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1 Introduction

The increased reliance on standardized testing in educational systems around the world has
gradually reduced teachers’ influence over students’ grades. China, India, Israel and Japan
all use standardized tests, graded without any teacher discretion, to determine university
admissions and entrance into prestigious civil service occupations. In contrast, college ad-
missions in the US base student achievement on a mix of standardized measures (such as
SAT or ACT exams) and those which contain discretionary evaluations by teachers (GPA
and recommendation letters). Indeed, there is current debate about the merits of standard-
ized testing in the US and whether the large emphasis that No Child Left Behind placed on
standardized testing should be repealed.

In this paper, we study a unique context of discretionary grading in Sweden that al-
lows us to measure when teachers use discretion in their grading of nationwide math tests.
This discretion essentially enables teachers to selectively manipulate students’ test scores by
“bumping up” certain students over key grade cutoffs. We analyze the consequences of such
test score manipulation using administrative population-level data that enables us to follow
the universe of students in Sweden from before high school, throughout adolescence, and into
adulthood, all the while tracking key educational, economic, and demographic outcomes.

Allowing teacher discretion in measuring student achievement raises two key questions.
First, who benefits from discretionary test score manipulation? In particular, do teachers
act in a corrective fashion, by raising scores of students who failed although they ought to
have passed; or do they use their discretion to discriminate based on factors such as gender
or ethnicity? Second, and even more crucially, does discretionary test score manipulation
matter, in the sense that it conveys real, long-term economic gains? This is a priori unclear,
since test score manipulation gives a student a higher test grade without raising knowledge.
In order for this to have any effect, grades per se must matter for long-term outcomes. In
this paper, we examine both which students benefit from manipulation, and how test score
manipulation matters in the long-run.

We start by documenting extensive test score manipulation in the nationwide math tests
taken in the last year before high school, by showing significant bunching in the distribution of
test scores just above two discrete grade cutoffs. We model teachers’ incentives to manipulate
students’ grades and show that if manipulation occurs, then it is concentrated in two parts
of the test score distribution (in the vicinity of each of the two test score thresholds). We
estimate the width of the manipulation regions (i.e., the lowest test score at which any
student gets bumped up) at the local level and find that it varies substantially: in some
places, students’ test scores are not manipulated at all; in others, students who lack as much
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as eight test score points are bumped beyond the threshold. Moreover, even within a given
test score point, teachers treat students differently.

We analyze the characteristics of the students who are selectively inflated by teachers and
find that teachers act in a corrective fashion, by being more likely to inflate students who have
“a bad test day.” In particular, teachers appear to use their discretion to undo idiosyncratic
performance drops below what would be expected from each student’s previous performance.
Teachers do not selectively inflate based on gender, immigrant status, or whether the student
has a stay at home parent who potentially might have more free time to pressure teachers
into higher grades.

We then analyze the consequences of receiving test score manipulation. To do this, we
cannot simply compare the (outcomes of) students whose test scores were manipulated with
students whose tests scores were left un-manipulated – our first set of results show that
students who are chosen to receive test score manipulation are different from students who
are not.

To overcome this issue and identify the effect of test score manipulation on students’
longer-term outcomes, we develop a Wald estimator that builds on key ideas in the bunch-
ing literature. So far, bunching strategies have been used to analyze the distribution that
is being manipulated: distributions of reported incomes (Saez, 2010; Chetty et al., 2011b;
Kleven and Waseem, 2012) or dates of marriage (Persson, 2014), for example. In each case,
bunching methodologies have been used to predict how the manipulated distribution would
have looked, had there been no manipulation, by using the un-manipulated parts of the
distribution to help “fill in” the shape inside the manipulation regions. The key underlying
assumption is that, in the absence of manipulation, the distribution would have been smooth.

The core idea in this paper is to further develop this literature to use a bunching method-
ology to examine the impact of manipulation on other variables than the one that is being
directly manipulated, that is, other outcomes than the test score distribution. Intuitively,
just like we can plot the test score density, we can plot the mean of a future outcome (say,
earnings) by test score. In the two test score ranges where manipulation occurred (in the
vicinity of the Pass and PwD thresholds, respectively), the observed earnings distribution
partly captures the impact of test score manipulation on earnings. In contrast, in the test
score ranges where no manipulation occurred, the observed earnings captures the underlying
relationship between (un-manipulated) test scores and earnings. Thus, we can use the rela-
tionship between earnings and test scores estimated outside of the two manipulation regions
to predict a counterfactual relationship between earnings and test scores inside the test score
ranges where manipulation occurred. In the manipulation region around the Pass thresh-
old, the difference between the average observed and counterfactual earnings captures the
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reduced form impact of (potentially being exposed to) test score manipulation on earnings.1

The interpretation around the PwD region is analogous.
Not all students whose test scores fall within the manipulation regions of the test score

distribution actually get bumped up, however. We therefore also estimate a “first stage”
effect of having a test score that falls in the manipulation region on the probability of
receiving test score manipulation. The ratio of the reduced-form effect to the first stage
effect identifies the local average treatment effect of receiving a higher grade due to test
score manipulation on labor market earnings.2

More generally, this methodology could be used to study the consequences of manipu-
lation in many other contexts, such firm earnings manipulation to meet analysts forecasts
(Terry, 2016) or securitization of loans around key credit score thresholds (Keys et al., 2010).
We note that all these cases would have lent themselves to a Regression Discontinuity (RD)
analysis in the absence of manipulation; however, these cases also constitute “textbook ex-
amples” of where manipulation of the running variable precludes using RD methods for
analyzing causal impacts (?). Our methodology essentially “fills this gap,” by allowing for
identification of causal effects of manipulation per se.

Our results suggest far-reaching consequences of receiving test score manipulation, at all
subsequent stages of the student’s life that we observe. Although inflating a student’s test
grade does not increase her knowledge, we find that it raises the student’s performance in
the immediate future. In particular, students who are inflated on the test, taken in February,
perform better in other subjects during subsequent months, which raises their final grades
(awarded in June), and thereby their GPA. These effects, which are particularly pronounced
at the higher end of the ability distribution, are driven either by self-signaling, where a
higher test grade boosts the student’s self confidence and effort, or potentially by signaling
to teachers to give higher grades as well.

We then examine outcomes at the end of high school, three years after test score ma-
nipulation. Being graded up above the lower (higher) threshold raises the likelihood of high
school graduation three years later by 20 (6) percentage points. The large impact at the
lower end of the ability distribution is consistent with our finding that test score manipu-
lation around the lower threshold raises the student’s likelihood of receiving a passing final
grade in math (awarded in June in the last year before high school), which is a necessary

1We combine the estimated relationship between earnings and un-manipulated test scores with the esti-
mated distribution of un-manipulated test scores in the manipulation region of the test score distribution to
calculate counterfactual average earnings.

2In the language of the potential outcomes framework (Imbens and Angrist, 1994), among students who
reach the test score manipulation window, those who de facto are graded up are akin to “compliers”; whereas
those who are left un-manipulated can be thought of as “never-takers.”
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condition for admittance to any high school.3 Moreover, inflated students perform better in
high school: Those inflated above the lower (higher) threshold have 11% (7%) higher high
school GPA – even though manipulation does not, per se, push these students into high
schools with higher peer GPAs.

Inflated students continue to benefit eight years after test score manipulation. Students
who are inflated above the lower (higher) threshold are 12 (8) percentage points more likely
to enroll in college, and complete 0.33-0.5 more years of education, by age 23. Moreover,
inflated students are less likely to have a child during their teenage years. These effects
translate in to substantial income gains at age 23 (the end of our sample period): Around
both thresholds, inflated students earn 340-440 SEK more annual income.

In sum, despite that test score manipulation does not, per se, raise human capital, it has
far-reaching consequences for the beneficiaries, raising their grades in future classes, high
school graduation rates, and college initiation rates; lowering teen birth rates; and raising
earnings at age 23.

The large immediate impacts are consistent with the fact that, in the context that we
analyze, the “signaling value” of being inflated is large: First, students do not observe their
numeric score on the test – only the letter grade – which means that bumping a student up
creates a large signal change. Second, grade nine is the second time that Swedish students
have ever received grades in school, which makes their priors on their own ability relatively
weak. The large long-term effects are consistent with a mechanism that suggests important
dynamic complementarities: Getting a higher grade on the test serves as a signal within
the educational system, motivating students and potentially teachers; this, in turn, raises
human capital; and the combination of higher effort and higher human capital ultimately
“snowballs,” generating large labor market gains.

This insight is related to the sheepskin literature, which analyzes the signaling value of
education in the labor market (Cameron and Heckman, 1993; Kane and Rouse, 1995; Kane et
al., 1999; Tyler et al., 2000; Clark and Martorell, 2014). This literature generally has found
a small or zero signaling value of education in the labor market. Our results suggest that
the signaling value of grades may be more important inside the educational system itself, by
raising students’ motivation or other teachers’ perceptions.

The importance of signaling inside the educational system ties to the literature on the
impact of receiving a failing grade (Jacob and Lefgren, 2006; Manacorda, 2012). This litera-
ture focuses on educational attainment within a few years of receiving a failing grade, and do
not follow the students into the labor market. Our paper essentially marries this literature

3The only option available to a student who does not obtain a passing grade in math is a one-year remedial
program that serves to get the student ready for a three-year high school program with a one year delay.
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with the literature on the sheepskin effect, by drawing on data that allows us get inside the
“black box” of how a potential signaling effect within the educational system affects each
step of the educational trajectory, and ultimately outcomes in the labor market.

More generally, we contribute to the literature that documents long-term impacts of a
range of school policies, including school desegregation (Billings et al., 2014); school choice
(Ahlin, 2003; Sandström and Bergström, 2005; Björklund et al., 2006; Lavy, 2010; Deming
et al., 2014; Edmark et al., 2014; Lavy, 2015); preschool programs (Garces et al., 2002);
class size (Krueger and Whitmore, 2001; Chetty et al., 2011a; Fredriksson et al., 2012); and
teacher value added (Chetty et al., 2011a, 2014). We assess the long-term consequences of
test score manipulation, as well as to document which students stand to gain.

A few papers assess the potential causes of test score manipulation.4 Previous work has
focused on school-level incentives to manipulate scores, such as penalties for poor school
performance (Jacob and Levitt (2003)), school competition (Tyrefors Hinnerich and Vlachos
(2013))5, and teacher-level monetary incentives (Lavy (2009)). Dee et al. (2011) document
manipulation of test scores in New York City, and show that it is driven by teachers’ desire
to help their students avoid a failure to meet exam standards.

We contribute to the small, growing literature that analyzes the impact of teacher discre-
tion on academic achievement. Lavy and Sand (2015) demonstrate in Israel that teachers’
grading display a gender bias favoring boys, and that this bias boosts (depresses) boys’ (girls’)
achievements and raises (lowers) boys’ (girls’) likelihood of enrolling in advanced courses in
math.6 Apperson et al. (2016) study the impacts of explicit cheating of teachers who erase
and correct wrong answers of students on high stakes tests in a US urban school district.
They find that students whose answers were changed performed worse on future achieve-
ment tests and were more likely to drop out of school than students whose answers were left
unchanged; however, selection of students into treatment (manipulation) could confound a
causal interpretation. Indeed, in our context, teachers choose to manipulate students who
perform idiosyncratically poorly on the test.

4While we focus on ex post test score manipulation, a related literature analyzes ex ante manipulation,
including efforts to “teach to the test” (Jacob, 2005) and to target instruction to students who are believed
to be at risk for falling close to target thresholds (Neal and Whitmore Schanzenbach, 2010).

5While we do not observe re-graded test scores, the counterfactual test score density that we estimate
approximates the re-graded distribution. On the relationship between grading leniency and competition for
students, also see Vlachos (2010) and Böhlmark and Lindahl (2012) for evidence from Sweden, and Butcher
et al. (2014); Bar et al. (2009) for evidence from the U.S.

6They quantify gender biased grading leniency by comparing teachers’ average grading of boys and girls
in a non-blind classroom exam to the respective means in a blind national exam marked anonymously. This,
in spirit, is very similar to our methodology: we compare the distributions of test scores under manipulation
to what these distributions would have looked like in the absence of manipulation. Contrary to Lavy and
Sand (2015), however, we do not readily observe these counterfactuals from blind grading of the same tests,
but we develop a methodology to estimate them.
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The most closely related paper is concurrent work by Dee et al. (2016). They they build
on Dee et al. (2011), which documented manipulation of test scores on the New York City’s
Regent’s Exam and analyzed the causes of manipulation. The new paper studies effects of
manipulation on high school graduation and college enrollment and find effects consistent
with our study. Our paper differs from Dee et al. (2016), and from the rest of this literature,
by studying key long term outcomes including labor market earnings, child bearing, and
achievement outcomes in schooling over 7 years after test taking.

Our identification strategy is also very different from Dee et al. (2016). They rely on a
combination of policy variation, which removed teachers abilities to manipulate test scores,
and cross-sectional variation between schools that engaged in high versus low levels of ma-
nipulation. The policy variation exhibits strong pre-trends in treatment, making difference-
in-difference estimation challenging. The cross-sectional specifications indicate treatment ef-
fects of manipulation on student race, suggesting unobservable sorting of students to schools,
which could confound a causal interpretation. Our paper provides a new identification strat-
egy building on the bunching literature methods.

Finally, there is a key distinction between our paper and the literature that analyzes
the impact of passing a high-stakes test in the absence of teacher manipulation. Lavy et al.
(2014) analyze the impact on earnings of performance on a high-stakes test in Israel, using
pollution as an instrument. Their results highlight that the test allocates high-stakes rewards
in an essentially random fashion to those who narrowly fare better (due to lower pollution
exposure during the test day).7 Our analysis is distinct in two key ways. First, receiving a
high math test grade in our context does not immediately change access to future schooling.
This allows us to separate the signaling value of a higher test grade to the student within the
same school year from the mechanical effect of receiving a high score on gaining admittance
to selective schools. Second, we analyze the impact of crossing an important proficiency
threshold when teachers have discretion in moving students’ across the cut-off. Depending
on how teachers use this discretion, the impact of passing when selected by a teacher with
discretion may be radically different from the impact of passing by chance – this, in fact, is
one of the key motivations for potentially allowing for teacher discretion.

The remainder of the paper proceeds as follows. Sections 2 and 3 describe the institutional
setting and data, respectively. Section 4 provides a model of teachers’ grading behavior. In
Section 5, we estimate where in the test score distribution manipulation takes place. Section
6 then uses data on long-term outcomes, coupled with our estimates from Section 5 of where

7Similarly, Papay et al. (2015) use an RD design to study the benefits of receiving a higher grade on a
standardized high school math test. They find receiving the higher grade raises college enrollment for low
income students in Massachusetts.
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in the test score distribution manipulation takes place, to quantify the causal impacts of test
score manipulation on subsequent schooling and adult labor market outcomes. Our results
are presented in Section ??.

2 Institutional background

2.1 Schooling in Sweden

In Sweden, schooling is mandatory until age 16, which corresponds to the first nine years
of school (ages 7-16). During the time period that we analyze, grades are awarded for the
first time in the Spring semester of eighth grade. One year later, at the end of ninth grade,
the final grades are awarded. All subjects are graded. The grading scale is Fail, Pass, Pass
with Distinction (henceforth PwD), and Excellent. All students who wish to continue to
the next scholastic level, grades 10-12 (ages 16-18; roughly equivalent to high school in the
U.S.), must actively apply to grade 10-12 schools (henceforth high schools).

There is a range of high school programs, ranging from vocational (construction, hair-
dresser, etc.) to programs that serve to prepare individuals for further studies at the univer-
sity level.8 To be eligible for high school, the student must have a passing grade in math,
English, and Swedish. Conditional on eligibility, the grade point average (GPA) when ex-
iting ninth grade is the sole merit-based criterion used for acceptance to high school.9 The
GPA cutoff for admittance to a given program, in a given year, is determined by the lowest
GPA among admitted individuals (a subset of those who applied). At the end of high school,
prospective university students apply to university programs, with admittance determined
in a similar fashion by thresholds in (high school) GPA.

Nationwide tests All students in grade nine take nationwide tests in mathematics. The
test consists of three sub-tests, which are administered approximately one week apart. The
test dates are usually in the beginning of the Spring semester (February), approximately four
months before the teacher sets the final grade in mathematics. Students are only informed
of their letter grade on the test, but not their raw numeric score. They would be unaware
how close they were to grade cutoffs.

8See Golsteyn and Stenberg (2015) for a detailed description of vocational and other programs and for
comparison of earnings over the life cycle for students choosing vocational versus other programs.

9In particular, no other merit-based criterion (such as essays, school-specific entry tests, etc.) that are
commonly administered in the U.S. are used in admittance decisions; the only factors that may be taken into
account other than GPA are the distance to school and sibling preferences. The GPA reflects the average
grade in the 16 subjects that are taught in grades 7-9. The maximum ninth grade GPA is 320., and the
minimum GPA is zero.
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The test is graded locally, either by the teacher or jointly by the teachers at a given school.
The test is graded according to a grading manual provided by The Swedish National Agency
for Education (Skolverket), which provides detailed instructions on how each question should
be graded. While some points are awarded based on objective and non-manipulable criteria
(e.g. providing a correct answer to a multiple choice question such as “which number is
larger?”), others involve a subjective assessment: a subset of the points may be awarded for
partially completed work, for “clarity,” for “beautiful expression,” and so on. This gives the
teacher leeway in raising a student’s test score somewhat, by grading up some questions.10

The grading sheet also provides a step function t(ri), which specifies exact cutoffs in the
raw test score, ri, for awarding the student the grades Fail, Pass, and PwD on the test. In
addition, the grading sheet specifies a lower bound on ri that constitutes a necessary but
not sufficient condition for awarding the top grade, Excellent. The sufficient conditions for
obtaining the highest grade are highly subjective criteria; moreover, we cannot observe them
in the data. For this reason, our analysis considers the two lower test score thresholds only.
Appendix B provides the exact step function from the grading sheet from 2004, along with
more detailed information about ri.

When writing the test, a student knows how many points each question is worth; however,
the student does not know the step function t(ri). Thus, the student cannot write the test
targeting the grade cutoffs. Further, these cutoffs vary over time; thus, there is no exact
relationship between the cutoffs in one year and the corresponding cutoffs for earlier years.
Any bunching that we observe in the test score distribution is thus attributable to teachers’
grading leniency, and not to student sorting. In addition to the test in math, nationwide tests
are administered in English and Swedish. The test grades obtained on these two language
tests are not based on any numeric test scores, however; these test grades are awarded based
on assessments of the quality of the students’ writing and reading. We therefore exploit only
the math test when recovering regions’ respective grading leniency – this test is ideal for the
purpose, as we observe the numeric score, and thereby can detect bunching in the test score
distribution.

Final grades The test grade is not binding for the final grade, which is the one that counts
towards the GPA. The final grade partly reflects the test grade, but the teacher also takes
into account all other performance, e.g. on homework and in-class tests, when setting the
final grade.

10In the context of Chicago, Jacob and Levitt (2003) document outright cheating among teachers. The
manipulation that we document is distinct in the sense that, in the data, manipulation occurs on test points
that are awarded based on subjective criteria, rather than on test points that are awarded based on objective
criteria.
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This suggests that teachers can engage in two different types of manipulation: first, as
discussed above, the nationwide test can be graded leniently, so as to push the student
above a test score threshold. Second, teachers can simply decide to set a final grade that is
higher than the grade that the student deserves based on the student’s un-manipulated test
score and “everything else.” This effectively corresponds to granting a grade that is higher
than the deserved grade, which essentially can be thought of as inflating the student’s true,
underlying ability.

In practice, the final grade in math does deviate from the (potentially manipulated) test
grade, in both directions. Moreover, these deviations do not occur in a uniform fashion;
teachers are more likely to award a math grade that is higher than the (potentially manipu-
lated) test grade than they are to award a lower final grade (Vlachos, 2010). This suggests
that the nationwide test grade may be used as a “lower bound” on the final grade.

We focus on the first type of manipulation – of the nationwide test scores – and Section 4
formulates a simple but general theoretical framework that operationalizes teachers’ incen-
tives to engage in such test score manipulation. In Appendix C, we present a richer model
that incorporates the second type of manipulation as well – of the final grade – and where
teachers are allowed to trade off the two types of inflation. Ultimately, both models pinpoint
the same key parameter of interest for our empirical analysis of long-term effects of test score
manipulation; thus, restricting our attention to test score manipulation is innocuous.

2.2 Schools’ incentives to manipulate

Why would teachers manipulate their students’ test scores? On the one hand, as teachers to
some extent know their students personally, they may experience emotional discomfort when
awarding bad grades. On the other, awarding a higher grade than a student deserves may
constitute a devaluation of the teacher’s own professionalism. While these mechanisms, and
a myriad of others, likely are at play in all schools and institutional contexts, a combination
of two particular features of Sweden’s schooling system may make the country particularly
susceptible to inflation: First, municipal and voucher schools compete for students – or,
more to the point, for the per student voucher dollars that the municipality pays the school
for each admitted student.11 Second, the key way for a grade 7-9 school to attract students
is to produce cohorts with a high average GPA in the cohort that exits from ninth grade.
Indeed, schools are often ranked, in newspapers and online, based on the GPA of the exiting
cohort of ninth graders (which is public information in Sweden). This in practice ties a
school’s reputation for quality to the average GPA of its exiting cohort, even though this

11Nonvoucher tuition payments are forbidden in Sweden.
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measure does not capture school value added. Put differently, if schools believe that parents,
especially those with high ability children, rely on these rankings when choosing a suitable
school for their child, schools face an incentive to produce cohorts with a high average GPA
in grade nine.

Taken together, these two features of Sweden’s schooling system provide an institutional
context where schools can compete either in the intended fashion, by providing a better
education, which justifiably may raise the grades of the exiting cohorts; or by engaging
in inflation, which artificially raises the school’s reputation for quality. This gives school
principals strong incentives to encourage their teachers to go easy on grading.12

3 Data

3.1 Swedish administrative data

We use administrative population-level data from Sweden. We start from the universe of
students who attend ninth grade between 2004 to 2010.13 For these children and their
families, we obtain information from various data sources, which we link through unique
individual identifiers. Taken together, these data sources provide information about each
student’s academic performance, subsequent medium- and longer-term outcomes, as well as
detailed demographic and socio-economic characteristics.

Grade nine academic performance and schooling information We observe precise
information on each student’s performance on the nationwide test in mathematics, English,
and Swedish. On the math test, we observe both the number of points obtained (after
possible manipulation by the teacher), and the test grade. On the English and Swedish
tests, we only observe the test grade. Because the English and Swedish nationwide tests are
taken before the math test, we can use them as pre-determined measures of student ability.

In addition to results from the nationwide tests in grade nine, we observe the student’s
final grade in math. As explained in Section 2 above, this course grade partly reflects the
result on the nationwide test, but also performance on homework, etc. In addition, we

12In municipal schools, teachers are not compensated based on the performance of their students, either
on nationwide tests or on other performance measures (while voucher schools may engage in such practices).
Nonetheless, anecdotally, public school teachers have reported feeling pressure from the principals to “pro-
duce” high test grades, in order to satisfy parents and boost the school’s image in face of the competition
for students.

13Note that our data includes both children who are born in Sweden and children who are born outside
of Sweden but attended ninth grade in Sweden.
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observe the grade point average (GPA) upon exit from grade nine.14

We observe the school that the student attends, as well as information about whether
the school is a municipal school or a voucher school.

Demographic and socio-economic characteristics For each child in our sample, we
have data on the exact date of birth; the municipality of residence when attending ninth
grade; and whether the student has a foreign background.15 We also have variables re-
lated to parental socio-economic status: we observe each parent’s year of birth, educational
attainment, immigration status and annual taxable earnings.

Medium- and longer-term outcomes To trace economic outcomes after ninth grade and
throughout adolescence and into adulthood, we add information from high school records,
university records, and tax records. Our key outcome variables in the medium term capture
information about high school completion, performance in high school (high school GPA),
and the quality of the high school (measured by high school peer GPA).

At the university level, we observe whether an individual initiates university studies,
which is defined as attending university for two years or less. Moreover, we observe the length
of each individual’s studies (i.e., total educational attainment) by 2012, which corresponds
to the age of 24 for the oldest cohort in our sample.

We also observe the exact (employer-reported) taxable income for all years in which the
student is aged 16 and above. In 2012, the last year for which we observe income, the
individuals in our sample are up to 24 years old. Earnings at age 23-24 likely captures
income from stable employment in the sub-population of individuals who do not attend
university. Among university enrollees, however, it is too early to capture income from stable
employments. Finally, we observe an indicator for teen birth by 2009, which corresponds to
the age of 21 for the oldest cohort in our sample.

In sum, we create a unique data set that enables us to follow the students from ninth
grade, throughout adolescence, and into adult life, all the while tracking key economic out-
comes.

3.2 Sample and Summary Statistics

Our sample consists of all students who attend ninth grade between 2004 to 2010 and both
took the national test (obtained a non-missing, positive test score) and obtained a final grade

14See footnote 8 for more information about the GPA.
15We define foreign background as having a father who is born outside of Sweden; thus, this incorporates

both first and second generation immigrants.
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in math.
Table 1 presents summary statistics. The first column presents summary statistics for the

full sample, the second and third columns for two distinct subsamples: students that obtain
a test score that is subject to potential manipulation around the threshold for Pass and PwD,
respectively. The definition of these three regions varies by year, county, and voucher status
of the school, and are derived from our estimates of the size of the manipulation regions,
which we discuss in detail in Section 5. In our full sample, 93 percent of the students receive
a final grade in math of Pass or better (i.e., seven percent receive the final grade Fail); and
18 percent obtain PwD or better. We let the final grade in math take the value of 0 if the
student fails; 1 if the grade is Pass; 2 for PwD; and 3 for Excellent. In the overall sample,
the average grade is 1.13.

In the full sample, the average test score is 28.3, and the averages (mechanically) increase
as we move from the lower to the higher threshold. 5.7 percent of all students attend a
voucher school. The mean GPA in the entire sample is 191.16

Our key longer-term outcomes of interest are whether the student graduates from high
school, college attainment, and income earned at age 23. Income is estimated in 2011 and
2012 for the students who attended grade nine in 2004 and 2005. In the full sample, 76
percent of the students graduate from high school. Finally, 22 percent of the full sample of
students have a foreign background.

4 A model of test score manipulation

To quantify the causal impact of test score manipulation (which we turn to in Section 6
below), we must know where in the test score distribution manipulation takes place. This
section models teachers’ incentives to manipulate students’ test scores and provides a theo-
retical answer to this question. In a nutshell, the model shows, in a very general setting, that
there exists a lowest test score where manipulation takes place (around each grade threshold).
This is important for our estimation in Section 6, as it implies that, in the vicinity of each
test score threshold, there exist test score ranges where students are left un-manipulated;
thus, we can use these students to learn about how students who were manipulated would
have fared in the absence of manipulation.

16See footnote 8 for more information about the GPA.
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4.1 Set-up

For simplicity, we model test score manipulation around a single threshold, which we will
refer to as Pass versus Fail. A richer but less general model, which more closely captures the
precise institutional features of the grading system in Sweden and which permits a structural
interpretation of the key parameter of interest (isolated below), is presented in Appendix C.

Student i is taught by teacher j. He attends class and has performed at level ai on class
assignments, other than the nationwide test. We refer to ai as student i′s ability, and assume
that it is observable to the teacher.17

Student i takes the nationwide test and, in the absence of any test score manipulation,
receives a numeric test score ri = r (ai, εi). We refer to this as the “raw” test score, to
underscore that it is un-manipulated. The raw test score depends on the student’s ability,
but also on an error term εi˜F (εi) , which captures the fact that student i’s performance on
the test may deviate from her true ability; that is, the student can have a “good test day” (if
ri > ai) or a “bad test day” (if ri < ai), with the magnitude of the deviation reflecting just
how good or bad the test performance was relative to the student’s innate ability. Because
the teacher grades the test, she observes the raw test score ri.

The teacher may choose to inflate the raw test score by awarding some amount of addi-
tional test points to student i, ∆i, resulting in a manipulated test score of ri + ∆i.

The test grade, ti, is either Pass or Fail, and is given by the following indicator function
(for Pass):

ti = t (ai, εi,∆i) =

 1 if (r (ai, εi) + ∆i ≥ p̄)
0 o/w

 .
Intuitively, if student i′s test score r (ai, εi) + ∆i is higher than the passing threshold p̄,

then he passes the test; otherwise he fails. The teacher chooses the amount of manipulation
of student i’s test score, ∆i, to maximize the per-student utility function:

uij(∆i) = βijt (ai, εi,∆i)− cij (∆i) ,

c′ij (∆i) > 0, c′′ij (∆i) > 0.

Here, βij measures teacher j’s desire to raise student i’s grade from a Fail to a Pass. Its
dependence on j permits teachers to be heterogenous in their desire to inflate grades. Such
heterogeneity may stem from teacher-specific factors, such as a teacher’s aversion against
incorrectly assigning a test score below the threshold, or from factors stemming from the

17Strictly speaking, ai need not reflect student i’s true, innate ability; it is sufficient that it reflects the
teacher’s perception of student i’s innate ability.
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school at which teacher j works, e.g., the competitive pressure that the school faces from other
schools to attract students, pressure from the school principal to “produce” higher grades, etc.
Moreover, the dependence of βij on i permits a given teacher to place a heterogenous value
on raising different students’ grades from Fail to Pass. Importantly, this permits the teacher
to use her discretion both in a “corrective” and “discriminatory” fashion: For example, a
teacher may have corrective preferences if she places a higher value on inflating a student
who had a bad test day. But this formulation also permits the teacher to have discriminatory
preferences, e.g., placing a higher value on inflating students of a certain gender or from a
certain socioeconomic group (whose parents, for example, may impose stronger pressure on
the teacher). In Section 6, we empirically assess whether teachers appear to have corrective
or discriminatory preferences; here, we keep a general formulation that permits each of these
interpretations (as well as an interpretation where the teacher has a combination of corrective
and discriminatory preferences). Finally, although we have formulated a per-student utility
function above, note that the dependence of βij on i permits the teacher’s desire to raise
student i’s grade from a Fail to a Pass to depend on the overall ability distribution in teacher
j’s class of students. Such preferences would entail if, for example, the teacher wants a certain
percentage of the students in the class to obtain a passing grade.

In order to inflate a student’s test grade by ∆i, the teacher must pay a cost, cij (∆i).
cij (∆i) is assumed to be strictly increasing and convex. This captures the fact that it is
increasingly hard for a teacher to add an additional test point as she inflates the test score
more and more.18

4.2 Teachers’ grading behavior and the shape of the test score
distribution

We now explore properties of the model above that will be useful for estimation. For now,
we assume that when the teacher chooses ∆i, she is free to pick any (positive) value that
she wishes.19 Before analyzing the teacher’s decision to use her discretion to manipulate
a student’s test score, we discuss what happens if βij = 0. Then, trivially, there are no

18For example, as discussed in Section 2 above, there are some points awarded on the math test that require
subjective grading, while others are clearly right or wrong answers. Inflating a test score by a few points
would only require somewhat generous grading on the subjective parts of the test, while a large amount of
manipulation would require awarding points for more clearly incorrect answers. These costs are also convex
due to the possibility that a school might get audited and have to justify their grading, which is harder to
do with larger amounts of manipulation.

19In reality, sometimes grading a question more generously may lead to lumpy amounts of test points (e.g.
either the teacher must assign 3 extra points or 0, as she may not be able to give 1 point, given the structure
of the test.)
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incentives to engage in costly manipulation. Thus, all students with ri below p̄ fail the
nationwide test (ti = 0), and all students with ri above p̄ pass the nationwide test (ti = 1).

Our understanding of the outcome in the absence of manipulation immediately highlights
that, even if we were to raise βij from zero, the teacher would never inflate any student who
obtains a test grade of Pass (gi = 1) without manipulation. Now consider the case when
βij > 0:

Lemma 1. The teacher’s manipulation of student i’s test score satisfies ∆∗i ∈ {0, p̄− ri} .
That is, the teacher either leaves student i’s test score un-manipulated, or inflates the stu-
dent’s final numeric grade to exactly p̄.

If the teacher chooses to engage in any manipulation of student i’s raw test score, then
she puts the student’s final numeric score exactly at p̄, where the student (just) receives a
passing final grade, ti = 1. Intuitively, the teacher never inflates a student’s test score less
than up to p̄ because any amount of manipulation is costly; hence, a necessary condition for
manipulation is that it alters the student’s test grade from Fail (ti = 0) to Pass (ti = 1). Put
differently, the teacher engages in manipulation only if it brings her an added utility of βij.
Similarly, as ci (∆i) is strictly increasing, the teacher never engages in more inflation than
what puts the student’s final numeric grade at p̄.

This immediately implies that the teacher’s decision of whether to inflate a given student
i who would fail in the absence of manipulation (ri < p̄) hinges on whether βij, the teacher’s
utility from raising the final grade from Fail to Pass, (weakly) exceeds the cost of the manip-
ulation that is required to push the student just up to the passing threshold p̄. This required
amount of manipulation is given by (p̄− ri). Thus, the teacher inflates student i if and only
if he would fail in the absence of manipulation and

βij ≥ cij (p̄− ri) . (1)

The left-hand side of equation (1), βij, is a constant and the right-hand side, cij (p̄− ri), is
increasing in p̄ − ri (decreasing in ri). Hence, equation (1) can equivalently be formulated
as follows:

Proposition 1. Teacher j inflates student i if and only if he would fail in the absence of
manipulation and ri ≥ rij,min, where rij,min is implicitly defined by βij = cij (p̄− rij,min).20

Proposition 1 highlights three key things:
20Because student i would fail in the absence of manipulation so long as ri < p̄, the teacher inflates student

i if and only if his raw test score falls in the interval ri ∈ [rij,min, p̄).
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• Student-specific decision rules: Because rij,min varies at the student level, the
teacher has a set of student-specific decision rules: If the teacher has two students
(say, Ben and Anna), and if the pass threshold p̄ is 20, then the teacher’s rule may be
to bump Anna up if she receives 16 or more on the test, but to only bump Ben up if
he receives 18 or more.

• Differential treatment: An immediate implication of the student-specific rule is that
a teacher who has two students with the same test score may bump one of them up,
and leave the other behind. In the previous example, if both Ben and Anna got a test
score of 17, the teacher would choose to bump up Anna, but not Ben.

• Decision rules are independent of students’ test scores: While the ultimate
decision of whether to bump a student up or not depends on the student’s test score –
Anna is bumped up if she scores 16, but not if she scores 15, for example – the teacher’s
decision rule when it comes to Anna can be thought of as pre-determined.

Proposition 2. For each teacher, there exists a lowest test score at which test score ma-
nipulation (of any student) occurs, rj,min. Consequently, students whose un-manipulated
test score ri falls below rj,min have a zero probability of being inflated. Students whose un-
manipulated test score ri falls above rj,min have a weakly positive probability of being inflated
(to p̄).21 The threshold rj,min is pre-determined and does not depend on students’ realized
test scores.

Proposition 2 follows immediately from Proposition 1: For each teacher j, the minimum
test score at which any of her students get manipulated is simply given by the smallest rij,min

of all her students,
rj,min = min

i
(rij,min). (2)

Moreover, importantly, because each of the teacher’s student-specific thresholds rij,min

are pre-determined, the teacher-specific threshold rj,min is pre-determined as well.
As we discuss in detail in Section 6 below, the existence of a minimum test score at

which manipulation occurs will be at the heart of our estimation methods for identifying
the long-run impact of receiving test score manipulation, as it implies that there exist test
score ranges where students are left un-manipulated with probability one; thus, we can use
these students to learn about how students who were manipulated would have fared in the
absence of manipulation.

21Specifically, among the students whose test scores fall above rj,min: (i) the probability of receiving
inflation is one for students whose raw test score satisfies ri ∈ [rij,min, p̄) – these can be thought of as
“compliers;” and (ii) the probability of receiving inflation is zero for students whose raw test score satisfies
ri ∈ [rj,min, rij,min) – these can be thought of as “never-takers.” This is discussed further in Section 6 below.

16



Corollary 1. For each school s, there exists a lowest test score at which test score manipu-
lation occurs, rs,min. Similarly, for each geographical region g, there exists a lowest test score
at which test score manipulation occurs, rg,min.

This result follows immediately from Proposition 2: the lowest test score at which any
manipulation occurs in a school s, rs,min, is simply given by the minimum rj,min among all
teachers j at school s. In a similar vein, the lowest test score at which any manipulation
occurs in a geographical region g, rg,min, is given by the minimum rs,min among all schools
s within geographical region g. This previews what we discuss in Section 6 in more detail;
namely, that we can use the lowest test score at which any manipulation takes place to
identify un-manipulated regions of the test score distribution at any level of aggregation of
our data – at the teacher level, the school level, at the level of a geographical region (or even
at the national level).

In Appendix C, we present a slightly less general model that places some restrictions
on the teacher’s utility function, but which more closely captures the precise institutional
features of the grading system in Sweden. In this alternative setting, we show the same result,
namely, that there exists a lowest test score at which manipulation occurs. In addition, the
framework presented in Appendix C permits a structural interpretation of this parameter:
The lowest test score at which test score manipulation occurs in a school, rs,min, identifies
the school’s desire to engage in test score manipulation. More precisely, if school A has a
lower rs,min than school B, then school A has a stronger inclination to engage in test score
manipulation (regardless of whether, say, the underlying ability distributions of school A
and school B differ). The simpler and more general framework presented in this Section,
however, highlights that the existence of rs,min requires only minimal assumptions. Moreover,
for quantifying the impact of test score manipulation on long-term outcomes, we do not need
to interpret the parameter rs,min as capturing grading leniency.

5 Demarcating the regions of test score manipulation

The central insight from the framework presented in the previous Section is that there exists
a minimum test score at which manipulation occurs (around each grade threshold). This
minimum test score is a crucial parameter as it demarcates the manipulation region (in the
vicinity of a given grade threshold), and thus divides the test score range into manipulated
and un-manipulated regions – the key information that we need in Section 6 to quantify the
causal impacts of test score manipulation. In this section, we turn to the data and estimate
this key parameter (for the Pass and PwD thresholds, respectively).
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Since the parameter rs,min (rg,min) is closely related to a school’s (region’s) overall desire
to manipulate, we will henceforth use the term “grading leniency” to refer to this parameter.

5.1 Estimation of grading leniency

We estimate grading leniency parameters for each county, separately for voucher and non
voucher schools, in each year from 2004 to 2010. By aggregating many schools together at the
county level, we identify the minimum test score where manipulation occurs across all these
schools (i.e., a min of mins, as formalized in the previous section). This is a lower bound,
across all (voucher or public) schools in the region, for where in the test score distribution
manipulation occurs.22

In theory, our method for quantifying causal impacts of test score manipulation, presented
in Section 6, would work equally well by estimating this cut-off in the aggregate nationwide
test score distribution (for a given year); this would identify the minimum test score that
gets inflated across all schools in that year. We discuss how the level of aggregation impacts
our treatment effect estimation in Section 6.1.

For each county*voucher*year, we estimate two grading leniency parameters, capturing
the width of the manipulation window around the Pass and PwD thresholds, respectively.

To do this, we analyze the histogram of the test score distribution for each county-voucher
school-year. We want to estimate the point, below each of the two test grade thresholds, at
which there begins to be missing mass in the test score distribution (and where this missing
mass instead is shifted above the test grade threshold, into the “bunching region”).23 Let
the two thresholds – for Pass and PwD – be indexed by k.

5.1.1 Refining existing bunching methodologies

Previous bunching estimators have relied on visual inspection for determining where the ma-
nipulation region begins and/or ends (Saez, 2010; Chetty et al., 2011b; Kleven and Waseem,
2012). Most closely related to our setup is Kleven and Waseem (2012) (henceforth KW), the
first paper to develop a method to estimate where the manipulated region of a histogram

22We are unable to estimate separate grading leniency parameters at the individual school level since there
are too few students in a school to give us sufficient statistical power. We instead estimate grading leniency
in each county, separately for voucher and non voucher schools, in each year from 2004 to 2010. We aggregate
voucher schools in counties where fewer than 200 students are in voucher school in 2004. We maintain the
definition of this “aggregate voucher*county” throughout the time period 2004-2010. We cannot pool data
across years because the grade cutoffs move around each year.

23Some bunching may occur above the Pass threshold, instead of exactly at the Pass threshold, due to
teachers being imprecise with their grading or the test points being structured in a way where the points
awarded for questions are lumpy, forcing teachers to sometimes give more points than what is needed to pass
the test.
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around a notch begins. KW’s method relies on visual inspection of where manipulation of
the analyzed distribution ends. In our setting, we cannot manually choose any parameter
that defines the width of the manipulation window, for two reasons: First, we analyze a
large number of distributions, which makes relying on visual inspection tedious. Second,
and most importantly, we want to allow for the possibility that there is no manipulation
in some locations. We therefore refine the methods of KW to create a “fully automatic”
estimator, which does not require picking any parameters using visual inspection.

More specifically, because we want an estimator that can identify zero manipulation,
we first must make some assumption on the shape of the un-manipulated density. This is
because, without a restriction on the shape of the un-manipulated test score distribution, one
could not reject that any observed bunching simply represents an unusual looking test score
distribution without manipulation. To rule out this possibility, we assume that the test score
distribution is log concave in the absence of grade inflation. Log concavity is an appealing
assumption because it is a sufficient condition for a single peaked and continuous test score
distribution, and it is easy to mathematically implement. Further, it allows for considerable
generality: many commonly used probability distributions are log concave (normal, gumbel,
gamma, beta, logistic).

Having specified the shape of the un-manipulated distribution permits the second novel
feature of our estimator, namely, that it iterates over all possible widths of the manipulation
region (including zero) – as well as over a number of other parameters to be specified below.
It then uses a mean squared error criterion function to compare different possible estimates
of the width of the manipulation region and the shape of the un-manipulated distribution.24

In addition, we make a number of assumptions that are common for our estimator and that
of KW, such as imposing that the missing mass below the test grade threshold must equal
the excess mass above the test grade threshold.

5.1.2 Our estimator

Specifying the counterfactual (un-manipulated) distribution. Let hjt(r) equal the
frequency of students in region j in year t that would receive a test score of r in the absence
of test score manipulation.25 hjt(r) is defined as:

24The KW method instead selects the narrowest manipulation region which could be consistent with the
data, and does not systematically compare all possible widths of the manipulation regions and their overall
model fit. Our method thus provides a broader search of possible estimates and uses a criterion function to
compare them.

25As mentioned above, we will estimate grading leniency at the county*voucher*year level. From now on,
we let j indicate a county*voucher, and will for simplicity refer to it as a “region.”
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hjt(r) = exp(δrjt) (3)

s.t.

δrjt − δr−1jt ≤ δr−1jt − δr−2jt. (4)

The frequency of each test score r in region j and year t is represented by a dummy variable,
exp(δrjt). Note that without any constraints, this is a completely non-parametric specifica-
tion, as the number of dummy variables in each region-year is equal to the number of test
points. We constrain this non-parametric specification of the test score distribution to be
log-concave, which is captured by δrjt− δr−1jt ≤ δr−1jt− δr−2jt. This constraint ensures that
the log of the test score distribution is concave (the change in δrjt is weakly decreasing as r
increases.)26 δrjt are parameters to be estimated.

Additionally, we impose that the estimated un-manipulated distribution sums to one, to
ensure that it is a valid probability distribution:

∑
r

exp (δrjt) = 1. (5)

Missing and excess mass. We assume that, in the regions where some test scores are
inflated above the test grade threshold, the missing mass below the test grade threshold
must equal the excess mass above the test grade threshold. This is simply an adding up
condition.27 Let mlow,k,plowkjt

jt (r) equal the amount of missing mass below grade threshold k

at test score r in region j and year t. Similarly define mhigh,k,phigh
kjt

jt (r) as the amount of
excess mass above grade threshold k at test score r in region j in year t. We parameter-
ize mhigh,k

jt (θhigh,kjt , r) and mlow,k
jt (θlow,kjt , r) each as polynomials, where (θhigh,kjt , θlow,kjt ) are the

coefficients of the polynomials and (phighkjt , p
low
kjt ) are the orders of the polynomials. These

functions are constrained by:

∑
r

m
high,k,phigh

kjt

jt (θhigh,kjt , r) =
∑
r

m
low,k,plowkjt
jt (θlow,kjt , r). (6)

26To see that this restriction implies log concavity, note that δrjt is equal to the log of the share of students
who would receive a test score of r in the absence of manipulation. To verify concavity, we ensure that the
change in the log share of students receiving the un-manipulated test score r ( δrjt − δr−1jt) is weakly
decreasing in r.

27In the language of the bunching literature, this condition rules out an “extensive margin” response
(Persson, 2014). In our setting, this is very intuitive: the presence of manipulation moves students around
in the test score distribution, but it does not make any student disappear from the test score distribution
altogether. Consequently, all students that are moved up from below the threshold, must be located above
the threshold in the manipulated distribution.
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In addition to the adding up constraint, we impose thatmhigh,k,phigh
kjt

jt (θhigh,kjt , r) andmlow,k,plowkjt
jt (θlow,kjt , r)

are non-negative at all test scores r:

For all r : mhigh,k,phigh
kjt

jt (θhigh,kjt , r) ≥ 0, (7)

For all r : mlow,k,plowkjt
jt (θlow,kjt , r) ≥ 0. (8)

This guarantees that there can only be missing mass below each threshold k, and not excess
mass. Similarly, there can only be excess mass above the test score threshold, and not
missing mass.

Width of the manipulation region Third, we define βkjt as the difference between the
test grade threshold k and the minimum test score to ever receive inflation in region j in
year t. Test scores below k − βkjt will never be inflated up to k or higher. This gives us our
final restrictions: the amount of missing mass below k−βkjt is equal to 0 and the amount of
excess mass above k + βkjt − 1 is zero. βkjt is our key parameter of interest, as it measures
how many points below the test score threshold a student has any chance of receiving test
score manipulation. We also use βkjt as an upper bound on how far beyond the grade cutoff
a test score can be manipulated. If βkjt is the most points a test score can be inflated to
reach a grade cutoff, this should also bound how many points beyond the cutoff a score could
be manipulated.28

If r < (k − βkjt) : mlow,k,plowkjt
jt (θlow,kjt , r) = 0, (9)

If r > (k − 1) : mlow,k,plowkjt
jt (θlow,kjt , r) = 0, (10)

If r > (k + βkjt − 1) : mhigh,k,phigh
kjt

jt (θhigh,kjt , r) = 0, (11)

If r < (k) : mhigh,k,phigh
kjt

jt (θhigh,kjt , r) = 0. (12)

Full test score distribution. Combining these gives us the full test score distribution,
including test score manipulation. Let Rrjt equal the observed test score frequency in the
data at test score r within region j in year t. Our model predicts:

28A teacher might manipulate scores beyond the exact threshold because they are engaging in manipulation
as they go through the grading and end up with more manipulated points than necessary once they finish.
The teachers may also try to overshoot the cutoff for some student in order to obfuscate that they are
manipulating scores.
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Rrjt = exp(δrjt)+
∑
km

low,k,plowkjt
jt (θlow,kjt , r)+ ∑

km
high,k,phigh

kjt

jt (θhigh,kjt , r)+ εrjt,︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Observed
density

un-
manipulated
distribution

missing mass excess mass
sampling
error

such that equations (4), (5), (6), (7), (8), (9), (10), (11), and (12) hold.

Estimation. We estimate the model using constrained nonlinear-least squares and use
k-fold (k=5) cross-validation to prevent overfitting.29 The parameters to estimate are:

(β1jt, β2jt, θ
low,1
jt , θhigh,1jt , θlow,2jt , θhigh,2jt , δ1jt−1, ..., δRmaxjt−1). We estimate the model sepa-

rately for voucher and municipal schools, within each county, in each year. This allows us
to recover the maximum amount of test score manipulation that occurs around each of the
test grade thresholds: (β1jt, β2jt). See Appendix D for additional technical details.

Intuition for identification of key parameters of interest. To give some intuition
behind how our estimator identifies β1 and β2, Figure 1a plots what our model would estimate
for the manipulated and un-manipulated test score distributions if β1 were set to 1 and β2

were set to 0. These data are for municipal schools in Stockholm in 2005. Note how this fits
the data very poorly around the PwD cutoff of 41 and does not match well the test score
distribution for low scores below 20. In contrast, Figure 1b shows the estimated distributions
if β1 is set to 4 and β2 is set to 1. This allows the estimator to match the observed distribution
of test scores in the data much better; and in fact, for municipal schools in Stockholm in
2005, we obtain the estimates β̂1 = 4 and β̂2 = 1.

5.2 Estimates of grading leniency

The estimation strategy outlined above yields estimates of grading leniency at the county
by voucher level, for each year between 2004 and 2010. Figure 2 displays histograms of β̂1jt

(upper panel) and β̂2jt (lower panel) – that is, of the estimated widths of the manipulation
region around the thresholds for Pass and PwD, respectively. Note that we do not use this
cross-sectional variation when identifying the impact of test score manipulation on future

29This is implemented by splitting the histogram for each county-voucher year into 5 subsamples of data.
We minimize the mean-squared error over 4 of the subsamples, and predict out of sample using the estimated
parameters on the 5th “hold out” sample and calculate the out-of-sample mean squared error. We do this
for each of the 5 subsamples and sum together each of the 5 out-of-sample mean squared errors. We pick the
β1 and β2 estimates, as well as the orders of the polynomials, to minimize this out-of-sample mean-squared
error. We do this separately for each county-voucher-year.
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outcomes – we simply show this distribution to give an idea of how much manipulation takes
place in Swedish schools.

The estimates show considerable heterogeneity across counties (by voucher) in grading
leniency: some students’ test scores are virtually un-manipulated, while other (marginal)
students’ test scores are inflated by as much as 7 test score points, which amounts to about
10% of the total number of test points. While there is more manipulation around the Pass
threshold, there is considerable manipulation around the higher threshold as well.

Figure 3 illustrates the estimated county*voucher counterfactuals, aggregated up to the
national level, in year t = 2010. The blue connected line plots the observed (manipulated)
distribution of test scores, and the red connected line shows the estimated (un-manipulated)
counterfactual density. This “eyeball” check shows that our log-concavity assumption ap-
pears reasonable and highlights where manipulation begins and ends in the aggregate distri-
bution of test scores.

5.3 Towards estimation of causal impacts of test score manipula-
tion

The estimation procedure in this section yielded two pieces of information that we, in the
subsequent Section, will use to estimate the causal effects of test score manipulation: (i) The
width of the manipulation region, around the Pass and PwD thresholds, respectively, in each
county*voucher*year. Thus, in the test score distribution for each county*voucher*year, we
now know where test score manipulation occurs, and where it does not occur. (ii) The
counterfactual test score distribution for each county*voucher*year. This tells us, for each
test score point inside the two manipulation regions, how many students would have obtained
this test score in the absence of manipulation.

Of course, these two pieces of information are simply “two sides of the same coin,”
as is illustrated in Figure 3. The blue connected line plots the observed data, i.e., the
manipulated distribution of test scores, at the national level in 2010. The red connected line
shows our estimated county*voucher counterfactuals, aggregated up to the national level,
for the year t = 2010; that is, the second “piece of information” that we discussed above.
Comparing the counterfacutal density with the actual data also immediately demarcates
where manipulation begins and ends in the aggregate distribution of test scores; that is, the
first piece of information that we discussed above.

Next, we describe our methodology for estimation of causal effects of test score manipu-
lation, and how we use each of these two pieces of information.
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6 The impacts of teacher discretion

To analyze the long-term consequences of test score manipulation, we develop a new bunching
identification strategy that harnesses the fact – shown in the previous Section – that teacher
manipulation only occurs in two regions of the test score distribution.

To see how our methodology works, it is helpful to recall some common features of
bunching strategies. So far, bunching strategies have been used to analyze the distribution
that is being manipulated: for example, distributions of reported incomes (Saez, 2010; Chetty
et al., 2011b; Kleven and Waseem, 2012), dates of marriage (Persson, 2014), or, as in the
previous section of this paper, distributions of test scores. The underlying idea of these
methodologies is to (i) figure out which parts of the distribution is manipulated, and then
(ii) use the un-manipulated parts of the distribution to help “fill in” the shape inside the
manipulated regions of the distribution.

In this Section, we further develop this literature and use a bunching methodology to
examine the impact of manipulation on other variables than the one that is being directly
manipulated, that is, other outcomes than the test score distribution. Intuitively, just like we
can plot the test score distribution, we can plot the mean of a future outcome (say, earnings)
by test score. In the two test score ranges where manipulation occurred (in the vicinity
of the Pass and PwD thresholds, respectively), the observed earnings distribution partly
captures the impact of test score manipulation on earnings. In contrast, in the test score
ranges where no manipulation occurred, the observed relationship between mean earnings
and test scores captures the underlying relationship between (un-manipulated) test scores
and earnings. Thus, we can use this observed relationship between mean earnings and
test scores outside of the two manipulation regions to predict a counterfactual relationship
between earnings and test scores inside the test score ranges where manipulation occurred.
In the manipulation region around the Pass threshold, the difference between the average
observed and counterfactual earnings captures the reduced form impact of (potentially being
exposed to) test score manipulation on earnings. The interpretation around the PwD region
is analogous.

We describe this in detail in the below subsections. Here, we provide an intuitive de-
scription, which also provides a roadmap of the remainder of this Section. To implement our
estimator, we proceed in several steps:

1. For each county*voucher*year, we flexibly estimate the relationship between test scores
and an outcome of interest (say earnings), using only students whose test scores fall
outside of the two manipulation regions. In this step, we use one piece of information
from Section 5 above, namely, the estimates of where test score manipulation occurs
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and where it does not occur (in each county*voucher*year).

2. We predict inwards into the two manipulation regions, assuming that the parameters
that we estimated using data only outside of these regions also govern the relationship
between test scores and earnings inside the manipulation regions; the only exception
is that we also allow for discrete jumps in earnings exactly at the cutoffs for Pass and
PwD, respectively. This step produces an estimate of the counterfactual earnings at
each test score point inside the test score ranges where manipulation occurred.

3. We then focus only on the part of the test score distribution where manipulation
occurs. In particular, from (2) we can construct a prediction of the average earnings of
students whose un-manipulated test scores fell in each of the two manipulation regions.
(In this step, in addition to using (2) above, we use a piece of information from Section
5 above, namely, the estimated counterfactual densities of the test score distribution.)

4. We calculate, from the raw data, the average actual earnings of the students whose
un-manipulated test scores fell in each of the two manipulation regions.

5. In the manipulation region around the Pass threshold, the difference between (4) and
(3) captures the reduced form impact of (potentially being exposed to) test score
manipulation on earnings. The interpretation around the PwD region is analogous.

6. Not all students whose un-manipulated test scores fall within the manipulation regions
of the test score distribution actually get bumped up. We therefore also estimate a
“first stage” effect of having a test score that falls in the manipulation region on the
probability of receiving a higher grade. To estimate this first stage, we repeat steps (1)
- (5) above, with the outcome being “receiving a higher math grade.” (This, in fact, is
the estimation that we show in detail below.)

7. Finally, the ratio of the reduced-form effect to the first stage effect identifies the local
average treatment effect of receiving a higher grade due to test score manipulation on
labor market earnings.

To provide some intuition for (6) above – the fact that not all students whose un-
manipulated test scores fall in a manipulation region actually gets bumped up, which creates
the need for a “first stage” – Figure 4 illustrates how students in the the manipulated regions
of the test score distribution can be thought of in terms of the potential outcomes frame-
work, in an example where the Pass threshold is 21 and the manipulation region starts at
14. Among the students whose raw test scores fall into the interval 14− 20, teachers choose
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to grade up a subset; these can be thought of as the compliers, who are “missing” below
21 in the observed test score distribution. The students whose observed test scores lie in
the interval 14− 20 can be thought of as never-takers, as they are left un-manipulated even
though their test score was close enough to the threshold for the teacher to consider them
for manipulation. Finally, the students whose raw and observed test scores lie at or above 21
(but remain within the manipulation region around the Pass threshold) can be thought of as
always-takers. In the data, we can identify the never-takers; however, we cannot distinguish
the compliers from the always-takers, as both groups’ observed test scores fall at or above
21 and we do not observe the raw test scores.

Identifying assumption The key identifying assumption that we rely on for identify-
ing causal impacts of test score manipulation is that, in the absence of manipulation, the
distribution of outcomes that we consider would have been smooth across the thresholds
to the manipulation windows. This ascertains that data from outside of the manipulation
regions is informative of the counterfactual distribution within these regions. This is the
standard assumption that underlie all bunching methodologies. Moreover, recall from Sec-
tion 4 that the teacher-specific (and, hence school-specific and region-specific) thresholds are
pre-determined, and do not depend on the realization of student test scores.

Hence, it is worth emphasizing that we do not need to assume that teachers allocate
test score manipulation to a random subset of the students. In contrast, we know from
our theoretical framework in Section 4 that the students who are bumped up – i.e., the
compliers in Figure 4 – are a select subset. Our reliance on bunching methods overcomes
the identification challenge that this would pose to a simple comparison of students who are
bumped up with students who are not.

6.1 Identifying the causal impact of test score manipulation

The “first stage.” We formally present steps (1)-(5) of the above procedure with the
outcome being the student’s final grade in math (obtained in June). This yields our “first
stage” of our Wald estimation.30

Steps one and two. The first step is to estimate the relationship between students’ final
math grades and their un-manipulated test scores. We start by estimating this relationship,
by fitting a third order polynomial, using data only from the un-manipulated parts of the test
score distribution. We then predict this relationship inwards into the manipulation regions.

30In other words, we implement step (6) of the above procedure, which is to implement steps (1)-(5) with
the outcome being the student’s final grade in math.
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Specifically, recall that gijt is student i′s observed final math grade (who is enrolled in
region j in year t). We estimate:

gijt = ĝkjt
(
rijt, θ

grade
kjt

)
+ αkjt ∗ (rijt ≥ k) + εgijt, (13)

where: (rijt < k − βkjt or rijt > k + βkjt − 1)

and

rijt > (k − 1) + βk−1jt + 1 and rijt < (k + 1)− βk+1jt.

ĝkjt
(
rijt, θ

grade
kjt

)
is a third order polynomial with coefficients θgradekjt , which captures the

smooth relationship between students’ un-manipulated test scores, rijt, and their expected
final grades. (rijt < k − βkjt or rijt > k + βkjt − 1) ensures that the data used to estimate
equation (13) is outside of the test score inflated region around test grade threshold k.
rijt > (k − 1) + βk−1jt + 1 and rijt < (k + 1) − βk+1jt ensures that the data is also not
within the test score inflated regions around the higher (k + 1) or lower (k − 1) test grade
thresholds. We allow there to be a discrete jump in students’ expected final grade at the test
grade cut-off k, represented by αkjt ∗ (rijt ≥ k), which represents the payoff of just passing
the test in world with no test score manipulation.

Equation (13) yields the expected final math grade at each point in the manipulation
region had students not received test score manipulation. This “constructed control group”
comes from students within the same region/school as the students exposed to grade ma-
nipulation. (We do not rely on the variation across regions and years in the width of the
manipulation region.)

Example. Figure 5 illustrates the outcome of steps one and two of our first stage estima-
tion in the context of the example setting described in Figure 4. The solid red vertical lines
mark the contours of the manipulation region (around the Pass threshold), and the dark
(blue) solid line shows the average observed grades at each test score (in the data). Using
data only from the un-manipulated parts of the test score distribution (below 14; and above
26 but below the start of the manipulation region around PwD), we then predict inwards
into the manipulation region around the Pass threshold. The light gray line illustrates the
expected final math grade at each point in the manipulated region had students not received
test score manipulation – i.e., if all students were never-takers or always-takers.

Step three. We now compute the expected final grades across the entire set of students
in the manipulation region of the test score distribution. We do this because we are unable
to compute the counterfactual final grades only for the students who are bumped up (i.e.,
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only for the compliers); this, in turn, is because we cannot separate the compliers from the
always-takers in the data.

From equation (13), we have the expected final grade at each test score inside the ma-
nipulation region, in the counterfactual scenario with no test score manipulation. We now
combine this with our estimates of the counterfactual test score distribution, that is, the
share of students who would have received each test score, had there been no test score
manipulation, ĥjt(r). We recovered this counterfactual distribution of test scores during the
estimation of the grading leniency parameters in Section 5 above. We combine these to
calculate the expected average final math grade for students within the manipulation region
of the test score distribution had there been no test score manipulation:

E (grade in jt|teacher can’t manipulate, r in manipulation region k) ≡ ḡjt (k)

=
ˆ k+βkjt−1

k−βkjt
E (gkjt|r,No manip) ∗ Pr (r|No manip, jt)´ k+βkjt−1

k−βkjt
Pr (r|No Manip, jt) dr

dr.

=
ˆ k+βkjt−1

k−βkjt

[
ĝkjt

(
r, θ̂gradekjt

)
+ α̂kjt ∗ (r ≥ k)

]
∗ ĥjt(r)´ k+βkjt−1

k−βkjt
ĥjt(r)dr

dr.

(14)

Steps four and five. For students inside the manipulation region, we now compare the es-
timated counterfactual average grade, had there been no test score manipulation, calculated
in (14), with the actual average final math grade for students in the manipulation region
(observed in the data), gijt. This difference is entirely driven by the fact that compliers
inside the manipulation region received test score manipulation. Thus, this difference is
our “intent-to-treat” estimate of the average increase in a student’s final grade due to the
student having a raw test score that falls within the manipulation region of the test score
distribution:

ITT = E (grade|teacher can manipulate)− E (grade|teacher can’t manipulate)

=

∑
jt

( ∑
iεmanip region k

gijt

)
∑
jt

(Nmanip
kjt ) −

∑
jt

Nmanip
kjt

ḡjt(k)∑
jt

(Nmanip
kjt ) ,

︸ ︷︷ ︸ ︸ ︷︷ ︸
Average observed math grade
across all students in manipula-
tion region (across all j regions
and t years)

Average predicted math grade for
students in manipulation region,
had there been no manipulation
(across all j regions and t years)

where Nmanip
jt is the number of students in the manipulation region around threshold k
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in region(*voucher) j in year t. Figure 6 illustrates this first stage estimate in the context
of the example used in Figure 5.

The “reduced form” and LATE estimates. The five-step procedure above can be
repeated with a different outcome variable, such as income at age 23, to identify the reduced-
form effect of falling into the manipulation region on future income. The ratio of this
reduced-form effect to the first-stage effect, in turn, identifies the local average treatment
effect (LATE) of receiving an inflated final math grade on future income.31

A comment on the level of aggregation This identification strategy is equally valid
if we were to pool all regions and schools into an aggregate distribution. We would then
define the manipulation region (around Pass and PwD, respectively) as the widest across
all schools in the dataset, and only use information outside of this very wide region to
extrapolate inward. This method would still lead to un-biased estimation, but would produce
an estimate with a higher variance, since we would be throwing away information that could
be used for the inward extrapolation from schools that engaged in less aggressive test score
manipulation. By splitting the data into regions (by voucher, by year), we can identify places
with narrower test score manipulation regions, which makes the extrapolation inward less
noisy. As we slice the data into smaller and smaller aggregation units (e.g., if we were to
split the data into school-level histograms instead of histograms at the county*voucher*year
level), our estimates of where manipulation occurs become more noisy. This is because, when
the histograms of the test score distributions contain fewer data points, the variance in our
estimates of the manipulation windows increases. The choice of level of aggregation thus
represents a trade-off of these two sources of variance. We chose to estimate the width of
the manipulation regions at the county*voucher*year level to balance these two sources of
variance.32

6.2 Identifying the beneficiaries of test score manipulation

We develop new methods to recover observable summary statistics of the types of students
that teachers select to grade up, i.e., the compliers. These methods can be used more
generally for any type of bunching estimation to recover observable characteristics of those
responding to the incentive to bunch at the threshold.

31We block bootstrap the entire procedure to calculate standard errors, sampling at the county by voucher
by year level. This is the same level at which we estimated the widths of the manipulation regions.

32There likely is some alternative aggregation level which minimizes the variance of the estimates. Solving
for the optimal level of aggregation to minimize the variance is left for future research.
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For any observable characteristic of the students, Y , we can apply the same type of
method as in equation (13) to use students outside of the manipulation region to estimate
E(Y |r) at any test score r inside the manipulation region.

Yijt = ĝYkjt
(
rijt, θ

grade
kjt

)
+ εgijt, (15)

where: (rijt < k − βkjt or rijt > k + βkjt − 1)

and

rijt > (k − 1) + βk−1jt + 1 and rijt < (k + 1)− βk+1jt.

For example, if Y were a dummy variable for being an immigrant, we could estimate the
expected share of immigrant children at each test score, had there been no test score manipu-
lation. We can then calculate the actual share (observed in the data) of immigrant children in
the manipulation region, above the cutoff threshold, Ȳ up_all, and below the cutoff threshold,
Ȳ down_all:33

Ȳ up_all = 1
N tot
up

∑
it

Yijt, (16)

where: k ≤ tijt ≤ k + βkjt − 1,

Ȳ down_all = 1
N tot
down

∑
it

Yijt, (17)

where: k − βkjt ≤ tijt ≤ k − 1.

Ȳ up_all
t is an average of those who were inflated to these scores (“compliers”), as well as

students who naturally received a passing test score absent manipulation (“always-takers”):

Ȳ up_all = Nup

Nup +Ncompliers

∗ Ȳ up + Ncompliers

Nup +Ncompliers

∗ Ȳ compliers.34 (18)

Similarly, Ȳ down_all is an average of those who selectively not were inflated to passing scores
(“never-takers”):

Ȳ down_all = Ndown

Ndown −Ncompliers

∗ Ȳ down − Ncompliers

Ndown −Ncompliers

∗ Ȳ compliers.35 (19)

33In the observed (manipulated) test score distribution, N tot
up is the number of students who fall into

the manipulation region above the passing threshold. N tot
down is the number of students who fall into the

manipulation region below the passing threshold.
34Nup is the number of students who earned an un-manipulated test score above the grade cutoff, within

the manipulation region. These are the always-takers. Ȳ up is the average level of Y for the always-takers.
35Ndown is the number of students who earned an un-manipulated test score below the grade cutoff, within

the manipulation region. These are the never takers and the compliers. Ȳ down is the average level of Y for
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We can recover the expected share of immigrant students within these regions of the
distribution, using our extrapolation from equation (15) and the estimated un-manipulated
distribution, ĥjt(r):

Ȳ up =
∑
j

(
Nj

ˆ k+βjt−1

k

ĝYkjt
(
r, θgradekjt

)
∗ ĥjt(r)dr

)
(20)

Ȳ down =
∑
j

(
Nj

ˆ k−1

k−βjt
ĝYkjt

(
r, θgradekjt

)
∗ ĥjt(r)dr

)
. (21)

Finally, the number of students within each region can be calculated as:

N tot
up = Nup +Ncompliers,

N tot
down = Ndown −Ncompliers,

Nup =
∑
j

(
Nj

ˆ k+βjt−1

k

ĥjt(r)dr
)
,

Ndown =
∑
j

(
Nj

ˆ k−1

k−βjt
ĥjt(r)dr

)
.

Plugging these into equations (20) and (21) and solving for the mean immigrant share of
the compliers gives:

Ȳ compliers = 0.5 ∗
(

N tot
up

N tot
up −Nup

∗ Ȳ up_all − Nup

N tot
up −Nup

Ȳ up

)

+0.5 ∗
(

Ndown

Ndown −N tot
down

Ȳ down − N tot
down

Ndown −N tot
down

∗ Ȳ down_all
)
.36

Intuitively, if teachers are disproportionately choosing to manipulate the test scores of
immigrant children, there will be an unexpectedly high share of immigrants right above
the grade cutoff, and an unexpectedly low share of immigrants right below the grade cutoff,
relative to what we would have expected from an extrapolation inwards into the manipulation
region using the immigrant share outside of the manipulation region.

We can compare the characteristics of the compliers, Ȳ compliers, with the characteristics of
all students whose un-manipulated test scores fell within the manipulation region of the test

the never-takers and the compliers.
36 Ȳ compliers can either be estimated by investigating what types of students are “missing” below the

cutoff; or by investigating what types of students are found “in excess” above the cutoff. We estimate both,
and average them together to increase power.

31



score distribution below the test grade threshold (that is, all students who were “eligible”
for manipulation), Ȳ down, to assess whether teachers were targeting their manipulation at
certain types of students:

∆Y = Ȳ compliers − Ȳ down.

7 Results

7.1 Who receives test score manipulation?

There are number of criteria that teachers may use to select which students’ test scores to
inflate above the grade thresholds. They may choose students whom they deem would have
the largest benefit; they may choose students who come from disadvantaged backgrounds;
or they may choose the students who simply had a bad day on the test, but who have
performed at a higher level in class. It also possible that teachers inflate the most pushy or
grade grabbing students, in order to minimize future disagreement with those students (or
their parents). To shed light on teachers’ selection criteria, we use the methods described in
the previous section to analyze the observable characteristics of students who are actually
chosen to be graded up, and compare them to all students who fall right below the relevant
test grade cutoff and could be chosen by teachers to receive an inflated grade.

For a set of predetermined outcomes, Table 2 compares the average among all students
who are eligible for inflation (Column one) with the average among the complier students
(those inflated up; Column two). The first two outcomes are the test grade on the national
tests in Swedish and English, both of which are taken before the national test in math and
hence they cannot be influenced by the outcome on the math test. (In the next subsection,
we perform a “sanity check” that verifies that the national math test indeed has no impact on
the results on the national tests in English and Swedish ). Around the Pass margin, we see
that inflated students are 7.4 percentage points more likely (than the average student eligible
for inflation) to have passed their national test in English. Around the the PwD margin,
inflated students are 33 percentage points more likely than those eligible for inflation to have
received a high grade on the test in English. In the subsequent row, we see a similar pattern
when we look at the students’ Swedish test grades: Inflated students are positively selected
on their pre-determined Swedish test grade.

If teachers were grading up students who had a bad test day, we would expect them to
choose to inflate students who have higher grades on other, pre-determined tests than the
average student who is eligible for inflation. This is consistent with the selection of students
for inflation based on the pre-determined test grades. Teacher discretion thus appears to
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be correcting for idiosyncratically poor performance on the math test, given what can be
expected based on previous achievement. This may be a desirable outcome, compared to
a high-stakes testing environment that sorts students who fall close to the Pass and PwD
margins solely based on their idiosyncratic performance on the test day. This suggests that,
to the extent that the math test grade carries long-term consequences – a question that we
analyze in the next subsection – this type of teacher discretion may be desirable.

Turning to whether teachers’ inflation choices are related to students’ demographics,
the next row in Table 2 compares the male share of students eligible for inflation with
the male share of inflated students. We see a very precisely estimated zero effect around
both thresholds, showing that teachers treat boys and girls equally when choosing whom to
inflate. Similarly, the next row of Table 2 shows that inflated students are not selected based
on whether they come from an immigrant household. These results are reassuring in that
teachers do not appear to bias their math test grading based on race or gender.

Next, we turn to whether inflated students come from disadvantaged backgrounds. Around
the Pass margin, inflated students are positively selected on household income: inflated stu-
dents’ household income is 3.9 percent higher than the household income of the average
student who is eligible for inflation. Around the PwD margin, in contrast, the point es-
timate implies that household incomes of inflated students are 3.2 percent lower than the
household income of the average student who is eligible for inflation; however, the effect is
not statistically significant. We find similar patterns of selection on fathers’ years of educa-
tion, presented in the subsequent row of Table 2. Inflated students around the Pass margin
have fathers with 0.072 more years of education; however, there is no statistically significant
selection effect around the PwD margin. The selection on income and education around the
Pass margin is somewhat worrying, as it could exacerbate inequality of opportunity between
rich and poor students. However, the point estimate is economically quite small. Moreover,
it could be driven by the fact that the teachers grade up students who had a bad day on
the test; as shown above, these students are higher achievers on previous tests. Thus, to the
extent that higher achievement is correlated with income, the estimated effect on parental
income may reflect the fact that teachers are targeting students who are truly higher achiev-
ers – which happens to be correlated with parental income – rather than targeting income
per se.

To analyze whether teachers inflate students whose parents may have more free time
to pressure teachers into giving their children high grades, we look at whether inflation is
selected on whether students have a stay at home parent. The last row of Table 2 shows a
zero effect of selectively inflating students with a stay at home parent around both thresholds,
with negative point estimates. This suggests that if anything, the teachers are more likely
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to inflate students without a stay at home parent.
Taking all of these dimensions of selection together, it appears that, both at the low and

high ends of the ability distribution, teachers primarily help students who had a bad day on
the test, as indicated by their achievement on predetermined tests. This suggests that the
teachers use their discretion to “undo” having a bad day on the test.

7.2 The long-term consequences of test score manipulation

Table 3 presents results from our first stage, where we compare the expected final math grade
absent manipulation to the average observed math grade, inside the manipulation region of
the test score distribution. The coefficient quantifies how much “getting a raw test score
that falls into the manipulation region” raises the probability of receiving a higher final math
grade (due to test score manipulation).

Around the Pass threshold, falling into the manipulation region of the test score dis-
tribution raises the probability of obtaining a higher final grade by 5.5 percentage points.37

Around the PwD threshold, falling into the manipulation region raises the probability of get-
ting a higher final grade by 10 percentage points. All estimates are statistically significant
at the 1 percent level. The F-statistic is far above the conventional level of 10.

These estimates represent the average effects of manipulation on students within the
manipulation region; hence, they represent intent-to-treat effects on the final grade. But
as predicted by our model in Section 4, only a subset of the students in these regions are
de facto manipulated; thus, the students that receive manipulation (“the compliers”) are
experiencing a larger gain in the final grade than the intent-to-treat estimate. Below, when
we turn to our sanity checks and main outcomes, we present the LATE estimates, which
capture the treatment effect of manipulation on the subset of students who are graded up,
that is, on the compliers.

Before turning to the sanity checks and results on our main outcomes, however, we discuss
an alternative first stage specification. Test score manipulation leads to a direct change in
the math test grade (awarded in February), which ultimately can lead to a change in the
student’s final math grade (awarded in June). We use the final math grade as the endogenous
variable of interest when analyzing longer-term outcomes – so, the estimates presented in
Table 3 represent our first stage estimates – but one could also use the math test grade

37We recall that the final grade in math takes the value of 0 if the student’s grade is Fail; 1 if the grade
is Pass; 2 for PwD; and 3 for Excellent. In the overall sample, the average grade is 1.13. Around the Pass
threshold, the average grade is .99, reflecting the fact that most of the variation around this threshold stems
from whether of not the student receives a Pass. We have also run our first stage using an indicator variable
for whether the student receives a grade of Pass or higher (and PwD or higher, respectively), and the results
look similar.
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(awarded in February). Appendix Table A1 estimates the impact of receiving an inflated
math test grade on the final math grade. Around the Pass margin, receiving an inflated test
grade leads to a 35 percentage point increase in the probability of receiving a passing final
grade, and around the PwD margin, an inflated test grade raises the likelihood of receiving a
higher final math grade by 87 percentage points. These effects are not 100 percent because,
as discussed in Section 2 above, the teacher takes into account more than the math test
grade when assigning the final grade, including students’ classroom performance. If the
reader prefers to view the endogenous variable of interest as the math test grade, instead
of the final grade in math, then simply multiply the treatment effects by these estimated
effects.

Before turning to the long-term outcomes, we perform sanity checks to validate our
methodology. We first estimate the causal effect of receiving a higher final math grade
(through teachers’ discretion) on characteristics of the students that are pre-determined at
the time of the math test. Clearly, we know that grade inflation cannot change their grades
on previous tests. We expect to see that our estimator finds this to hold. Appendix Table A2
shows that for both the Pass and PwD thresholds, there is no causal effect of grade inflation
on the test grade on the English nationwide test, which is taken before the nationwide
math test. We find similar zero effects on students’ (predetermined) Swedish test grades
(Appendix Table A3). Panel B of the two tables report the simple OLS relationship between
these outcomes and dummy variables indicating students’ final math grades, controlling for
county*voucher*year fixed effects. Unlike in our placebo tests, we see very strong correlations
between students’ final math grades and their test grades in other subjects. The fact that
our identification strategy breaks these very strong OLS correlations in the data provide
confidence in our estimation methods.

The first outcome that we consider, grade nine GPA, captures student performance in
the immediate future following the nationwide math test. GPA in grade nine is calculated
based on the average of the final grade in math and other subjects, and is awarded in June
of the final year before high school, i.e., within four months of the nationwide math test.
Grade nine GPA ranges from zero to 320. Table 4 presents the LATE for the outcome GPA.
Around the Pass threshold, exposure to inflation raises the GPA by 10.6 points for those who
are graded up, or by roughly 6 percent of the mean GPA around the threshold (177). Around
the PwD threshold, inflation raises GPA by 21.4 points for those who are graded up, or by
approximately 9 percent. The direct effect of receiving a higher math grade mechanically
increases a student’s GPA by 10 points when moving from Fail to Pass, and by 5 points
when moving from Pass to PwD. Around the Pass threshold, we cannot reject that the effect
is equal to a 10 point increase in the student’s GPA. Around the PwD threshold, however,
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the results suggest that there is a motivational effect, since inflation raises the student’s
performance substantially over and above the mechanical effect induced by the test score
manipulation. Receiving a PwD on the math test thus either encourages the students to
work harder in their other classes, or their other teachers to choose to inflate them as well,
on future tests and assignments. This highlights that their is a strong signaling value from
the math test grade, especially at the higher end of the ability distribution: Receiving a
higher grade signals to the student and potentially to his or her teachers that the student’s
ability is higher, and this appears to be complementary with increased effort on the part
of the student, or more generous grading in other subjects on the part of other teachers.
Panel B compares these estimates to the OLS relationship between math grades and overall
GPA. These point estimates are much bigger, showing students who pass math have 82.2
higher GPAs than those who fail. Going from Pass to PwD is associated with 50.6 more
GPA points. These OLS results further highlight how endogenous math grades are in the
cross-section.

We then examine a set of outcomes measured at the end of high school, three years
after test score manipulation. Table 5 presents results on high school graduation by age
19 (i.e., “on time”). We find that test score manipulation that pushes a student above the
Pass threshold raises his or her probability of finishing high school on time (by age 19)
by 20 percentage points. The large impact at the lower end of the ability distribution is
consistent with our finding that test score manipulation around the lower threshold raises
the student’s likelihood of receiving a passing final grade in math (awarded in June in the last
year before high school), which is a necessary condition for admittance to any high school
(other than one-year remedial programs that serve to get the student ready for a three-year
high school program with a one year delay). However, this magnitude is smaller than the
OLS relationship in the cross-section: Panel B shows that passing math class is associated
with a 53.8 percentage point increase in on time high school graduation. Around the PwD
threshold, grade inflation increases the probability of on time high school graduation by 5.5
percentage points, a 6 percent increase over the base mean of 87 percent. This much smaller
effect is likely driven by the fact that most of the students at this higher point in the ability
distribution would proceed to high school directly after grade nine, regardless of whether
they get a Pass or PwD in math. Further, this point estimate is smaller than the observed
OLS relationship, an 11.8 percentage point increase.

To analyze whether inflated students perform better in high school, Table 6 reports effects
on high school GPA (measured in the last year of high school), among students who complete
high school. This is interesting to analyze because a student who is inflated in ninth grade
may be at risk of obtaining lower grades in high school, as the student may be tracked
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with better high school peers (Malamud and Pop-Eleches, 2011). Interestingly, however, we
do not find any statistically significant negative effects of test score manipulation in grade
nine on high school GPA. On the contrary, among students at the lower end of the ability
distribution, test score manipulation appears to raise high school GPA. Specifically, we find
that inflation over the Pass threshold causes a 1.4 point higher high school GPA, relative
to a base of 11.9. Inflation over the PwD threshold has a similar effect, with the point
estimate suggesting an increase in GPA of 1 point, relative to a mean of 14. This further
highlights the fact that the signaling value of a higher math test grade in the last year before
high school can substantially change future human capital investment decisions. A possible
alternative explanation is that inflated students have enrolled in different high schools that
give all students better grades. To test this, we analyze whether receiving an inflated math
grade causes a higher peer high school GPA. Appendix Table A4 shows that receiving an
inflated math grade in grade nine does not increase the GPA of one’s peers in high school.
This further substantiates that the positive impacts on one’s own GPA likely arises through
an effort and human capital investment margin.

Our last set of outcomes captures student well-being eight years after test score manipu-
lation. Table 7 reports impacts of test score manipulation on the probability of enrolling and
initiating college by age 23. Our point estimates are economically significant, with inflation
around the Pass threshold leading to a 12 percentage point increase (which represents a 86%
increase, relative to the mean of 14%) in the probability of initiating college. Interestingly,
we find a similar estimate of 16 percentage points in the OLS cross-section between pass-
ing math and college initiation. We cannot reject that the two effects are equal. Around
the PwD threshold, we find a slightly smaller effect, 7.9 percentage points; however, this
estimate is noisy and we cannot reject zero. Nonetheless, the point estimate of 7.9 is eco-
nomically meaningful, relative to a mean of 38%; moreover, it is much smaller than the OLS
relationship of 25.8.

When looking at total years of completed education, we find effects around both thresh-
olds. Table 8 shows that students who get inflated to a Pass (PwD) have 0.33 (0.48) more
years of education by age 23. This is equivalent to a 3-4% increase relative to the mean
years of education for these groups. This is a much smaller effect than the observed OLS
relationship of a passing grade leading to 1.3 more years of schooling and a PwD leading to
an additional 0.77 years of schooling (relative to a passing grade).

Thus, around both margins, inflated students are more likely to remain in school for
longer. Through this channel, test score manipulation in grade nine may also help students
“stay on track” and avoid outcomes that force them to drop out of school, such a teen
pregnancy. Table 9 shows that, indeed, inflated students around the Pass threshold are
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0.027 percentage points less likely to have a teen birth. This is a large (although marginally
insignificant) effect, relative to the mean of 0.014, suggesting that the students chosen for
inflation were particularly at risk for having a teen birth. We see a similar relationship in
the OLS estimates. We see similar, large and statistically significant effects around the PwD
threshold, where test score manipulation lowers the teen birth rate by 3.5 percentage points.

Our final long-term outcome captures income at age 23 (the end of our sample period).
Table 10 shows that being graded up above the Pass threshold in grade nine raises age 23
income, with a point estimate of 340 SEK, relative to a mean of 1580. This is a large, 20%
increase in earnings at age 23, and it is quite similar to the OLS relationship of 370. However,
the mean is quite low, since many of these students are still in school. Further, this mean
income is for all students in the manipulation region, not just for the compliers. Given the
nature of selection into being a complier, their mean income may indeed be much higher at
this stage of life, absent manipulation. Students inflated over the PwD margin receive a 448
SEK higher age 23 income, relative to a base mean of 1461. This is quite different than the
OLS relationship which shows an income decrease of 193 SEK. This discrepancy highlights
that many of these students are still in school, which depresses the group’s average labor
market earnings. However, since the increase in years of education due to manipulation is
quite small, this “still in school”-effect is likely less reflected in the LATE estimates than in
the OLS estimates.

8 Conclusion

Despite the fact that test score manipulation does not, per se, raise human capital, this paper
demonstrates that its beneficiaries receive large, long-term gains in educational attainment
and earnings. The mechanism at play suggests important dynamic complementarities: Get-
ting a higher grade on a high-stakes test can serve as an immediate signaling mechanism
within the educational system, motivating students and potentially teachers; this, in turn,
can raise human capital; and the combination of higher effort and higher human capital can
ultimately generate substantial labor market gains.

The large benefits that accrue to the beneficiaries of test score manipulation of those who
have “a bad test day” suggest that teachers may find it privately desirable to err on the side
of giving their students higher grades, and to thereby improve their students’ outcomes. But
although each teacher’s adjustments to his or her students’ test scores would not affect the
nationwide grade distribution, the combined effect of many teachers’ manipulation may shift
the grade distribution upwards. This suggests that this paper may have identified a micro-
mechanism contributing to grade inflation, an increasingly pervasive problem in Scandinavia
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as well as in the U.S.. This suggests that, while test score manipulation may be privately
optimal from the perspective of each teacher, it may be socially undesirable if grade inflation
induces distortionary general equilibrium effects.

Moreover, the fact that we see large regional variation in test score manipulation, and
some differences between municipal and voucher schools, suggests that teacher discretion
undermines the equality of opportunity in Swedish schools: students who live in a region
with substantial test score manipulation are more likely to get inflated, and thereby more
likely to enjoy the benefits shown in this paper. Exploring the roots of these differences in
grading leniency, as well as the general equilibrium effects of test score manipulation, are
left for future work.
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9 Figures and Tables

Figure 1: Examples of Estimates of Unmanipulated Distributions for Different Guesses of β1 and β2

(a) β̂1 = 1, β̂2 = 0 (b) β̂1 = 4, β̂2 = 1

Note: In each subfigure, the red plus signs display the raw data; the blue solid line displays the estimated distribution includ-
ing manipulation; and the turquoise solid line displays the estimated counterfactual (un-manipulated) distribution (which
only deviates from the blue solid line where manipulation occurs). While the raw data is the same in both subfigures, the
estimated distribution including manipulation, as well as the estimated counterfactual distribution, differ in the two subfig-
ures. In Figure 1a, we display our estimate of the manipulated and un-manipulated distribution under the hypotheses that
β1 = 1 and β2 = 0. In Figure 1b , we display our estimate of the manipulated and un-manipulated distribution under the
hypotheses that β1 = 4 and β2 = 1. Note how β1 = 4 and β2 = 1 fit the data much better. These data are for municipal
schools in Stockholm county in 2005.
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Figure 2: Distribution of Grading Leniency around the Two Thresholds
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Note: The figure illustrates the distribution of the estimated sizes of the manipulation
region, around the thresholds for Pass and PwD, respectively, by county*voucher*year,
from 2004 to 2010.
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Figure 3: National Test Score Distribution and Estimated Counterfactual, 2010
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Note: The figure illustrates the national test score distribution and the estimated coun-
terfactual (aggregated from the county*voucher estimated counterfactuals) in 2010. The
estimation of the counterfactual density is described in Section 5. The blue connected
line plots the actual distribution of test scores, and the red connected line shows the
estimated counterfactual density in the absence of manipulation.
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Figure 4: Wald estimator

Note: The figure illustrates the test score regions of relevance to our Wald estimator in an
example where the Pass threshold is 21 and the manipulation region starts at 14. Stu-
dents who receive a raw (un-manipulated) test score of 13 face a zero probability of being
graded up, whereas students who receive a raw test score of 14 (or higher) face a weakly
positive probability of being graded up. Among the students whose raw test scores fall
into the interval 14−20, teachers choose to grade up a subset; these can be thought of as
the compliers, who are “missing” below 21 in the observed test score distribution. The
students whose observed test scores lie in the interval 14−20 can be thought of as never-
takers, as they are left un-manipulated even though their raw test scores put them into
the manipulation region. Finally, the students whose raw and observed test scores lie at
or above 21 can be thought of as always takers. In the data, we can observe the never-
takers; however, we cannot distinguish the compliers from the always-takers, as both
groups’ observed test scores fall at or above 21 and we do not observe the raw test scores.
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Figure 5: Wald estimator: Construction of “control group” in the first stage

Note: We estimate the relationship between students’ final math grades and un-inflated test
grades by first estimating the relationship using data only from the un-manipulated parts
of the test score distribution. We then predict the test score inwards into the “donut”
(manipulated region), extrapolating from the predicted grades at un-manipulated test
scores to the left and right of the manipulated region. This Figure illustrates this in the
context of the example setting described in Figure 4. The solid, red vertical lines mark
the contours of the manipulation region (around the Pass threshold), and the dark (blue)
solid line shows the average observed grades at each test score. Using data only from
the un-manipulated parts of the test score distribution (below 14; and above 26 but be-
low the start of the manipulation region around PwD), we then predict inwards into the
manipulated Pass region. The expected final math grade at each point in the manipu-
lated region had students not received test score manipulation – i.e., if all students were
never-takers or always-takers – is illustrated by the bright (gray) line.
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Figure 6: Wald estimator: First stage (intent-to-treat effect)

Note: Figure 6 illustrates the intent-to-treat (first stage) estimate. Inside the manipula-
tion region, the blue solid line displays the average observed grade (in the data). Inside
the manipulation region, the red solid line displays the average predicted grade, had
there been no test score manipulation. This prediction is obtained by using two pieces
of information: First, the expected final math grade at each point in the manipulation
region had students not received test score manipulation, displayed by the gray line in
Figure 5. Second, our estimates of the counterfactual test score distribution, that is,
the share of students that had received each test score within the manipulation region
if there had been no test score manipulation. We recovered this counterfactual distribu-
tion of test scores during the estimation of the grading leniency parameters in Section
5. The difference between the blue and red solid lines inside the manipulation region is
entirely driven by the fact that compliers inside the manipulation region received test
score manipulation. Thus, this difference is our “intent-to-treat” estimate, capturing the
average increase in a student’s final grade due to the student having a raw test score
within the manipulated region of the test score distribution.
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Table 1: Summary Statistics

Overall Pass Region PwD Region

Math Test Score 28.4 22.6 40.6
Father Foreign Born 0.22 0.23 0.18
Household Income 4772.2 4421.3 5561.2
Male 0.51 0.52 0.50
Father’s Years of Education 11.8 11.6 12.2
Has Non-Working Parent 0.25 0.27 0.21
Math Final Grade 1.13 0.99 1.62
Math Test Grade 0.88 0.71 1.39
English Test Grade 1.50 1.32 1.88
Swedish Test Grade 1.33 1.18 1.67
Overall Grade Point Average 191.6 177.1 227.2
High School Graduate (for 2004-2009 Pupils) 0.76 0.73 0.87
Initiated College (for 2004-2005 Pupils) 0.061 0.040 0.099
Years of Education (for 2004-2005 Pupils) 12.0 11.8 12.5
High School GPA (for 2004-2006 Pupils) 12.8 11.9 14.0
Teen Birth (for 2004-2005 Pupils) 0.0057 0.0073 0.0021
Age-23 Labor Income (for 2004-2005 Pupils) 1517.8 1579.9 1461.2

Observations 490519 114049 64397

Note: Our baseline sample consists of all students who attended ninth grade between 2004 to 2010 and
both took the national test and obtained a final grade in math. For variables that are measured at a
certain duration after graduation from ninth grade, we only include the cohorts that we observe at that
duration (see the text for more details). Income is measured in 100 SEK (roughly $10). See text for
further details defining the two subpopulations around the two test score grading thresholds.
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Table 2: Who Benefits From Teacher Discretion?

Eligible for Inflation Inflated Difference

English Test Grade
Pass/Fail Margin 1.07 1.15 0.074***

(0.064) (0.055) (0.017)
Pass/PWD Margin 1.40 1.73 0.33**

(0.14) (0.068) (0.14)

Swedish Test Grade
Pass/Fail Margin 0.96 1.02 0.060***

(0.057) (0.051) (0.014)
Pass/PWD Margin 1.24 1.60 0.35***

(0.13) (0.068) (0.13)

Share Male
Pass/Fail Margin 0.51 0.51 -0.0045

(0.0030) (0.0081) (0.0097)
PWD/Pass Margin 0.51 0.49 -0.019

(0.0028) (0.030) (0.032)

Share Foreign Background
Pass/Fail Margin 0.25 0.24 -0.0065

(0.0072) (0.0094) (0.0077)
Pass/PWD Margin 0.18 0.13 -0.046

(0.0068) (0.038) (0.037)

Household Income
Pass/Fail Margin 4272.3 4439.4 167.1***

(57.3) (70.2) (45.6)
PWD/Pass Margin 5389.6 5218.8 -170.7

(96.3) (482.0) (477.1)

Father’s Years of Education
Pass/Fail Margin 11.5 11.6 0.072*

(0.023) (0.047) (0.043)
PWD/Pass Margin 12.1 12.3 0.20

(0.034) (0.23) (0.24)

Having Stay At Home Parent
Pass/Fail Margin 0.28 0.27 -0.011

(0.0050) (0.0075) (0.0070)
PWD/Pass Margin 0.22 0.16 -0.056

(0.0065) (0.035) (0.040)

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: To shed light on teachers’ selection criteria, this table presents observable, pre-determined charac-
teristics of the students that teachers select to grade up, and compare these to the characteristics of all
students who could have been chosen for inflation by the teacher. Specifically, Column 1 presents the
predicted mean characteristic of all students whose un-manipulated math test score falls in the manip-
ulation region of the test score distribution and thus could have been chosen by teachers to receive an
inflated grade (all students eligible for inflation), Ȳ down. Column two presents the predicted mean char-
acteristic among the compliers, i.e., the students who were actually chosen to receive inflation, Ȳ compliers.
Column three tests the difference. To obtain the predictions, we use use students outside the manipula-
tion region to estimate the expected characteristic, at any test score r inside the manipulation region,
and then use the method described in detail in Section 6.2 to calculate Ȳ down and Ȳ compliers. Standard
errors that are block bootstrapped at the county*voucher*year level in parentheses.50



Table 3: First stage: Impact of Inflation on Final Math Grade

Pass PWD

Change in Final Math Grade 0.055*** 0.10***
(0.0031) (0.0085)

Fstat 317.3 141.6

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of exposure to inflation on the final math grade (on ev-
eryone in the manipulation region; though this estimate is in practice driven by the impact on those who
are graded up, i.e., the compliers). The sample includes all cohorts in our sample, i.e., all students who
attend ninth grade between 2004 and 2010. The predicted final grade absent manipulation is estimated
from regressions of students’ final grades on a dummy for whether the test score is above the cutoff and
3rd order polynomials in the test score, for each year and county*voucher. These regressions only use
data from students outside of the manipulation regions of the test score distribution. See the text for
more details. Standard errors block bootstrapped at the county*voucher*year level in parentheses.

Table 4: Impact of Grade Inflation on GPA (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 10.6*** 20.4***
(4.10) (5.47)

F Stat 317.3 141.6
Dep Varaible Mean 177.1 227.2

Panel B. OLS Estimate

Pass 82.19***
(0.558)

PWD 132.8***
(0.699)

Observations 488707

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: Panel A presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on GPA in grade nine. This should, mechanically, be equal to 10 around the Pass
margin and 5 around the PwD margin if all that test score manipulation does is to raise the final grade
in math (given how GPA is calculated in Sweden) and manipulation does not encourage or discourage
student effort or teacher grading in other subjects. Panel B displays the OLS estimate. The sample
includes all cohorts in our sample, i.e., all students who attend ninth grade between 2004 and 2010.
Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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Table 5: Impact of Grade Inflation on High School Graduation (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 0.20*** 0.055*
(0.044) (0.034)

F Stat 308.6 185.4
Dep Varaible Mean 0.73 0.87

Panel B. OLS Estimate

Pass 0.538***
(0.00641)

PWD 0.656***
(0.00709)

Observations 409295

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: Panel A presents estimates of the impact of receiving a higher final math grade due to teachers’ dis-
cretionary grading on the likelihood of high school graduation on time, i.e., within 3 years of ninth grade.
Panel B displays the OLS estimate. The sample includes all students who attend ninth grade between
2004 and 2009, who are 18-19 years old in 2007-2012, respectively (and hence have had the opportunity
to graduate from high school within 3 years of completing ninth grade in our sample). Standard errors
block bootstrapped at the county*voucher*year level in parentheses.

Table 6: Impact of Grade Inflation on High School GPA (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 1.36*** 1.01*
(0.49) (0.61)

F Stat 308.6 185.4
Dep Varaible Mean 11.9 14.0

Panel B. OLS Estimate

Pass 2.067***
(0.0455)

PWD 4.169***
(0.0575)

Observations 141426

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: Panel A presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on high school GPA at graduation. The sample includes all students who attend
ninth grade in 2004 through 2006. Panel B displays the OLS estimate. Standard errors block boot-
strapped at the county*voucher*year level in parentheses.
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Table 7: Impact of Grade Inflation on Initiating College (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 0.12** 0.079
(0.052) (0.12)

F Stat 67.3 57.9
Dep Varaible Mean 0.14 0.38

Panel B. OLS Estimate

Pass 0.160***
(0.00278)

PWD 0.418***
(0.00478)

Observations 134448

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on the likelihood of enrolling in college within 7 years of completing ninth grade.
The sample includes all students who attend ninth grade between 2004 and 2005, who are 22-23 years
old in 2011 and 2012, respectively (and hence we observe whether they initiate college within 7 years
of completing ninth grade). Panel B displays the OLS estimate. Standard errors block bootstrapped at
the county*voucher*year level in parentheses.

Table 8: Impact of Grade Inflation on Years of Education (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 0.33* 0.48*
(0.20) (0.30)

F Stat 67.3 57.9
Dep Varaible Mean 11.8 12.5

Panel B. OLS Estimate

Pass 1.261***
(0.0199)

PWD 2.038***
(0.0222)

Observations 131756

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on educational attainment within 7 years of ninth grade. The sample includes all
students who attend ninth grade in 2004 and 2005. Panel B displays the OLS estimate. Standard errors
block bootstrapped at the county*voucher*year level in parentheses.
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Table 9: Impact of Grade Inflation on Pr of Teenage Birth (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade -0.027 -0.035**
(0.019) (0.017)

F Stat 67.3 57.9
Dep Varaible Mean 0.014 0.0048

Panel B. OLS Estimate

Pass -0.0226***
(0.00201)

PWD -0.0303***
(0.00218)

Observations 134428

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on the probability of having a child before age 20. The sample includes all stu-
dents who attend ninth grade in 2004-2005. Panel B displays the OLS estimate. Standard errors block
bootstrapped at the county*voucher*year level in parentheses.

Table 10: Impact of Grade Inflation on Income (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 340.4* 448.5**
(183.0) (215.0)

F Stat 67.3 57.9
Dep Varaible Mean 1579.9 1461.2

Panel B. OLS Estimate

Pass 369.8***
(18.46)

PWD 176.8***
(22.85)

Observations 131756

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on age-23 earnings. The sample includes all students who attend ninth grade in
2004 and 2005, who are 22-23 years old in 2011 and and 2012, respectively. Panel B displays the OLS
estimate. Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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ONLINE APPENDIX

A Supplemental Tables

Table A1: Impact of Inflated Test Grade on Final Math Grade

Panel A. Causal Impact Estimate
Pass PWD

∆ Math Test Grade 0.35*** 0.87***
(0.020) (0.064)

F Stat 1683.7 133.1
Dep Varaible Mean 0.99 1.62

Panel B. OLS Estimate

Pass 0.412***
(0.00465)

PWD 1.235***
(0.00867)

Observations 478675

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving an inflated math test grade on the final math
grade (on everyone in the manipulation region; though this estimate is in practice driven by the impact
on those who are graded up, i.e., the compliers). The sample includes all cohorts in our sample, i.e., all
students who attend ninth grade between 2004 and 2010. The predicted final grade absent manipulation
is estimated from regressions of students’ final grades on a dummy for whether the test score is above the
cutoff and 3rd order polynomials in the test score, for each year and county*voucher. These regressions
only use data from students outside of the manipulation regions of the test score distribution. See the text
for more details. Standard errors block bootstrapped at the county*voucher*year level in parentheses.
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Table A2: “Sanity Check”: Impact of Grade Inflation on English Test Grade (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade -0.019 -0.021
(0.062) (0.067)

F Stat 317.3 141.6
Dep Varaible Mean 1.32 1.88

Panel B. OLS Estimate

Pass 0.626***
(0.00621)

PWD 1.028***
(0.00751)

Observations 399221

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on the student’s English test grade. The English test is taken before the math
test, so it cannot be affected by the outcome on the math test. Thus, this is a sanity check of our iden-
tification strategy. Panel B displays the OLS estimate. The sample includes all cohorts in our sample,
i.e., all students who attend ninth grade between 2004 and 2010. Standard errors block bootstrapped at
the county*voucher*year level in parentheses.
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Table A3: “Sanity Check”: Impact of Grade Inflation on Swedish Test Grade (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade 0.036 0.072
(0.055) (0.071)

F Stat 317.3 141.6
Dep Varaible Mean 1.18 1.67

Panel B. OLS Estimate

Pass 0.556***
(0.00591)

PWD 0.986***
(0.00636)

Observations 399711

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on the student’s Swedish test grade. The Swedish test is taken before the math
test, so it cannot be affected by the outcome on the math test. Thus, this is a sanity check of our iden-
tification strategy. Panel B displays the OLS estimate. The sample includes all cohorts in our sample,
i.e., all students who attend ninth grade between 2004 and 2010. Standard errors block bootstrapped at
the county*voucher*year level in parentheses.

Table A4: Impact of Grade Inflation on High School Peers’ GPA (LATE)

Panel A. Causal Impact Estimate
Pass PWD

∆ Final Math Grade -0.14 0.012
(0.14) (0.18)

F Stat 123.1 51.6
Dep Varaible Mean 12.7 13.0

Panel B. OLS Estimate

Pass 0.260***
(0.0283)

PWD 0.554***
(0.0493)

Observations 141426

* p < 0.10, ** p < 0.05, *** p < 0.01.
Note: The table presents estimates of the impact of receiving a higher final math grade due to teachers’
discretionary grading on peer GPA in high school. The sample includes all students who attend ninth
grade in 2004 through 2006. Panel B displays the OLS estimate. Standard errors block bootstrapped at
the county*voucher*year level in parentheses.
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B More information on the nationwide math test

The test is comprised of four subtests, or parts: A, B1, B2, and C. Each subtest has a certain
number of questions, and each question is worth a certain number of “Pass points,” P and a
certain number of “Pass with Distinction points,” PwD. (Easier questions are awarded only
P -points; harder questions are awarded both P - and PwD-points, or only PwD-points.)

A grading sheet is distributed to teachers with detailed instructions regarding the grading
of each question. The P -points are awarded based on objective and hard-to-manipulate
criteria (such as “which of the following five numbers are higher?”). The the PwD-points
often involve a subjective assessment, however: points are awarded for partially completed
work, for “clarity,” for “beautiful expression,” and so on. The grading sheet thus effectively
provides a short list of correct answers to the P -points, and longer descriptions of how to
award PwD-points.

A student’s test score thus consists of a pair, (Pi, PwDi). In 2004, the maximum number
of P -points was 38, and the maximum number of PwD-points was 32. The highest sum of
points that a student could achieve was thus Si = Pi + PwDi = 70.

In addition to providing guidance on the grading of each question, the grading sheet de-
fines the test grade as a step function of the number of P - and PwD-points; or, equivalently,
as a function of Si and PwDi:

ti =


Pass if Si ≥ 23
PwD if Si ≥ 43 and PwDi ≥ 12

Excellent if PwDi ≥ 21 and E = 1

 ,
Si ≥ 23 is a necessary and sufficient condition for obtaining the test grade Pass. Moreover,

for the vast majority of students who are on the margin between Pass and PwD, Si ≥ 43 is
the binding constraint (as opposed to PwDi ≥ 12); thus, again, the necessary and sufficient
condition for obtaining PwD can be expressed in terms of the sum of Pass and PwD points.
The students where the PwD points is the binding constraint for receiving a PwD test grade
are dropped from the analysis. In the paper, we therefore define the raw test score ri as the
sum of Pass and PwD points (Si above).

A subset of the test questions, marked by the symbol #, allow the teacher to judge criteria
that capture that the student’s answers are worthy of the grade “Excellent” (E = 1). We do
not observe the teachers’ judgements of these criteria – they are awarded based on highly
subjective criteria – but we can infer it based on the awarded test grade.38 In contrast to

38These criteria include (i) using general strategies when planning and executing the exercise; (ii) com-
paring and evaluating the pros and cons of different solution methods; (iii) displaying certainty in the
calculations; (iv) displaying structured mathematical language; and (v) displaying an ability to interpret
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Pass and PwD, however, the test score that we observe in the data does not provide anything
resembling a sufficient condition for receiving the test grade Excellent – a substantial share
of the students whose test score satisfies PwDi ≥ 21 are not awarded the grade Excellent in
the data. Because the test score only provides a necessary but not sufficient condition for
the grade Excellent, our method is not appropriate, so we do not analyze this threshold.

C A model of teachers’ grading behavior

All proofs are presented in Online Appendix Section C.3 below.

C.1 A Model of Grade Inflation

Student i is enrolled in school j. He attends class and has performed at level ai on class
assignments, other than the nationwide test. We will refer to ai as student i′s ability. Student
i takes the nationwide test and receives a numeric test score ri and a test grade of ti as defined
by:

ri = r (ai, εi,∆i1) = ai + εi + ∆i1,

ti = t (ai, εi,∆1) =

 p̄ if (r (ai, εi,∆i1) ≥ p̄)
0 o/w

 .
If the student does not receive any grade inflation, student i earns a test score equal to his
true performance on the test: ai + εi, where εi˜F (εi) and E(εi) = 0. We refer to ai + εi, as
student i′s raw test score, as it is what he would receive if there was no grade inflation. εi
represents that student i could have a “good day” or a “bad day” on the test. The teacher
may also choose to inflate the test score by awarding some amount of additional test points,
∆i1. If student i′s numeric test score is above p̄, then he passes the test and receives a grade
of p̄, otherwise he fails the test and receives a grade of 0.

The teacher also assign student i′s final grade gi for the class. gi is defined as:

gi = g (ai, εi,∆i1,∆i2) =

 1 if [wt (ai, εi,∆i1) + (1− w) (ai + ∆i2)] ≥ p̄

0 o/w

 .
Student i′s final numeric grade is a weighted average of his test grade, t (ai, εi,∆1), and his
grade on all other class assignments, (ai + ∆i2). w measures the weight placed on the test
grade in computing the final numeric grade. We refer to the grade on all class assignments

and analyze. In order to be awarded the grade Excellent on the test, a student must have demonstrated
“most of” these five qualities, on at least three of the six questions marked by the symbol #.
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excluding the nationwide test, (ai + ∆i2), as student i′s homework grade. The teacher may
also choose to inflate the homework grade, as measured by ∆i2. Student i passes the class
(and receives a final grade of 1) if his numeric final grade is above p̄, otherwise he fails the
class.

The teachers assign test grade ti and final grade gi to maximize the school’s utility
function:

u(∆i1,∆i2) = βjg (ai, εi,∆i1,∆i2)− c1 (∆i1)− c2 (∆i2) ,

c′1 (∆i1) > 0, c′2 (∆i2) > 0,

c′′1 (∆i1) > 0, c′′2 (∆i2) > 0.

Schools are heterogenous in their desire to inflate grades, as measured by βj. βj could repre-
sent pressure from parents to give higher grades or competitive pressures between schools to
attract students to enroll in school j. In order to inflate a student’s test grade or homework
grade, the teacher must pay a cost c1 (∆i1) or c2 (∆i2), respectively. c1 (∆i1) and c2 (∆i2) are
assumed to be increasing and convex. This captures the fact that it is increasingly hard for
a teacher to justify the higher grade as she inflates the grade more and more.39 The teacher
chooses ∆1 and ∆2 to maximize the school’s utility function.

We now explore properties of the model above that will be useful for estimation. For
now, we assume that when the teacher chooses ∆1 and ∆2, she is free to pick any (positive)
value that she wishes. In reality, sometimes grading a question more generously may lead
to lumpy amounts of test points (e.g. either the teacher assigns 3 extra points or 0, as she
may not be able to give 1 point, given the structure of the test.)

Before analyzing the teacher’s decision to inflate, we illustrate what happens if βj = 0.
Then, there are no incentives to engage in any type of manipulation (neither of Type I or
of Type II). Figure C1 illustrates the outcome when the distribution of student ability ai,
displayed on the x-axis, is assumed to be Uniform over [0,1] and the distribution of errors εi,
displayed on the y-axis, is assumed to be Uniform over [-0.5,0.5]. In the Figure, a diagonal
“line” distinguishes the two lower, blue fields from the two upper, green and yellow fields.
Along this diagonal line, all combinations of ai and εi yield the same test score, ri = ai + εi,

which is assumed to be the required score for passing the test, p̄. Thus, all students with
(ai, εi) that yield test scores that fall below p̄ are in the light blue and dark blue regions; they

39For example, as discussed in Section 2 above, there are some points awarded on the math test which
require subjective grading, while others are clearly right or wrong answers. Inflating a grade by a few points
would only require somewhat generous grading on the subjective parts of the test, while a large amount of
grade inflation would require awarding points for more clearly incorrect answers. These costs are also convex
due to the possibility that a school might get audited and have to justify their grading, which is harder to
do with large amounts of grade inflation.

60



fail the nationwide test (ti = 0). Similarly, all students with (ai, εi) that yield test scores
above p̄ are in the green and yellow regions; they pass the nationwide test (ti = p̄).

Among the students that fail the test (i.e., those with (ai, εi) in the light and dark blue
areas), the subset of students with sufficiently high innate ability obtains a passing final
grade in math even though they failed the nationwide test. Specifically, all students in the
right, lower region (colored light blue) fail the nationwide test (ti = 0) but obtain a passing
final grade (gi = 1)). In contrast, students in the left, lower region (colored dark blue) fail
both the nationwide test (ti = 0) and obtain a failing final grade (gi = 0).

Similarly, among the students that pass the test (i.e., those with (ai, εi) in the green and
yellow areas), the subset with sufficiently high innate ability (yellow region) pass both the
nationwide test and obtain a passing final grade, whereas students with insufficient ability
(in the green region) pass the nationwide test but nonetheless obtain a failing final grade.

Our understanding of the outcome in the absence of manipulation immediately highlights
that, even if we were to raise βj from zero, the teacher would never inflate any student who
obtains a final grade of Pass (gi = 1) without manipulation. In Figure C1, regardless of the
value of βj, the teacher would never engage in any type of manipulation of students in the
yellow and light blue regions; they obtain a passing final grade (and yield a utility of βj to
the teacher) even without the teacher engaging in any costly inflation. Now consider the
case when βj > 0:

Proposition C.1. The teacher plays one of four actions, (∆∗i1,∆∗i2) ∈{
(0, 0) , (p̄− ai − εi, 0) ,

(
0, p̄−wt(ai,εi,∆i1)

(1−w) − αi
)
,
(
p̄− ai − εi, p̄−wt(ai,εi,∆i1)

(1−w) − αi
)}
.

Proposition C.1 states that if the teacher chooses to engage in any manipulation, she puts
the student’s final numeric grade exactly at p̄, where the student (just) receives a passing
final grade, gi = 1. Intuitively, inflation is costly to the teacher, so she only engages in
manipulation if this alters the student’s final grade from fail (gi = 0) to Pass (gi = 1). Put
differently, the teacher only engages in manipulation if it brings her an added utility of
βj. Clearly, the teacher never engages in more inflation than what puts the student’s final
numeric grade at p̄.

The teacher’s decision of whether to inflate a given student hinges on whether βj, the
teacher’s utility from raising the final grade from Fail to Pass, (weakly) exceeds the cost
of the cheapest combination of test score and homework inflation that enables the student
to pass. Depending on the student’s (ai, εi), the cost-minimizing strategy is one of the
following three strategies: (i) use only test score manipulation by raising the test grade to
p̄, (∆∗i1,∆∗i2) = (p̄− ai − εi, 0); (ii) use only homework grade manipulation by inflating the
homework grade such that the final grade is p̄, (∆∗i1,∆∗i2) =

(
0, p̄−wt(ai,εi,∆i1)

(1−w) − αi
)
; or (iii)
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use a combination of both types of inflation, (∆∗i1,∆∗i2) =
(
p̄− ai − εi, p̄−wt(ai,εi,∆i1)

(1−w) − αi
)
.

Figure C2a illustrates the teacher’s strategy space when we maintain the same assump-
tions on the distributions of ai and εi as in Figure C1, but assume that βj takes on a strictly
positive value. The teacher’s strategy is (∆i1,∆i2) = (0, 0) unless indicated otherwise. In
Figure C2b, we display the corresponding distribution of raw test scores ri = ai + εi in
the absence of manipulation (lower subgraph) as well as the observed test score distribution
after manipulation of the test scores (upper subgraph). In Figure C2a, we see that test score
manipulation occurs in two regions, colored brown and orange, respectively. In both regions,
the (ai, εi) pairs are such that the un-manipulated test score ri = ai + εi lies close to, but
below, the passing threshold, p̄ (in one of the two regions, homework grade manipulation oc-
curs as well). In the upper subgraph of Figure C2b, we see that it is precisely the test scores
in these brown and orange regions that are bunched at the passing threshold (we assume
p̄ = 62). Finally, Figure C2a also indicates the regions where homework grade manipulation
occurs; this manipulation is not visible in the test score distribution (Figure C2b).

Finally, Figures C2a and C2b illustrate that not all students with a given raw test score
ri close to p̄ are inflated to p̄. There are many different types of students who earn the same
raw test score r = ai + εi. Some students had a “bad day” when taking the nationwide test
(drew a low ε), but have very high homework scores, a. These students would be able to
pass the class even if they failed the nationwide test, even in the absence of manipulation.
As discussed above, these students do not receive grade inflation on their test grade – and
consequently (∆i1,∆i2) = (0, 0) – although they pass the class overall. In Figure C2a, these
students are located in the lower, far right, part of the area plot. Other students might have
had a very “good day” when taking the nationwide test (drew a high ε). However, if their
homework grade (ai) is very low, the amount of grade inflation they would need to pass
the class it too costly, and they would receive no grade inflation on their test grade. These
students would fail the class overall. In Figure C2a, students that pass the nationwide test
(due to “luck”) but fail the class are in the upper, left corner.

Identification of βj We now turn to the question of identification of βj. In this context,
we cannot identify βj from the amount of excess mass at the passing test score, p̄. To see this
intuitively, again consider Figure C2a. It displays the teacher’s strategy for any pair (ai, εi).
Thus, if we were to assume another distribution of student ability ai, or of the student error
distribution εi, we would obtain more mass in the bunching region in Figure C2a, even if βj
were held constant. In other words, the amount of excess mass not only varies with βj, but
also with the distributions of student ability and test taking errors. Consequently, we cannot
quantify a school’s leniency by the magnitude of excess mass at the Pass threshold. If we
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were to use the amount of excess mass, we would risk to erroneously infer that schools have
different grading leniency when, in fact, it is their student ability distributions that differ.

Instead, we theoretically show that the lowest test score at which test score manipulation
occurs in a school identifies the school’s inclination to grade leniently.

Proposition C.2. Let rj,min be the minimum raw test score which school j gets inflated to
p̄. rj,min is strictly decreasing in βj.

Proposition C.2 refers to to students with the minimum raw test score at which the
teacher would ever inflate their test score. At this minimum raw test score which receive
test grade inflation, the teacher is indifferent to inflating the test score and not. Assuming
that the costs of grade inflation are the same across schools, if one school’s threshold for test
grade inflation is lower than that of another school, then the school with the lower threshold
for grade inflation must have a higher desire to inflate grades.

To illustrate this, Figures C3a and C3b display the teacher’s strategy space when we
maintain the same assumptions on the distributions of ai and εi as in Figure C1, but allow
βj to take on two different positive values. Figure C3a

This result will be at the heart of our estimation methods, as it implies that we can
identify a school’s desire to grade inflate by measuring the minimum test score at which
manipulation occurs. This is illustrated in Figures C4a and Figure C4b. In particular,
Figure C4a reproduces Figure C3a, and Figure C4b displays the corresponding distribution
of raw test scores ri = ai + εi in the absence of manipulation (lower subgraph) as well as
the observed test score distribution after test score manipulation (upper subgraph). Both
Figures C4a and C4b illustrate the lowest test score at which manipulation occurs. Figure
C4b illustrates that, to quantify grading leniency, we must estimate, from the manipulated
test score distribution, the lowest test score at which manipulation takes place.
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C.2 Figures

Figure C1: Student outcomes in the absence of manipulation
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Note: The figure displays the teacher’s strategy when βj = 0, i.e., in the absence of any
manipulation. The student ability distribution, displayed on the x-axis is assumed to
be Uniform over [0,1] and the student error distribution, displayed on the y-axis, is as-
sumed to be Uniform over [-0.5,0.5]. A diagonal “line” distinguishes the two lower, blue
fields from the two upper, green and yellow fields. Along this diagonal line, all combi-
nations of ai and εi yield the same test score, ri = ai + εi, which is assumed to be the
passing score. Thus, all students with (ai, εi) that yield test scores that fall below the
Pass threshold are in the light blue and dark blue regions; they fail the nationwide test.
Similarly, all students with (ai, εi) that yield test scores above the Pass threshold are in
the green and yellow regions; they pass the nationwide test. Among students that fail
the nationwide tests (i.e., those with (ai, εi) in the light blue and dark blue areas), stu-
dents with sufficiently high innate ability will obtain a passing final grade in math even
though they failed the nationwide test. Specifically, all students in the right, lower region
(colored light blue) will fail the nationwide test but obtain a passing final grade, whereas
students in the left, lower region (colored dark blue) will fail both the nationwide test
and obtain a failing final grade. Similarly, among students that pass the nationwide
tests (i.e., those with (ai, εi) in the green and yellow areas), students with sufficiently
high innate ability (yellow region) will pass both the nationwide test and obtain a pass-
ing final grade, whereas students with insufficient ability (in the green region) will pass
the nationwide test but nonetheless obtain a failing final grade.
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Figure C2: Student outcomes and the teacher’s strategy in the presence of manipulation

(a) Outcomes for various (ai, εi) (b) Distribution of ri = ai + εi

Note: In Figure C2a, we display student outcomes and the teacher’s strategy for all possi-
ble pairs (ai, εi). The teacher’s strategy is (∆i1,∆i2) = (0, 0) unless indicated otherwise.
In Figure C2b, we display the distribution of raw test scores ri = ai + εi in the absence
of manipulation (lower subgraph) as well as the observed test score distribution after
manipulation of the test scores (upper subgraph). As in Figure C1, we assume that the
student ability distribution is Uniform over [0,1] and that the student error distribution
is Uniform over [-0.5,0.5]. In Figure C2a, we see that test score manipulation occurs in
two regions, colored brown and orange, respectively. In both regions, the (ai, εi) pairs
are such that the un-manipulated test score ri = ai + εi lies close to, but below, the
passing threshold, p̄ (in one of the two regions, homework grade manipulation occurs as
well). In the upper subgraph of Figure C2b, we see that it is precisely the test scores in
these brown and orange regions that are bunched at the passing threshold (we assume
p̄ = 62). Finally, Figure C2a also indicates the regions where homework grade manipu-
lation occurs; this manipulation is not visible in the test score distribution (Figure C2b).
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Figure C3: Student outcomes for different levels of grading leniency, βj
(a) Outcomes for various (ai, εi), higher βj (b) Outcomes for various (ai, εi), lower βj

Note: The Figures display student outcomes and the teacher’s strategy for all possible
pairs (ai, εi), for two different levels of grading leniency, βj. All other assumptions are as
in Figure C1. We observe that the lowest test score where manipulation occurs is lower
in Figure C3a than in Figure C3b, consistent with the fact that teachers grade more
leniently in Figure C3a.

Figure C4: Identifying grading leniency, βj, from the empirical test score distribution

(a) Outcomes for various (ai, εi) (b) Distribution of ri = ai + εi

Note: In Figure C4a, we display student outcomes for all possible pairs (ai, εi). In Fig-
ure C4b, we display the distribution of raw test scores ri = ai + εi in the absence of
manipulation (lower subgraph) as well as the observed test score distribution after ma-
nipulation of the test scores (upper subgraph). All assumptions are as in Figure C1.
Both Figures illustrate the lowest test score at which manipulation occurs. Figure C4b
illustrates that, to quantify grading leniency, we must estimate, from the manipulated
test score distribution, the lowest test score at which manipulation takes place.
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C.3 Mathematical proofs

C.3.1 Proof of Proposition A1

We derive results under a general cost function c (∆1,∆2), which is increasing and convex in
each argument.

• If inflate test grade, then inflate to exactly p̄. ∆1 = p̄− ai − εi, otherwise, ∆1 = 0.

• If inflate final grade, inflate exactly to p̄ : ∆2 = p̄−wt(ai,εi,∆1)
(1−w) − αi, otherwise ∆2 = 0.

Thus, possible strategies are:
(∆∗1,∆∗2) ∈

{
(0, 0) , (p̄− ai − εi, 0) ,

(
0, p̄−wt(ai,εi,∆1)

(1−w) − αi
)
,
(
p̄− ai − εi, p̄−wt(ai,εi,∆1)

(1−w) − αi
)}
.

This defines a set of inequalities where each strategy is optimal. First partition the (ai, εi)
space where the student passes the test and/or class without the help of inflation. These
are:

1. t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 1. In other words, ai + εi ≥ p̄, ai ≥ p̄

2. If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 1. In other words, ai + εi < p̄, ai (1− w) ≥ p̄

3. If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 0. In other words, ai + εi ≥ p̄, ai < p̄

4. If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 0. In other words, ai + εi < p̄, ai (1− w) < p̄

We now partition the space into where each possible strategy is optimal:

1. u (0, 0) ≤ u
(
0, p̄−wt(ai,εi,∆1)

(1−w) − αi
)

(a) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 1. In other words, ai + εi ≥ p̄, ai ≥ p̄ :

c

(
0, p̄− wt (ai, εi,∆1)

(1− w) − αi
)
≤ 0

This region does not exist.

(b) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 1. In other words, ai + εi < p̄, ai (1− w) ≥ p̄ :

c

(
0, p̄− wt (ai, εi,∆1)

(1− w) − αi
)
≤ 0

This region does not exist.

(c) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 0. In other words, ai + εi ≥ p̄, ai < p̄ :

β ≥ c (0, p̄− ai) .

67



(d) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 0. In other words, ai + εi < p̄, ai (1− w) < p̄ :

β ≥ c

(
0, p̄

(1− w) − ai
)

2. u (0, 0) ≤ u (p̄− ai − εi, 0) .

(a) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 1. In other words, ai + εi ≥ p̄, ai ≥ p̄ :

c (p̄− ai − εi, 0) ≤ 0

This region does not exist.

(b) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 1. In other words, ai + εi < p̄, ai (1− w) ≥ p̄ :

c (p̄− ai − εi, 0) ≤ 0

This region does not exist.

(c) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 0. In other words, ai + εi ≥ p̄, ai < p̄ :

c (p̄− ai − εi, 0) ≤ 0

This region does not exist.

(d) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 0. In other words, ai + εi < p̄, ai (1− w) < p̄ :

β ≥ c (p̄− ai − εi, 0) if ai ≥ p̄.

0 ≥ c (p̄− ai − εi, 0) if ai < p̄,

This region where ai < p̄ does not exist.

3. u (0, 0) ≤
(
p̄− ai − εi, p̄−wt(ai,εi,∆1)

(1−w) − αi
)

(a) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 1. In other words, ai + εi ≥ p̄, ai ≥ p̄ :

0 ≥ c

(
p̄− ai − εi,

p̄− wt (ai, εi,∆1)
(1− w) − αi

)
.

This region does not exist.
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(b) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 1. In other words, ai + εi < p̄, ai (1− w) ≥ p̄ :

0 ≥ c

(
p̄− ai − εi,

p̄− wt (ai, εi,∆1)
(1− w) − αi

)
.

This region does not exist.

(c) If t (ai, εi, 0) = p̄ & g (ai, εi, 0, 0) = 0. In other words, ai + εi ≥ p̄, ai < p̄ :

β ≥ c (p̄− ai − εi, p̄− αi) .

(d) If t (ai, εi, 0) = 0 & g (ai, εi, 0, 0) = 0. In other words, ai + εi < p̄, ai (1− w) < p̄ :

β ≥ c (p̄− ai − εi, p̄− αi) .

4. u
(
0, p̄−wt(ai,εi,0)

(1−w) − ai
)
≤ u (p̄− ai − εi, 0)

(a) Region where u
(
0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)
beats no inflation, and

t
(
0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)

= p, g
(
ai, εi, 0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)

= 1. In other words: ai+
εi ≥ p̄, ai < p̄, β ≥ c (0, p̄− ai) . This regions does not intersect with any regions
where (p̄− ai − εi, 0) was preferred to (0, 0) . Thus, this region does not exist.

(b) Region where u
(
0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)
beats no inflation, and

t
(
0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)

= 0, g
(
ai, εi, 0, p̄−wt(ai,εi,∆1)

(1−w) − ai
)

= 1. ai+εi < p̄, ai (1− w) <
p̄, β ≥ c

(
0, p̄

(1−w) − ai
)
.

c

(
0, p̄

(1− w) − ai
)
≥ c (p̄− ai − εi, 0) .

5. u (p̄− ai − εi, 0) ≤ u
(
p̄− ai − εi, p̄−wt(ai,εi,∆1)

(1−w) − αi
)
. This could only be the case if

u (p̄− ai − εi, 0) resulted in a failing grade.

a ≤ p̄

6. u
(
0, p̄−wt(ai,εi,0)

(1−w) − αi
)
≤ u

(
p̄− ai − εi, p̄−wt(ai,εi,∆1)

(1−w) − αi
)
.

(a) Region where
(
0, p̄−wt(ai,εi,0)

(1−w) − αi
)
beats no inflation and t

(
0, p̄−wt(ai,εi,∆1)

(1−w) − αi
)

=
0. That is: ai + εi < p̄, ai (1− w) < p̄, β ≥ c

(
0, p̄

(1−w) − ai
)
.

β ≥ c

(
0, p̄

(1− w) − ai
)
≥ c (p̄− ai − εi, p̄− ai) .
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Combining the inequalities above:

• The region where where the teacher inflates both the test and final grade,
u
(
p̄− ai − εi, p̄−wt(ai,εi,∆1)

(1−w) − αi
)
is played is where:

β ≥ c (p̄− ai − εi, p̄− ai) ,

ai + εi ≤ p̄,

ai ≤ p̄,

β ≥ c

(
0, p̄

(1− w) − ai
)
≥ c (p̄− ai − εi, p̄− ai) .

• The region where the teacher only inflates the test grade, u (p̄− ai − εi, 0), is played
when:

ai + εi < p̄,

ai (1− w) < p̄,

a ≥ p̄

β ≥ c (p̄− ai − εi, 0) ,

c

(
0, p̄

(1− w) − ai
)
≥ c (p̄− ai − εi, 0)

• The region where the teacher only inflates the final grade, u
(
0, p̄−wt(ai,εi,∆1)

(1−w) − αi
)
, is

played when either:

1. Students who natually pass the test:

ai + εi ≥ p̄,

ai ≤ p̄,

β ≥ c (0, p̄− ai)

2. Students who natually fail the test:

ai + εi ≤ p̄,

ai (1− w) ≤ p̄,

β ≥ c
(

0, p̄

1− w − ai
)
,

c
(

0, p̄

1− w − ai
)
≥ c (p̄− ai − εi, p̄− ai)
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C.3.2 Proof of Proposition A2

First, consider the region where u (p̄− ai − εi, 0) is optimal. Define c−1
2 (b,∆2) as the inverse

type 1 cost function where b is total cost and ∆2 is amount of type 2 inflation. The minimum
r within this region is:

r1,min = p̄− c−1
2 (β, 0) if c

(
0, wp̄

1− w

)
≥ c

(
c−1

2 (β, 0) , 0
)

= p̄− c−1
2

(
c
(

0, wp̄

1− w

)
, 0
)

otherwise.

Now consider the region where (p̄− ai − εi, p̄− αi) is optimal. The minimum r within
this region is:

r2,min = p̄− c−1
2 (β, 0) if c

(
0, wp̄

1− w

)
≥ c

(
c−1

2 (β, 0) , 0
)
.

If c
(
0, wp̄

1−w

)
< c

(
c−1

2 (β, 0) , 0
)
, then

c

(
0, p̄

(1− w) − ai
)

= c (p̄− r, p̄− a) = β.

Implicity define a∗ (r) as the function which satisfies:

c

(
0, p̄

(1− w) − a
∗ (r)

)
= c (p̄− r, p̄− a∗ (r)) .

Implicitly differentiating the expression above and rearranging, we get:

da

dr
= c1 (p̄− r, p− a)
c2
(
0, p̄

1−w − a
)
− c2 (p̄− r, p− a)

.

Now, implicitly differentiate c (p̄− r, p̄− a) = β with respect to β :

dr

dβ
= −1

c1 (p̄− r, p− a) + c2 (p̄− r, p− a) ∗ da
dr

=
c2 (p̄− r, p− a)− c2

(
0, p̄

1−w − a
)

c1 (p̄− r, p− a) ∗ c2
(
0, p̄

1−w − a
)

Since the cost function is weakly increasing, the denominator is negative. For the numerator
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to be negative, we need: c2
(
0, p̄

1−w − a
)
≥ c2 (p̄− r, p− a) . Specifically, we need:

c2

(
0, p̄

1− w − a
)
≥ c2

(
c−1

1

(
c
(

0, p̄

1− w − a
)
, p− a

)
, p− a

)
.

If we assumed the cross partial of c (∆1,∆2) to be zero, then c2 (p̄− r, p− a) = c2 (0, p− a) ≤
c2
(
0, p̄

1−w − a
)
because c (∆1,∆2) is convex and p̄

1−w−a > p−a. Thus, the minimun inflated
testscore is strictly decreasing in β, the payoff from grade inflation.

D Estimation Details

D.1 Recovering the un-manipulated distribution and the width of
the manipulation region

We estimate the model using constrained nonlinear-least squares and use k-fold (k=5) cross-
validation to prevent overfitting. We perform the following procedure for each region-year:40

For a given guess of the width of the two manipulation regions in the region-year,
(β1jt, β2jt), and of the order of the polynomials that determine the deviation from log-
concavity due to manipulation, (phighkjt , p

low
kjt ), we use constrained non-linear least squares to

estimate the un-manipulated distribution, and the deviation from it due to manipulation,
to fit the observed test score distribution. This is done on the 80% training sample, and
then used to predict out-of-sample on the 20% hold-out sample. We then calculate the
out-of-sample mean squared error (MSE) for the 20% hold-out sample, and the repeat this
procedure on each of the five folds of data. We sum these out-of-sample MSEs as our mea-
sure of model fit for a given guess of the widths of the manipulation regions and the orders
of the polynomials. We then iterate this procedure using a grid search over all possible
combinations of manipulation region widths from 0 to 7 and polynomial orders from 0 to 4.

We select the set of (β1jt, β2jt) and (phighkjt , p
low
kjt ) that have the smallest out-of-sample MSE.

Note that when randomly binning the data into 5 groups for the cross-validation procedure,
we sample data points from the histogram (e.g. treating a 51 point test score distribution
as 51 data points), instead of binning the data by randomly sampling students. This allows
there to be error in the model at the test score level, due to model misspecification or other
quirks of the test that could lead to deviation from log-concavity randomly at each test score
for reasons other than manipulation.

Once we have selected the out-of-sample MSE minimizing combination of (β1jt, β2jt)
and (phighkjt , p

low
kjt ), we pool all the data back together and estimate the parameters of the

40Recall that we refer to one county*voucher as a “region.”
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manipulated and un-manipulated distributions, (θhigh,1jt , θlow,2jt , θhigh,2jt , δ1jt−1, ..., δRmaxjt−1).

D.2 Estimating the causal impact of test score manipulation

The “first stage.” First, we identify the impact of test score manipulation on students’ final
grades in math. This can be thought of as the first stage regression of our Wald estimation.
To do this, we proceed in two steps.

Recall that gijt is student i′s observed final math grade (who is enrolled in region j in
year t). We estimate:

gijt = ĝkjt
(
rijt, θ

grade
kjt

)
+ αkjt ∗ (rijt ≥ k) + εgijt, (22)

where: (rijt < k − βkjt or rijt > k + βkjt − 1)

and

rijt > (k − 1) + βk−1jt + 1 and rijt < (k + 1)− βk+1jt.

ĝkjt
(
rijt, θ

grade
kjt

)
is a third order polynomial with coefficients θgradekjt that captures the

smooth relationship between students’ un-manipulated test scores, rijt, and their expected
final grades. (rijt < k − βkjt or rijt > k + βkjt − 1) ensures that the data used to estimate
equation (13) is outside of the test score inflated region around test grade threshold k.
rijt > (k − 1) + βk−1jt + 1 and rijt < (k + 1) − βk+1jt ensures that the data is also not
within the test score inflated regions around the higher (k + 1) or lower (k − 1) test grade
thresholds. We allow there to be a discrete jump in students’ expected final grade at the
test grade cut-off k, represented by αkjt ∗ (rijt ≥ k).

For a few region-years for which there are few students, this extrapolation inwards using
the polynomial causes predictions outside of the range of the outcome variables. To limit the
impact of these outliers on our overall estimates, we trim the predicted outcomes inside the
manipulation region to never be above the polynomial predicted values just outside either
side of the manipulation window. This preserves monotonicity of the relationship between
the outcome variable and un-manipulated test scores.

In our estimation of long-term effects, we exclude regions where the manipulation region is
estimated to be of width 7, as this is the highest width that we searched over in our grid search
described above. Thus, in these regions, 7 could be an under estimate of the true width of the
manipulated region. Further, the ability to extrapolate inward with a polynomial becomes
more challenging as the width of the manipulation region widens. (Hence the decision not
to search over regions wider than 7.)
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We use our estimates to calculate the expected average final math grade for students
within the manipulation region of the test score distribution had there been no test score
manipulation:

ḡjt (k) =
ˆ k+βkjt−1

k−βkjt

[
ĝkjt

(
r, θ̂gradekjt

)
+ α̂kjt ∗ (r ≥ k)

]
∗ ĥjt(r)´ k+βkjt−1

k−βkjt
ĥjt(r)dr

dr. (23)

For students inside the manipulation region, we now compare the estimated counterfactual
average grade, had there been no test score manipulation, calculated in (23), with the actual
average final math grade for students in the manipulation region (observed in the data), gijt.
Thus, this difference is our “intent-to-treat” estimate of the average increase in a student’s
final grade due to the student having a raw test score that falls within the manipulated
region of the test score distribution:

ITT = E (grade|teacher can manipulate)− E (grade|teacher can’t manipulate)

=

∑
jt

( ∑
iεmanip region k

gijt

)
∑
jt

(Nmanip
kjt ) −

∑
jt

Nmanip
kjt

ḡjt(k)∑
jt

(Nmanip
kjt ) ,

︸ ︷︷ ︸ ︸ ︷︷ ︸
Average observed math grade
across all students in manipula-
tion region across all j regions and
t years

Average predicted math grade for
students in manipulation region,
had there been no manipulation
across all j regions and t years

where Nmanip
jt is the number of students in the manipulation region around threshold k in

region j in year t. Figure 6 illustrates this first stage estimate in the context of the example
used in Figure 5.

The “reduced form” and LATE estimates. The procedure above can be repeated with
a different outcome variable, such as income at age 23, to identify the reduced-form effect
of falling into the manipulation region on future income. The ratio of this reduced-form
effect to the first-stage effect, in turn, identifies the local average treatment effect (LATE)
of receiving an inflated final math grade on future income. We block bootstrap the entire
procedure (including the estimation of the manipulation width and the shape of the un-
manipulated distribution) to calculate standard errors, sampling at the region by year level.
This is the same level at which we estimated the widths of the manipulation regions.
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