
NBER WORKING PAPER SERIES

CLIMATE ECONOMETRICS

Solomon M. Hsiang

Working Paper 22181
http://www.nber.org/papers/w22181

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2016

I thank David Anthoff, Jesse Anttila-Hughes, Max Auffhammer, Alan Barrecca, Marshall Burke, 
Tamma Carleton, Olivier Deschenes, Tatyana Deryugina, Ram Fishman, Michael Greenstone, 
Michael Hanemann, Wu-Teh Hsiang, Bob Kopp, David Lobell, Gordon McCord, Kyle Meng, 
Billy Pizer, James Rising, Michael Roberts, Wolfram Schlenker, Christian Traeger, and seminar 
participants at Berkeley and Harvard for discussions and suggestions. I thank to Wolfram 
Schlenker for generously sharing data. The views expressed herein are those of the authors and 
do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Solomon M. Hsiang. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Climate Econometrics
Solomon M. Hsiang
NBER Working Paper No. 22181
April 2016
JEL No. C33,H84,I1,O13,Q54

ABSTRACT

Identifying the effect of climate on societies is central to understanding historical economic 
development, designing modern policies that react to climatic events, and managing future global 
climate change. Here, I review, synthesize, and interpret recent advances in methods used to 
measure effects of climate on social and economic outcomes. Because weather variation plays a 
large role in recent progress, I formalize the relationship between climate and weather from an 
econometric perspective and discuss their use as identifying variation, highlighting tradeoffs 
between key assumptions in different research designs and deriving conditions when weather 
variation exactly identifies the effects of climate. I then describe advances in recent years, such as 
parameterization of climate variables from a social perspective, nonlinear models with spatial and 
temporal displacement, characterizing uncertainty, measurement of adaptation, cross-study 
comparison, and use of empirical estimates to project the impact of future climate change. I 
conclude by discussing remaining methodological challenges.
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1 INTRODUCTION

How does the climate a↵ect society and the economy? This question has challenged thinkers for centuries—the an-

swer promises insight into why economies developed di↵erently historically, how modern society can best respond to

current climatic events, and how future climate changes may impact humanity. In recent years, numerous economet-

ric analyses have emerged addressing this question by studying the e↵ects of specific climatic conditions on di↵erent

social and economic outcomes. The recency of this research activity is explained primarily by methodological

advances that, combined with increasing access to computing power and climate data, catalyzed progress.

The goal of this article is to collect and synthesize these advances. In particular, I try to highlight core innovations

and to explain linkages between di↵erent methods. I also attempt to tackle an issue that has proved particularly

thorny: a debate as to whether regressions on “weather” variables provide meaningful insight into the e↵ects of

climate. By formalizing this question, I am able to derive conditions under which the use of weather variables in

regressions is justified and, perhaps surprisingly, dominates traditionally preferred methods. In the latter portion

of this article, I discuss how these new econometric results are being used to understand other scientific or policy

questions, such as the optimal design of climate change policy. Throughout, I draw attention to methodological

challenges that remain unsolved.

This article focuses on methodology, so I will not describe data or results that are not examples of methodological

innovations. I encourage readers to consult Au↵hammer et al. (2013) for a discussion of climate data generally, and

other review articles surveying findings from this rapidly growing field: for health impacts see Deschênes (2014),

for agricultural impacts see Au↵hammer & Schlenker (2014), for energy impacts see Au↵hammer & Mansur (2014),

for conflict impacts see Burke et al. (2015b), for climatic disaster impacts broadly speaking Kousky (2014) and for

tropical cyclones specifically see Camargo & Hsiang (2016), for labor impacts see Heal & Park (2015), and for a

general summary of findings from across the literature see Dell et al. (2014) and Carleton & Hsiang (2016).

1.1 Defining climate

Here I develop a formal definition for the climate that is flexible, general, and encompasses usages throughout the

literature.

For any position in space i, there exists a vector of random variables at each moment in time t characterizing

the conditions of the atmosphere and ocean that are relevant to economic conditions at i. Heuristically, one could

imagine this random vector as

vit = [temperatureit, precipitationit, humidityit, ...] . (1)

For an interval in time ⌧ = [t, t̄) at i, there exists a joint probability distribution  (Ci⌧ ) from which we imagine vit

is drawn:

vit ⇠  (Ci⌧ ) 8 t 2 ⌧ (2)

Ci⌧ is a vector of K relevant parameters—ideally su�cient statistics—indexed by k, that characterize distributions

in the  (.) family of distributions, such as location and shape parameters. Define Ci⌧ to be the climate at i during

⌧ , since it characterizes the distribution of possible realized states vit.

For each period ⌧ , there is an empirical distribution  (ci⌧ ) that characterizes the distribution of states vi,t2⌧

that are actually realized. In many contexts, some of the K parameters in ci⌧ have analogs to fitted values for

a model where the distribution is constrained to the  (.) family, but such an analogy is imperfect because ci⌧

are actual measurements, not estimates1. Note that ci⌧ and Ci⌧ are vectors of the same length with analogous

1It is possible that some researchers may attempt to construct empirical estimates of Ĉi⌧ using data that resemble or are identical
to measurements ci⌧ , but this need not always be the case. For example, an estimate for the population mean of daily temperatures
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elements, but they are not the same. Ci⌧ characterizes the expected distribution of vit while ci⌧ characterizes the

realized distribution of vi,t2⌧ . Thus, we define ci⌧ to be a description of the weather during ⌧ .

Examples help clarify how these definitions of climate and weather di↵er. Consider that weather measures

ci⌧ might contain the sample mean and sample standard deviation of daily rainfall during a month, whereas the

corresponding Ci⌧ would contain the true population mean and true population standard deviation of rainfall

that could occur during that period. In another example, ci⌧ could contain the maximum sustained wind gust

speed actually experienced during a 24 hour interval while Ci⌧ contains the maximum of the true theoretical gust

distribution for that day. Finally, ci⌧ could contain the count of realized days with average temperatures below

freezing or above 30�C in a year, whereas Ci⌧ might then contain the expected number of days in these categories.

For notational simplicity, define c(C) as a realization of weather characteristics c conditional on climate char-

acteristics C.

Two questions immediately emerge for an applied econometrician. First, how should the joint distribution  (C)

for the high dimensional vector v be summarized? Are we concerned only with average values and variances, or

some other summary statistics, such as time beyond a critical value (e.g. extreme heat days) or events that involve

multiple dimensions of v (e.g. wind and rain simultaneously)? Unfortunately, at present there is no exhaustive list

of summary statistics or dimensions of v that fully describes all socially and economically relevant parameters. In

practice, di↵erent researchers have explored whether and how di↵erent summary measures c matter by examining

one or a few at a time, for example examining average temperatures when controlling for average rainfall, but these

should be understood as rough characterizations of a more highly structured multi-dimensional distribution. As

current research progresses, the set of known relevant summary parameters generally tends to grow.

Second, how long of a time interval ⌧ should be considered? Historically, climate was sometimes defined as

an average over 30 years (Pachauri et al., 2014), but this definition is fairly arbitrary. In reality, there exists a

well-defined expected distribution of states that might occur even for very short periods of time. For example, at

every location there is an expected distribution of temperatures that might occur for each five-minute interval on

each day of the year. Furthermore, this distribution might change between consecutive years, for example, due to

the El Niño-Southern Oscillation (ENSO). This suggests that climate need not have a fundamental time-scale and

econometricians may, in principle, study periods of varying lengths of time.

1.2 Influence of climate through events and information

The climate a↵ects social outcomes in two ways. First, the climate during ⌧ influences what realizations of weather

c actually occur during that interval, which in turn a↵ects a population directly (e.g. a rainy climate generates rain,

causing people to get wet)—call this the “direct e↵ect” of climate. Second, individuals’ beliefs over the structure

of C may a↵ect their decisions and resulting outcomes, regardless of what c is realized (e.g. if people believe their

climate is rainy, some will buy umbrellas)—refer to this as the “belief e↵ect.” Denote all actions resulting from

beliefs as the vector b of length N , indexed by n. We can then write that an outcome is a↵ected by the climate

because the climate a↵ects what weather is realized and what actions individuals take based on their beliefs about

the climate

Y (C) = Y (c(C),b(C)). (3)

during a year, a climate parameter, happens to equal the sample mean of daily temperatures, a weather parameter. But weather
parameters need not always have the same form as estimators for climate parameters and climate parameters, describing an abstract
population distribution that is never actually observed, need not depend on weather. Weather parameters should always be interpreted
as measurements associated with individual observations. In principle, climate parameters could be formulated in the absence of real
world measurements, for example based on a theoretical or numerical model of the climate.
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Therefore the total marginal e↵ect of the climate on outcome Y is characterized by the K-element vector of

derivatives

dY (C)

dC
= rcY (C) · dc

dC
+rbY (C) · db

dC

=
KX

k=1

@Y (C)

@ck

dck
dC

| {z }
“direct e↵ects”

+
NX

n=1

@Y (C)

@bn

dbn

dC
| {z }

“belief e↵ects”

(4)

where rc and rb are defined as gradients in the subspaces of c and b, respectively.2 Observe that dc
dC and db

dC are

K ⇥K and N ⇥K Jacobians.3

Note that all partial derivatives are evaluated “locally” at the current climate C. This local-ness is important,

since beliefs about the climate may alter @Y
@ck

if actions individuals take based on these beliefs alter the direct e↵ect

of weather realizations c when they occur (e.g. individuals who buy umbrellas because they believe they are in a

rainy climate get less wet when it rains). Such interactions between beliefs and direct impacts ( @2Y
@bn@ck

) and belief

e↵ects themselves are together often referred to as “adaptations” in the literature.

Researchers are generally interested in both pathways of influence, although credibly identifying belief e↵ects has

proven challenging because beliefs are di�cult to observe and they tend to be correlated with many other factors.

2 THE EMPIRICAL PROBLEM

We are interested in identifying the e↵ect of the climate on a population or economy, holding all other factors

fixed. Denoting the vector of observable non-climatic factors x that a↵ect outcome Y , we can express the average

treatment e↵ect � for a change in climate �Ci⌧ as

� = E[Yi⌧ |Ci⌧ +�Ci⌧ ,xi⌧ ]� E[Yi⌧ |Ci⌧ ,xi⌧ ]. (5)

Inference is challenging because � can never be observed directly, since the single population i can never be exposed

to both counterfactuals C and C+�C for the exact same interval of time ⌧ . This is the Fundamental Problem of

Causal Inference (Holland, 1986).

In an ideal experiment aimed at recovering �, we would locate two sample populations (i and j) that are identical

in every way and experimentally manipulate the climate of i to be C and the climate of j to be C+�C. We would

then observe how these two treatments a↵ect the outcome Y . If they are identical, it must be true that

E[Yi⌧ |C,xi⌧ ] = E[Yj⌧ |C,xj⌧ ], (6)

the unit homogeneity assumption. Note that the right-hand side term is not observed. We could then use observa-

tions from our experiment to construct the unbiased estimator

�̂ = E[Yj⌧ |C+�C,xj⌧ ]� E[Yi⌧ |C,xi⌧ ] = E[Yi⌧ |C+�C,xi⌧ ]| {z }
never observed

�E[Yi⌧ |C,xi⌧ ] = �. (7)

2 Define rcY =
h

@Y
@c1

, · · · , @Y
@cK

i
and rbY =

h
@Y
@b1

, · · · , @Y
@bN

i
which can be concatenated to form the complete gradient vector

rY = [rcY,rbY ].

3 The Jacobian matrices are dc
dC =

2

664

@c1
@C1

· · · @c1
@CK

...
. . .

...
@cK
@C1

· · · @cK
@CK

3

775 and db
dC =

2

664

@b1
@C1

· · · @b1
@CK

...
. . .

...
@bN
@C1

· · · @bN
@CK

3

775.
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Unfortunately, such an experiment is usually impossible for most large-scale settings of interest, although some

laboratory experiments have applied a randomized version of this approach in psychology (Mackworth, 1946),

ergonomics (Seppanen et al., 2006), sports medicine (Nybo & Secher, 2004), and military research (Hocking et al.,

2001). In these settings, where �C can be randomly assigned and experimentally manipulated (e.g. warming a

room), application of Eq. 7 is su�cient for inference. In all other cases, the econometrician requires a research

design that delivers an approximation of Eq. 5.

2.1 Research Designs

There are essentially three research designs in use that approximate the average treatment e↵ect in Eq. 5: cross-

sectional approaches, use of time-series variation, and a hybrid known as “long di↵erences.” The conceptual tradeo↵s

to these designs center around (i) whether it is reasonable to assume that distinct populations are comparable units

after the econometrician has conditioned on observable characteristics and (ii) whether climatic events observed to

a↵ect a population are su�cient to capture relevant direct e↵ects and belief e↵ects of climate.

2.1.1 Cross-sectional approaches

In cross-sectional research designs, di↵erent populations in the same period ⌧ are compared to one another after

conditioning on observables xi⌧ . The core assumption needed for this approach is the unit homogeneity assumption

as written in Eq. 6. Under this assumption, if di↵erent populations have the same climate, then their expected

conditional outcomes are assumed to be the same. This allows the econometrician to attribute all di↵erences in

observed outcomes to di↵erences in climate, by estimating Eq. 7 having assumed Eq. 6. In a linear framework, this

estimate is usually implemented via a regression equation of the form

Yi = ↵̂+Ci�̂CS + xi�̂ + ✏̂i (8)

where ⌧ subscripts are omitted because all observations occur in the same period. Here, ↵̂ is a constant, �̂ are e↵ects

of observables, and ✏i are unexplained variations. The estimate of interest �̂CS is a column vector of coe�cients

describing marginal e↵ects of terms in Ci, the set of parameters4 selected by the econometrician to characterize the

probability distribution of v at each location i.

This design was used widely in early econometric analyses of the e↵ect of the climate (Fankhauser, 1995; Tol,

2009), gaining prominence in the seminal work by Mendelsohn et al. (1994) who regressed farm prices across US

counties on growing season temperatures and observable characteristics of farm properties. This implementation

highlights a major strength of this approach in the context of climatic e↵ects: since farmers who inhabit a location

for a long period will have a strong grasp of C at their location and will adjust farm investments and management

to optimize based on these beliefs, farm prices can be assumed to reflect all direct e↵ects as well as all belief

e↵ects. An additional benefit of the cross-sectional research design is that it can be enriched by imposing additional

structure on the model and still remains tractable, such as work by Costinot et al. (forthcoming) and Desmet &

Rossi-Hansberg (2015) who consider the e↵ect of climate on the spatial allocation of production, labor, and trade.

A weakness of the cross-sectional approach is its vulnerability to omitted variables bias. When variables that

a↵ect Yi are not included in either Ci or xi but are correlated with one of their elements, the resulting estimates

will be biased (Wooldridge, 2002). The surmountability of this problem may be limited because Eq. 6 is untestable,

i.e. there exists no systematic method for determining whether any key variables are omitted from Eq. 8 and thus

an econometrician can never be certain their model is unbiased.

4Note that in practice, econometricians must estimate Ĉ from data, which is often implemented by estimating moments of  using
historical data describing v. In principle, C need not be estimated from real world data, for example it could be constructed using a
theoretical or numerical climate model.
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One approach designed to address the concern of omitted variables bias is to saturate the model with as many

variables as possible. For example, Nordhaus (2006) developed a novel 1� ⇥ 1� gridded global data set of economic

production and numerous geographic and climatic factors, which was then applied to Eq. 8 at the pixel level to

estimate the e↵ect of temperature on economic productivity. Another approach to constrain the influence of omitted

variables is to limit the subsamples of observations for which Eq. 6 is assumed by only comparing populations that

are thought to have similar unobservable characteristics. For example, Albouy et al. (2010) estimate the e↵ect of

temperature on housing prices across the US, focusing on within-locality comparisons because many characteristics

that distinguish localities are di�cult to parametrize for inclusion in Eq. 8 but are likely correlated with climatic

di↵erences across localities and would thus bias �̂CS in a fully pooled regression.

It is not possible to determine that all important variables have been included in Eq. 8, although in some sectors

where the data generating process is well known, such as maize yields in the US (Schlenker, 2010), an accumulation

of studies may provide us with modest confidence that most important factors are accounted for. Yet in other cases,

such as civil wars (Burke et al., 2015b), it is generally assumed that a comprehensive suite of important non-climatic

factors may never be known, imposing a ceiling on the assurance we can achieve when using the cross-sectional

research design for these outcomes.

2.1.2 Identification in time-series

An alternative approach to approximating Eq. 5, instead of assuming populations i and j are comparable, is

to examine only population i across separate periods (indexed by ⌧) when di↵erent environmental conditions are

realized at i. This approach conditions outcomes on ci⌧ , where each observation summarizes a joint distribution

of many vectors vit observed during the period ⌧ . An advantage of this approach is that it relies on a plausibly

weaker form of the unit homogeneity assumption since it only requires that an individual population i is comparable

to itself across moments in time. However, this approach can only approximate Eq. 5 by introducing a second

assumption that I call the marginal treatment comparability assumption

E[Yi|c⌧ ]� E[Yi|C1

] = E[Yi|C1

+ (c⌧ �C

1

)| {z }
�C

]� E[Yi|C1

] = E[Yi|C2

]� E[Yi|C1

] (9)

where C

2

= C

1

+ �C. This assumption states that the change in expected outcomes between a period where

c⌧ is realized relative to outcomes conditioned on a benchmark climate C

1

is the same as the change in expected

outcomes if the distribution characterized by C

1

were distorted by adjustments to climate parameters by �C,

defined as the di↵erence between the realized measures c⌧ and the climate values C
1

, to create a new distribution

characterized by C

2

(see Figure 1). In other words, marginal treatment comparability assumes that the e↵ect of

a marginal change in the distribution of weather is the same as the e↵ect of an analogous marginal change in the

climate. Because this assumption has been widely debated, in following subsections I propose a partial test of this

assumption and derive some conditions under which it holds exactly.

In a linear framework, this approach is usually implement using either time-series or panel data via a regression

equation of the form

Yi⌧ = ↵̂i + ci⌧ �̂TS + xi⌧ �̂ + ✓̂

(i)(⌧) + ✏̂i (10)

where ↵̂i are unit-specific fixed e↵ects that absorb the e↵ect of all time-invariant factors that di↵er between units,

including unobservables that could not be accounted for in the cross-sectional research design. ✓̂
(i)(⌧) are trends

in the outcome data, often accounted for using period fixed-e↵ects and/or linear or polynomial time trends, which

may be region- or unit-specific.

This approach was probably first proposed by Huntington (1922) who argued, “The ideal way to determine

the e↵ect of climate would be to take a given group of people and measure their activity daily for a long period,
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Figure 1: Illustration of themarginal treatment comparability assumption, adapted from Deryugina & Hsiang (2014).
(A) expected annual distribution of daily temperatures for Middlesex county, Massachusetts, a characterization of
the climate C

1

. (B) Black-outlined bars are an example weather summary c⌧ of temperature realizations, in the
form of a distribution, during period ⌧ , overlaid on C

1

. (C) Di↵erence between a climate C

2

, with structure
identical to the realized distribution of weather c⌧ in (B), and the initial climate C

1

in (A). (D) Di↵erence between
the realized distribution of weather and the climate: c⌧ �C

1

. The marginal treatment comparability assumption
states that the e↵ect of the change in the weather distribution in panel (D) is the same as the e↵ect of the change
in the climate distribution in panel (C).

first in one climate, and then in another,” and implemented analogs to Eq. 10 using factory-worker data. This

approach gained prominence in modern economic analysis when used by Deschênes & Greenstone (2007), who

analyzed whether agricultural profits in US counties responded to “random fluctuations in weather.”

The core benefit of this approach is that it accounts for unobservable di↵erences between units, eliminating a

potential source of omitted variables bias. However, this approach still remains vulnerable to omitted variables bias

if there are important time-vary factors that influence the outcome and are correlated over time with ci⌧ or xi⌧

after conditioning on trends ✓
(i)(⌧). It is usually assumed that variations in ci⌧ over time are exogenous to changes

in social and economic changes since they are driven by stochastic geophysical processes, but Hsiang (2010) pointed

out that many dimensions of ci⌧ are correlated over time because they are partially driven by the same processes—

e.g. temperature, rainfall and hurricanes are all modulated by ENSO—so �̂TS may be biased if important climatic

variables are omitted. A separate concern raised by Au↵hammer et al. (2013) and Hsiang et al. (2015) is that

weather data might not be orthogonal to socio-economic conditions because weather-reporting is endogenous. The

extent to which these two issues a↵ect the literature as a whole remains unknown.

Some authors introduce time-varying non-climatic factors as controls in Eq. 10, such as crop prices or avoidance

behavior, although Hsiang et al. (2013) caution that this may introduce new biases if these factors are endogenous

and a↵ected by climatic events, a situation known as “bad control” (Angrist & Pischke, 2008).

A special case of the time-series research design are cohort analyses, such as Maccini & Yang (2009) who

examined the long-term e↵ects of rainfall during childhood among girls in Indonesia. In these implementations,

sequential cohorts within a location i are assumed to be comparable to one another conditioning on xi⌧ , di↵ering

only in their exposure to sequential realizations of ci⌧ . This represents a strengthening of the unit homogeneity

assumption, since sequential cohorts within i are di↵erent populations that are assumed to be comparable.

2.1.3 A hybrid approach: long di↵erences

An approach that aims to compromise between the strengths and weaknesses of cross-sectional analysis and time

series identification is the long di↵erences strategy, where changes for both the outcome and the climate within

locations are correlated across locations. Long di↵erences is a cross-sectional comparison of changes over time,
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which for two periods of observation {⌧
1

, ⌧

2

} is implemented with the regression

Yi⌧2 � Yi⌧1 = ↵̂+ (ci⌧2 � ci⌧1)�̂LD + (xi⌧2 � xi⌧1)�̂ + ✏̂i (11)

where ↵̂ represents the secular change in Y over time and �̂LD represents the extent to which trends in climate are

correlated across space with trends in Y . This approach is known as “long” di↵erences because it is primarily used

to test whether gradual changes in c induce gradual changes in Y , so ⌧
1

and ⌧
2

are usually chosen to be two periods

far apart in time. When long-di↵erences has been implemented to measure the e↵ects of climate on growth (Dell

et al., 2012), crop yields (Burke & Emerick, forthcoming; Lobell & Asner, 2003), and conflict (Burke et al., 2015b),

authors have found that �LD is almost identical to �TS , leading them to conclude that gradual changes in c likely

induce similar e↵ects to more rapid changes in c.

The benefit of long di↵erences, relative to time-series analyses that use short di↵erences, is that the marginal

treatment comparability assumption in Eq. 9 might be more plausibly satisfied since changes in c are gradual—

although a weakness of this approach relative to pure cross-section is that some form of this assumption is still

required. The benefit of this approach relative to pure cross-sectional analyses is that it requires a weaker form

of the unit homogeneity assumption where only changes in Y are assumed comparable across units rather than

requiring levels of Y to be comparable, but this assumption remains stronger than the weak within-unit homogeneity

assumption required for time-series identification. This tension between the marginal treatment comparability

assumption and the unit homogeneity assumption is an overarching challenge to research design in this literature,

discussed below.

2.2 Tradeo↵ between low-frequency variations and credible identification

The extent to which Eq. 10 identifies direct e↵ects and belief e↵ects of the climate is often thought to depend on

the lengths of periods over which the distribution  (ci⌧ ) is summarized, that is t̄ � t. Because belief e↵ects are

caused by agents responding to the belief that they face a probability distribution of outcomes described by Ci⌧ , the

extent to which these e↵ects are captured by Eq. 10 likely depends on agent’s belief that changes in the distribution

of realized measures ci⌧ reflects changes in the prior probability of those events occurring. It is widely assumed

that agents facing events vit for long ⌧ will update their beliefs over Ci⌧ whereas agents experiencing experiencing

events during a short period—perhaps for a period only five minutes long—will not alter their beliefs over Ci⌧ for

that interval. Thus, while individuals might experience the direct e↵ects of climatic events during short ⌧ , they

may be unlikely to alter their beliefs about the climate they face because of a short-lived event.

Because of this logic, it is widely thought that low-frequency data (long �⌧ = ⌧

2

�⌧
1

= t� t for regularly spaced

data) is required to measure belief e↵ects when using time-series variation, since populations only adjust their

beliefs if environmental changes are persistent. In the limit that frequencies of ci⌧ exploited by the econometrician

approach zero (i.e. the length of �⌧ approaches infinity), the research design actually approaches the pure cross-

sectional analysis in Eq. 8. Thus, the motivation to exploit low-frequency data in time-series designs mirrors the

motivation of cross-sectional analysis as they are both thought to capture both direct e↵ects and belief e↵ects of

climate changes. Early examples of this approach were Zhang et al. (2007) and Tol & Wagner (2010), both of

whom apply a low-pass filter to climatic variables before estimating Eq. 10. A related alternative approach is to

use climate data sampled at a low frequency, implemented by Bai & Kung (2011) who count droughts over each

decade to form each observation in a millenial-scale time series.

While exploiting low-frequency variations in c is appealing because such an approach might capture both direct

and belief e↵ects, it comes at the cost of less credible identification, an issue highlighted by Hsiang & Burke (2014)
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Figure 2: (A)-(D) Example outcome and climate time series data from Grand Traverse, Michigan filtered at di↵erent
frequencies. (A) raw annual degree-days data (black) and 30 year long-di↵erence (maroon) following Burke &
Emerick (forthcoming). (B) Same data decomposed into time-series at di↵erent frequencies, where a Baxter-King
band-pass filter has been applied for di↵erent periodicities. Filtering causes loss of data at start and end of time
series. (C) same as (A) but for corn yields. (D) Same as (B) but for corn yields. Comparison of estimated e↵ect
of daily temperature using raw panel data sets, filtered data sets, long di↵erences, and cross-sectional approaches.
Sample and estimation indicated by both line and bracketed numbers.

as the frequency-identification tradeo↵. The unit homogeneity assumption for time series identification is

E[Yi⌧ |C,xi⌧ ] = E[Yi,⌧+�⌧ |C,xi,⌧+�⌧ ] (12)

where units of observation are assumed to be comparable across periods of observation. However, as the frequency

(1/�⌧) of observation becomes lower, the assumption that Yi⌧ and Yi,⌧+�⌧ are comparable becomes increasingly

di�cult to justify. For example, populations separated by multiple centuries might not be comparable units.

The tension between credible identification and use of low-frequency climate variation is not easily resolved if

populations do not update their beliefs about the climate more quickly than these populations naturally change

in other fundamental ways. In cases where belief e↵ects are large relative to direct e↵ects, then the frequency-

identification tradeo↵ may represent a major challenge to credible identification of the total e↵ect of the climate.

Importantly, however, if the primary way in which belief e↵ects manifest is to alter the direct e↵ects of the climate—

i.e. belief e↵ects are mostly adaptations designed to cope with direct e↵ects—than total e↵ects of climate still may

be nearly identified with high-frequency time-series. Even when this condition is not satisfied, exact identification

may still be possible, as shown in Section 2.4.

2.3 A partial test of marginal treatment comparability

Unit homogeneity assumptions can be weakened but never tested or eliminated entirely, a fundamental limitation

in causal inference generally. However, it may be possible to implement a partial test of the marginal treatment

comparability assumption by comparing whether estimated e↵ects are similar when using approaches that exploit

climatic variations at di↵erent temporal frequencies. If �̂CS = �̂LD = �̂TS , i.e. the e↵ects of high frequency

changes equal the e↵ects estimated with long di↵erences and in cross-section, then one possible explanation is that

the marginal treatment comparability assumption is valid and temporary changes in realizations of c have similar

e↵ects to analogous changes in C. This could be true if the sum of all belief e↵ects are small on net. Versions of

these di↵erent comparisons were implemented and discussed in Burke & Emerick (forthcoming); Dell et al. (2009);
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Hsiang & Jina (2015); Lobell & Asner (2003); Schlenker & Roberts (2009) and Burke et al. (2015b), where any

di↵erence in estimated e↵ects were attributed to “adaptations” to climate, i.e. belief e↵ects that interact with

direct e↵ects. However, a known di�culty is that the strength of this test relies directly on the validity of the

di↵erent unit homogeneity assumptions used in each of the models compared. It is theoretically possible to obtain

�̂CS = �̂LD = �̂TS by chance even if all key assumptions are violated, so long as biases have countervailing e↵ects.

Building on these earlier partial tests, I propose that the credibility of this approach can be further strengthened

by estimating climate e↵ects using a spectrum of data that has been filtered at all di↵erent temporal frequencies.

If the estimated e↵ect of changes in c is stable across all temporal frequencies spanning from unfiltered time-series

data to long-di↵erences and the zero-frequency cross-section, then it seems less plausible that omitted variables

biases at di↵erent frequencies are exactly o↵setting belief e↵ects and more plausible that the marginal treatment

comparability assumption is valid. The idea for this test comes from the observation that a time series of the kth

element of the vector c can be decomposed into the Fourier series

ck⌧ = a

k
0

+
1X

!=1

⇥
a

k
! sin(!⌧) + b

k
! cos(!⌧)

⇤
(13)

where ak! and b

k
! are constants representing projections onto the basis functions sine and cosine at varying frequencies

!. ak
0

is a constant, analogous to a long-run average (i.e. ! = 0). Outcome data Y can be similarly decomposed. If

we can find appropriate filters that allow us to isolate only certain frequency bands [!, !̄], then we can estimate Eq.

10 using these filtered data and obtain �̂[!,!̄]

TS , the estimated relationship between climate variables and an outcome

at each time scale. As time scales become longer (frequencies lower) then this estimate should continuously approach

the long-di↵erences estimate and eventually the cross-sectional estimate if the marginal treatment comparability

assumption is valid and these estimates are unbiased.

To demonstrate this test, I obtained panel data on annual county-level maize yield, temperature, and rainfall

used in Schlenker & Roberts (2009), updated to the year 2014 and restricted to the 730 counties east of the 100th

meridian that had no missing observations. I then applied a Baxter-King approximate band-pass filter (Baxter

& King, 1999) to all three variables for various frequencies and estimated Eq. 10 with each set of filtered data.

Figure 2 shows the e↵ect of temperature on yields at these various time-scales overlaid with estimates of �̂TS as

in Schlenker & Roberts (2009), �̂LD as in Burke & Emerick (forthcoming) and �̂CS as in Schlenker et al. (2006).

In all cases, except the cross-section, these estimated e↵ects are near one another and not statistically di↵erent,

suggesting that variations in temperature over time have similar e↵ects on maize yields in this context, regardless of

the time-scale of these variations. The uniqueness of the cross-sectional estimate could be explained either by belief

e↵ects that emerge only at time scales longer than 33 years (the longest time-scaled of filtered data) or omitted

variables bias—although the fact that �̂CS changes substantially (to more closely resemble time-series estimates)

when rainfall terms are omitted highlights the vulnerability of the cross-sectional approach to misspecification.

Nonetheless, these results overall appear consistent with an assumption of marginal treatment comparability in this

context, at least for time scales shorter than 33 years.

2.4 Exact identification of climate e↵ects using weather variation

Why should low and high frequency variations in climatic variables ever provide comparable treatments? It is

possible that cross-section, time-series, long di↵erence, and filtered data all provide similar parameter estimates for

� by chance, such that the above test of marginal treatment comparability paints a misleadingly consistent picture of

climate e↵ects and weather e↵ects that are not related. Such critiques, relying on heuristic arguments, are common

in the literature. Nonetheless, there is actual theoretical justification for the marginal treatment comparability

assumption. In this section I provide a new derivation demonstrating how, under certain conditions, the total e↵ect
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of climate can be exactly recovered using �̂TS derived from weather variation. In essence, this result is a combined

application of two well known results, the Envelope Theorem and the Gradient Theorem.

The intuition of the result is as follows. Imagine there are two otherwise identical households that are next-door

neighbors on a street that runs North-South. The more northern household faces a very slightly di↵erent climate

because it is very slightly further north. The di↵erence in climate faced by the two households is vanishingly small,

but nonzero. These two households have the ability to adapt many dimensions of their daily life to their beliefs

about their respective climates and will adopt slightly di↵erent behaviors and investments that maximize various

outcomes, generating belief e↵ects. However, if we focus on outcomes that are maximized by the households, then

the overall net e↵ect caused by these slightly di↵erent adaptation decisions is zero because any marginal benefits

that the northern household reaps are exactly o↵set by additional marginal costs (since the household is at a

maximum). Therefore, any di↵erence in the optimized outcome between the two households must come from to the

direct e↵ects of the slightly di↵erent climate and the influence of slightly di↵erent beliefs and adaptations between

the two households can be ignored. If a weather realization occurs such that the southern household experiences

conditions that are slightly di↵erent from what they expect and its distribution of weather actually matches the

climate of the northern household, then this “weather e↵ect” on the optimized outcome of the southern household

must be exactly the same as the cross-sectional di↵erence across the two households in a year when their weather

realizations match their respective climates perfectly—since in both cases there is no influence of changing beliefs

on the optimized outcome. Stated simply, the marginal e↵ect of the climate on an optimized outcome is exactly

the same as the marginal e↵ect of the weather.

Based on this insight, we can trace out a curve describing climate e↵ects between sequential neighbors by watch-

ing how optimized outcomes in each household change when that household is confronted by a weather distribution

that matches the climate of their immediate next-door neighbor. The integral of these marginal di↵erences between

sequential neighbors must then describe how the climate generates larger di↵erences between households that are

not adjacent neighbors and experience climates that di↵er by a non-marginal amount. Importantly, this integration

procedure does not assume that individuals do not adjust their beliefs and adapt to their climate. Rather, the

marginal e↵ect of such adjustments for marginal climate changes is zero on an optimized outcome, so marginal

e↵ects of weather—which do not cause beliefs to change—can be used as a substitute for marginal climate changes

in the integration, despite the presence of changing beliefs and adaptations.

To see this result formally, consider an outcome of interest Y that may be a↵ected by the climate C through its

e↵ect on weather realizations c and actions b, and which is optimized so it can be written as a value function, i.e.

the solution to a maximization problem over an outcome-generating function z(b, c). If we assume z is di↵erentiable

and concave in b, then there will be a unique optimum b

⇤(C) for each climate:

Y (C) = Y (b⇤(C), c(C)) = max
b2RN

z(b, c(C)) (14)

recall the notation c(C) means weather realization c generated from climate C. Note that maximization of z

is allowed to occur through some indirect process, such as e�cient market allocations, and need not result from

explicit maximization by agents. Figure 3A plots the outcome surface z for an example case where C, c, and b

each have only one dimension. For each value of C, b⇤ is chosen to maximize z so the outcome Y observed is the

locus of optima along the red line.

Let C
1

be a benchmark climate at which we are evaluating Y (C). If we di↵erentiate Y by the kth element of

C, by the chain rule we have

dY (C
1

)

dCk
=

@z(b⇤(C
1

), c(C
1

))

@Ck
+

NX

n=1

@z(b⇤(C
1

), c(C
1

))

@bn

dbn

dCk
+

KX

=1

@z(b⇤(C
1

), c(C
1

))

@c

dc
dCk

(15)
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Figure 3: (A) Outcome generating function z(c,b) over weather outcome c(C) that reflects the climate and decision
variable b(C) that responds to beliefs about the climate. An implicit fourth dimension not pictured is climate C,
where we let E[c(C)] = C for simplicity. Red line is the value function Y (C), the optimum achieved via maximization
over z(.), conditional on a given value for c(C) = C, which agents cannot control. (B) Rotated view looking at
the c-Y plane. Local variations in the outcome due to small changes in weather (blue arrows) are tangent to the
locus of optima. (C) Rotated view looking at the b-Y plane. The locus of optima (red line) are achieved because
of “adaptation” to changes in climate, indicated by shifts in the b dimension. If agents beginning at C

1

could not
adapt, they would be constrained to points on the outcome generating function along the blue line. (D) Same view
as (B). Red is Y (C) for location i = 1. The locus of points along the “no adaptation” blue curve (as in C) lies below
the actual optimum for all values except C

1

. Green is extrapolation of the marginal e↵ect of the climate measured
at C

1

. Orange is Y (C) for location i = 2, where the integration constant �i is di↵erent than for i = 1. Dashed
black line is the cross-sectional relationship that would be recovered if Yi=1

(C
1

) and Yi=2

(C
2

) were the sample.
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where
@z

@Ck
= 0 (16)

since the climate, as a probability distribution, cannot a↵ect any outcome by a pathway other than through the

weather realizations it causes and actions based on beliefs regarding its structure. Because Y is the outcome when

z has been optimized through all possible adaptations, and it is di↵erentiable in b, we also know

@z(b⇤(C
1

), c(C
1

))

@bn
= 0 (17)

for all N dimensions of the action space. Thus Eq. 15 simplifies to

dY (C
1

)

dCk
=

KX

=1

@z(b⇤(C
1

), c(C
1

))

@c

dc
dCk

=
KX

=1

@Y (C
1

)

@c

dc
dCk

(18)

Noting that for any marginal change in the distribution of weather, there exists a marginal change in climate that

is equal in magnitude and structure such that

dc
dCk

=

(
1 for  = k

0 otherwise
(19)

focusing only on these analogous measures of weather and climate5, we have

dY (C
1

)

dCk
=
@Y (C

1

)

@ck
(20)

which says that the total marginal e↵ect of the kth dimension of the climate, evaluated at C

1

, is equal to the

partial derivative of the outcome with respect to the same dimension of weather, also evaluated at C
1

. Locally, the

marginal e↵ect of the climate on Y is identical to the marginal e↵ect of the weather. Eq. 20 implies that Eq. 9,

the marginal treatment comparability assumption, holds.

The equivalence between marginal e↵ects of climate and weather can be used to construct estimates for non-

marginal e↵ects of the climate by integrating marginal e↵ects of weather. For an arbitrary climate C

2

, we know

from the Gradient Theorem that we can solve for Y (C
2

) by computing a line integral of the gradient in Y along a

continuous path through the k-dimensional climate space from C

1

! C

2

, starting from Y (C
1

):

Y (C
2

) =

Z C2

C1

dY (C)

dC
· dC+ � =

Z C2

C1

@Y (C)

@c

· dC+ � =

Z C2

C1

rcY (C) · dC+ � (21)

where the substitution from Eq. 20 is made for each of the K elements of the gradient vector rcY (C) =h
@Y (C)

@c1
, ...,

@Y (C)

@cK

i
. Here, � = Y (C

1

) is the constant of integration, which is usually unknown—although, in

virtually all applications, changes in Y are the focus of investigation and integration constants are di↵erenced out.

The vector of di↵erentials rcY (C) describes all the marginal e↵ects of the weather measured “locally” at C, which

can be estimated empirically by restricting the sample of observations to those near C and applying Eq. 10

rcY (C) = �̂TS

���
C
. (22)

This estimate can then be substituted into Eq. 21 to construct an exactly identified change in Y that occurs as the

5Focusing only on e↵ects of climate and weather where  = k is consistent with interpreting multiple regression coe�cients as causal
e↵ects of Ck when other dimensions of C are fully and simultaneously accounted for.
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climate is varied from C

1

to C

2

, in the presence of adaptation adjustments in b, using only time-series estimates:

Y (C
2

)� Y (C
1

) =

Z C2

C1

�̂TS

���
C
· dC. (23)

The di↵erence in outcomes due to a change in the climate is computed by integrating a sequence of of weather-

derived marginal e↵ects evaluated at each intermediate value of C. Figure 3B illustrates this integration along the

“envelope” of the function z(.), and Figure 3C demonstrates how the locus of points along this integration allows

for all adaptations to climatic changes that occur through adjustment of b, reflecting beliefs that evolve with C. As

illustrated in Figure 3D, the integral in Eq. 23 di↵ers from extrapolation of marginal weather e↵ects (green line)

or changes along a path on the outcome-generating function z(.) where b is held fixed, which would occur if agents

were constrained not to adapt (blue curve).

To summarize: If the outcome is a solution to a maximization problem (Eq. 14) for a function z(.) that is

continuous and di↵erentiable in the space of all adaptive actions b, then by application of the Envelope Theorem

(Eq. 18) we know that the marginal e↵ect of the climate is exactly the same as the marginal e↵ect of an equally

structured change in the weather distribution (Eq. 20), if both are evaluated locally relative to an initial climate.

By the Gradient Theorem we know that a sequence of marginal e↵ects of the weather empirically estimated via

time-series variation at sequential values of C can then be integrated to compute the e↵ect of non-marginal climate

changes (Eq. 23).

Note that this result does not depend on the nature of individuals’ expectations.

It is straightforward to extend this result to cases where the climate exerts direct e↵ects on the outcome by

altering a constraint on a maximization problem, rather than entering through arguments to the maximand (Mas-

Colell et al., 1995).

The black curve in Figure 3D demonstrates how a cross-sectional regression, as in Equation 8, may produce

di↵erent results than the integration of weather e↵ects proposed here. Cross-sectional analysis does not di↵erence

out the integration constant �, so if �i=1

6= �i=2

for pairs of observations, then a cross-sectional regression will not

recover the red curve. In order for the cross-sectional regressions to recover the e↵ect of C on Y in this context, we

require all of the above assumptions as well as the additional assumption that integration constants are identical:

d�

di
= 0 (24)

which implies the strong form of the unit homogeneity assumption that units are comparable in levels conditional

on the climate (Eq. 6). Thus the set of assumptions necessary for valid cross-sectional identification in this setting

is strictly larger than the set of assumptions required for valid time-series identification.

To my knowledge, the above result has not been previously established and as such, existing empirical papers

leveraging weather variation do not explicitly check the assumptions critical to this result: that Y is the solution

to a [constrained] maximization, that adaptations b take on continuous values, and that the maximand function

z(.) is di↵erentiable in b. Furthermore, many prior studies do not properly compute climate e↵ects via Eq. 23,

with the notable exception of Schlenker et al. (2013) and Houser et al. (2015), who essentially implement a form

of this approach explicitly. Total e↵ects of climatic changes in Eq. 23 are also computed correctly in studies

where marginal e↵ects of weather are allowed to change based on underlying climatic conditions, and these evolving

marginal weather e↵ects are integrated to compute the cost of shifting climatic conditions, as in Hsiang & Narita

(2012) and Burke et al. (2015c). Finally, those studies where the marginal e↵ects of weather are approximately

invariant in climate, such as Ranson (2014) and Deryugina & Hsiang (2014), also basically estimate Eq. 23 when

they linearly extrapolate weather e↵ects since the two calculations are equivalent.
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Figure 4: Examples of innovations in climate measurement. (A) Construction of degree days measures using hourly
temperature data interpolated between daily minimum and maximum temperature in Schlenker & Roberts (2009).
(B) Wind field model used to reconstruct wind exposure along the path of tropical cyclones (inset is computed
exposure of super typhoon Joan) in Hsiang & Jina (2014). (C) Identification of “teleconnected” pixels (red) that
have temperature and rainfall strongly coupled to the El Niño-Southern Oscillation in Hsiang et al. (2011). (D)
Example rainfall distributions used to construct “rainy days” count as a measure of within-year rainfall dispersion
across two years with similar total rainfall in Fishman (2016).

3 MEASUREMENT OF CLIMATE VARIABLES

The measurement of climate variables is a critical methodological step in identifying climate e↵ects, regardless of

the research design used. Early analyses concerned only with measuring whether climatic factors had a non-zero

e↵ect, or the sign of an e↵ect, used simple measures of climate such as “latitude” or a single indicator variable

that is one if a population is exposed to a predefined event (e.g. a drought) and zero otherwise. This approach

is internally valid, but has important limitations often under-appreciated in the literature. First, coarse climate

measures introduce large measurement errors that will cause attenuation bias, leading to under-rejection of the null

hypothesis. Second, the structure of a dose-response function

E[Y |c] = f(c) (25)

15



is often of interest, for example we may be interested in nonlinearities or whether multiple dimensions of climate

interact in important ways, requiring measures of climate variables be near continuous and multidimensional.

Third, if measures of c do not reflect scalable physical quantities in the real world, we may have little confidence

that estimated e↵ects are externally valid to other locations or to periods when the climate may change, for example

it is impossible to consider how cyclone intensification may a↵ect outcomes if cyclone exposure is measured only

as binary variable. Fourth, pooling a sample of di↵erent locations may provide a valid average treatment e↵ect of

climatic conditions on the sample, but it may be a poor predictor of outcomes at any actual locations if the physical

properties of events coded as similar are not actually physically similar. Finally, the result derived in the previous

section, that time-series variations can be used to exactly identify marginal e↵ects of the climate, can only hold if

climatic variations are measured in such a way that an econometrician can identify marginal e↵ects—for example,

binary treatments are not di↵erentiable and so it may be di�cult to determine if changing from “no treatment” to

“treatment” is a marginal change.

For all of the above reasons, many of the major innovations in the literature over the past decade have resulted

from improvements in the measurement of climate variables, contributing at least as much to recent advances, if

not more, than functional form innovations (discussed in the next section). For example, using spatial interpolation

techniques, Schlenker & Roberts (2009) developed estimates of temperature with high spatial and temporal resolu-

tion, allowing them to construct precise measures of “degree-days” that integrate cumulative exposure to specific

temperature ranges (Fig 4A). Deschênes & Greenstone (2011) introduced a related approach where days are counted

based on their average temperature6. Yang (2008) estimated the e↵ect of tropical cyclones by coding a storms’

maximum windspeed at landfall, an approach enriched further by Nordhaus (2010) and Mendelsohn et al. (2012)

who use additional landfall statistics; Hsiang (2010) expanded measurement of cyclone exposure by integrating wind

speed exposure at all points throughout the lifetime of a storm (Fig 4B). Guiteras et al. (2015) implemented a novel

technique for detecting surface flooding using satellite imagery. Au↵hammer et al. (2006) used an atmospheric

circulation model to estimate overhead aerosol exposure. Hsiang et al. (2011) developed a method to identify the

ENSO exposure of countries (Fig 4C). Fishman (2016) utilized several metrics to characterize the evenness of rain-

fall distributions that are similar in total rainfall (Fig 4D). In several cases, researchers find that established linear

or nonlinear transformations of fundamental climatic measures, such as temperature, rainfall, and humidity, are

useful in explaining patterns of outcomes, such as standardized precipitation evapotranspiration index (Harari &

La Ferrara, 2013), drought indices (Couttenier & Soubeyran, 2014), vapor pressure deficit (Urban et al., 2015), heat

indices Baylis (2015), or malaria ecology indices McCord (forthcoming). In all cases, these various measures can

be understood as approaches to collapsing the dimensionality of c in a manner that e�ciently describes patterns

that matter from an economic or social standpoint. In most of these cases, alternative approaches to measuring

climate variables cannot be viewed as objectively wrong, rather there are many ways of describing data in c that do

not e�ciently describe those components of variation that most strongly influence the outcomes of interest. Blunt

climate measures are not wrong, they just introduce large measurement errors.

Particular caution is needed when applying the natural logarithm transformation, standard in many economic

applications, to climate measures since it is not always sensible. For example, using log(temperature) in Eq.

10 is challenging to interpret because a 1% change in temperature—used in the interpretation of the resulting

coe�cients—has di↵erent meaning depending on whether temperature is measured in Fahrenheit, Celsius, or Kelvin.

In other cases, such transformed data can be fit to a model but the standard interpretation is inconsistent with

physical phenomena, for example Nordhaus (2010) and Mendelsohn et al. (2012) model hurricane damage using

log(windspeed) and conclude that damage is “super-elastic” because it appears to grow up to six exponents faster

than the energy of the storm—a misinterpretation that is readily reconciled with physics when the log transformation

is simply not applied (Camargo & Hsiang (2016)).

6See Deryugina & Hsiang (2014) for a derivation of this approach.
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Many dimensions of the climate, such as persistent drought and sea level, remain poorly captured in econometric

models due to measurement challenges and future innovations will further improve our understanding of these

climate e↵ects substantially.

4 ECONOMETRIC MODELS

Having selected a research design and constructed appropriate climate measures, an econometrician must select

a model that is fit to the data. Here I discuss five aspects of modeling that have been particularly important in

measurement of climate e↵ects: nonlinearities, displacement, uncertainty, adaptation, and cross-study comparisons.

The discussion here is focused on the measurement of climate e↵ects applying a reduced form approach to

construct a dose-response surface. Such an approach does not necessarily specify a single pathway through which

the climate a↵ects social outcomes, and in many cases it is likely that several pathways play a role. Hsiang et al.

(2013) suggest that in order to reject potential pathways in any given context, researchers must look for natural

experiments in which a particular pathway is obstructed due to external factors and then examine whether reduced

form e↵ects persist—Sarsons (2015) and Fetzer (2014) are useful examples of this strategy.

It is worth noting that a large number of studies in economics utilize variation in weather as an instrumental

variable to study the e↵ect of an intermediary variable on an outcome. This strategy relies on the assumption

of an exclusion restriction, i.e. the employed weather variation only a↵ects the outcome through the specified

intermediary variable. This assumption is untestable, although the large number of studies utilizing exogenous

variation in weather to study a large number of outcomes through various proposed pathways seems itself evidence

that this assumption cannot be true in many cases.

4.1 Nonlinear e↵ects

The interpretation of nonlinear e↵ects, and their estimation, depends heavily on whether observations are highly

resolved in space and time or whether they are highly aggregated. Because weather data are often available at high

resolution, even when outcome data is not, it is often possible to recover micro-level response functions, below the

level of aggregation in the outcome data, by carefully considering the data generating process.

4.1.1 Recovering local, micro-level, and instantaneous nonlinear e↵ects

Local e↵ects of climatic variables are often nonlinear in important ways, such as extreme cold days and extreme

heat days generating excess mortality (Deschênes & Greenstone, 2011) or extreme heat hours causing damage to

crop yields (Schlenker & Roberts, 2009). In some cases, such as Gra↵ Zivin & Neidell (2014) and Aroonruengsawat

& Au↵hammer (2011), outcomes are measured at the same daily frequency as these nonlinear e↵ects manifest,

rendering their measurement straightforward using standard techniques. However, in most cases nonlinear e↵ects

manifest over time-scales (e.g. hours) and spatial scales (e.g. pixels) that are much finer than the periodicity and

spatial scale at which outcome data is measured (e.g. annually by country). Similarly, local e↵ects may di↵er

between multiple locations within a unit of observation. Despite aggregation of the outcome across space and over

moments in time, it is possible to recover nonlinear relationships at the spatial and temporal scale at which climatic

data is recorded. Suppose outcome Yi⌧ is observed over regions i (e.g. provinces) made up of more finely resolved

positions s (e.g. pixels) during intervals of time ⌧ (e.g. years) made up of shorter moments t (e.g. days). Let the

“instantaneous” nonlinear e↵ect of climate at a moment and position be f(cst), which we approximate as a linear

combination of M simple nonlinear functions (e.g. polynomial terms)

f(cst) ⇡ �

1

f

1

(cst) + �

2

f

2

(cst) + ...+ �MfM (cst) =
MX

m=1

�mfm(cst) (26)
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of units of analysis gs, in this case the spatial distribution of croplands (B). This aggregation means that if climate
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will generate an aggregate response to aggregated climate measures that is generally smoother (E). Adapted from
Burke et al. (2015c).

where the �’s are constant coe�cients. In practice, f(.) has been successfully modeled as an M -piecewise linear

function–as in degree-day models–or anMth order polynomial or restricted cubic spline (Miller et al., 2008; Schlenker

& Roberts, 2009) or interactions between multiple climate measures (Urban et al., 2015), options which have

e�ciency and (local) di↵erentiability benefits, or aM -piecewise constant or “binned” function (Deryugina & Hsiang,

2014; Deschênes & Greenstone, 2011), a flexible nonparametric option.

Under the assumption of temporal and spatial separability, i.e. that the outcome of interest is a linear sum of

f(.) across positions and moments, weighted by the number of a↵ected economic units gs (e.g. crop fields) at those

positions, then the regressions in Eqs. 8, 10 and 11 are modified to the form

Yi⌧ = ↵i +

"
X

s2i

X

t2⌧

�mf(cst)gs

#
+ xi⌧� + ✓

(i)(⌧) + ✏i⌧ (27)

where the index and functions of ⌧ and region e↵ects ↵i are omitted in the cross-sectional case. Notably, as

demonstrated in Welch et al. (2010), the structure of f(.) may di↵er between sub-periods in ⌧ so that Eq. 27

becomes

Yi⌧ = ↵i +

"
X

s2i

 
X

t2⌧a

�

a
f

a(cst)gs +
X

t2⌧b

�

b
f

b(cst)gs

!#
+ xi⌧� + ✓

(i)(⌧) + ✏i⌧ (28)

if ⌧a and ⌧b represent a partition of period ⌧ . Focusing on Eq. 27 for simplicity, we can substitute the approximation
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from Eq. 26 and interchange the order of summation to obtain

Yi⌧ ⇡ ↵i +

"
X

s2i

X

t2⌧

 
MX

m=1

�mfm(cst)gs

!#
+ xi⌧� + ✓

(i)(⌧) + ✏i⌧

= ↵i +
MX

m=1

�m

"
X

s2i

X

t2⌧

fm(cst)gs

#

| {z }
˜fmi⌧

+xi⌧� + ✓

(i)(⌧) + ✏i⌧

= ↵i +
MX

m=1

�mf̃mi⌧ + xi⌧� + ✓

(i)(⌧) + ✏i⌧ (29)

which can be estimated with a linear regression using data at the region-period (i⌧) level. Note that the regressors

f̃mi⌧ are weighted sums across space and time of the mth nonlinear function evaluated at locations s and moments t

that are not resolved in the outcome data. Estimation of Eq. 29 via regression recovers estimates for �m describing

the local and instantaneous function f(.), even though it uses coarser data.

4.1.2 Nonlinearity in regional summary measures due to local nonlinearities

Many analyses do not estimate Eq. 29 but instead examine whether nonlinear relationships exist between summary

statistics of climate data and aggregated outcome data, usually because constructing f̃ involves highly disaggregated

climate data and is therefore challenging. The most common summary statistic of cki⌧ , the kth element in ci⌧ , is

an weighted average value over region i and period ⌧

cki⌧ =
X

s2i

X

t2⌧

ckstgs, (30)

for example, Dell et al. (2012) construct measures of population-weighted average temperature over entire countries

during an entire year. These region-by-period summary statistics may then be used to construct regressors in a

nonlinear model, such as the Q-order polynomial

Yi⌧ = ↵̂i +
QX

q=1

�̂q (cki⌧ )
q + xi⌧ �̂ + ✓̂

(i)(⌧) + ✏̂i⌧ , (31)

a widely used approach. Eq. 31 di↵ers from Eq. 29 such that the two approaches should not recover identical

coe�cients, even if the micro-level nonlinear data generating process is unchanged. Burke et al. (2015c) demon-

strated that the marginal e↵ects recovered in Eq. 31 should equal the weighted-average marginal e↵ect at the

local level (as estimated in Eq. 29), averaged across locations and moments, that are associated with a one unit

shift in the distribution of local climatic conditions (Figure 5). Importantly, it is the spatial covariance between

weights gs and climatic conditions within periods of observation that determines how local nonlinear e↵ects appear

in region-level models like Eq. 31. In general, a wider dispersion of conditions experienced across locations and

moments within a summarized region leads to greater smoothing and flattening of the response in Eq. 31 relative

to the local instantaneous response (Figure 5C-E). Thus, we expect that larger and more heterogenous regions with

longer periods of observation should produce smoother and flatter responses to summary climate measures, even if

local nonlinear e↵ects are unchanged.

4.1.3 Global nonlinear e↵ects

The distribution of climatic conditions experienced over time within one region often di↵ers substantially from

distributions in other regions. In these cases, marginal e↵ects should di↵er if response functions are nonlinear.
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climates (A) may result from an interaction with average climatic conditions (B). In a panel data setting, this can
be modeled using an interaction (C) where each panel unit is a local linearization of a nonlinear function, or a
global nonlinear function can be estimated using the full sample (D).

Marginal e↵ects that change as a function of mean climate conditions are easily modeled as an interaction between

average climatic conditions and realizations of climatic variables such that

@Yi⌧

@ci⌧
= �(c̄i) (32)

as illustrated in Figure 6A-B. Should an underlying global nonlinear response exist, it can be recovered by estimating

a single model that is nonlinear in climate variable realizations, with a response surface that is only locally identified

by the time-series variation among units that experience realizations in the neighborhood of a tangency point. This

is conceptually analogous to integrating Eq. 32 to recover the global response surface (Figure 6C-D), which holds

exactly as lim ci⌧ ! c̄i.

4.2 Displacement and delay

In many contexts, it is plausible that climatic events at moments in the past or at nearby locations a↵ect an outcome

at a specific time and place, much like the surface of a pond observed at any moment and location might depend

on whether a raindrop disturbed that location moments before, or a nearby point on the pond surface. When using

time-series identification of climate e↵ects, it is crucial to account for these “ripple” e↵ects so that a local transient

response is not mischaracterized as a persistent e↵ect. Of particular concern is whether climatic events have a net

e↵ect on outcomes, or whether they simply displace outcomes across time and/or space.

So far, we have only considered contemporaneous e↵ects of the vector ci⌧ on outcome Yi⌧ . We now consider the

influence of the entire vector field c(s, t) defined across all positions s and moments t on the outcome Yi⌧ .

4.2.1 Temporal displacement

A climatic event at time t might bring an event that would otherwise occur at time t + 1 forward in time, an

e↵ect known as temporal displacement or “harvesting.” For example, Deschênes & Moretti (2009) highlighted the

importance of this concept by demonstrating that many deaths which occur during hot days in the United States

would have likely occurred within the subsequent two months even in the absence of a hot day—they thus conclude
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an e↵ect of a heat wave is to influence the timing of deaths within a relatively narrow window, not only to create

entirely “new” deaths (Figure 7A). Mathematically, the signature of temporal displacement is for periods following

a climatic event to have a response that is opposite in sign to the contemporaneous response. A challenge to

identifying these lagged e↵ects is that the climatic histories of sequential moments overlap, so it may not be the

case that outcomes at any moment are only a response to a single historical climate event. Rather, outcomes at

each moment represent a superposition of many historical events each at di↵erent moments in time. This issue can

be resolved by conditioning expected outcomes on the complete history of climatic events using a distributed lag

model:

Yi⌧ = ↵̂i +
LX

l=0

⇣
ci,⌧�l�̂l

⌘
+ xi⌧ �̂ + ✓̂

(i)(⌧) + ✏̂i (33)

where l is a lag length measured in periods (l = 0 indicates a contemporaneous observation) and the maximum lag

length considered is L. The identifying assumption to this approach is that the influence of a climate event at ⌧
0

on outcomes at ⌧
1

is determined by the length of time ⌧
1

� ⌧

0

separating the observations. As written, this model

also assumes additive separability between lagged e↵ects, although this assumption can be relaxed by interacting

lagged terms. It is somewhat standard in the literature to sometimes include negative lags (leads) in Eq. 33 as a

falsification exercise, since it generally assumed that future climatic events do not e↵ect outcomes substantially.

The net e↵ect of a one-unit climatic event after � periods is the cumulative e↵ect

⌦̂� =
�X

l=0

�̂l. (34)

If all of the e↵ects of a climate event are to displace outcomes in time, then ⌦̂�=L will be zero, whereas a positive

or negative cumulative e↵ect indicates that climatic events caused additional changes beyond altering the timing of

events. It is worth noting that when the outcome is a growth rate, than these cumulative e↵ects represent changes

in levels, as explored and discussed by Dell et al. (2012) and Hsiang & Jina (2014). Burke et al. (2015c) compute

⌦� in a nonlinear context.
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4.2.2 Delayed e↵ects

Eq. 33 is also used to detect delayed e↵ects, which may arise even if contemporaneous e↵ects (�̂l=0

) are small or

zero but lagged e↵ects (�̂l>0

) are large. In several cases, such as the e↵ect of cold days on mortality (Fig. 7A)

(Deschênes & Moretti, 2009) or the e↵ect of tropical cyclones on employment and income (Anttila-Hughes & Hsiang,

2012; Deryugina, 2015), delayed e↵ects are of first-order relevance, dominating contemporaneous e↵ects.

4.2.3 Spatial displacement and remote e↵ects

Similar to temporal displacement and delay, it is possible that climatic events cause outcomes to be displaced across

space or to trigger remote outcomes (analogous to “delayed e↵ects in space”) even if local e↵ects are limited, perhaps

because markets and price signals e�ciently transmit the influence of the climate across locations. For example,

Hsiang & Jina (2014) examine whether cyclone strikes displace income growth to nearby countries (Figure 7B).

The econometric challenge associated with identifying these e↵ects is analogous to the temporal case as overlapping

spatial e↵ects may complicate the spatial distribution of outcomes, similar to multiple simultaneous raindrops

generating overlapping rings of waves in a pond. The solution is also similar and involves estimating a spatial lag

model analogous to Eq. 33, but where lags are applied to the index i, rather than ⌧ , based on the distance between

contemporaneous observations and e↵ects at all distances are estimated simultaneously. Similar to temporal lags,

the net e↵ect of a climatic event can be considered by summing lags, although care must be taken as the number of

observations at varying distances may not necessarily by constrained and will depend on the spatial arrangement

of units. This approach performs especially well when it is applied to data on a regular grid, as demonstrated by

Harari & La Ferrara (2013). In cases where remote e↵ects may be delayed, than a model with spatial-temporal lags

is required:

Yi⌧ = ↵̂i +
LX

l=0

⇧X

⇡=0

⇣
c̄{j|D(i,j)=⇡},⌧�l�̂l⇡

⌘
+ xi⌧ �̂ + ✓̂

(i)(⌧) + ✏̂i (35)

where c̄{j|D(i,j)=⇡},⌧�l is the average climate exposure of all locations j that are a distance ⇡ to location i (where

the outcome is observed) at time ⌧ � l. For example, Figure 7B displays the cumulative growth e↵ect of a cyclone

as a function of distance from the event.

4.3 Statistical uncertainty

Uncertainty estimates for regressions must account for the strong spatial and temporal autocorrelation in climatic

exposure, regardless of the research design employed. The concern is that unobservable omitted variables may

also be autocorrelated, such that spurious correlations with climate events occur with greater frequency than if

all observations were independently distributed—this will cause bias in estimates of standard errors even though

estimated climate e↵ects �̂ may be unbiased (Bertrand et al., 2004; Moulton, 1986). The extent of the bias in

standard errors depends on the spatial scale and sampling frequency of the data relative to natural patterns of

autocorrelation in the climatic variations of interest. Data that is aggregated to large scales is generally less

problematic, and di↵erent solutions come at di↵erent computational cost and may be appropriate in di↵erent

contexts. Schlenker & Roberts (2009) proposed applying “Conley” spatial standard errors (Conley, 1999) that

non-parametrically estimate the variance-covariance matrix of � by estimating cov(✏i,⌧ , ✏j,⌧ ) using ⇠(D(i, j))✏̂i,⌧ ✏̂j,⌧ ,

where ⇠(D(i, j)) is a kernel function that weights these terms based on D(i, j), the distance between observations

i and j. Hsiang (2010) combined this approach with “Newey-West” heteroskedastic7 and auto-correlation robust

(HAC) standard errors (Newey & West, 1987) to also account for temporal auto-correlation within panel units.

Hsiang & Jina (2014) demonstrated this “spatial-HAC” adjustment was correctly sized in one context by estimating

7Note that the Conley approach employed by Schlenker & Roberts (2009) was also robust to heteroskedasticity.
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pseudo-exact p-values via randomizing their data in multiple dimensions and re-estimating their model many times.

Fetzer (2014) expanded this approach to an instrumental variables context.

The spatial-HAC approach is computationally intensive, since distances between every pair of observations must

be computed and transformed, and it does not guarantee a positive-definite estimate for the covariance matrix

of residuals. Thus, it may often be reasonable to estimate approximate standard errors using simpler techniques,

verifying that spatial-HAC adjustments do not alter the result substantively. For example, Dell et al. (2012)

simply cluster their standard errors within panel units to account for temporal auto-correlation. Burke & Emerick

(forthcoming) cluster standard errors for county-level observations in a long-di↵erences model by state to account for

within-state spatial correlation, cross-state residual correlation in errors are assumed to be small after conditioning

on state fixed e↵ects. Hsiang et al. (2013) employ a block-boostrap in a fully non-parametric regression, block-

resampling entire cross-sections of a panel data set to account for spatial autocorrelation among contemporary

observations. Hsiang et al. (2011) collapse a global panel to a single time-series when examining ENSO e↵ects,

since the treatment generates spatial correlations at continental (or larger) scales.

It remains an open question what the most general and e�cient approach to estimating statistical uncertainty is

in most climate econometrics applications. For example, what is the optimal selection of kernel weighting functions

for contemporaneous and serial observations in the spatial-HAC approach? Also, many climate data sets are derived

from gridded data, which themselves might be spatially interpolated from station data or augmented with a physics-

based model–such as reanalysis products (Au↵hammer et al., 2013)–and it remains unknown how these procedures

influence the statistical uncertainty of resulting parameter estimates.

4.4 Adaptation

As discussed above, climate a↵ects economic outcomes through belief e↵ects and direct e↵ects, and it is generally

thought that most belief e↵ects are adjustments that individuals make to cope with their expected distribution of

direct e↵ects. For this reason, belief e↵ects are often described as “adaptations” to a climate, although this need

not always be true (for example, beliefs about the climate could serve simply as a coordinating mechanism). In

this framework, adaptations can be defined as belief e↵ects that interact with direct e↵ects—for example, an agent

believes it will be cold sometimes at a location, causing them to purchase a coat (a belief e↵ect) which reduces

the chance they become ill after cold days (a direct e↵ect). Multiple approaches have been used to document and

quantify these adaptations.

4.4.1 Indirect measurement via cross-section of levels

One strategy for measuring the influence of adaptations is to estimate the e↵ect of climate on some outcome that

is influenced by adaptation using a cross-sectional research design (Eq. 8). The central benefit of this approach is

that it captures all belief e↵ects, including adaptations that interact with direct e↵ects of the climate. For example,

farm prices in Mendelsohn et al. (1994) should reflect any e↵ects that beliefs over C have, including the net present

value of all future revenues that result from realizations of c, which are mediated by these beliefs and the resulting

management practices. There are two weaknesses to measuring adaptations using this approach: measurement

relies on the strongest form of the unit homogeneity assumption (Eq. 6) and the cross-sectional approach cannot

separately disentangle belief e↵ects that do not interact with direct e↵ects, belief e↵ects that do, and the integrated

e↵ect of all direct e↵ects. However, an approach proposed by Moore & Lobell (2014) combines this approach with

time-series identification in an e↵ort to partially isolate these e↵ects from one another.
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4.4.2 Explicit observation of adaptation

Another approach to documenting adaptations is to estimate the e↵ect of climate directly on outcomes that are

known (or thought) to be adaptations to climate. For example, Hornbeck (2012) and Hidalgo et al. (2010) estimate

the e↵ect of drought on migration of agricultural households, and Kurukulasuriya & Mendelsohn (2007) measures

how climate influences the choice of crops that farmers choose to plant. This approach can be adopted in a cross-

section, times-series, or long-di↵erence framework. A benefit is that the adaptive action is known and observed

directly, rather than indirectly. However, a limitation is that this approach does not recover the overall e↵ectiveness

of these adaptations, i.e. the extent to which the altered actions interact with direct e↵ects of climate.

4.4.3 Measurement of implicit adaptation combining time-series variation with stratification

The one approach able to isolate the e↵ectiveness of adaptations is to use a time-series research design (Eq. 10) for an

outcome a↵ected by adaptation, stratifying the sample—or estimating interactions—using variables that are thought

to predict the extent of adaptation. For example, Au↵hammer & Aroonruengsawat (2011) estimates the e↵ect of

daily temperature on energy consumption while stratifying by long-run average temperatures, demonstrating that

energy demand is higher on hot days in counties that are usually hotter on average. This result suggests that

air-conditioning adoption, which is unobserved but assumed to be higher in counties that are hotter on average,

increases the e↵ect of temperature on electricity demand. Roberts & Schlenker (2011) e↵ectively “stratify” a

panel of counties by year, implemented by interacting a response function with a nonlinear trend, to understand if

innovation over time or learning reduced the heat sensitivity of maize in Indiana (Lobell et al. (2014) ask a similar

question by examining how cross-sectional estimates of climatic e↵ects on yields evolve over a sequence of years).

Hsiang & Narita (2012) derived a theory describing when such stratification works to reveal the total e↵ectiveness

of adaptations, highlighting as a benefit of this approach that it measures the overall net e↵ectiveness of all adaptive

actions that project onto the interacted proxy variables, as well as a weakness that the costs of indirectly observed

adaptions are unknown. To partially address this weakness, Schlenker et al. (2013) propose an approach to measure

adaptation costs in terms of the outcome variable, although it is possible that additional costs or benefits may be

unobserved.

Another key challenge of this approach is that those measures used as correlates for adaptions, such as income

(Hsiang & Narita, 2012), urban status (Burgess et al., 2014), historical experience with climatic events (Hsiang

& Jina, 2014), or access to crop insurance (Annan & Schlenker, 2015), are not exogenous and vary primarily in

cross-section. This means it may be di�cult to determine whether changes to the measured variable are a cause of

adaptation, an e↵ect of adaptation, or driven by an omitted variable that determines both. This drawback can be

partially solved in cases where plausibly exogenous circumstances change an influential factor, enabling a researcher

to more credibly identify whether a specific factor constrains adaptation. This approach is applied by Hornbeck &

Keskin (2015) to estimate the e↵ect of groundwater discovery on agricultural adaptation and Barreca et al. (2013)

to estimate the e↵ect of a residential air-conditioning subsidy on health-related adaptation.

4.5 Comparisons and synthesis of results across studie

Unlike many econometric studies, such as those that study policy changes, regressors in climate econometric studies

are generally physical quantities that have similar or identical meaning at all times and at any location on the

planet. Because of this, comparisons across contexts are thought to have clearer interpretations, often demonstrating

replicability or highlighting important di↵erences across samples. For example, Hsiang & Narita (2012) and Hsiang

& Jina (2014) demonstrate notable global uniformity in the response to cyclones. In some cases, such as Guo et al.

(2014) examining mortality and Hsiang et al. (2013) examining social conflict, standardization of c to a z-score

based on historical variance brings parameter estimates into alignment—perhaps because populations form beliefs

24



and adapt e↵ectively to distributions of historical conditions.

In some sectors, notably agricultural impacts and climatic e↵ects on social conflict, explicit comparisons of

seemingly contradictory findings have generated substantial controversy. In the case of agriculture, much of this

disagreement can be reconciled by accounting for inconsistent aggregation of data in the presence of local nonlin-

earities (see Section 4.1). In the case of social conflict, much of this disagreement can be reconciled by accounting

for statistical uncertainty in parameter estimates (Hsiang et al., 2015; Hsiang & Meng, 2014).

Hierarchical meta-analysis has played a role synthesizing generalizable findings and quantifying the extent of

agreement in the literature (Hsiang et al., 2013) as well as to construct composite estimates for use in climate

projections discussed below (Houser et al., 2015). These approaches do not assume globally uniform e↵ects but

instead model parameter estimates from the literature in a random-e↵ects framework, where populations experience

di↵erent “true” e↵ects of the climate but may exhibit a generalizable component that is common across populations

(Burke et al., 2015b; Gelman et al., 2004).

5 ATTRIBUTION AND PROJECTION

Two objectives of understanding the e↵ect of climate on societies are to understand what elements of the modern

world might be attributable to climatic factors and to inform projections of future outcomes under di↵erent climate

scenarios. Both are cases where where parameters recovered empirically are “put to work.” Note that in the

following, I retain only the time index for simplicity.

5.1 Historical attribution

Having identified the e↵ect of current and previous climatic conditions C on outcome Y , it is natural to ask “what

counterfactual outcomes would we have observed historically under a di↵erent climate?” In our one realization

of history, we observed Yt and Ct and estimated a response surface f̂(C) that described deviations from some

benchmark outcome Y

0

associated with the benchmark climate C

0

. In estimation, these benchmark levels are

usually nuisance parameters absorbed by various fixed e↵ects, trends, and controls. Observed outcomes are then

Yt = Y

0

+ f̂(Ct)� f̂(C
0

) (36)

where Y

0

can be solved for, but is not observed. Writing an analogous equation for an arbitrary counterfactual

climate Ct +�Ct and an associated unknown counterfactual outcome Yt +�Yt, we di↵erence these equations to

obtain

�Ŷt = f̂(Ct +�Ct)� f̂(Ct) (37)

which allows us to estimate �Ŷt, the alteration of an outcome that we would expect due to a change in historical

climate by �Ct. This approach was used by Lobell et al. (2011) to estimate the historical e↵ect of observed warming

on global crop yields, by Hsiang et al. (2011) to estimate historical influence of ENSO on global conflict, by Hsiang

& Jina (2014) to estimate historical influence of tropical cyclones on national income trajectories, and by Carleton

& Hsiang (2016) to attribute impacts based on a variety of results from the literature. Importantly, these estimates

should be viewed as partial equilibrium estimates insofar as f̂(.) captures a partial equilibrium response. Costinot

et al. (forthcoming) and Desmet & Rossi-Hansberg (2015) demonstrate more structured approaches that can be

used to attribute historical impacts in a general-equilibrium framework.

Application of Eq. 37 must be implemented cautiously, since counterfactual outcomes are not observed and

thus cannot be verified. One indirect test of this approach, useful when f̂(.) is identified via time-series variation,

is to examine how closely predictions from Eq. 37 match historical cross-sectional patterns. Dell et al. (2009) run
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such a test for e↵ects of temperature on income, arguing that adaptation and growth convergence must explain the

di↵erence. Gra↵ Zivin et al. (2015) arrive at similar conclusions when comparing time-series estimates with long-

di↵erences in measures of human capital. Hsiang & Jina (2015) compares predictions based on micro-level estimates

with macro-level cross sections for tropical cyclone impacts and concludes that results are largely consistent. In a

remarkable higher-order test, Barreca et al. (2015) find that cross-sectional variation in the intra-annual variance

in temperature, when applied to Eq. 37, is a good predictor of cross-sectional patterns of intra-annual variance in

birth rates.

5.2 Projecting future e↵ects of climate changes

Projecting impacts of climate changes is analogous to application of Eq. 37, except Ct is replaced with a bench-

mark future scenario—usually a “no change” scenario based on historical distributions of variables—and �Ct is

an anthropogenic alteration to the climate. Early economic analyses used simple, spatially uniform, “ballpark”

estimates of �Ct, such as imposing a flat +5�F warming and +8% rainfall across the USA (Mendelsohn et al.,

1994). In the econometrics literature, Schlenker et al. (2006) and Deschênes & Greenstone (2007) introduced the

use of spatially and temporally resolved global climate model simulations to construct �Ct. Lobell et al. (2008) and

Burke et al. (2009) demonstrated that when applying climate model projections in Eq. 37, accounting for climate

model uncertainty in �Ct may be as important as accounting for statistical uncertainty in f̂(.) See Burke et al.

(2015a) for additional exploration of this issue.

The above approaches generally assume that f̂(.) has a fixed structure throughout the duration of the projection

simulation, perhaps a reasonable assumption in cases where historical changes in f̂(.) have been limited. However,

as demonstrated in Section 2.4 (recall Fig. 3D), the marginal e↵ect of climate identified via weather and captured in

f̂(.) may become increasingly incorrect as climatic conditions deviate from baseline conditions during a projection

simulation as adaptations (or other factors, such as those described in Lobell et al. (2014)) alter f̂(.). To partially

address this issue, Houser et al. (2015) demonstrated how multiple empirical estimates, capturing both cross-

sectional heterogeneity and trends in f̂(.), could be combined to construct projections where f̂(.) evolves throughout

the projection simulation to reflect historical patterns and rates of adaptation.

5.2.1 Top-down and bottom-up approaches

Optimal climate policy requires understanding the full economic burden of potential climate trajectories. Empirical

estimates can be used to generate projections of this total cost using either a “top-down” estimate, where the

modeled outcome Yt is some aggregate proxy for wellbeing, such as GDP (Burke et al., 2015c; Dell et al., 2012;

Deryugina & Hsiang, 2014; Nordhaus, 2006), or constructing “bottom-up” estimates for multiple outcomes repre-

senting di↵erent sectors of the economy that are modeled and summed, sometime called the “enumerative approach”

(Houser et al., 2015; Tol, 2002). In principle, both approaches can be comprehensive, so long as top-down estimates

are augmented with nonmarket impacts. In practice, bottom-up estimates may be better able to account for dis-

tributional costs of climate change (Houser et al., 2015), although it is theoretically possible for them to perform

equally well. When applying Eq. 37 to bottom-up projections, it is important to account for the covariance of

impacts across di↵erent sectors to accurately construct the distribution of aggregate losses (Houser et al., 2015), an

e↵ect that is thought to be mostly captured in the estimated responses used for top-down projections.

6 REMAINING CHALLENGES

In addition to challenges described in the sections above, there are four major areas where I see methodological

innovation as necessary and likely to be successful in the near future.
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6.1 Matching e↵ects and mechanisms

Regardless of the research design, most estimated e↵ects of climate are reduced form estimates that capture in-

fluences on an outcome through all possible pathways. Developing strategies and techniques that can isolate and

characterize specific mechanism is critical for understanding why climatic factors matters. Testing for interactions

with potential mediating factors that are plausibly exogenous (Barreca et al., 2013), exploiting natural experi-

ments where specific pathways are shut down (Fetzer, 2014), and matching detailed patterns of climate influence

on outcomes and potential mediating factors (Anttila-Hughes & Hsiang, 2012), are all approaches that have been

somewhat successful in specific contexts, although additional innovations in this area are needed as these strategies

are not always available.

6.2 Adaptation and general equilibrium

As discussed above, adaptation to climate is thought to be economically important, but has only been characterized

in a limited number of cases. Notably, the costs of adaptations are almost never measured because they are

usually not observed. Moreover, most measurements are partial equilibrium responses, whereas general equilibrium

responses to climate, such as factor reallocations across space or time, are a form of adaptation thought to be

important but about which little is known. Further, general equilibrium changes will result in changing prices and

knowing these adjustments are important for valuing quantity e↵ects that are already understood, but only a small

number of studies have begun exploring these e↵ects (Colmer, 2016; Costinot et al., forthcoming; Dingel et al.,

2015; Roberts & Schlenker, 2013).

6.3 Unprecedented events

In analyses of future climate changes, valuing events that are unprecedented in recent history is a major obstacle and

any empirical progress on these questions would be highly valuable. Innovative strategies that are able to measure

potential costs of unprecedented physical events, such as rapid sea level rise or ocean acidification, or characterize

likelihoods of unprecedented social responses to climatic changes, such as mass migrations or state failures, are

needed if these impacts are to be accounted for systematically in assessment exercises.

6.4 Integration with theory and numerical models

Numerous theoretical models, including many used for integrated assessment policy analysis, have elements that

describe climatic influence on economies (Nordhaus, 1993; Stern, 2006; Tol, 2002) but which are generally not

based on empirically derived relationships. Incorporation of empirical parameter estimates into process models

(Houser et al., 2015; Lobell et al., 2013) and integrated assessment models (Kopp et al., 2013; Moore & Diaz, 2015)

demonstrates promise, although much innovation is needed if these theoretical models are to perform as well as

analogous models in other scientific fields. For example, it is unknown if empirical calibration improves the out-

of-sample forecast performance of these models or if all model parameters are even theoretically estimable using

existing techniques.

7 CONCLUSION

Recent years have seen rapid innovation in the methods used to identify climatic influences on economies, with

correspondingly rapid growth of insights that are reshaping how we understand the breadth and importance of

climate-society interactions (Carleton & Hsiang, 2016; Dell et al., 2014). Key innovations have been in research

design, the measurement of climatic factors, and the formulation of econometric models. In sharp contrast to the folk
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wisdom that “climate is not weather,” here I demonstrated that under fairly general conditions, weather variation,

as it is used in many recent studies, exactly identifies the e↵ect of climate—although many studies to date have not

properly computed the e↵ect of climatic changes when using these weather-derived parameters. Aggregation and

synthesis of econometric findings have demonstrated a striking replicability of many recent findings across contexts,

lending credibility both to the techniques that generate these results and to exercises where these results are applied

to simulations of recent history or future climate changes. Many first-order partial-equilibrium results are now well-

understood, yet major methodological innovations are still required to tackle the key challenges of identifying

mechanisms, measuring adaptation costs, general equilibrium and price responses, e↵ects of unprecedented events,

and a deeper integration with theoretical models.
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