

the model with heterogeneous cost elasticity predicts a substantial dip in the hazards.

We also compare the dynamic selection implied by the estimated models to the selection on

observables in the data. We show that the selection implied by the standard model differs both

qualitatively and quantitatively from the observed selection; instead, the implied selection is
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close to the observed selection for the reference-dependent model.

Finally, we briefly discuss other job search models which we do not estimate but which

could potentially explain some of the findings. A model of storable offers (as in Boone and van

Ours 2012) could explain the spike in hazard at benefit exhaustion, but not the pattern of the

hazards in the following months. A model of skill depreciation or screening (e.g. Schmieder

et al., 2016) can explain decreasing hazards over the spell, but such decrease would plausibly

be the same pre- and post-reform. Two classes of models which could potentially explain the

findings are worker learning and consumption commitments (Chetty, 2003 and Chetty and

Szeidl, 2016). A worker may learn over time that finding jobs is harder than expected, and this

learning may take place later in the pre-reform period, given the different benefit structure.

A worker with committed consumption would increase search effort to avoid paying a fixed

cost of adjustment; if despite this, she does not find a job soon enough, she will pay the cost

and then decrease search. These dynamics could generate some of the hazard patterns after

day 270. While both models have intuitive features, unfortunately neither is tractable enough

to estimate on our sample.3 For tractability reasons, we also do not estimate models with

reservation wage choice and optimal consumption-savings.4

To sum up, reference dependence, in combination with impatience, can help explain pat-

terns in job search that are hard to rationalize with most alternative models, even allowing

for unobserved heterogeneity. These results have implications for potential redesigns of un-

employment insurance policies, a point to which we return briefly in the conclusions.

The paper relates to the literature on unemployment insurance design (e.g. Chetty, 2008;

Kroft and Notowidigdo, forthcoming; Schmieder et al., 2012a). Within this literature, we

evaluate a unique reform: changing the time path of the benefit schedule, keeping the overall

payments approximately constant. The paper is consistent with recent evidence of sharp con-

sumption drops at unemployment entry and UI exhaustion for unemployed workers (Ganong

and Noel, 2015; Kolsrud et al., 2015), suggesting approximate hand-to-mouth behavior.

The paper also contributes to a literature on behavioral labor economics, including work

on employer-employee gift exchange (Akerlof, 1982; Fehr et al., 1993; Gneezy and List, 2006),

horizontal pay equity (Card et al., 2012; Breza et al., 2015), and target earnings in labor sup-

ply (Camerer et al., 1997; Farber, 2015). Within job search, DellaVigna and Paserman (2005)

consider the impact of present-bias while Spinnewijn (2013) examines the role of overconfi-

dence. We show that a reference-dependent model of job search makes unique predictions,

3The consumption commitment model requires to keep track of a fixed cost decision, making the model
cumbersome to estimate. To address this issue, Chetty (2003) makes the timing of fixed cost payment ex-
ogenous. A consumption commitment model with exogenous consumption readjustment, as in Chetty (2003),
would not explain our findings.

4We present in the appendix estimates with reservation wage choice for the hand-to-mouth case. The
results should be considered only suggestive, as endogenizing consumption is very important.
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and that the data points to a combination of reference dependence and present bias.5

The paper also adds to the evidence on reference dependence from settings including

insurance choice (Sydnor, 2010; Barseghyan et al., 2013), labor supply (Fehr and Goette,

2007; Farber, 2015), domestic violence (Card and Dahl, 2011), goal setting (Allen et al.,

forthcoming), and tax elusion (Engström et al., 2015; Rees-Jones, 2013). Across these settings,

the reference point is the status-quo, or the forward-looking expectation (Kőszegi and Rabin,

2006). We estimate the speed of updating of a backward-looking reference point as in Bowman

et al. (1999), similar to Post et al. (2008). This paper is also part of a literature on structural

behavioral economics (Laibson et al., 2007; Conlin et al., 2007; DellaVigna et al., 2012).

The papers proceeds as follows. In Section 2, we present a model of job search and reference

dependence. In Section 3 we present the institutional details and the data for the Hungary

unemployment insurance reform, which we evaluate in Section 4. In Section 5 we present the

structural estimates, and we conclude in Section 6.

2 Model

In this section we present a discrete-time model of job search with reference-dependent prefer-

ences and present-biased preferences. We build on the job search intensity model presented in

Card et al. (2007a) and in Lentz and Tranaes (2005) by adding a reference dependent utility

function in consumption with a backward looking reference point.

Model Setup. As in Card et al. (2007a) we make two simplifying assumptions. First, jobs

last indefinitely once found. Second, wages are exogenously fixed, eliminating reservation-wage

choices. Each period a job seeker decides search effort st ∈ [0, 1], representing the probability

of receiving a job offer at the end of period t and thus of being employed in period t + 1.

Search costs are given by the function c(st), which we assume to be time-separable, twice

continuously differentiable, increasing, and convex, with c (0) = 0 and c′ (0) = 0.

In each period individuals receive income yt, either UI benefits bt or wage wt, and consume

ct. In the general model consumers smooth consumption over time by accumulating (or

running down) assets At. Assets earn a return R per period so that consumers face a per-

period budget constraint At+1

1+R
= At + yt − ct and a borrowing constraint At ≥ −L. We also

consider a simplified model with hand-to-mouth consumption, ct = yt.

The direct utility from consumption in period t for an unemployed person is v (ct), where

v(.) is an increasing and concave function. The novel aspect is the fact that the reference-

dependent individual has, in addition to consumption utility v (ct), also gain-loss utility. Fol-

5Koenig et al. (2016) model a reference-dependent reservation wage choice in that the wage offers with
some probability equal a previous wage (the reference). Their paper focuses on job matches and reservation
wages, as opposed to on the dynamics of exit from unemployment.
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lowing the functional form of Kőszegi and Rabin (2006), flow utility in each period is

u (ct|rt) =
v (ct) + η [v (ct)− v (rt)] if ct ≥ rt

v (ct) + ηλ [v (ct)− v (rt)] if ct < rt
(1)

where rt denotes the reference point in period t. The utility consists of consumption utility

v (ct) and gain-loss utility v (ct) − v (rt). When consumption is above the reference point

(ct ≥ rt), the individual derives gain utility v (ct) − v (rt) > 0, which receives weight η.

When consumption is below the reference point (ct < rt), the individual derives loss utility

v (ct)− v (rt) < 0, with weight λη. The parameter λ ≥ 1 captures loss aversion: the marginal

utility is higher for losses than for gains. This reference-dependent utility function builds on

prospect theory Kahneman and Tversky (1979) without, for simplicity, modelling diminishing

sensitivity or probability weighting. The standard model is a special case for η = 0.

The second key assumption is the determination of the reference point rt. Unlike in the

literature on forward-looking reference points (Kőszegi and Rabin, 2006), but in the spirit of

the tradition on backward-looking reference points (Bowman et al., 1999), the reference point

is the average of income over the N previous periods:6

rt =
1

N + 1

t
∑

k=t−N

yk

To gain perspective on the impact of reference dependence, consider an individual in

steady state with consumption, income, and reference point equal to y. Then in period T,

consider a small, permanent decrease in income from y to y − ∆y < y, and an identical

decrease in consumption from c = y to y −∆y.7 In period T , utility changes to v (y −∆y) +

ηλ [v (y −∆y)− v (y)] . The short-term change in utility equals, up to a linear approximation,

− (1 + ηλ)∆y ∗ v′ (y) . Over time, however, the reference point adjusts to y −∆y so that the

utility after N periods is v (y −∆y) . Hence, the long-term change in utility equals −∆yv′ (y).

Thus, ηλ captures the weight on additional short-term utility in response to an income loss.

Value Functions. The unemployed choose search effort st and consumption ct in each

period and face the following value function, where δ is the discount factor:

V U
t (At) = max

st∈[0,1];At+1

u (ct|rt)− c (st) + δ
[

stV
E
t+1|t+1 (At+1) + (1− st)V

U
t+1 (At+1)

]

(2)

6Notice that if N = 0, then rt = bt. In the hand-to-mouth case, where ct = yt, the reference-dependent
utility then simplifies to the direct-consumption utility, u (ct|rt) = v(ct) and therefore the standard model is
embedded. For the model with optimal consumption, even setting N = 0 the standard model is not embedded.
In the estimation below we also consider an alternative AR(1) reference point formation process.

7A sudden permanent drop in consumption could occur, for example, if the individual is a hand-to-mouth
consumer and benefits suddenly drop.
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subject to: ct = At + yt −
At+1

1 +R
.

The assumption that the reference point is function of past income and not of past con-

sumption simplifies the value functions substantially, since the value function of unemployment

depends only on assets At: V
U
t (At). For the employed, the reference point depends also on for

how long the person has been employed; hence, the value function can be written as V E
t|j(At)

for an individual who is employed in period t and who found a job in period j. Note also the

assumptions on timing: the job-seeker chooses search effort st in period t; with probability st

a job offer materializes, in which case the individual earns wage w starting in period t+ 1.

Once an individual finds a job at time j, the value of employment in period t is given by:

V E
t|j (At) = max

ct>0
u (ct|rt) + δV E

t+1|j (At+1) . (3)

Given Equation (2) the first order condition for the optimal level of search effort s∗t in the

case of an interior solution can be written as:

c′ (s∗t (At+1)) = δ
[

V E
t+1|t+1 (At+1)− V U

t+1 (At+1)
]

. (4)

Thus we can rewrite the unemployed problem as:

V U
t (At) = max

At+1

u
(

At + yt −
At+1

1 +R

∣

∣

∣

∣

rt

)

− c (s∗t (At+1))

+δ
[

s∗t (At+1)V
E
t+1|t+1 (At+1) + (1− s∗t (At+1))V

U
t+1 (At+1)

]

We solve the model by backwards induction, deriving first the steady-state optimal con-

sumption in the employed state. This allows us to solve for the optimal consumption path

for each asset level and to obtain the value functions V E
t|t (At) for each t and each asset level

At. Then we solve the dynamic programming problem for the unemployed, moving backwards

from the steady state, solving for the optimal consumption path and search effort path for

each possible starting value of the asset vector.

Front-Loading The Benefit Path. To highlight the implications of reference depen-

dence, we consider a hypothetical unemployment insurance reform that closely corresponds

to our empirical setting. To build intuition and for tractability, we consider in detail the case

of hand-to-mouth consumers with no heterogeneity and then briefly discuss the extension to

the general case. In the case of hand-to-mouth consumers, assets are not a control variable

and thus we can solve for s∗t : s∗t = C
(

δ
[

V E
t+1|t+1 − V U

t+1

])

,where C(.) = c′−1(.).

Consider a UI system with benefits b1 for the first T1 periods benefits and benefits b2 from

period T1 until T . After period T , there is a lower second tier (such as social assistance) with
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benefits b. A single-step UI system, like the one in the US, is captured by b1 = b2 = bconstant

and is illustrated by the blue solid line in Figure 1a).

Consider a reform that front-loads the benefit path by raising benefits b1 in the first

T1 periods and reducing benefits b2 in periods T1 to T , while leaving second-tier benefits b

unchanged, as illustrated by the red dashed line in Figure 1a). Furthermore, the reform leaves

untouched the total amount of benefits paid to an individual unemployed for T periods:

b1T1 + b2(T − T1) = bconstantT. (5)

Equation (5) implies ∂b2
∂b1

= − T1

T−T1
. We now partially characterize how search s∗t is affected

by an increase in b1 subject to constraint (5). We express the results in terms of
ds∗t
db1

=
∂s∗t
∂b1

− T1

T−T1

∂s∗t
∂b2

, where the total derivative takes the implied adjustment of b2 into account.8

Proposition 1. Assume a hand-to-mouth unemployed job-seeker and consider a shift in the

benefit path that front-loads the benefits b1 keeping the overall benefits paid constant.

a) In the standard model (η = 0), the search effort in all periods after benefit expiration at

T is unaffected:
ds∗

T+i

db1
= 0, for i = 0, 1, ....

b) In the reference-dependent model (η > 0 and λ ≥ 1) search effort (weakly) decreases in

the first N periods after T, and remains constant in later periods:
ds∗

T+i

db1
≤ 0, for i = 0, 1, ...N−1

and
ds∗

T+i

db1
= 0, for i = N,N + 1, ... Furthermore, if the adjustment speed N of the reference

point is shorter than T , then the inequality is strict:
ds∗

T+i

db1
< 0, for i = 0, 1, ...N − 1

Part a) is straightforward. In the standard model, the search decision depends exclusively

on future benefits and wages, and the reform leaves unaffected the benefits past period T.

The intuition for part b), which we prove in the appendix, is as follows. An increase in

b1 affects search effort in period T through changes in V E
T+1 and V U

T+1. These value functions

are affected because frontloading the benefit path (increasing b1 and reducing b2) will reduce

the reference point at time T , rT , as long as N < T . This will increase both the value of

employment (due to an increase in gain utility) and the value of unemployment (due to a

decrease in loss utility). If λ ≥ 1 the decrease in loss utility will be larger than the increase

in gain utility, leading to a reduction in search effort.

These predictions are illustrated in Figures 1b) and c). In the standard model (Figure 1b),

optimal search effort increases under both regimes up until period T, and then plateaus after

period T at a level that is unaffected by the front-loading of benefits (Proposition 1a). Gener-

ally, the hazard rate for the front-loaded regime (the dotted red line) will be higher than the

one for constant benefits in the periods right before period T, given the moral hazard.

8Note that search effort in period t is not affected by UI benefits in period t, since the individual will
only start a job found in period t in period t + 1. Thus search effort st corresponds to the exit hazard from
unemployment in period t+ 1: st = ht+1.
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In contrast, under reference dependence (Figure 1c), search effort in period T is substan-

tially higher under the constant-benefit regime (continuous blue line). Individuals in this

regime experience a sharper drop in consumption and thus (for N < T ) significant loss utility

due to the higher reference point. Second, the difference in hazards persists but shrinks for

N periods, at which point the reference point has fully adapted to the lower benefits under

either regime, and thus search effort converges. A third implication (not captured in the

Proposition) is that in the last few periods before period T , for sufficiently large loss aver-

sion λ, the hazard is higher under the constant-benefit regime compared to the front-loaded

regime. The anticipation of larger future losses under the constant-benefits regime generates

this anticipatory effect, counteracting the moral hazard effect of more generous benefits.

Notice that Proposition 1 does not hold with either heterogeneity or optimal consumption.

With heterogeneous types, differences in the path of benefits up to period T may lead to a

different composition of types surviving at period T, and thus differences in the hazard even

in the standard model, violating Proposition 1a). However, given the assumption of constant

total benefit payout, differences in type composition are likely to be small.

Introducing savings in the model also invalidates Proposition 1 since individuals may have

different savings at period T , thus creating differences in hazards, even under the standard

model. However, given that the total benefit payments are constant, such differences in savings

are likely to be small. We address both heterogeneity and savings in the estimation section.

Present Bias. We extend the model by allowing for present-bias (Laibson, 1997; O’Donoghue

and Rabin, 1999), with an additional discount factor β ≤ 1 between the current period and

the future. The present bias factor β induces time inconsistency and fits behavior in a range of

settings (see Frederick et al., 2002; DellaVigna, 2009). In the context of job search, DellaVigna

and Paserman (2005) solve for a job search model with present-biased preferences. We assume

that individuals are naive about their future present-bias: they (wrongly) assume that in the

future they will make decisions based on regular discounting δ. We make this assumption

mostly for computational reasons, since the naive agent problem can be solved using the value

functions of the exponential agent (given that the naive worker believes she will be exponen-

tial from next period). In addition, the evidence on present bias is largely consistent with the

naivete’ assumption (DellaVigna, 2009).

The naive hyperbolic discounting individual solves the following value functions:

V U,n
t (At) = max

st∈[0,1];At+1

u (ct|rt)− c (st) + βδ
[

stV
E
t+1|t+1 (At+1) + (1− st)V

U
t+1 (At+1)

]

(6)

subject to: ct = At + yt −
At+1

1 +R
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and

V E,n
t+1|t+1 (At+1) = max

ct>0
u (ct|rt) + βδV E

t+2|t+1 (At+1) (7)

where the functions V U
t+1 and V E

t+1|t+1 are given by equations (2) and (3) above for the ex-

ponential discounters. Note that this adds one more step to the solution algorithms, since

we first solve for all possible values of V U
t+1 and V E,n

t+1|t+1 and then we solve for the optimal

consumption and search paths given by V U,n
t+1 and V E,n

t+1|t+1.

3 Data and Institutions

3.1 Unemployment Insurance in Hungary

Hungary had a generous two-tier unemployment insurance system up to 2005. In the first tier,

potential duration and benefit amount depended on past UI contribution.9 The maximum

potential duration, obtained after around 4 years of contribution, was 270 days,10 while the

benefit level was based on the earnings in the previous year. After the exhaustion of first-tier

benefits, unemployment assistance (UA) benefits could be claimed in the second tier. The UA

benefit amount was the same for everybody, with the potential duration depending on age.

On May 30th, 2005 the Hungarian government announced a comprehensive reform of the

UI system11, with the goal of speeding up transition from unemployment to employment. The

government changed the benefit calculations formula in the first tier, but did not alter the way

potential duration and the earnings base were calculated. Before the reform, the benefit in

the first tier was constant with a replacement rate of 65% and with minimum and maximum

benefit caps. The reform introduced a two-step benefit system. For the first step, the length

was half of the potential duration in the first tier, and at most 91 days, and the replacement

was lowered to 60% with increased minimum and maximum benefit caps. For most claimants

these changes meant lower benefits than under the old schedule. In the second tier everybody

received the new minimum benefit amount, reducing benefits for most claimants compared to

before. The benefit formula changes are summarized in Appendix Figure A-1.

The most prominent change occurred for those with 270 days of eligibility (four years of

UI contributions before lay-off) and base year earnings above the new benefit cap (that is,

they earned more than 114,000HUF ($570) per month in 2005). As Figure 2 shows, for this

group the duration of benefits in the first tier remains 270 days. While in the old system the

9Every worker in the formal sector must pay a UI contribution. In 2005, employers contributed 3% to the
UI fund, while employees 1%. There is no experience rating of UI benefits in Hungary.

10More specifically, potential benefit in the first tier was calculated as UI contribution days in the last 4
years divided by 5, but at most 270 days.

11The reform was part of a wider government program called “100 steps”. Policies related to the labor
market and unemployment insurance (such as reemployment bonus and training policies) are discussed later.
In addition to that, VAT and corporate income tax were decreased from January 1st 2006.
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benefits were constant in the first tier, under the new rules benefits increased substantially

in the first 90 days, but decreased afterwards. An important feature of the reform for this

group is that the increase in weekly benefits in the first 90 days is about twice as large as

the decrease in weekly benefit between 90 and 270 days, keeping the total benefit pay-out for

individuals unemployed for 270 days the same.

Even though the main element of the reform was the new benefit formula, there were

other changes occurring at the same time. Most notably, a reemployment bonus scheme

was introduced with a bonus amount equal to 50% of the remaining total first-tier benefits.

However, claiming the bonus was not without costs. If the bonus was claimed, then the

entitlement for the unused benefit days was nulled. This could be very costly for risk-averse

agents or for those who could only find an insecure job. Also, the bonus could only be claimed

after the date of first-tier benefit exhaustion. This meant hassle costs, since UI claimants had

to show up and fill out the paper work in the local UI office. Given these costs, it is not

surprising that the take-up rate of reemployment bonus was only 6%, making it unlikely that

it had substantial effects. As a robustness check, we show that the results are not sensitive to

dropping the reemployment bonus users from the sample.12

In addition to the introduction of the reemployment bonus, there were two other minor

relevant changes. First, those who claimed UI benefit before February 5th, 2005 faced a longer
13, but somewhat lower, benefit in the second tier.14 To avoid this complication, we only focus

on those who claimed their benefits after February 5th, 2005. Second, there were minor

changes in financing training programs.15 However, participation in training programs was

very low (less than 5%) in our sample and our results are robust to dropping these claimants.

Those who exhausted benefits in both tiers (UI and UA) and were still unemployed could

claim means-tested social assistance. The duration of social assistance is indefinite, while the

amount depends on family size, family income, and wealth. In most cases social assistance

12Lindner and Reizer (2015) investigate the reemployment bonus in detail and further show that it does not
affect the unemployment duration.

13Before the reform, the potential duration in the second tier was 270 days above age 45 and 180 days below
45. Those who claimed UI after February 5th, 2005 were eligible for 180 days above age 50 and 90 days below
50 in the second tier.

14The change in the duration and benefit level in the second tier was introduced at November 1st, 2005
at the same time as other changes. However, it affected everybody who claimed second tier (UA) benefits
after November 1st, 2005. A UI claimant who claimed her benefits after February 5th, 2005 and had 270 days
potential eligibility could only claim second tier benefits (UA) after November 1st, 2005. Therefore, claimants
between February 5th, 2005 and November 1st, 2005 are under the old benefit system for the first tier, but
face the same second tier (UA) insurance scheme, see Figure 3.

15Unemployed participating in training programs received the so-called income substituting benefit. Be-
fore November 1st, 2005 this amount was 22,200HUF ($111) or 44,400HUF ($222), depending on household
characteristics and type of training. This benefit was payed in excess of the UI. After November 1st, the
benefit was 34,200HUF ($171) for everybody, but the UI benefit was suspended during training. Although
we only observe training participation after November 1st, 2005, aggregate data show that the probability of
participation in training programs remained constant throughout this period Frey (2009).
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benefits are lower than the second tier UI benefit level.16

3.2 Data

We use administrative data17 on social security contributions for roughly 4 million individuals

between January 2002 and December 2008. The sample consists of a 50% de facto random

sample of all Hungarian citizens who were older than 14 and younger than 75 in 2002.18 The

data contains information on UI claims from February 2004 to December 2008 as well as basic

information used by the National Employment Service, like the starting and ending date of

the UI benefit spells and the earnings base used for benefit calculation.

In this paper we only focus on UI claimants who are eligible for the maximum potential

duration (270 days) in the first tier. In addition, we restrict our sample to those who are

older than 25 years and younger than 49 years, since specific rules apply close to retirement.

Moreover, we identify as our main sample UI claimants with high earnings base, since our goal

is to explore the variation in Figure 2. To construct a consistent sample over time, we focus

on the unemployed with earnings base above the 70th percentile among the UI claimants in a

given year. In 2005, a UI claimant at the 70th percentile earned 100,800 HUF ($504).19

To evaluate the reform, we construct two comparison groups of workers who entered UI

just before or just after the reform, since the claiming date determined the relevant regime.

Due to the change in unemployment assistance in February 2005, we use all UI claimants

between February 5th, 2005 and October 15, 2005 (to avoid getting too close to the reform)

as our pre-reform group. For the post-reform group, we take UI entrants in the same date

range (February 5 to October 15) in 2006 so as to match possible seasonal patterns. Figure 3

shows the timing of the two comparison groups and the range for which our data is available.

For robustness checks, we later show results using data in the earlier and later ranges as well.

Table 1 shows basic descriptives for the two groups. The basic demographic characteristics,

such as age at time of claiming, education and log earnings in the years 2002 - 2004, are similar

before and after the reform. The waiting period (the number of days between job loss and the

time of claiming UI benefits) is almost identical across the two groups, indicating that people

towards the end of our before sample were not trying to delay UI claiming dates in order to

become eligible to the new regime.20 The take-up rates of the reemployment bonus scheme,

16For large families, social assistance can be more generous than UI. However, social assistance cannot be
claimed before all other benefits have been exhausted in the UI system.

17The dataset is provided by the Institute of Economics - Hungarian Academy of Sciences.
18More precisely the sample is composed of everybody born on the 1st of January, 1927, and every second

day thereafter (3rd of January, 5th of January etc.).
19Our results are robust to alternative earnings thresholds over time. For example, we estimated our main

specifications for those whose (real) earnings base was above 114,000 HUF ($570) and obtained virtually the
same results.

20Appendix Figure A-2 shows the unemployment rate and GDP growth rate around the two periods in
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which was introduced in 2005, are quite low. Below we present robustness checks to address

the possibility that this bonus may have affected our results.

4 Reduced Form Results

4.1 Estimating Hazard Plots

In this section, we evaluate the impact of the reform on the exit rates from unemployment. We

estimate the hazard rates with a linear probability model separately for each 15-day period21,

indexed by t, after entering unemployment insurance:

I(t∗i = t|t∗i ≥ t) = β0,t + β1,tPOSTi +Xiγ + ǫit, (8)

where i indexes individuals and t∗i represents the duration of unemployment of individual i.

The left hand side is an indicator for individual i finding a job in period t, conditional on

still being unemployed at the beginning of the period. The variable POSTi is an indicator

for individual i claiming benefits in the post-reform period, while Xi is a matrix of control

variables. The equation is estimated separately for each period t on the sample of individuals

who are still unemployed at time t (that is conditional on t∗i ≥ t). The estimates for β0,t are

estimates for the hazard function in the pre-period, while the estimates for β1,t represent the

shift of the hazard function between the before and after period. In our baseline estimates we

do not control for any observables Xi, and show results controlling for Xi as robustness.22

4.2 Main Result

Figure 4a) shows the estimates of equation (8) for each t with no controls. The blue line

represents the coefficient estimates of β0,t, the estimated hazard function in the before period,

while the red line represents the estimated β0,t + β1,t, the after period hazard. Vertical lines

indicate that the difference between the two series is statistically significant at the 5% level.

Hungary. The unemployment rate was quite stable at around 7.5 percent during and after the two sample
periods. GDP growth was also stable during the sample periods, only slowing down at the beginning of 2007.
Below we show extensive robustness checks, showing that our results are not driven by changes in the economic
environment that occurred later and that the shape of the hazard rates are in fact very stable over time except
for the exact point when the UI policy changes.

21We choose a 15-day period so that the benefit path steps after 90 days and 270 days occur at integer
values of these periods. The results are very similar with hazards computed at 7 days or 30 days.

22Note that these hazard functions should not be viewed as consistent estimates at the individual level,
but rather as estimates of the average hazard function in the population. While the natural experiment,
assuming the conditional independence assumption holds, identifies the causal effect of the reform on the
average population hazard function, the shape of this average hazard function is potentially affected by duration
dependence or by changes in selection due to the reform. While we address differential selection in our reduced
form results section by comparing the estimated hazards controlling and not controlling for observables, an
important aspect of our structural estimation below will be to explicitly model unobserved heterogeneity.
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The exit rate from unemployment in the pre-reform period shows a familiar pattern for a

one-step unemployment system. The exit hazard falls in the first months after entering UI,

then it increases as it approaches the exhaustion point of UI benefits (at 270 days). After

this exhaustion point, it falls and spikes again as people exhaust the second tier benefits,

unemployment assistance, at 360 days. The hazard rate then decreases monotonically, as

unemployed people are only eligible for welfare programs.

The exit hazard changes substantially after the introduction of a two-step system. The

hazard rate increases at 90 days, at the end of the higher unemployment insurance benefit,

and remains elevated compared to the pre-reform period for the following 2.5 months. By

180 days, the pre- and post-reform hazards have converged, and both hazards increase at the

exhaustion of UI benefits at 270 days. Importantly though, the post-reform hazard increases

significantly less, and the pre-reform hazard remains significantly higher for three months

following UI exhaustion. Finally, by 360 days, the end of unemployment assistance, the two

hazards have once again converged.

The most striking difference occurs around day 270, when in the pre-reform period the

exit hazard remains significantly higher after the UI exhaustion point (270 days) relative to

the post-reform period. As we discussed above, this difference in hazards is hard to reconcile

with the standard model: from day 270 onwards, the benefit levels are identical in the pre-

and post-period, and in addition the total amount of benefits received up to day 270 is also

almost identical. Hence, in the standard model we would expect similar hazards (even with

heterogeneity, as we show below). A modified standard model with storable offers could

potentially match the spike at 270 days, but it still does not explain the persistent difference

in the hazards after the exhaustion of benefits.

The difference in hazards instead fits nicely with the reference-dependent model: the work-

ers in the pre-reform period experience a larger drop-off in benefits around day 270, inducing

a spike in loss utility and thus an increase in the value of search. The persistence for three

months of the higher hazard indicates slow adjustment of the reference point. Furthermore,

the increase in hazard in the pre-period happens already in anticipation of benefit expiration

at day 270, consistent with the reference-dependent model.

While we focus mainly on the hazard rate around day 270 because it leads to the most

distinct predictions, the observed patterns around day 90 are also consistent with reference

dependence. The spike in the hazard at 90 days in the post-period, corresponding to the first

step down in benefits, disappears after 3-4 months, consistent once again with loss utility

and a slowly-adjusting reference point. However, the spike itself in this period could also be

explained by the standard model with unobserved heterogeneity, as we show below.

Figure 4b) shows the estimated survival function for the two groups. We obtain these
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estimates using a variant of equation (8), where we estimate the equation again pointwise

for all t but including the whole sample and taking P (t∗i ≥ t) as the outcome variable. The

survival functions diverge after 90 days, with lower survival probabilities in the after group

than in the before group. This difference persists until around 300 days, after which the

two lines converge. Since the expected duration in unemployment is simply the integral over

the survival function from 0 onwards, the expected unemployment duration is significantly

reduced in the after period. It is striking that even though the reform made the UI system

more generous on average (since short term unemployed received more benefits, while the

long-term unemployed received about the same), the expected duration decreased.

4.3 Robustness Checks

The results presented so far do not control for demographic characteristics. Even though the

differences in demographics between the pre- and the post-period are quite small (Table 1),

they could potentially explain differences in the hazard patterns over time if the demographic

impacts on the hazard rates are large. Thus, we re-estimate equation (8) controlling for a rich

set of observable characteristics, where we allow these characteristics to have arbitrary effects

on the hazard function at each point, the only restriction being that the effect is the same in

the before and after period. As Figure 5a) shows, controlling for observables has virtually no

effect on the hazard rates, implying that they cannot explain our findings.23

A separate concern regards the introduction of the reemployment bonus in November 1st,

2005. While the take-up rate of the bonus was just 6% in our sample, it may still affect the

hazard rate in the post-reform period, especially in the first 90 days. As a check, we drop

all individuals that received a reemployment bonus and estimate our baseline specification on

this restricted sample; the results are virtually unchanged (Figure 5b)).

In order to assure that the differences in the hazard rates are in fact due to the reform in

the UI system and not simply the result of some general trend, we exploit the fact that we have

additional data from 2004 and after 2006. First, we estimate two placebo tests for whether

there are differences in the two years before the reform and the one year before the reform,

using the same estimation strategy as before. We report these results in Appendix Figure A-

3a), revealing that the hazard rates are virtually unchanged between 2004 and 2005. There is

a small difference right after the 270 line, which is expected due to the reduction in unemploy-

ment assistance in February 2005, leading to a slight increase in the hazard at this point in

2005. Similarly Appendix Figure A-3b) shows that there are virtually no differences between

the hazards 1 and 2 years after the reform, again indicating that the differences between our

23Alternatively we also used propensity score reweighting to estimate the hazards in the pre- and post-period,
holding the observables constant over time and obtained almost identical results (not shown).
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before- and after-period line up nicely with the reform.

We explore the timing further by plotting time-series graphs of the exit hazards over

specific intervals. Figure 6a) shows the evolution over time of the exit hazard between 30

and 90 days (red line) and between 90 and 150 days (black line). Each dot indicates the

average hazard for each 3-month period between 2004 and 2007, with quarter 1 indicating

the first 3-month period after the reform. Prior to the reform, the hazard at 90-150 days is

smaller than the hazard at 30-90 days, consistent with the patterns in Figure 5. Subsequent

to the reform introducing a step down of benefits after 90 days, the pattern abruptly changes.

Already in the first quarter after the reform, the hazard at 90-150 days increases sizeably,

becoming similar to the hazard at 30-90 days, a pattern that remains largely similar over the

next 6 quarters. The figure provides little evidence of previous trends, suggesting that the

changes in hazards are indeed a causal effect of the reform.

Figure 6b) provides parallel evidence for the hazard at 210-270 days versus at 270-330

days. In the quarters pre-reform, the hazard at 270-330 days is significantly higher than the

hazard at 210-270 days, a pattern that changes abruptly with the first quarter following the

reform. The time-series plots again indicate a change that is coincidental with the reform and

not due underlying trends or changes in the macroeconomic environment.

5 Structural Estimation

5.1 Set-up and Estimation

We use the model of Section 2, imposing six additional assumptions, some of which we relax

later. The first three assumptions concern the utility function. First, we assume that the

search cost function has a power form as in Paserman (2008) and Chetty (2003): c (s) =

ks1+γ/ (1 + γ). This form implies that the parameter γ is the inverse of the elasticity of

search effort with respect to the net value of employment.24 Second, we assume log utility,

v (b) = ln (b). Third, similar to Bloemen (2005) and Paserman (2008), we model heterogeneity

as three types of unemployed workers that differ in their cost of search k.

Fourth, to avoid modelling on-the-job search, we start the worker problem in the first

period of unemployment, and thus fit the hazard from the second period on.25 Fifth, we set

past wages equal to the median earnings in our sample, which is 135,000 HUF ($675), and

assume that reemployment wages are constant over the UI spell and equal to past wages.26

24To see this, recall that the first-order condition of search effort (equation 4) is c′ (s∗) = v, where we
denote with v the net value of employment (that is, the right-hand-side of equation 4). Given the parametric

assumption, this yields s∗ = (v/k)
1/γ

, and the elasticity of s∗ with respect to v is ηs,v = (ds/dv) v/s = 1/γ.
25Recall that a successful job search in period t yields a job in period t+ 1.
26In a robustness check, we present estimates assuming a lower reemployment wage.
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Sixth, we assume that individuals start with zero assets, that they cannot borrow against

their future income, and that they earn no interest on saved assets.

The vector of parameters ξ that we estimate for the standard model are: (i) the three

levels of search cost khigh, kmed, and klow, with the assumption khigh ≥ kmed ≥ klow, and

the two probability weights plow and pmed; (ii) the search cost curvature γ; (iii) the time

preference parameters δ and β. For the reference-dependent model, we estimate in addition:

(iv) the loss aversion parameter λ; and (v) the number of (15-day) periods N over which the

backward-looking reference point is formed.27 To keep the number of parameters the same

as for the standard model, in the reference-dependent model we assume only two cost types,

thus removing parameters kmed and pmed. Notice that the weight η on gain-loss utility is set to

1 in the benchmark estimates rather than being estimated; thus, the loss-aversion parameter

λ can be interpreted also as the overall weight on the losses. The reason for this assumption

is that over the course of the unemployment spell the individual is always on the loss side

since the benefits are always (weakly) lower than the reference point. Hence, it is difficult to

estimate a separate weight on gain utility and loss utility.28

Estimation. We use a minimum-distance estimator. Denote by m (ξ) the vector of

moments predicted by the theory as a function of the parameters ξ, and by m̂ the vector of

observed moments. The minimum-distance estimator chooses the parameters ξ̂ that minimize

the distance (m (ξ)− m̂)′ W (m (ξ)− m̂) , where W is a weighting matrix. As a weighting

matrix, we use a diagonal matrix that has as diagonal elements the inverse of the variance of

each moment.29 To calculate the theoretical moments, we use backward induction. First we

numerically compute the steady-state search and steady-state value of unemployment using

a hybrid bisection-quadratic interpolation method, pre-implemented in Matlab as the fzero

routine. Then we solve backwards for the optimal search intensity and consumption path in

each period as a function of the asset level. Finally, we use the initial asset level as a starting

value to determine the actual consumption path and search intensity in each period.

Under standard conditions, the minimum-distance estimator using weighting matrix W

achieves asymptotic normality, with estimated variance (Ĝ′WĜ)−1(Ĝ′W Λ̂WĜ)(Ĝ′WĜ)−1/N ,

where Ĝ ≡ N−1 ∑N
i=1 ∇ξmi(ξ̂) and Λ̂ ≡ V ar[m(ξ̂)] (Wooldridge, 2010). We calculate ∇ξm(ξ̂)

numerically in Matlab using an adaptive finite difference algorithm.

Moments. As moments m (ξ) we use the 15-day hazard rates from day 15 to day 540 for

both the pre-reform and post-reform period, for a total of 35*2=70 moments. We do not use

the hazard from the first 15 day period, since it would require modelling search on the job.

27In the estimations tables we report the speed of adjustment in days, which is just N*15.
28In principle, the weight on gain utility η can be separately identified as we show in a robustness section,

since gain utility affects the utility of reemployment, but the reemployment utility does not allow for very
precise identification of η.

29As robustness check below, we alternatively use the identity matrix as a weighting matrix.
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Identification. While the parameters are identified jointly, it is possible to address the

main sources of identification of individual parameters. The cost of effort parameters kj are

identified from both the level of search intensity and the path of the hazards over time. This

is clearest in the standard model, where the heterogeneity in the parameters is needed, for

example, to explain the decay in the hazard after day 360, when benefits remain constant and

thus, in absence of heterogeneity, the hazard would be constant in the standard model (but

not in the reference-dependent model). The search cost curvature parameter, γ, is identified

by the responsiveness of the hazard rate to changes in benefits since 1/γ is the elasticity of

search effort with respect to the (net) value of finding a job.

The time preference parameters are identified by the presence of spikes around benefit

cuts, among other moments. If the unemployed workers are patient, they save in advance

of benefit decreases so as to smooth consumption. Impatient workers, instead, save little if

at all and thus experience a sharp decrease in consumption around the benefit change. This

consumption drop then induces a sharp increase in search effort as the benefits decrease.

Turning to the reference-dependence parameters, for a given value of η (fixed to 1 in the

benchmark specification), λ denotes the magnitude of the loss utility. A major component to

identification is the extent to which the hazard for the pre-period is higher both before and

after day 270, in response to a larger loss. Instead, the standard model has essentially identical

hazards from day 270 onwards. The loss parameter is also identified by the response to other

changes in the benefits, such as at 90 days in the post-period. The parameter N , which

indicates the speed at which the losses are reabsorbed into the reference point, is identified

by the fact that the pre- and post-reform hazards converge a few months after day 270. The

speed of convergence of the hazard after day 90 also suggests several months of adjustment.

5.2 Hand-to-Mouth Estimates

To build intuition, we first present estimates assuming that workers in each period consume

the per-period income. Figure 7a) presents the fit for the standard model with 3-type hetero-

geneity. The model fits quite well the surge in hazard around day 90 in the post-period, and

the decreasing path of the hazard in the first 200 days. The fit is also reasonably good for

the period from day 400 on. However, the fit between days 250 and 400 is poor. As discussed

above, the standard model predicts that the hazard rates for the pre- and post-period should

be almost exactly the same after day 270. As such, the model misses both the sharp difference

in hazard between day 260 and day 360, as well as the spikes at both 260 and 360 days.

In comparison, Figure 7b) displays the fit of the reference-dependent model with two types

(and thus the same number of parameters as in the standard model). The fit in the first 250

days is very good, though it was quite good also for the standard model. But, as anticipated,
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the model does much better for longer durations, where the standard model fits poorly. In

particular, the model fits better the surge in the hazard rate in the pre-period in anticipation

of the benefit cut after 270 days (which is larger in the pre period than in the post-period), as

well as the elevated level for the following three months, compared to the pre-period. Then

the model tracks quite well the period following the exhaustion of unemployment assistance

(after 360 days). The fit of the reference-dependent model, while superior to the standard

model, is certainly not perfect. The most striking aspect of the data which the model does

not capture is the large spike on day 270 for the pre-period; storable offers may play a role

in this case. In addition, the reference-dependent model under-fits the difference in hazards

between the pre- and post-period after day 270.

In Table 2 we present the parameter estimates. The estimates for the standard model (Col-

umn (1)) indicate substantial heterogeneity in cost k and low cost curvature γ̂ = .13. This

implies a high elasticity of search effort to incentives, needed to fit the substantial hazard

increases in response to benefits changes. The estimates for the reference-dependent model

(Column (2)) indicate a substantial weight on loss utility, λ̂ = 3.5 (s.e. 1.3), and slow adjust-

ment of the reference point, N̂ = 216 (s.e. 9) days. At the bottom of the Table, we report the

goodness of fit (GOF) measure (m (ξ)− m̂)′ W (m (ξ)− m̂). The reference-dependent model

has a substantially better fit (GOF of 170 versus 215), for equal number of parameters.

5.3 Benchmark Estimates with Consumption-Savings

While the previous estimates indicate that a reference-dependent model can fit the patterns in

the data quite well, there is a key concern with the hand-to-mouth estimates. Individuals who

anticipate experiencing loss utility from a benefit cut should save in anticipation, allowing

them to smooth consumption around the benefit cut. In turn, this would imply smoother

hazards around the benefit cuts than in the data. This consumption smoothing, however, is

ruled out in the hand-to-mouth model.

A parallel issue arises for the hand-to-mouth estimates of the standard model. The esti-

mated patience parameter in the standard model (δ̂ = .98) implies forward-looking individuals

who are quite responsive in their search effort to future benefit cuts. And yet, by assumption

these individuals do not save in anticipation of the cuts. For these reasons, we now turn to

the estimates modelling a consumption-savings choice, in addition to the search effort choice.

Figure 8a) shows the fit for the standard model with three types, compared with the fit in

Figure 8b) for a reference-dependent model with two types (with once again the same number

of parameters). The qualitative fit is similar to the fit obtained for hand-to-mouth consumers

(Figures 7a) and b)): the reference-dependent model better fits the path in the hazard.

How is that possible in light of the above intuition about counteracting savings? For an
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answer, we turn to Table 3 which displays the corresponding parameter estimates in Columns

(1) and (2). The most striking element is the high estimated degree of impatience: 15-day

discount factors of δ = 0.89 for the reference-dependent model and δ = 0.93 for the standard

model. Either estimate implies an annual discount factor of 0.17 or lower. Appendix Figure

A-4a) provides further evidence on the identification of the discount factor. Each point in

the figure indicates the goodness of fit of the best-fitting estimate for a particular (15-day)

discount factor. For patient individuals (δ = 0.995 or higher), the reference-dependent model

does poorly: loss-averse workers with a high degree of patience would build a buffer stock,

thus smoothing the loss utility. As individuals become more impatient, already for δ = 0.95

the reference dependent model has a good fit (and better than the standard model), with the

best fit, as we saw in the table, for an even lower discount factor. The fit of the standard

model also improves as the discount factor decreases, though less steeply.

These results stress the importance of modelling optimal consumption: both the standard

model and the reference-dependent model have a somewhat worse fit compared to the hand-to-

mouth estimates. The hand-to-mouth results embed an inconsistent combination of relatively

high patience (and thus forward-looking search effort) and yet no consumption smoothing. In

the consumption-savings model, the discount factor drives at the same time both the search

decision and the consumption-savings decision, putting additional restrictions on the model.

Returning to the point estimates, the downside of this set of results is that the model which

best accommodates the data – the reference-dependent one – requires a degree of impatience

which is hard to reconcile with other estimates in the literature. Yet, this high estimated

degree of impatience may be due to a mis-specification of the discounting function. A growing

body of evidence, summarized among others in Frederick et al. (2002) and DellaVigna (2009),

suggests that the beta-delta model of time preferences due to Laibson (1997) and O’Donoghue

and Rabin (1999) provides a better fit of observed behavior in a number of settings. The beta-

delta model includes an additional discount factor β between the present and the next period

to capture the present bias, inducing a time inconsistency.

Thus, in a second set of estimates we allow for beta-delta discounting30 in both the stan-

dard model and the reference-dependent model. To keep the number of parameters constant,

we set the long-term discount factor δ to .995. The results in Columns (3) and (4) of Table 3

and in Figure 8c) show that the fit is better than in the models with delta discounting for the

reference-dependent model with much more plausible discounting: the estimated present-bias

parameter is β = 0.58, implying a discount factor of 0.46 for the first year and of 0.88 for

subsequent years. This indicates a substantial degree of impatience, but in line with esti-

30We assume that consumers are naive about the future self-control problem mostly for computational
simplicity, especially given the complexity of estimating the consumption decision. In addition, the naiveté
assumption is arguably better supported by the evidence (DellaVigna, 2009).
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mates in the literature. For example, Paserman (2008), building on the model in DellaVigna

and Paserman (2005), estimates a job search model with beta-delta preferences and obtains

estimates for beta ranging between 0.40 and 0.89, depending on the sample. Laibson et al.

(2007), based on life-cycle consumption choices, estimates a β between 0.51 and 0.82.

In light of both the higher plausibility and the better fit, we adopt the reference-dependent

model with beta-delta discounting as the benchmark behavioral model in the rest of the paper.

For the standard model, especially given the small difference in fit between the two discounting

functions, we use the more standard delta discounting.31

How do the two models achieve their fit? In Appendix Figures A-5 and A-6 we report plots

for key model components, focusing on the high-cost type. In the standard model, the flow

utility follows the step down in the benefits, with the size of the later steps accentuated by the

curvature of the utility function. In the reference-dependent model, the flow utility captures

also the intensity of the loss relative to the reference point. The value of unemployment

decreases over time in the standard model as expected, while in the reference-dependent

model it actually increases over most of the range, reflecting the importance of reference

point adaptation. This fits the observed decrease in search effort over time, even for a given

type. Furthermore, the value of unemployment declines sharply in correspondence to the

benefit drop. (This sharp drop reflects the estimated impatience). The next panel shows the

reference point path, which is decreasing over time. Notice that from around day 250 the

reference point is higher in the pre-reform group, which contributes to generate higher loss

utility and thus a larger increase in search effort near benefit expiration.

In Appendix Figure A-6, the value of employment, which is almost constant in the standard

model, increases monotonically over time for the reference-dependent model, as getting a job

is associated with a larger gain utility as the reference point declines. This latter force does not

account for much of the results, as we illustrate later when we turn off gain utility. Turning to

consumption and assets, consumption tracks quite closely the per-period earnings, especially

in the reference-dependent model. As such, assets get depleted quickly and remain at zero

or close for the rest of the spell. While we do not observe consumption in our data, other

work (e.g. Ganong and Noel, 2015) has documented that consumption for UI recipients tracks

income rather closely with sharp drops at UI entry and benefit exhaustion.

In the final set of columns in Table 3 we return to a key motivation of the paper. We

argued that the reference-dependent model can, at least in principle, capture the qualitative

features of the hazard from unemployment without any heterogeneity. Yet, the estimates of

reference-dependent model allow for two heterogeneous types. In Columns (5) and (6), we

remove any heterogeneity and estimate the reference-dependent model with only one cost type.

31The results for the reference-dependent models with either delta or beta-delta discounting are qualitatively
similar in all the subsequent specifications.
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This bare-bones model fits the data better than the standard model (goodness of fit of 183

compared to 227), despite having two fewer parameters. As Figure 8d) shows, the qualitative

fit is almost as good as in the reference-dependent models with heterogeneity.

5.4 Reference-Dependence Variants

In Table 4 we consider variants of the benchmark reference-dependent model, reproduced in

Column (1). First, instead of defining the reference point as the average of income over the

N previous periods, we assume an AR(1) process for the reference point:

rt = ρrt−1 + (1− ρ)yt = (1− ρ)
∞
∑

i=1

ρiyt−i

This updating rule has longer “memory” and adjusts more smoothly than the benchmark

reference point, with the speed of adjustment captured by ρ.32 Column (2) of Table 4 shows

the estimated speed of adjustment ρ=0.77, which implies faster adjustment (half-life is 40

days) than in the benchmark case. The goodness of fit with AR(1) updating is very similar

to the one in the benchmark estimates. Figure 9a) shows the fit of this AR(1) model.33

Next, we disentangle the role played by gain and loss utility. So far, we have arbitrarily set

the gain utility parameter, η, to 1 and estimated the weight on loss utility, ηλ. In Columns

(3) and (4) we examine the role of gain and loss utility by including only one at a time in the

model. In Column (3) we assume no gain utility when workers get a job, but still estimate

the loss utility weight ηλ. The fit of the model, visible in Figure 9b), is almost as good as

the benchmark reference-dependent one, and the estimated speed of updating of the reference

point is nearly the same (though not, as expected, the estimated loss aversion). In Column

(4), we instead assume no loss utility and model gain utility. This model does worse than

even the standard model (Figure 9c). This indicates the key role played by loss utility.

Next, we present a parallel take on this result. Columns (5) and (6) report the estimates

setting, respectively, a value of η of 0.2 and of 5. As the (assumed) weight on gain utility η

increases, the estimated λ decreases, holding the term ηλ, which is the weight on loss utility,

at comparable (though not constant) levels. The goodness of fit under these alternative

assumptions for η is almost the same as in the standard model. In Column (7), we estimate

32When we implement this estimate we assume that the memory of the AR(1) update goes back to 1050
days (or 70 15-day periods).

33We adopt as benchmark the N-period reference point for computational reasons, since the long memory
of the AR(1) model makes the estimates more time-consuming. In addition, we do not estimate models with
a forward-looking reference point as in Kőszegi and Rabin (2006). These models typically give rise to multiple
equilibria which would complicate the model solution significantly. However, notice that it is unclear that
forward-looking reference points would explain the difference in hazards after period 270. By that point, the
forward-looking reference points would presumably be the same in the pre- and post-period, leading to similar
predictions for the two periods (up to equilibrium selection), counterfactually.
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separately η and λ, with the fit shown in Figure 9d). The two parameters are in principle

separately identified, but the estimate for η (4.5) is imprecise, and the goodness of fit is again

close to the benchmark model. As such, in the rest of the paper we hold η fixed to 1.

5.5 Habit Formation

How does reference dependence compare to habit formation? Models a la Constantinides

(1990) and Campbell and Cochrane (1999) assume utility u(c − zr), where r is the habit

formed from past consumption and u is a concave function. Habit formation, like reference

dependence, induces a temporarily high marginal utility following a benefit cut, as consump-

tion c gets closer to the habit zr. Thus, it could also plausibly fit the patterns in the data.

We estimate a version of a habit formation model replacing the reference dependent utility

function (defined in Equation (1)) with the utility:

v(ct, rt) = log(ct − zrt),

where z captures the responsiveness to changes in the habit and rt is calculated the same way

as before, but reinterpreted as a measure of habit stock.34 The estimates are in Columns (1)

and (2) of Table 5, allowing for a fixed N for updating of the reference point and for an AR(1)

process. In either case, the fit is not close to the fit of the reference-dependent model, and is

in fact slightly worse than the standard model (see also Figures 10a-b).

This may appear surprising given the similar intuition behind the two models. The models

however differ in a key aspect. In the reference-dependent model, the impact of the loss,

λ(u(c)− u(r)), on search effort is approximately proportional to the size of the loss. Instead,

in the habit-formation model larger decreases in consumption have disproportionate effect,

as c gets closer to zr. Given this, the habit-formation model fits the data less well, since it

predicts a larger spike at the 90-day (post reform) benefit decrease, and a much smaller spike

for the later (proportionally smaller) benefit decreases.35 Allowing for three unobserved types

(Column (3)) only partially improves the fit.

Next, we consider a second type of habit-formation models with so-called multiplicative

habits (Abel, 1990), with utility log(c) − zlog(r). This utility function is equivalent (up to a

linear transformation) to our reference-dependent model with loss aversion λ set to 1 and η set

to z/(1−z). In Column (4) (and in Figure 10d) we present estimates from this multiplicative-

habit model: the fit is superior to the one of the first habit-formation model, though still not

34Observe that this function is not defined whenever ct < zrt, complicating the estimation. To avoid this
problem, Campbell and Cochrane (1999) made z a non-linear function of yt − rt. We treat z as a parameter
instead and check in the optimum that our utility function is defined for the relevant yt and rt.

35In addition, the habit-formation model is also computationally trickier to estimate, as the estimated habit
parameter γ has to always satisfy the condition c > γr.
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close to the benchmark model. This result stresses again the importance of loss aversion.

5.6 Robustness

In Table 6 we consider the robustness of the standard and reference-dependent model to

alternative specifications. We present additional checks in Appendix Table A-1.

In Column (1) we estimate both time preference parameters, β and δ. While the fit is

somewhat better than in the benchmark models, the two time preference parameters appear

to be quite collinear; thus, in the benchmark specifications we fix one of the two parameters.

In Column (2) we allow for background consumption: workers receive non-market income

n during unemployment, in addition to the benefits earned, to capture home production.

The estimates are very similar to the standard ones. In Column (3), while still allowing for

background consumption, we make the alternative assumption that workers are not eligible

for welfare; thus, benefits fall to 0 after 360 days.36 This alternative assumption improves

somewhat the fit of both the reference-dependent model and the standard model. In Column

(4) we allow for a linear time trend in the baseline cost factor allowing for skill depreciation or

conversely learning by searching. This additional parameter improves the fit of the reference-

dependent model while leaving the fit of the standard model essentially unaffected.

In Column (5) we explore the role played by the spikes at days 270 and 360, since one may

worry that such spikes play a disproportional role in the identification given the quadratic

distance measure. The model estimated dropping these moments from the objective function

(see also Appendix Figure A-7c and d) yields similar patterns indicating that the results are

not driven by the spikes. We also consider the importance of timing in the model. We assume

that jobs start one period after the offer is received, but what if the hiring process takes longer?

In Column (6) we assume a 2-period (that is, approximately one-month) delay between the

job search and the start of the wage payments. As Appendix Figures A-8a) and b) show, the

change in timing does not shift the spike. Rather, job-seekers start their search effort earlier,

taking into account the longer delay. In Column (7) we allow for a lower reemployment wage

set at two thirds of the average previous wage. The alternative assumption worsens somewhat

the fit of both models, with little substantive impact on the estimates. In Column (8) we test

the importance of the assumption of zero initial assets: endowing workers with $600 in their

last period of employment does not affect much the estimates (see also Appendix Figure A-7a)

and b)), though the fit is somewhat worse than under the assumption of zero assets (which

itself is most consistent with the estimated high impatience).

In Appendix Table A-1 we present additional robustness results. In Column (1) we use

36While unemployed workers are generally eligible for welfare after benefit exhaustion, the rules are complex
and we do not observe a good measure of welfare take up. Thus, we explore this alternative.
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the identity matrix to weight the moments and in Column (2) we use the moments estimated

after controlling for observables (shown in Figure 5b)). Though the goodness of fit cannot be

compared to the previous estimates, the qualitative conclusions remain the same. In Columns

(3) and (4), instead of using the hazard rates as moments, we use the estimated (unconditional)

probability of exiting unemployment in each 15-day period. The advantage of this alternative

procedure is that we can use the full variance-covariance matrix for weights, which we do

in Column (3). Once again, while the goodness of fit measures are not comparable to the

benchmark models, the pattern of the results is very similar. Finally, the estimates are similar

if we use the 30-day hazards or 7-day hazards, instead of 15-day hazards.

5.7 Unobserved Heterogeneity

So far, we have modeled one form of heterogeneity, in search costs,37 and allowed for a fixed

number of types: three in the standard model and two in the behavioral model. In Table 7,

we relax both assumptions.

First, we increase the number of heterogeneous cost types from 2 types (Column (1)) all the

way to 5 types (Column (4)). Allowing for additional types in the standard model improves the

fit all the way to 4 types; estimates with 5 or more types have trouble converging. Still, even

the model with 4 or 5 types does significantly worse in terms of fit than the reference-dependent

model (Figure 11a). For the reference-dependent model, there is essentially no improvement

in fit going from 2 types to more types. Indeed, estimates of the reference-dependent model

with more than 3 types have trouble converging.

Next, we consider alternative forms of unobserved heterogeneity, such as in the reemploy-

ment wage. We take the 10th, 50th, and 90th percentile of the reemployment wage, as well

as the fractions of each type (taken to be 20 percent, 60 percent, and 20 percent respectively)

from the data. We then estimate three cost parameters kj, one for each type. This alternative

specification (Column (5)) improves somewhat the fit of the standard model, as Figure 11b)

also shows, but the fit of the reference-dependent model is still significantly better.

In Column (6) we allow for heterogeneity in the curvature parameter γ. While this form

of heterogeneity does not affect the estimates of the reference-dependent model, it improves

dramatically the fit of the standard model. The estimates fit both the spike at 270 and at 360

days, as well as the difference between the pre- and post-reform period (Figure 11(c)). Indeed,

this is the only specification with a better fit than the reference-dependent model. How does

this model attain such good fit? The fit relies heavily on types with a very different elasticity

of search (which equals 1/γ). Initially, most exits are of the low-elasticity types (γhigh = 1.01),

but the spike at day 270 is driven by the medium-elasticity types (γmed = 0.20). These types

37The heterogeneity on search costs is based on papers such as Bloemen (2005) and Paserman (2008).
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were barely searching up until day 270, but their search intensity spikes in presence of lower

benefits. The spike at 360 days is due to the high-elasticity types, with an elasticity over 50

(γlow = 0.016), that start searching once benefits hit the welfare level.

How critical are the high-elasticity types for the fit of the model? We re-estimate the

model restricting the elasticity to be no higher than 10 (γ ≥ 0.1, Column (7)) and no higher

than 5 (γ ≥ 0.2, Column (8)). With such restrictions in place, the model does not match any

more the fit of the reference-dependent model (see also Figure 11d)).

5.8 Tests of Gamma Heterogeneity

The previous sections show that only one version of the standard model matches (in fact,

surpasses) the fit of the reference-dependent model: the gamma-heterogeneity model. How

should we compare then the two models? In this section we present a calibration and additional

evidence, with more evidence in the next section.

As we just showed, the gamma-heterogeneity model requires two types with a very large

elasticity of search effort. To consider the implications of such elasticities, consider a hypo-

thetical comparative statics: a 10 percent increase, or decrease, in the level of welfare benefits

paid out after 360 days. Figures 12a) and b) show that, in response to such a small benefit

change, the search effort of reference-dependent workers would barely change compared to the

benchmark estimates. In the gamma-heterogeneity model, instead, the hazard rates would

go to nearly 1 (for a 10% benefit decrease, Figure 12a)) or to nearly 0 (for a 10% increase,

Figure 12b)). The workers still unemployed by day 360 are mostly the high-elasticity types,

and even small changes in the setting lead to massive changes in search effort. We find this

implied response unrealistic. Importantly, this high elasticity, and thus the ensuing extreme

response, is critical for the fit of the gamma-elasticity model, as we documented above.

While there are no reforms in the welfare system in our period, we do observe a reform

in the unemployment assistance system occurring one year before our ‘pre’ period (see Figure

3). The benefit duration in this second tier goes from 180 days before the change to 90 days

after the change for the individuals in our sample.38 We use this reform, which we have not

employed so far, as an out-of-sample test, since the macroeconomic setting was similar and

the group of workers affected is the same.

Figure 12c) shows the hazard for the 2-year-prior period, as well as the predictions for

the benchmark reference-dependent estimates (Column (4) in Table 3) and for the gamma-

heterogeneity estimates (Column (6) in Table 7). The reference-dependent model fits the

pre-period well, with an out-of-sample SSE of 73.4. The gamma heterogeneity model, instead,

38This change applied to individuals aged 45 and lower. Since our sample includes only individuals up to 50
years old, the reform applies to the large majority of the sample. Excluding the 46-50 year olds barely affects
the estimates.
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fits quite poorly the period of the lengthened unemployment assistance (between 300 and

450 days), with an out-of-sample SSE of 130.5. In this period, the medium-elasticity types

are disappearing from the sample, and the high-elasticity types are not searching yet. The

gamma heterogeneity type appears to overfit the data in sample. The out-of-sample fit of the

standard model with heterogeneity in cost levels is better (SSE of 91.6), but does not reach

the reference-dependent model. We present a final piece of evidence in the next section.

5.9 Dynamic Selection throughout the UI spell

The standard model captures reasonably well the dynamics in the hazards in the first 270

days as well as some of the trend after that, especially in the gamma-heterogeneity version.

To achieve this fit, changes in the unobserved types over time play a key role; without types,

the hazards would be monotonically (weakly) increasing over time. How plausible then is the

amount of heterogeneity that the standard model requires? And how does it compare to the

heterogeneity needed in the reference-dependent model?

While we cannot measure the time-changing unobserved heterogeneity, we propose that a

useful metric is the time-varying selection on observables of the unemployed. Assuming that

unobservable factors that influence job search correlate with these observable characteristics,

these estimates convey useful information.

To document the dynamic selection along observables, we regress at the individual level

the realized unemployment duration (censored at 540 days) on a rich set of observables:

education, age groups, gender, waiting period (the number of days between job lost and UI

claimed), log past earnings, indicators for county of residence, day of the month UI claimed,

and occupation (1 digit) of the last job. As Web Appendix Table WA-1 shows, for both

individuals in the pre- and post-sample (Columns (1) and (2)), these variables are reliable

predictors of non-employment duration, with an R2 of 0.05-0.06. Panel B shows that the

predicted unemployment duration based on these estimates for the pre-period varies between

230 days (5th percentile) and 370 days (95th percentile), a good amount of variation.

The dotted lines with crosses in Figure 13a-b) show the predicted unemployment duration

averaging across all individuals who exit unemployment in a given 15-day period. While pre-

dicted unemployment increases (unsurprisingly) throughout the spell, the overall relationship

is quite flat: predicted unemployment only increases from 280 days to 295 days after around 2

years. Furthermore, the pattern of selection is not much affected by the UI benefit path. The

lines for the pre- and post-reform period are fairly parallel for most of the spell.39 Selection

on observables thus plays only a limited role in the data.

39The fact that dynamic selection seems to be small and not much affected by the UI regime has been shown
before, for example Schmieder et al. (2016).
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The selection over time in predicted duration has a counterpart in the structural models.

For each cost type, we compute the expected unemployment duration in the pre-reform period.

We then calculate the average expected duration for unemployed individuals who leave in a

given period according to the estimated models. The reference-dependent model (solid lines

in Figure 13) predicts that the type composition changes only in the first 90 days and not

by much; thus the expected unemployment duration line is quite flat and not so dissimilar

from what we observe empirically. The standard model with cost heterogeneity (Figure 13a))

instead displays a large amount of dynamic selection, with a large swing until 200 days, with no

corresponding evidence in the data. The predicted heterogeneity for the gamma-heterogeneity

model (Figure 13b)) is even more at odds with the data, with an initial swing, and then an

abrupt swing between 300 and 360 days, corresponding to the transition from the medium-

to the high-elasticity type. There is no evidence of a corresponding shift in the data.

Thus, the pattern of dynamic selection implied by two versions of the standard model

appear at odds with the much more muted and monotonic selection in the data. We should

be clear that it is not surprising that the selection on observables be more muted than the

selection implied by the model, given that we only observe part of the selection. However,

the extent of the difference is quite striking, given the rich set of variables used in calculating

dynamic selection. Moreover, it is puzzling for the standard model that the observed selection

does not display any of the trends in the model predictions, even on a more muted scale.40

5.10 Reservation Wages

So far we take the reemployment wage as fixed so the unemployed accept every job offer.41

While this is consistent with a literature documenting a small role of reservation wages for job

search dynamics (e.g. Card et al., 2007a; Krueger and Mueller, 2013; Schmieder et al., 2016),

a natural question is whether introducing a reservation wage would change our conclusions.

For tractability, we estimate a reference-dependent model with choice of search effort and

reservation wage, but with hand-to-mouth consumers. These results should be considered

only suggestive, as endogenizing consumption is important, as we documented above.

We reestimate the model incorporating job acceptance decisions, using additional moments

based on reemployment wages and solving by backward induction. In this expanded model,

40While the Altonji et al. (2005) procedure motivates this test, the parallel is imperfect. Altonji et al.
(2005) infers the impact of unobservable variables on the the magnitude of an estimate, based on the impact
of the observables. In our case, we would like to infer the extent and the role of unobserved heterogeneity
in the structural model, based on the heterogeneity captured by observables. The underlying assumption of
our procedure is that the set of observable variables used in predicting dynamic selections are rich enough to
capture (part of) the dynamic selection if its there, and also that the time path of dynamic selection caused
by observables is similar to the one caused by unobserved factors. .

41In the baseline model there is a single reemployment wage for everyone, while in the models in Table 7,
Column (5) we allow for 3 different groups of workers, each facing a different fixed reemployment wage.
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individuals draw job offers from a (stationary) log-normal wage offer distribution and decide

whether or not to accept it. For simplicity, we also abstract away from gain (or loss) utility

at reemployment. We set the standard deviation of the wage offer distribution at 0.5, close

to the standard deviation of the actual reemployment wages, and we estimate the mean of

the wage offer distribution. As additional moments, we use the average reemployment wage

of individuals exiting unemployment in period t after entering the UI system, adding 70

additional moments in the minimum distance estimator.42

Web Appendix Table WA-2 shows the results in Columns (1) and (2). The reference-

dependent model has a better fit than the standard model (GOF of 272 versus 308), largely

due to the reference-dependent model providing a better fit for the hazard moments (see also

Web Appendix Figures WA-1). Notice however that the estimates in Columns (1) and (2), not

unlike the hand-to-mouth estimates in Table 2, have relatively patient unemployed workers,

at odds with the maintained assumption of hand-to-mouth consumption. For the sake of

comparison, Columns (3) and (4) provide estimates of the hand-to-mouth models with no

reservation wage choice assuming no gain utility at reemployment.

6 Discussion and Conclusion

We provided evidence that a model with reference-dependent preferences can explain qual-

itative features of the hazards which plausible versions of the standard model have a hard

time fitting. The model itself builds on one of the most robust behavioral models, reference

dependence, and uses a natural candidate for a backward-looking reference point. We also

find that job seekers are substantially impatient, likely in the form of present-bias preferences.

This evidence has policy implications. A key prediction of reference-dependent job search

is that step-wise benefit schedule can induce considerably more search than predicted by

the standard job search models. Moreover, if the social planner wants the job seekers to

search more than they do (e.g. because she uses a lower discount rate for welfare assessment

than that of the unemployed), then having benefit drops over the UI spell is likely to be an

inexpensive way to achieve that goal. In support of that, Lindner and Reizer (2015) show that

the Hungarian UI reform examined here did not just speed up exits to employment, but it was

revenue-neutral from the perspective of the government. Therefore, the evidence presented

here opens the door to potential redesigns in unemployment insurance policies.

42The reemployment wage moments are estimated as in Lindner and Reizer (2015), allowing for a linear
time trend.
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Table 1: Descriptive Statistics: Comparing Means of Main Vari-
ables Pre- and Post UI Reform

before after diff t-stat

(1) (2) (3) (4)

Percent Women 41% 46% 5.2% 5.75
(0.006) (0.006)

Age in Years 36.8 36.9 0.06 0.47
(0.1) (0.1)

Imputed Education (years) 12.83 13.00 0.17 4.20
based on occupation (0.028) (0.031)
Log Earnings in 2002 11.55 11.52 -0.03 -3.56

(0.006) (0.006)
Log Earnings in 2003 11.70 11.68 -0.03 -2.72

(0.005) (0.007)
Log Earnings in 2004 11.79 11.78 -0.01 -1.37

(0.007) (0.007)
Waiting period∗ 31.1 32.0 0.84 1.18

(0.47) (0.51)
Reemployment bonus claimed 0.000 0.059 0.059 19.81

(0) (0.003)
Participate in training N.A. 0.042

(0.003)
Number of observations† 6305 5562

Notes:

Participation in training programs was not recorded prior to 2006.
∗ Number of days between job loss and UI claim.
† There are some missing values for earnings in 2002-2004 .
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Table 2: Structural Estimation of Standard and Refer-
ence Dependent Model with Hand-to-Mouth Consumers

Standard Ref. Dep.
3-type 2-type

(1) (2)

Parameters of Utility Function

Loss aversion λ 3.55
(1.27)

Adjustment speed of reference point N 216.49
in days (9.06)

Discount factor (15 days) δ 0.98 0.91
(0.06) (0.02)

Parameters of Search Cost Function

Curvature of search cost γ 0.13 0.60
(0.26) (0.15)

Search cost for high cost type khigh 126.59 203.17
(151.97) (70.10)

Search cost for medium cost type kmed 75.65
(117.65)

Search cost for low cost type klow 26.38 16.03
(45.36) (6.52)

Share of high cost UI claimant 0.34 0.98
(0.17) (0.01)

Share of medium cost UI claimant 0.49
(0.16)

Model Fit

Number of moments used 70 70
Number of estimated parameters 7 7
Goodness of Fit 215.2 170.2

Notes:
The table shows parameter estimates for the standard and the
reference dependent search model. Estimation is based on mini-
mum distance estimation, using the hazard rates in the pre- and
post-reform periods as the moments.
Standard errors for estimated parameters in parentheses.
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Table 3: Benchmarks Estimates with Endogeneous Savings

Standard Ref. Dep. Standard Ref. Dep. Ref. Dep. Ref. Dep.
3 type 2 type 3 type 2 type 1 type 1 type

delta est delta est beta est beta est delta est beta est

(1) (2) (3) (4) (5) (6)

Parameters of Utility Function

Loss aversion λ 4.17 4.31 4.95 4.69
(0.69) (0.32) (0.59) (0.62)

Adjustment speed of reference point N 204.17 172.80 184.22 167.52
in days (17.94) (11.64) (10.98) (11.15)

Discount factor (15 days) δ 0.93 0.89 0.995 0.995 0.891 0.995
(0.01) (0.02) (0.02)

Discount factor β 1 1 0.92 0.58 1 0.58
(0.01) (0.03) (0.19)

Parameters of Search Cost Function

Curvature of search cost γ 0.4 0.7 0.07 0.4 0.8 0.4
(0.046) (0.2) (0.01) (0.0) (0.2) (0.2)

Search cost for high cost type khigh 168.1 281.4 441.8 104.7 355.7 108.5
(98.595) (122.2) (.) (14.2) (154.9) (18.3)

Search cost for medium cost type kmed 49.7 98.0
(1.894) (9.7)

Search cost for low cost type klow 12.9 13.9 13.3 3.1
(1.239) (7.2) (1.9) (1.0)

Share of high cost UI claimant 0.2 0.99 0.2 0.99
(0.074) (0.01) (0.02) (0.01)

Share of medium cost UI claimant 0.6 0.7
(0.059) (0.01)

Model Fit

Number of moments used 70 70 70 70 70 70
Number of estimated parameters 7 7 7 7 5 5
Goodness of Fit 227.5 182.4 229.0 175.9 194.0 183.5

Notes:
The table shows parameter estimates for the standard and the reference-dependent search model. Estimation is
based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments.
Standard errors for estimated parameters in parentheses.
(.) indicates that the parameter is not well identified, i.e. the Hessian cannot be inverted close to the reported values
and therefore we do not provide standard errors. The other standard errors are calculated by inverting the Hessian
matrix after dropping the parameter from the matrix.
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Table 5: Structural Estimation of the Habit Formation Model

Habit Model a la Habit Model a la
Constantinides (1990) Abel (1990)

log(ct − zrt) log(ct)− zlog(rt)

2-type 2-type 3-type 2-type
AR(1)

(1) (2) (3) (4)

Parameters of Utility Function

Habit formation parameter z 0.45 0.26 0.26 0.92
(.) (.) (0.056) (0.01)

Adjustment speed of reference point N 224.1 240.4 225.6
in days (14.5) (48.1) (18.4)

AR(1) parameter 0.87
(0.07)

Implied half life of AR(1) process 74.03
(42.81)

Discount factor (15 days) δ 0.925 0.903 0.916 0.941
(0.002) (0.007) (0.005) (0.002)

Parameters of Search Cost Function

Curvature of search cost γ 0.46 0.60 0.49 0.35
(0.03) (0.01) (0.04) (0.01)

Search cost for high cost type khigh 144.7 163.7 260.4 391.0
(7.2) (10.2) (154.0) (5.6)

Search cost for medium cost type kmed 74.5
(2.4)

Search cost for low cost type klow 64.9 30.9 13.2 106.7
(2.7) (2.1) (3.0) (9.5)

Share of high cost UI claimant 0.48 0.78 0.21 0.87
(0.080) (0.02) (0.118) (0.01)

Share of low cost UI claimant 0.73
(0.10)

Model Fit

Number of moments used 70 70 70 70
Number of estimated parameters 7 7 9 7
Goodness of Fit 235.7 251.6 220.3 202.8

Notes:
The table shows parameter estimates for the habit-formation model. Estimation is based on
minimum distance estimation, using the hazard rates in the pre- and post-reform periods as
the moments.
Standard errors for estimated parameters in parentheses. The parameter estimates for z in
columns (1) and (2) are not well identified (i.e. the Hessian cannot be inverted for z close to
the reported values) and therefore we do not provide standard errors for them. The other
standard errors are calculated by inverting the Hessian matrix after dropping z from the
matrix.
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Figure 1: Model Simulations of the Standard and the Reference-Dependent model
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(c) Reference-Dependent Model

Notes: Panel (a) shows two benefit regimes, both of them having a step-down benefit system. After
the first step benefits are higher in the regime represented by the circled blue line than in the regime
represented by the red dashed line. After the second step benefits drop to the same level. Panel (b)
shows the hazard rates predicted by the standard model (with k = 130, γ = 0.6, w = 555, δ = 0.99)
while Panel (c) the prediction of the reference-dependent model (with k = 160, γ = 0.6, w = 555,
δ = 0.99, λ = 2, N = 10).
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Figure 2: Benefit Path Change, Main Sample
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Notes: The figure shows the benefit schedule if UI is claimed on October 31, 2005 (old benefit
schedule, dashed blue line) and benefit schedule if UI is claimed on November 1st, 2005 (new benefit
schedule, solid red line) for individuals who had 270 potential duration in the first-tier, were less
than 50 years old and earned more than 114,000 HUF ($570) prior to entering UI. A hypothetical
benefit level is shown under social assistance. Benefits levels in social assistance depended on family
income, household size and wealth, which we do not observe these variables in our data.
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Figure 3: Before-After Comparison Groups for Quasi-experiment

Notes: The figure shows the time frame for which we have access to administrative data on unem-
ployment insurance records, the time of the reform and how we define the before and after periods
that we use for our before-after comparison. The timing of the reform was the following: those
who claimed UI benefit before February 5th, 2005 faced the old first tier schedule and old second
tier schedule; those who claimed benefit between February 5th, 2005 and October 31th, 2005 faced
the old benefit schedule in the first tier and the new benefit schedule in the second tier; those who
claimed benefit after November 1st, 2005 faced the new benefit schedule in the first tier and the new
benefit schedule in the second tier. To avoid complications caused by changes in the second tier, in
our main specifications we focus on the (1 year) before sample, i.e. those who claimed UI between
February 5th, 2005 and October 15th, 2005, and (1 year) after sample, i.e. those who claimed UI
between February 5th, 2006 and October 15th, 2006. We use the (2 year) before sample and the (2
year) after sample to show that the changes in the hazard rates are in line with the timing of the
reform. The first tier changes before and after October 31th, 2005 are presented in Figure 2. The
changes in the second tier in February 5th, 2005 were the following: potential duration shortened to
180 days above age 50 and to 90 days below that. Before, it was 270 days above age 45 and 180 days
below that. The benefit level was raised slightly from 21,000 HUF ($101) to 22,800 HUF ($114).
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Figure 4: Empirical Hazard and Survival Rates under the Old and the New Benefit
Schedule
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(a) Empirical hazard rates
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(b) Empirical survival rates

Notes: The figure shows point wise estimates for the empirical hazards, Panel (a), and for the
empirical survival rates, Panel (b), before and after the reform. The differences between the two
periods are estimated point-wise at each point of support and differences which are statistically
significant (p ≤ 0.05) are indicated with a vertical bar (green dashed if pre-period hazard is above
post period hazard, red solid otherwise). The three major (red) vertical lines indicate periods when
benefits change in the new system. The sample consists of unemployed workers claiming UI between
February 5th, 2005 and October 15th, 2005 (before sample) and February 5th, 2006 and October
15th, 2006 (after sample), who had 270 days of potential duration, were 25-49 years old, and were
above the 70th percentile of the earnings base distribution of the UI claimants in the given year.
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Figure 5: Robustness Checks for change of Hazard rates before and after the reform
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(a) Controlling for observable differences
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(b) Restricted sample

Notes: The figure shows point wise estimates for the empirical hazards before and after the reform.
The differences between the two periods are estimated point-wise at each point of support and
differences which are statistically significant are indicated with a vertical bar (green dashed if pre-
period hazard is above post period hazard, red solid otherwise). The three major (red) vertical
lines indicate periods when benefits change in the new system. In Panel (a) we controlled for sex,
age, age square, waiting period (the number of days between job lost and UI claimed), the county
of residence, day of the month UI claimed, education, occupation (1 digit) of the last job, and
log earnings in 2002 and 2003. In Panel (b) in addition to controlling for these control variables
we dropped reemployment bonus claimants and those participating in training programs (after the
reform), see text for the details. The sample is otherwise the same as in Figure 4.
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Figure 6: Interrupted Time Series Analysis of Exit Hazards
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(a) The evolution of the hazard rates between 30 and 150 days
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(b) The evolution of the hazard rates between 210 and 330 days

Notes: The figure shows the level of the most important hazard rates 6 quarters before and 7
quarters after the reform. Panel (a) shows the seasonally adjusted hazard rates between 30 and 150
days, while Panel (b) shows the seasonally adjusted hazard rates between 210 and 330 days. The
monthly seasonal adjustment of hazard rates takes into consideration the level shift present in the
data in November, 2005. The figures highlight that the shift in the hazard plots documented earlier
corresponds to the precise timing of the reform. Other sample restrictions are the same as in Figure
4.
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Figure 7: Estimates of the Standard and Reference-dependent Model with Hand-to-
Mouth Consumers
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(a) Standard Model
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(b) Reference-dependent Model

Notes: The figure shows the empirical hazards and the predicted hazards of the standard and the
reference-dependent model with hand-to-mouth consumers. Panel (a) corresponds to the standard
model with 3 cost types, shown in Table 2 column (1), while Panel (b) corresponds to the reference-
dependent model with 2 cost types shown in Table 2 column (2). The three major (red) vertical
lines indicate periods when benefits change in the new system.
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Figure 8: Benchmark Estimates of the Standard and Reference-Dependent Model
(with Endogenous Savings)
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(a) Standard Model with estimated δ
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(b) Ref. Dep. Model, 2 cost types, estimated δ
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(c) Ref. Dep. Model, 2 cost types, estimated β
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(d) Ref. Dep. Model, no heterog., estimated β

Notes: The figure shows the empirical hazards and the predicted hazards of the standard and the
reference-dependent model with endogenous savings. Panel (a) corresponds to the standard model
with 3 cost types and estimated δ, shown in Table 3 Column (1). Panel (b) corresponds to the
reference-dependent model with 2 cost types shown in Table 3 Column (2). Panel (c) shows the
reference-dependent model with 2 types but present-bias (βδ-discounting) and estimated β (Table
3 Column 4). Panel (d) shows the reference-dependent model with only 1 type and estimated β
(Table 3 Column 6). The three major (red) vertical lines indicate periods when benefits change in
the new system.
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Figure 9: Alternative Estimates of the Reference-dependent Model
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(a) Reference-Dependent Model, AR(1) update
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(b) Reference-Dependent Model, no gain
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(c) Reference-Dependent Model, no loss utility
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(d) Reference-Dependent Model, estimated η and λ

Notes: The figure shows the empirical hazards and the predicted hazards of estimates of alternative
versions of the reference-dependent model. Panel (a) shows the reference-dependent model where
the reference point is updated using a AR(1) process (Table 4 column 2). Panel (b) shows the
reference-dependent model without gain (only loss) utility (Table 4 column 3). Panel (c) without
loss (only gain) utility (Table 4 column 4) and Panel (d) shows the reference-dependent model where
both the gain η and the loss part λη are estimated (Table 4 column 7).
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Figure 10: Habit Formation Model
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(a) Habit Model with 2 types (Constantinides 1990)
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(b) Habit Model with 2 types and AR(1) updated ref.
point
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(c) Habit Model with 3 types
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(d) Multiplicative Habit Formation (Abel 1990)

Notes: The figure shows the empirical hazards and the predicted hazards from estimating habit
formation models (See Table 5). Panels (a) through (c) show the habit formation model of Con-
stantinides (1990). The first panel uses the same reference point as our main specifications for the
reference-dependent model, the second panel uses a reference point that is updated via an AR(1)
process, the third panel allows for 3 types of heterogeneity and the last column uses the multiplicative
functional form of the habit model from Abel (1990).
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Figure 11: Estimates of the Standard Model with Alternative Forms of Heterogeneity
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(a) 4 cost types
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(b) Heterogeneity in Wages
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(c) Heterogeneity in Search Cost Curvature
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(d) Heterogeneity in Search Cost Curvature (γ re-
stricted to ≥ 0.2)

Notes: The figure shows the empirical hazards and the predicted hazards for estimations of the
standard model under different specifications of heterogeneity (See Table 7). Panel (a) allows for 4
cost types. Panel (b) allows for three different types with different reemployment wages (calibrated
to match the empirical distribution of reemployment wages). Panel (c) allows for three different types
in the elasticity of the cost of job search γ and Panel (d) is the same as Panel (c) but restricting the
γ to be larger or equal than 0.2, which would imply an elasticity of search effort with respect to the
returns to job search of less than 5.
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Figure 12: Sensitivity to small changes in benefit path and out-of-sample perfor-
mance of models
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(a) Simulated hazard path for reducing welfare level
to 90%
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(b) Simulated hazard path for increasing welfare level
to 110%
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(c) Out-of-sample predictions of models for 2 year prior
to reform and empirical hazard

Notes: The figures show the sensitivity of the estimated standard model with 3 search elasticity
types (Table 7 column 6 top panel) and the reference-dependent model with 2 cost types (Table 3
column 2) to changes in the benefit path. Panel a) shows the estimated hazard rates in the pre-
and post-reform periods. In addition it shows the simulated hazard rates from the two models if
the level of welfare benefits (which start after 360 days) is reduced to 90 percent of the actual level.
Panel b) shows the same but for the counterfactual of increasing the benefit level to 110 percent.
Panel c) show the empirical and simulated hazard rates and for the period 2 to 1 years before the
reform when unemployment assistance could be claimed until 460 days.
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Figure 13: Changes in Heterogeneity throughout the Unemployment Spell: Empirical
Heterogeneity vs. Model Predictions
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(a) Predicted total unemployment duration of individuals ex-
iting at time t: Heterogeneity in cost levels k
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(b) Predicted total unemployment duration of individuals ex-
iting at time t: Heterogeneity in search cost curvature γ

Notes: The figure shows estimates of the expected nonemployment duration of individuals who
left unemployment in each time period, contrasting the empirically observed selection with the
predicted selection from the estimated standard and reference-dependent models. The empirical
expected nonemployment duration (lines with x’s) for each individual is calculated as the predicted
values from a regression of nonemployment duration on observable characteristics at the time of
entering unemployment (see Web Appendix Table WA-1). The expected nonemployment durations
predicted by the estimated standard (3 type) and reference dependent (2 type) model are displayed
as the dashed and solid lines (from Table 3 in Panel a) and from Table 7 column 6 in Panel b)).
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Appendix

Table A-1: Robustness to Alternative Specifications for Utility Function and Estimation Methods

Identity Moments Probability Probability 7 day 30 day
Weighting with Moments Moments time time

Matrix controls Full Cov Not full Cov periods periods
Matrix Matrix

(1) (2) (3) (4) (5) (6)

Standard Model

Discount factor (15 days) δ 0.872 0.918 0.928 0.928 0.968 0.876
(0.008) (0.044) (0.011) (0.011) (0.00) (0.018)

Number of moments used 70 70 70 70 156 36
Number of estimated parameters 7 7 7 7 7 7
Goodness of fit (SSE) 0.0033 187.5 226.1 226.1 414.6 148.19

Reference Dependent Model

Loss aversion λ 4.41 5.68 5.69 5.69 4.55 3.41
(1.81) (1.75) (0.40) (0.41) (2.55) (1.31)

Adjustment speed of reference point N 168.7 154.9 164.5 164.5 194.7 152.1
(16.7) (16.2) (11.3) (11.2) (18.5) (13.8)

Discount factor δ 0.995 0.995 0.995 0.995 0.995 0.995

Discount factor β 0.53 0.55 0.55 0.55 0.52 0.61
(0.32) (0.11) (0.01) (0.01) (0.32) (0.344)

Number of moments used 70 70 70 70 156 36
Number of estimated parameters 7 7 7 7 7 7
Goodness of fit (SSE) 0.0027 143.7 178.1 178.1 367.9 106.5

Notes:
The table shows parameter estimates for the standard and the reference-dependent search model. Estimation is
based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments.
Standard errors for estimated parameters in parentheses.
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Figure A-1: The UI Benefit Schedule Before and After the 2005 Reform in Hungary
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Notes: The figure shows monthly UI benefits in the first tier under the old rule (blue solid line)
in the first 90 days under the new rules (red solid line) and between 91-270 days under the new
rules (red dashed line) as a function of the monthly base salary. The main sample, defined by being
above the 70th percentile of the earnings base distribution of the UI claimants in the given year, is
indicated by the curly brackets.

57



Figure A-2: GDP growth and unemployment rate in Hungary
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Notes: The figure shows the seasonally adjusted GDP growth rate (dashed red line) and the season-
ally adjusted unemployment rate (solid blue) between 2003 and 2008 in Hungary. The major (red)
vertical lines indicate the period we use for the before-after comparison. The data was obtained
from the Hungarian Central Statistical Office.
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Figure A-3: Comparison of Hazards over Longer Time Frame
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(a) Comparing the hazards 2 year before and 1 year before
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(b) Comparing the hazards 2 year after and 1 year after

Notes: Panel (a) shows point wise estimates for the empirical hazards for two year before (claimed
benefit between February 5st, 2004 and October 15th, 2004) and one year before (claimed benefit
between February 5th, 2005 and October 15th, 2005) the actual reform. Panel (b) shows point
wise estimates for the empirical hazards for one year after (claimed benefit between February 5th,
2006 and October 15th, 2006) and two years after (claimed benefit between February 5th, 2007
and October 15th, 2007) the actual reform. This graph is censored at 400 days because of data
limitations. The differences between the two periods are estimated point wise at each point of
support and differences which are statistically significant are indicated with a vertical bar. The
three major vertical lines indicate periods when benefits change in the new system. Other sample
restrictions are the same as in Figure 4 in the main text.
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Figure A-4: Model Fit as Function of Different Discount Rates
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(a) Goodness of Fit of Standard and Reference-Dependent model for different δ
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(b) Goodness of Fit of Standard and Reference-Dependent model for different β

Notes: The figures shows the goodness of fit statistics for the standard and reference-dependent
model for different parameter values for δ (Panel a) and β (Panel b). The standard model is estimated
with 3 types of heterogeneity (in search costs) and the reference dependent model with 2 types of
heterogeneity. Each symbol represents one estimation run. For each set of estimates we also indicate
whether the estimated model features any savings on the side of individuals. The numbers next to
the markers indicate the implied annual discount factor.
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Figure A-5: Model Components for Benchmark Estimates of Standard and Reference-
Dependent Model for the High Cost Type, Part I
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(a) Flow Utility, Standard Model
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(b) Flow Utility, Reference-Dependent
model
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Model
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(d) Value of Unemployment, Reference-
Dependent model
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Notes: The figure shows the model components for the standard model (estimates shown in column
(1) in Table 3) and for the reference-dependent model (estimates shown in column (2) in Table 3).
Panel (a) and Panel (b) shows the flow utility for the standard model and for the reference-dependent
model, respectively. Panel (c) and Panel (d) shows the value of unemployment for the high cost type
for the standard model and for the reference-dependent model, respectively. Panel (e) shows the
evolution of the reference point in the reference dependent model. The three major (red) vertical
lines indicate periods when benefits change in the new system.
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Figure A-6: Model Components for Benchmark Estimates of Standard and Reference-
Dependent Model for the High Cost Type, Part II
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(b) Value of Employment, Reference-
Dependent model

0 100 200 300 400 500 600
50

100

150

200

250

300

350

C
o

n
s
u

m
p

ti
o

n
H

ig
h

 C
o

s
t 

T
y
p

e

ConsumptionHigh Cost Type

(c) Consumption, Standard Model
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(d) Consumption, Reference-Dependent
model
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(e) Assets, Standard Model
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(f) Assets, Reference-Dependent model

Notes: The figure shows the model components for the standard model (estimates shown in column
(1) in Table 3) and for the reference-dependent model (estimates shown in column (2) in Table
3). Panel (a) and Panel (b) shows the value of employment for the standard model and for the
reference-dependent model, respectively. Panel (c) to (f) show consumption and asset path for the
two models. The three major (red) vertical lines indicate periods when benefits change in the new
system.
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Figure A-7: Robustness Checks I
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(a) Std. Model: Time-varying Search Cost
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(b) Ref. Dep. Model: Time-varying Search Cost
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(c) Std. Model: Estimation without Spikes
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(d) Ref. Dep. Model: Estimation without Spikes

Notes: The figures shows estimates of the standard and reference-dependent model with search
costs being a linear function of time (Panel a and b) or when we estimate the model not using the
sharp spikes in the exit hazard as moments (Panel c and d). See Table 6 for estimates.
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Figure A-8: Robustness Checks II
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(a) Std. Model: Delayed Job Starting Date
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(b) Ref. Dep. Model: Delayed Job Starting Date
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(c) Std. Model: 30-Day Hazards
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(d) Ref. Dep. Model: 30-Day Hazards

Notes: The figures shows estimates of the standard and reference-dependent model when we assume
that jobs start with a 2 week delay (Panel a and b), see Table 6, or when we estimate the model
using 30-day time periods (Panel c and d), see Appendix Table A-1.
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