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1. INTRODUCTION

Technical change, even if it is limited in scope, can have employment, output, price

and wage effects that ripple through the whole economy. This paper uses a flexible

and tractable framework, with heterogeneous workers and technologies, and many

tasks/goods, to analyze in detail the general equilibrium effects of technical change

for a limited set of tasks. Technology and human capital are assumed to be comple-

ments in production, so the labor market, which is competitive, produces positively

assortative matching between technologies and skills: tasks/goods with better tech-

nologies are produced by workers with more human capital. But the quantitative

allocation of workers to technologies is endogenous, determined by demands for the

tasks that are produced. Hence technical change for a limited set of tasks can pro-

duce substantial changes in employment, output levels, prices and wages, for tasks

and workers not directly affected.

Why is a model of this type useful? Wage inequality in the U.S. and elsewhere

has grown markedly over the last three decades, and technical change seems clearly

involved in the trend. Empirical studies have documented two broad patterns. One is

the polarization of labor markets, the growth in both employment and relative wages

at the top and bottom of the job distribution, accompanied by declines in both in the

middle. A second is that increases in between-firm wage inequality account for most

or all of the overall change, with changes in within-firm inequality playing a distinctly

minor role. The canonical model of skill-biased technical change, which features two

types of labor and labor-augmenting technical change for each type, is inadequate to

explain these trends.1

1See Autor, Katz and Kearney (2006), Machin and Van Reenen (2007), and Autor and Dorn

(2013) for evidence on labor market polarization. See Song, et al. (2015) for evidence on the

importance of the between-firm component in the U.S. See Acemoglu (2002) and Acemoglu and

Autor (2016) for a detailed review of the canonical model and its limitations.
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The model here has many tasks/goods, which are combined to produce a single fi-

nal good. Tasks differ in terms of their technology level, so there is a one-dimensional

technology ladder, and workers differ in their human capital, so there is also a one-

dimensional skill ladder. All production functions display constant returns to scale,

and all markets are perfectly competitive, so firms, as such, play no role. A competi-

tive equilibrium consists of an allocation of skill types to tasks, and a supporting set

of prices and wage rates. Complementarity between skill and technology implies that

the equilibrium features positively assortative matching, as in Becker’s (1973) classic

model of partnership formation.

After an improvement in one technology, affecting a limited set of tasks, labor

is reallocated across all tasks, and all prices and wage rates change. In the model

here, those effects can be sharply characterized analytically and easily computed

numerically.

The results are intuitively appealing. First, and unsurprisingly, output increases

and price falls for tasks that are directly affected by the technical change. General

equilibrium effects are never strong enough to offset the direct effect of the shock.

The effects on employment depend on the elasticity of substitution across tasks/goods.

For elasticities that exceed unity, employment at the affected tasks expands to a group

of more skilled workers. Hence employment falls at tasks farther up the technology

ladder, so outputs decline, and prices and wages rise. The effects are stronger for

tasks with technologies closer to the one enjoying the technical change, and damped

for tasks farther up the ladder.

At the other end, employment at directly affected tasks can expand to less skilled

workers, or it can contract. If it expands, employment falls at tasks farther down the

ladder, so outputs decline, and prices and wages rise. If it contracts, outputs farther

down the ladder increase. In either case the changes are damped for more distant

tasks.
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For elasticities of substitution across tasks below unity, these results are mirrored

and reversed. At directly affected tasks, employment contracts among less skilled

workers. Hence employment expands for tasks farther down the ladder, and outputs

rise, with damped changes for more distant tasks. Prices and wages may fall for some

tasks and workers closest to those affected by the technical change.

At the top end, employment at directly affected tasks can expand or contract.

If it expands, employment falls at tasks farther up the ladder, so outputs decline,

and prices and wages rise. If it contracts, employment and output increase for tasks

farther up the ladder. In either case the changes are damped for more distant tasks.

In the cases where the sign of the effect is ambiguous, two model features determine

which pattern occurs: the size of the elasticity of substitution across tasks and the

range of skill levels employed at the tasks enjoying the technical change. For elas-

ticities that are not too close to unity and narrow skill ranges, the effects are rather

symmetric up and down the ladder from the tasks affected by the technical change.

For elasticities that are close to unity, the signs are ambiguous, but the magnitude of

the change is likely to be small.

As noted above, firms play no role in the analysis, and even the word is (mostly)

avoided. Each worker chooses how to use his labor endowment, combining it with

any of the available technologies. The worker’s decision can be viewed as a choice

about an occupation, with his output–called a task or a good–used in production

of the single final good.

In some contexts the distinction between human capital and technology is blurred.

Here, human capital is an asset that belongs to a single worker, who is the only one

able to employ it in production. Technology is a nonrival input, used by all workers

producing a particular good. Framed in terms of competitive firms, the technology

for producing a particular good is available to all. However, as will be shown below,

the equilibrium can readily be re-interpreted as one with monopolistically competitive
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firms, and the technology as intangible capital that is the property of the producer.

In either case, the fact that it is a nonrival input distinguishes it from both human

and physical capital.

The vast literature on vintage capital models suggests that the distinction between

new technologies and new capital is also blurred. If a new technology requires new

investment for its implementation, giving it one label or the other is largely a matter

of taste. Here, physical capital is ignored, so implementing improved technologies

requires no investment.

The rest of the paper is organized as follows. Section 2 discusses the related liter-

ature. Section 3 presents the basic model and characterizes the competitive equilib-

rium. It also looks at the effect of eliminating technology differences, showing how

the wage distribution would change if all tasks had a common technology level.

The main results are contained in section 4, where the model is used to study the

effect of technical change for one set of tasks. In particular, we ask how the labor

allocation, output and price levels, and wage rates change, for all tasks and workers.

A sufficient condition is provided for the conclusion that “a rising tide lifts all boats,”

that the improvement raises wages for all workers, even those paired with technologies

that are unaffected.

Section 5 looks at a multi-sector version of the model. Here, tasks in each sector

are used as inputs in producing a sector aggregate, and these sector aggregates are in

turn used to produce final goods. The goals here are twofold. First, an assumption is

provided under which the equilibrium in the multi-sector model is isomorphic to that

in the simpler model. With this assumption, the conclusions in section 4 carry over

unchanged. This fact is interesting because it allows a more flexible interpretation

of the elasticities across tasks. Without that assumption, the multi-sector model is a

framework to re-visit the “rising tide” question, and the answer is more nuanced. For

example, technological improvement for higher-skill producers in a basically low-tech
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sector can reduce wages for the low-skill workers employed there.

Section 6 contains simulations that highlight some of the results, and section 7

concludes. Mathematical arguments and proofs are gathered in the Appendix.

2. RELATED LITERATURE

The model here is related to three literatures. One is the extensive theoretical

literature on skill-biased technical change. A second is the literature that studies the

role of search frictions in settings with heterogeneous firms and workers. The third is

the literature examining recent trends in wage inequality in the U.S. and elsewhere.

The first models of skill-biased technical change had two types of workers, perform-

ing distinct and imperfectly substitutable tasks, with separate technology shocks for

each type. Acemoglu (2002) provides an elegant treatment of this model, and studies

its ability to account for the major trends in employment, wages, and skill premia

in the U.S. Acemoglu and Autor (2016), who call it the ‘canonical’ model, provide a

complementary treatment.

Subsequent contributions to this literature add physical capital as a third factor of

production, and use the strong decline in capital (equipment) prices observed in the

data as the technology shock. These models posit an aggregate production function

that displays capital-skill complementarity, and the falling price of capital induces

persistent capital deepening. Thus, even with realistic growth in the share of high-

skill workers in the labor force, the skill premium increases. Papers in this group

include Krusell, et. al (2000) and Autor and Dorn (2013).

A third strand looks at models where technical change can produce ex post hetero-

geneity among ex ante identical workers, because of the opportunities for investment

in human capital or learning-by-doing that the new technologies offer. Examples here

include Jovanovic (1998), Caselli (1999), and Violante (2002).

A fourth strand consists of models with heterogeneity in jobs as well as in labor.
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Sattinger (1975) is the earliest in this group. Kurtzon (2015) analyzes a model in

which jobs are distinguished by entry (skill acquisition) costs, and workers with higher

ability have a comparative advantage in learning more complex tasks. The model is

used to study the effects of immigration on the slope of the wage function.

The model here is closest to the one in Costinot and Vogel (2010), of which it is

a special case. Their production function is assumed to be supermodular in its two

inputs, while here a CES structure with a low substitution elasticity used. The addi-

tional structure is important because it allows a much more complete characterization

of the effects of technology shifts. While the more general setup delivers straightfor-

ward results about the slope of the labor allocation and wage functions, and hence

about inequality, it is difficult to obtain results about levels: who wins and who loses

in absolute terms, as well as the effects on output levels and prices.

The model here is also related to those used to study the role of search frictions

in labor markets with heterogeneous firms and workers. Examples include Sattinger

(1995), Mortensen and Pissarides (1999), Postel-Vinay and Robin (2002), Menzio and

Shi (2011), and Lise and Robin (2013).

The model here is closest to those in Bagger and Lentz (2015) and Lise, Meghir, and

Robin (2016). Both use frameworks with heterogeneous workers and technologies, and

a CES production function to combine the two inputs. Relative to those models, the

one here drops search frictions, but endogenizes the prices of outputs across worker-

technology pairs. Here there is a downward sloping demand curve for each task,

and its position depends on final good production. This fact produces interactions

between the wages of different workers employed at the same task and at different

tasks. Closing the model in this way provides a micro-foundation for the match

surplus function, a function that frictional search models take as exogenous. As a

consequence, the model here produces a non-degenerate distribution of workers across

technologies/tasks, even in the absence of search frictions. Thus, it offers a richer

6



framework for asking how important frictions are in generating wage differentials

across workers.

Finally, the model is related to work documenting two broad patterns in the recent

increase in wage inequality. One pattern looks at wages across occupations, the other

at wages across firms.

Autor and Dorn (2013) document what they call the polarization of the U.S. labor

market. They rank occupations according their mean wage in 1980, and examine

subsequent changes in employment and wages. Over the period 1980-2005, there was

rapid employment growth at the top and bottom of the distribution, a large decline in

the second quartile, and a small increase in third. At the same time, there was rapid

wage growth at the top, substantial wage growth at the bottom, and slow growth in

the middle. Their paper offers an explanation for the shift from jobs in the middle

towards those at the bottom, but has little to say about growth at the top. The

model here offers a potential explanation.

Other studies look at wage patterns across firms, in the U.S. and elsewhere. They

find that the increase in between-firm wage inequality accounts for most or all of the

change, with changes in within-firm inequality playing a distinctly minor role. For the

U.S. over the period 1982-2012, across the whole economy, Song, et al. (2015) find that

the between-firm component accounts for virtually all of the increase, while within-

firm inequality is almost unchanged. In addition, they report that this conclusion

is robust across industries, geographic regions, and firm size groups. Looking at

U.K. data for a broad set of firms over the period 1984-2001, Faggio, Salvanes, and

Van Reenen (2007) report a similar conclusion: virtually all of the increase in wage

dispersion is between-firm rather than within-firm, and the vast majority of it is

within industries. Helpman, et al. (2012) find the same pattern in the manufacturing

sector in Brazil over the period 1986-98.

Two more studies find patterns that are similar, if more muted. For West Germany
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over the period 1985-2009, Card, Heining, and Kline (2012) find that an increase

in the variation in wage premia across establishments explains about a quarter of

the overall increase in wage inequality, with the rest coming from increases in labor

heterogeneity and more strongly assortative matching. And for the Swedish man-

ufacturing sector over the period 2001-2007, Akerman, et al. (2013) find that the

between-firm component, while much smaller, does display a modest increase, while

Häkanson, Lindqvist, and Vlachos (2015) find an increase in complementarities and

more assortative matching.

In addition, several studies suggest that the increase in between-firm wage inequal-

ity is related to increased inequality in productivity. One of these includes a broad set

of industries: for the U.K., Faggio, Salvanes, and Van Reenen (2007) find a substantial

increase in the dispersion in labor productivity across firms. Other studies find simi-

lar patterns for more limited groups of firms or for specific technologies. For the U.S.

manufacturing sector over the period 1975-92, Dunne, et al. (2004) find that wage

and productivity dispersion increased, and that much of this increase was between

plants. They also find that much of the between-plant change is within industries,

and that a significant fraction is related to investment in computer equipment. For

Norway, Akerman, Gaarder and Mogstad (2015) study a broadband internet rollout.

Using geographic variation in the timing of the rollout, they find that better internet

access improved the productivity and labor outcomes of skilled workers, and had the

reverse effect on the unskilled.

Taken together, these studies suggests that technology differences across firms have

increased over time and have played a major role in increasing in wage inequality.

3. ONE-SECTOR MODEL

In this section the technologies for final goods and tasks are described, and the

competitive equilibrium is characterized.
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A. Final good technology

The final good is produced by competitive firms using tasks/differentiated goods

as inputs. A task is characterized by its technology level   0 There are  such

levels, indexed by  = 1   ordered so 0  1  2      Let  be the share

of tasks with technology level  The total number (mass) of tasks is normalized to

unity.

All inputs enter symmetrically into final good production, but demands for them

differ if their prices differ. In equilibrium, price  is the same for all tasks with tech-

nology level . Hence demand is the same for such tasks. Let  denote the (common)

quantity for those tasks. The final good is produced with the CRS technology

 =

Ã
X

=1


(−1)


!(−1)

 (1)

where   0 is the substitution elasticity. For  = 1 the technology is Cobb-Douglas.

The final goods sector takes the prices  as given. As usual, input demands are

 =

µ




¶−
  all  (2)

and the price of the final good is

 =

Ã
X

=1


1−


!1(1−)
 (3)

We will take the final good as numeraire throughout, indexing prices so  = 1 Input

costs exhaust revenue, so there are no profits.

The analysis could be extended to include weights on tasks. Let {}=1 be a set of
values for the weights, and let  be the share of tasks with the (technology, weight)

pair ( )  Then output of the final good is

 =

Ã
X

=1

X
=1


1
 e(−1)

!(−1)


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where e is the input of a task with characteristics ( )  It is straightforward to
show that in this setting prices  do not depend on  and demand for each task is

e =  all  

where { }=1 and the aggregates    are as above, and

 ≡
X

=1

 all 

Output and employment vary with  across tasks with the same technology  but

the wage structure in the economy depends only on the ’s.

B. Differentiated good technology

Tasks/differentiated goods are produced using heterogeneous labor, characterized

by its skill level  as the only inputs. Assume that  has a continuous distribution.

Let () with density () on  ≡ (min max)  with 0  min  max ≤ ∞ denote

the distribution of skill across workers. The total size (mass) of the workforce is

normalized to unity, and labor supply is inelastic: each worker supplies one unit.

The total output of a task depends on the size and quality of the workforce pro-

ducing it, as well as its technology level . In particular, if a task with technology 

employs workers of various human capital levels, with () ≥ 0 denoting the number
(density) of each type, then total output is

 =

Z
()( ) all 

where ( ) is the CES function

( ) ≡ £(−1) + (1− )(−1)
¤(−1)

   ∈ (0 1)  (4)

The elasticity of substitution  between technology and human capital is assumed to

be less than unity, and  is the relative weight on human capital.
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C. Equilibrium

An equilibrium consists of a final output level   output levels and prices { }=1
for all types of tasks/differentiated goods, a wage function ()  ∈  and an

allocation of labor across technologies, that satisfy the usual optimization and market

clearing conditions.

The model allows two interpretations about market structure. One is that each

task is produced by competitive firms, with each firm choosing to employ skill types

that minimize unit cost. In this case competition insures that each worker is paid his

marginal revenue product.2 Alternatively, one can suppose that workers simply choose

which task to produce, with each worker choosing a task–a job–that maximizes

his income. In either interpretation, task prices are taken as given by the decision

maker–the firm or the worker.

In principle, the allocation of labor could be quite complicated, with any technology

level  employing workers with skill  in various disjoint intervals, and with workers

of a given human capital level  producing goods with different technologies . This

does not occur in equilibrium, and it is straightforward to see why not.

Since labor markets are competitive, the allocation of labor across technologies

is efficient. And since the elasticity of the CES function  is less than unity, it is

log supermodular. Hence efficiency requires positively assortative matching: workers

with higher skill  work with higher technologies  (Costinot, 2009). Consequently

the equilibrium labor allocation is characterized by thresholds min = 0  1   

−1   = max where technology  employs workers with skill  ∈ (−1 )  We
will refer to the interval (−1 ) as skill bin  An individual with human capital  =

2If   1 profit-making firms could be introduced by assuming that each task/differentiated

good is supplied by a unique producer. Under this assumption, the allocation of labor, output of

each task, and prices would be unchanged, but wages would reduced by the factor (− 1)  with
the residual revenue going to profits.
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 is indifferent between working with technologies  and +1 Since the distribution

function  is continuous, the set of such workers has measure zero, and they can be

allocated to either bin.

Equilibrium also requires market clearing for goods and labor. Thus, the equilib-

rium conditions are:

a. income maximization by all types of labor,

() ≥ ( ) all  w/ eq. if  ∈ [−1 ]  all ; (5)

b. market clearing for tasks: { }=1 satisfy (2), with  as in (1);

c. labor market clearing,Z 

−1
( )() =  all  (6)

The first condition implies that each task is priced at unit cost, and the last says

that the total productive capacity of labor with skill  ∈ (−1 ) is sufficient for
production of tasks with technology .

The allocation of labor within any skill bin (−1 ) across tasks with technology

 is, to some extent, indeterminate. Equilibrium determines only the output level

, which is the same across tasks with technology level . For concreteness we can

suppose that each task is produced by skill types in the interval (−1 ) in proportion

to their representation in the population, but this is not required.3

To characterize the thresholds {}−1=1
 note that (5) implies

0()
()

=
( )

( )
  ∈ (−1 )  all  (7)

Hence the equilibrium wage function is piecewise continuously differentiable, with

kinks at the points {}−1=1


3Since  has constant returns to scale, the number of firms producing any task–if firm are

introduced into the narrative–is indeterminate. Only the total (productivity-weighted) labor input

and total output are determined in equilibrium.
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Since workers with skill  are indifferent between working with technologies  and

+1 it follows immediately from (5) and (2) that

+1


=

( )

( +1)
 (8)

+1


=

µ
( +1)

( )

¶

  = 1   − 1 (9)

Unit cost and price are strictly decreasing in  and output is strictly increasing: goods

with better technologies have lower prices and higher sales. If   1 (if   1) total

revenue is increasing in  (decreasing in )

To characterize equilibrium, combine (6) and (9) to find that {}−1=1
satisfyZ +1



()( +1) =
+1



µ
( +1)

( )

¶ Z 

−1
()( ) (10)

 = 1   − 1

Since   1 the ratio ( +1)( ) is strictly increasing in  Therefore, since

0 = min is given, for any conjectured 1 the sequence {}=2 defined recursively by
using (10) is increasing in 1 Equilibrium requires  = max Thus a solution exists

and it is unique.

Define Ψ to be ‘total productivity’ of labor in the 
th skill bin,

Ψ ≡
Z 

−1
( )()  = 1   (11)

Then use (6) to write output of each type of good as

 =
1


Ψ  = 1   (12)

and write (10) in the more symmetric form

( +1)
− 1

+1
Ψ+1 = ( )

− 1

Ψ  = 1   − 1 (13)
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D. Skill allocation

To see more clearly how workers and technologies are matched, it is useful to look

at potential wage functions, like those in Neal and Rosen (2000, Figure 3.1). Let

( ) denote the wage a worker with skill  would earn producing a task with

technology 

( ) = ( ) all  all 

Figure 1 displays potential wages as a function of  for  = 4 technology levels.

For fixed  the potential wage 
( ) is strictly increasing in  so each curve

is upward sloping. As a function of  there are two effects. First, the price 

is decreasing in  so the intercept decreases with  In addition, since  is log

supermodular, higher  implies a steeper slope for  as a function of . Thus, plotted

against  for various  values, the potential wage functions cross. A worker’s actual

wage is the maximum of his potential wages, as in (5). Hence the wage function ()

is defined by the upper envelop of the four curves, and the crossing points along the

upper envelop are the thresholds  that divide the skill range into bins.

The four small circles show the choices available to a worker with skill  The

potential wage for that worker increases moving from 1 to 2 and from 2 to 3 But

it falls moving from 3 to 4, so that worker chooses 3

In a model with search frictions, these points would represent rungs on a job ladder

for a worker with skill  This worker’s first job might come from an employer of any

type. That firm would pay him his reservation wage, not his marginal revenue prod-

uct, so his initial wage would lie below all of the displayed values. But subsequently,

outside offers from other firms would raise his wage, for two reasons. If the outside

firm was a better match, he would change jobs and receive a wage increase. But even

if the outside firm was an equivalent (or possibly worse) match, his wage might be

bid up by competition. In this case he would not change jobs.
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E. Homogeneous technologies

To assess the effect of technology heterogeneity on the wage distribution, we can

compare the solution above with one in an economy with the same distribution of

skill across workers, but a single technology level. To focus on wage inequality, we will

choose the common technology level so that output of the final good is the same in

both economies. Then the total wage bill is also the same, and only the distribution

of wages across workers changes.

To keep output of the final good  unchanged, output of each task in the homo-

geneous technology (HT) economy must be

 =  

To back out the technology level  in the HT economy, note that one competitive

equilibrium allocation is for workers with a pro rata share of all skill levels, to produce

each task. Hence  satisfies

 =

Z
(  )()

It then follows from (2) and (5) that a worker with human capital  ∈ (−1 ) 
who is in skill bin  if technologies are heterogeneous, gains or loses as

1 S  ()

()

=
(  )

( )

µ




¶−1
  ∈ (−1 )  (14)

There are two forces, pushing in opposite directions.

With heterogeneous technologies, workers with lower skill are matched with worse

technologies. Hence workers who would be in skill bin  with     become

individually more productive. This effect tends to raise their wages, the first term in

(14). This own-productivity effect, which is reversed for workers in skill bins  with

    tends to compress the wage distribution.
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But task prices also change. With heterogeneous technologies, output  is increas-

ing in  and price  is decreasing. Hence workers who would be in skill bin  with

output    and price     suffer a cut in the price of their product, the

second term in (14). Output can rise because the technology improves, because the

average skill of their co-workers rises, because employment rises, or any combination.

This price effect, which is reversed for workers in skill bins  with     tends to

expand the wage distribution.

The relative strength of the two forces depends on the distributions for technology

and skill. A second-order approximation allows a quantitative assessment. For each

 let  ≡ ()−(−1) denote the share of the workforce in skill bin , and let

 ∈ (−1 ) denote the skill level that satisfies

 =



( ) all 

If all workers in skill bin  have skill  then total output for that bin is unchanged.

For any worker, the wage change from moving to the HT economy is the sum of the

own-productivity and price effects in (14). Thus, for a worker with skill  it is

∆ ln() =
£
ln

¡
 


¢− ln ¡ ¢¤− 1



£
ln  − ln 

¤


For a certain family of economies, the quadratic approximation to this expression

takes a simple form. Suppose that   1 and that  has a fine grid, with distribution

function  () ≈ () all  where

 =

µ
(− 1) 1− 



¶(−1)


Then in equilibrium4  ≈   ≈ 1 and  ≈ (  1) all  Define

∆ ≡ ln − ln all 

0 ≡ −1


©
ln  − ln £(  1)

¤ª


4This solution is exactly correct if  has a continuous distribution. The associated wage function

is () = 0
1−1.
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As shown in the Appendix, the wage change is approximately

∆ ln() ≈ 0 − 1
2

− 1
2

1− 


∆2

 (15)

For   1 the coefficient on the quadratic term in (15) is negative, and by construction

the total wage bill unchanged, so E
£
∆ ln()

¤ ≈ 0 Hence taking the expectation
in (15) gives 0  0 so the constant term is positive. Thus workers with skill near

the mean enjoy a wage gain, and those that are sufficiently different from the mean

experience losses.

4. TECHNICAL CHANGE

This section looks at the effects of technical change that improves one technology

by a small increment, with all others unchanged. Specifically, it characterizes the

effect on the labor allocation, described by the thresholds {}−1=1
 on the output

levels and prices { }=1 for all tasks, and on the wage function ()

The main forces can be previewed in Figure 1. Suppose technology  gets the

improvement. The direct effect is to increase labor productivity for workers in skill bin

 raising (· ) and making it slightly steeper. But the higher labor productivity
increases  which depresses the price , and tends to raise all other prices,   6= 

These price changes lower (· ) partway back toward its original level and raise
all the other curves, (· )  6=  The thresholds defining the employment bins

shift, changing employment patterns and wages for all workers.

The rest of this section analyzes these changes in detail. Throughout we will use

‘hats’ to denote proportionate changes induced by the perturbation, ̂ ≡ −1

for any variable  All derivations and proofs are in the Appendix.
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A. Final output

Suppose that technical change increases technology  by a small increment   0

with all others unchanged. Note that the change in output of the final good  is a

weighted average of the output changes for tasks,

̂ =

X
=1

 ̂ (16)

where the weights

 ≡ 1


 all  (17)

with
P

=1  = 1 are their cost shares in producing the final good. With the price

of the final good fixed at unity, the relative price changes for tasks are

̂ =
1


(̂ − ̂)  all  (18)

and the weighted average of the price changes is
P

=1  ̂ = ̂ = 0

Consider first the short run effects, with labor immobile. Recall the definition of

Ψ all  in (11), and let Ψ̂ be the direct effect of the technology improvement on

total labor productivity in skill bin . Output increases for tasks produced with

technology 

̂ = Ψ̂ ≡ 1

Ψ

Ψ


 0 (19)

and is unchanged for all other tasks. Hence the change in final output is

̂ = Ψ̂  0

In the longer run, with labor mobile, the changes in {}=1 and  must be aug-

mented to account for the impact of changes in the skill bins, changes in the ’s.

Let
n

()
 ()

o−1
=1

denote the solution to (13) as a function of , where 0 = min and

 = max are fixed. Define the density-weighted changes in the thresholds


()
 ≡ ()

()0
 ()  = 1   − 1
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with 
()
0 = 

()

 = 0 From (11) and (12), the long run changes in output levels for

tasks are

̂ =
1

Ψ

h
( )

()

 − (−1 )
()

−1
i
+ Ψ̂ (20)

̂ =
1

Ψ

h
( )

()
 − (−1 )

()
−1
i
 all  6= 

The next proposition shows that, to a first-order approximation, the change in the

labor allocation has no impact on output of the final good: the long-run increase is

the same as the short-run increase.

Proposition 1: In the long run, with labor mobile, the change in output of the

final good is, to a first-order approximation, the same as in the short run, ̂ = ̂ 

This result is not surprising. The potential additional effect in the long run arises

only from the reallocation of labor, changes in the thresholds {}−1=1
defining the skill

bins. Since labor markets are competitive, the baseline allocation of labor maximizes

  Hence to a first order approximation, small changes in those thresholds have no

effect on final output. An increase (decrease) in  raises (lowers) the output of tasks

with technology  but the effect on final output is exactly offset by the decrease

(increase) in the output of tasks with technology +1

B. Labor allocation

The changes in the labor allocation do, however, affect task-level outputs and prices,

as well as wages. The rest of this section describes these changes. To determine the

effect on the labor allocation, differentiate (13) and use (11) to get a system of  − 1
linear equations for the changes in the thresholds,

() =() (21)

where the superscript denotes which technology has been perturbed, and for any 


()

−1 = −̂(−1 ) + Ψ̂ (22)
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
()

 = ̂( )− Ψ̂


()
 = 0 otherwise.

Since () has at most two non-zero elements–and only one if  = 1 or  =  for

fixed  the solution to (21) involves only 
()

−1 
()

  and the columns ·−1 and ·

In particular,


()
 = −1

()

−1 +
()

   = 1   − 1 (23)

where the first term drops out if  = 1 and the second drops out if  = 

 is the inverse of a tridiagonal matrix, so it has a recursive structure. Lemma 2

shows that it has strictly positive elements, and that successive row elements above

and below the diagonal have ratios that depend only on the row 

Lemma 2: All elements of  are positive, and the elements in each column ·

satisfy

+1 = +1  ≥  (24)

−1 = −1  ≤ 

where {+1}−2=1
and {−1}−1=2

are positive constants.

Lemma 2 can be used as follows. Fix  and use the first line in (24) to compare

successive rows +1   ≥  in (21). Similarly, use the second line in (24) to compare

successive rows  − 1   ≤  − 1 concluding that


()
+1 = +1

()
   ≥  (25)


()
−1 = −1

()
   ≤  − 1

Thus, all thresholds at and above the th move in the same direction, and all those

at and below the ( − 1)th move in the same direction. It remains to determine the
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signs of 
()

 and 
()

−1 For this we need to characterize the two nonzero elements of

()

Lemma 3: For any 

i. if  = 1 then 
()

−1  0 and 
()

  0;

ii. if   1 then 
()

  0 and 
()

−1 can have either sign; and

iii. if   1 then 
()

−1  0 and 
()

 can have either sign.

The intuition for Lemma 3 is straightforward from (22). The term ̂( ) is the

proportionate change in labor productivity for a worker with skill  Since   1,

it is strictly increasing in  The term Ψ̂ is the average value of these changes in

skill bin  If  ≥ 1 then for a worker with skill  at the upper threshold of the
bin, Ψ̂  ̂( ) ≤ ̂( ) so 

()

  0 If   1 the sign is ambiguous.

Similarly, if  ≤ 1 then for a worker with skill −1 at the lower threshold of skill bin
 ̂(−1 ) ≤ ̂(−1 )  Ψ̂ so 

()

−1  0 If   1 the sign is ambiguous.

Can anything more be said about the terms with ambiguous signs? The answer

depends, to a large extent, on how the technology levels are chosen/defined. If the

technology grid is fine, then the skill bins are narrow, so −1 is close to  and


()

−1 ≈ −() . For  = 1 both are close to zero.

If 
()

−1 and 
()

 are both positive, then it follows immediately from (23) and

Lemma 2 that all thresholds shift upward. But even if one term in (23) is negative,

the sign of the sum can sometimes be determined. Proposition 4 characterize the

signs of 
()

 and 
()

−1 to the extent that it is possible.

Proposition 4: For any  an increase in technology  implies:

for  = 1


()
  0 all ;

for   1


()
  0  ≥ 
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
()
 S 0    − 1 as 

()

−1 S 0;

and for   1


()
  0  ≤  − 1


()
 S 0    as 

()

 S 0

For  = 1 all thresholds shift upward. For   1 the thresholds at and above the

th shift upward, while those at and below the ( − 1)th can shift either way. For
  1 the thresholds at and below the ( − 1)th shift upward, while those at and
above the th can shift either way.

C. Task/good output levels

From (6) and (11), the change in output for a task of type  6=  depends on the

sum of the productivity-weighted employment changes at the two thresholds,

̂
()
 =

1

Ψ

h
( )

()
 − (−1 )

()
−1
i
  6=  (26)

where 
()
0 = 

()

 = 0 For goods of type  the direct effect of the productivity change

must also be added, so

̂
()

 = Ψ̂ +
1

Ψ

h
( )

()

 − (−1 )
()

−1
i
 (27)

Proposition 5 characterizes the changes in output.

Proposition 5: For any 

̂
()

  0

̂
()
 T 0    as 

()

 S 0

̂
()
 T 0    as 

()

−1 T 0

Output rises for tasks of type  The output change is in the same direction for all
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tasks of type    rising if 
()

  0 so more labor is devoted to these tasks, and

falling if 
()

  0 Similarly, the output change is in the same direction for all tasks

of type    falling if 
()

−1  0 and rising if 
()

−1  0 Thus, for  ≥ 1 output falls
for tasks of types    and for  ≤ 1 output rises for tasks of types   

Proposition 6 shows that the size of the output changes above and below  are

damped–whatever their sign–for more distant technology types.

Proposition 6: For any ¯̄̄
̂
()
1

¯̄̄


¯̄̄
̂
()
2

¯̄̄
  

¯̄̄
̂
()

−1

¯̄̄
¯̄̄

̂
()

+1

¯̄̄


¯̄̄
̂
()

+2

¯̄̄
  

¯̄̄

()



¯̄̄


D. Prices and wages

Next consider prices and wages. The price of a task rises or falls as its output change

is less than or greater than the output change for the final good. In particular, from

(18) and Proposition 1,

̂
()
 =

1



³
Ψ̂ − ̂

()


´
 all  (28)

Proposition 7 describes price changes. For tasks of type  price falls. For types

 6= , price rises if output falls, and the size of the increase is damped for types

more distant from  The sign of the price change is ambiguous if output rises, but

the price changes are nevertheless ordered, even if there is a sign change somewhere

along the chain. Price decreases, if they occur, are clustered among types near 

Proposition 7: For any  an increase in technology  implies

̂
()

  0

For   

0  ̂
()
1  ̂

()
2    ̂

()

−1 if 
()

−1  0
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̂
()

−1    ̂
()
2  ̂

()
1  if 

()

−1  0

and some or all of the latter price changes can be negative. For   

0  ̂
()

  ̂
()

−1    ̂
()

+1 if 
()

  0

̂
()

+1    ̂
()

−1  ̂
()

  if 
()

  0

and some or all of the latter price changes can be negative.

Next consider wage changes. It follows immediately from (5) that

̂() = ̂
()

 + ̂( )  ∈ (−1 ) ;
̂() = ̂

()
   ∈ (−1 )   6= 

For workers in skill bins  6=  wages change only because the price of their output

changes. Hence the direction and size of the wage change is the same as the price

change, and is equal for all workers in a skill bin. Workers in skill bin  also experience

a direct productivity effect, which is increasing in the worker’s own human capital .

Proposition 8 describes the one case where a technology improvement necessarily

raises all wages.

Proposition 8: If   1 then for any  
()

−1  0 implies ̂()  0 all 

If  ≤ 1 then 
()

−1  0 leaving open the possibility that −1 falls, so wages fall for

skill bin  − 1
More generally, if 

()

  0, then workers in skill bins    get wage increases, as

do workers with human capital near the upper threshold of skill bin  If 
()

  0

wages can fall for some workers at the top of skill bin  In this case prices can fall

for some or all tasks of type    so that wages fall for workers in these skill bins.

The wage declines are clustered near skill bin  and are damped for more distant

skill bins. Indeed, wages can rise for workers sufficiently far up the skill ladder.
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If 
()

−1  0 then workers in skill bins    get wage increases, as do workers

with human capital near the lower threshold of skill bin  If 
()

−1  0 wages can

fall for some workers at the bottom of skill bin  In this case prices fall for some or

all tasks of type    so that wages fall for workers in these skill bins as well. The

wage declines are clustered near skill bin  and are damped for more distant skill

bins. Indeed, wages can rise for workers sufficiently far down the skill ladder. The

Appendix provides an example where wages decline for some workers.

5. MULTI-SECTOR MODEL

In this section the model is extended to include multiple sectors, each producing an

intermediate that is used in final goods production. There are two goals. The first is

to show that the patterns for wage differentials and for technology-based changes in

wage inequality in the one-sector model can carry over to a many-sector model. The

second goal is to show that a multi-sector model provides more scope for technological

improvements for a subset of tasks to reduce wages for workers at closely substitutable

tasks that have unchanged technologies.

A. Final good and intermediate technologies

The final good is produced by competitive firms using sector intermediates as in-

puts, and sector intermediates are produced by competitive firms using tasks/differentiated

goods as inputs. Both technologies are CES, but the sector technologies have a higher

(common) elasticity of substitution.

There are  sectors. Output and price for the final good are

 =

Ã
X
=1


(−1)


!(−1)

 (29)
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 =

Ã
X
=1


1−


!1(1−)
= 1   0  6= 1

where   0 with Σ = 1 are sector weights,  is the elasticity of substitution, and

prices are normalized as before. For  = 1

 =

Y
=1

 
   =

"
Y
=1

µ




¶
#−1

= 1

In either case, demands for sector intermediates are

 = 

µ




¶

 all  (30)

Within each sector, tasks/differentiated goods are produced, potentially, with any

or all of the technologies levels {}=1  But the number of tasks, and the distribu-
tion of technology levels across them, may differ. Thus, the technologies for sector

intermediates, the demands for tasks, and the prices of sector intermediates are

 = 

Ã
X

=1


(−1)


!(−1)

 all  (31)

 = 

µ




¶−
 all   (32)

 = −1

Ã
X

=1


1−


!1(1−)
 all  (33)

where  is the share of firms in sector  and {}=1 are the shares for each tech-
nology within the sector. The substitution elasticity  is common across sectors

but  and {}=1 may differ. It will be assumed throughout that    so

tasks/differentiated goods within a sector are more substitutable than sector inter-

mediates.

As before, each task has the CES technology ( ) in (4), where  and  are the

same across sectors.
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Notice from (32) that for any task in sector , demand is proportional to 

  so it

is increasing in both its sector intermediate  and its sector price . But  and 

are linked through demand by final goods producers, in (30), where  is proportional

to 
−1
  Hence 


 is proportional to 

1−
  Since    this fact implies that a

change in sector output  has a stronger effect on demand for tasks in that sector

through the price channel than through the direct channel. That is, an increase in 

reduces price  so sharply that demand falls for a task  with unchanged price 

B. Equilibrium

The conditions for the equilibrium labor allocation and output levels for tasks are

similar to those in the one-sector model. Let   be as before. Assume labor is

mobile across sectors and let () denote the wage function. The labor allocation is

described, as before by thresholds {}=0  that partition the skill distribution into
bins. Workers in skill bin  those with  ∈ (−1 )  work with technology  Since
labor is mobile across sectors, the thresholds do not depend on  and price  does

not vary by sector. The wage function satisfies (5) and (7), as before, and (8) still

holds, and needs no sector subscriptsµ
+1



¶−
=

µ
( +1)

( )

¶

 all   (34)

The demands for tasks in (32) do vary by sector, however, so output levels can be

written as

 = 
−
   all   (35)

where from (30) and (32),

 = 

µ




¶1−
 all  (36)

The constants {}=1 act as weights on the sectors.
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Labor market clearing requires productivity-weighted labor supply in each skill bin

to equal the sum of demand from all sectors, so (6) becomes

Ψ =

X
=1



= 
−
 

X
=1

  = 1   (37)

where {Ψ}=1 are defined as before in (11). A competitive equilibrium consists of

thresholds {}−1=1
 prices {}=1  weights {}=1  and output levels {} satisfying

(34)-(37), where the aggregates   {} are given by (29) and (31).
To characterize the equilibrium, start with candidate values {}  and define©

ª
=1

as the weighted averages

 ≡
X
=1

 all  (38)

Use (37) and (38) in (34), to find that the thresholds {}−1=1
satisfy

( +1)
−

+1
Ψ+1 =

( )
−


Ψ all  (39)

By the same reasoning as for (13), a solution exists and is unique. The thresholds

determine the Ψ’s, and using (37) and (38) in (35) gives the quantities

 = 

Ψ


 all  

Then use (31) to get {}=1  and (29) to get  . For an equilibrium, (36) must
hold. For a computational method, use (36) to calculate updated weights {0}=1
and iterate.

Two examples illustrate some of the possibilities.
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C. Example: identical technology distributions across sectors

If the technology distributions are the same in all sectors, then the equilibrium skill

bins are exactly as in the one-sector model. Hence the effects of a technology change

are also the same.

To see this, suppose  =  all   Then  =  all  where  ≡
P

=1

Hence (39) simplifies to (13), and the thresholds {} depend only on the ’s. Then

 =




Ψ


 all  ;

 = 



Ψ all ; (40)

 = Ψ

"
X
=1



µ





¶(−1)#(−1)


where

Ψ ≡
"

X
=1


1
 Ψ

(−1)


#(−1)


For the weights {}  use the second line in (40) in (36) to get

 = 0



(−)
  all 

where 0 is a constant. Hence




=


(−)
P

0=1 

0

(−)
0

 all 

Consider an improvement in technology  Clearly {}−1=1
 {Ψ}=1 and {}=1

change exactly as in the one-sector model, with
©


ª
=1

unchanged. Hence wages

for each skill type also change exactly as in the one-sector model. In every sector,

output of tasks/goods of type  changes in proportion to the change in Ψ Hence all

sector outputs {} increase in proportion to the increase in Ψ as does output of the

final good. From (30) or (33), sector prices {} are unchanged.
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D. Example: two sectors, low-tech and high-tech

At the other extreme, consider an example with two sectors, with very different

technology distributions. For clarity, label the sectors  =  Half of the firms are

in each sector,  =  = 12 the upper-level elasticity is  = 1 and the factor

shares are  ∈ (0 1) and  = 1− 

There are three technology levels, 1  2  3 In the low-tech sector,  =  the

fraction (1− ̂) have 1 the fraction ̂ ∈ (0 1) have 2 and none have 3 In the
high-tech sector,  =  all firms have have technology 3 For simplicity the skill

distribution is also discrete, with three levels, 1  2  3 and with total numbers

1 = (1− ̂) 2 2 = ̂2 3 = 12

Suppose that in equilibrium all labor with skill  produces with technology  so

 =  ( )   = 1 2 3

Then sector aggregates are

 =
1

2

h
(1− ̂) 

(−1)
1 + ̂

(−1)
2

i(−1)


 =
1

2
3

sector demands from (30) are

 =    = 

and demands for differentiated goods from (32) imply





=

µ




¶−1
  = 1 2

3



=

µ
3



¶−1
= 1

Consider technical change that increases 2 Suppose that employment patterns

are unchanged. Then 0  ̂  ̂2 and ̂ = ̂ with  unchanged. To calculate
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the effect on wages, note that

̂ = ̂ + ̂  = 1 2 3

For workers with skill 3 since  = 3 is unchanged,

̂3 = ̂3 = ̂ = ̂ = ̂  0

For workers with skill 2

̂2 = ̂2 + ̂2

= ̂ − 1


³
̂2 − ̂

´
+ ̂2

= ̂ − ̂ +
1


̂ +

µ
1− 1



¶
̂2

= ̂ +
− 1


³
̂2 − ̂

´


Since ̂  ̂2 and by assumption    = 1 both terms in the last line are positive,

and ̂2  0 For workers with skill 1 since 1 is unchanged,

̂1 = ̂1 = ̂ +
1


̂

= ̂ − ̂ +
1


̂

=

µ
 − 1 + 1



¶
̂

Hence ̂1  0 if the within-sector elasticity is high and the factor share of the low-tech

sector is small, if
1


+   1

The main idea in this example is that if the elasticity  across sectors is low, and the

weight  on the high-tech sector is large, then the technology shock leads to a large

increase in   so a substantial share of the increase in final output accrues to workers

in the high-tech sector. For tasks in the low-tech sector, there are two effects: the price
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 falls and output  rises. If the elasticity  is large, the price effect dominates.

For workers who use the improved technology, the direct productivity effect offsets

the sector price change. But for workers using the unchanged technology, the wage

change is dominated by the negative price effect.

Equilibrium requires that no worker can increase his wage by changing jobs. As

shown in the Appendix, the parameters can be chosen so this requirement is satisfied.

6. NUMERICAL EXAMPLES

This section displays results for a simulated example. The substitution elasticity5

between technology and skill is set at  = 05 Since the results of a technology change

are sensitive to the elasticity of substitution across tasks, four values are used,  = 05

1002 2 and 6.

It is innocuous to set  = 05, since the input weights can be offset by choice of

the relative means of the technology and skill distributions. In addition, the mean of

one distribution can be normalized in any convenient way.

As suggested by Zipf’s law for the firm size distribution, the probability vector 

for technology types is a discrete approximation to a Pareto, with a shape parameter

 = 10 The location parameter is min = 1 the maximum value truncates ten

percent of the distribution, and there are  = 50 types. As suggested by the wage

distribution, the distribution of human capital is lognormal. The mean and variance

are unity,  = 2 = 1 and the range is symmetric, truncating about 2.1% of

the distribution in total. There are  = 20 000 values, to mimic a continuous

5Bagger and Lentz (2015) report a value of about 031 Lise, Meghir and Robin (2016) find a

value of 053 for college educated workers, and a value well above unity for workers with high school

or less education, suggesting that complementarities are important only for better-educated workers.
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distribution. In summary, the parameters are

 = 05  = 1  = 1  = 05 1002 2 6

 = 05 min = 1 2 = 1

A. Baseline economies

Figure 2 displays the results for the baselines economy. The number of technology

types is large enough so that the skill bins are quite narrow, except at the very

low end. Figures 2a and 2b show the average skill and employment levels for each

technology, for the four values of  For the highest  value, labor is concentrated on

the better technologies: employment is strong increasing in  and the average skill

for each  is lower. For the two lowest elasticities, employment is concentrated on

the lower technologies. Figure 2c shows the wage functions for the four values of 

For lower skill levels, the wage is approximately the same for all four elasticities. For

higher skill levels, the wage is higher for higher elasticities. Total output (which is

also the total wage bill) is significantly higher for the higher elasticities.

B. Homogeneous technologies

Figure 3 displays the effects of eliminating heterogeneity in technologies, with the

common technology  in each case chosen so that final output–and hence the total

wage bill–are unchanged. Recall that the direct technology effect raises (lowers)

individual productivity for workers in the lower (upper) end of the skill distribution.

But the average productivity of co-workers moves in the same direction. In addition,

employment is uniform across all tasks in the HT economy.

The net effect in all four economies is to depress wages at both ends of the skill

distribution, and to raise wages for those in the middle, as shown in Figure 3. The

loss function is approximately quadratic, as (15) suggests, even though here the dis-
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tribution functions for skill and technology are very different from each other.

Interestingly, in every case the variance of log wages in the HT economy is slightly

higher than in the baseline economy. This fact suggests that reported values in the

empirical literature, which show positive contributions of technology inequality to

wage inequality, are missing an important element–price effects.

C. A limited technology improvement

Figure 4 shows the effects of a small improvement for a group of technologies

in the middle of the distribution. There are  = 50 technology types, and types

 = 21  30 are increased by 3%.

Panel (a) shows the resulting changes in employment. For the elasticities greater

than unity, employment expands at the affected tasks and falls for all others. For

 = 1002 employment is almost unchanged, although it rises (falls) very slightly for

tasks below (above) the affected group. For  = 05 it falls noticeably at the affected

group, and rises very slightly (is unchanged) for tasks below (above) the affected

group.

Panel (b) shows the output changes. Output always rises for the tasks that are

directly affected, and the size of the increase is larger for the higher elasticities.

Output always falls for tasks higher up the technology ladder, although the changes

are very small for the low elasticities. For the higher elasticities, outputs also fall

for tasks farther down the ladder. For the lower elasticities, there is a very slight

increase.

Panel (c) shows the wage changes, plotted as a function of the worker’s position

in the skill distribution. In all four economies, wages rise for all workers, although

the changes are small for skill levels below the group that is directly affected. For

the high elasticity,  = 6 the group that is directly affected–and hence is getting a

substantial wage increase–extends much farther down the skill ladder.
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7. Conclusion

The analysis here has focussed on the effects of technology changes, but the frame-

work could also be used to examine other questions, and it could be extended in a

number of ways. For example, it could be used to study the effects of changes in the

skill distribution resulting from a change in immigration policy, or of changes in the

demand structure resulting from a change in trade policy. It could also be used to

revisit the role of labor market frictions in generating unemployment and producing

job ladders, as in Mortensen and Pissarides (1999) and Moscarini and Postel-Vinay

(2015).

In addition, the multi-sector model in section 5 could be used study more targeted

types of technical change. As illustrated by the examples there, change that hits some

tasks/goods within a single sector may have quite different effects from change that

hits uniformly across sectors. The two-sector example suggests that the multi-sector

framework may be useful for studying labor market polarization.

In the framework here, individuals work in isolation to produce outputs, here called

tasks. But most goods and services, whether for consumption or investment, are not

produced by single individuals. Aggregating tasks into goods requires additional in-

formation about how goods and services are produced, about which tasks are involved.

Tackling this question is important because it connects the job/occupation decisions

of individual workers with the outputs of goods and services measured in so many

data sources. The multi-sector model in section 5 may provide a starting point for

thinking about this issue.

Defining the boundaries of firms seems even harder, since a firm may produce

only one task or a wide variety of goods. And firms, whether large or small, also

choose which tasks to produce in-house and which to purchase in the marketplace.

Nevertheless, the patterns for recent wage changes suggest rather strongly that firms
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are important in determining how technical change gets translated into rising wages.

Wage inequality has displayed large and long-lived shifts over the last century, as

described in Goldin and Margo (1992) and Goldin and Katz (2007), and many of these

shifts are surely due to changes in technology. Large increase in wage inequality lead,

understandably, to calls for policies to deal with it. But to guide policies targeted at

reducing inequality, we need to better understand its sources.
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APPENDIX

A. Derivation of the quadratic loss

For economies where  () ≈ () all  the wage change from eliminating

heterogeneity in technologies is

∆ ln() ≈ 0 − 1


£
ln − ln

¤
+
£
ln

¡
  


¢− ln (  1)¤ 

≈ 0 − 1

∆ + ∆ +

1

2
∆

2


where

 ≡  ln ( )

 ln
  ≡ 

 ln

µ
 ( )

 ( )

¶


For the elasticities, note that

( ) ≡ £
(−1) + (1− )(−1)

¤(−1)
( ) = (1− )−1( )1

( ) =
1


(1− )−1( )1

µ



− −1

¶


so




= (1− )( 1)−(−1)

2


=

1


(1− )( 1)−(−1)

µ



− 1
¶


Note, too, that

 (  1)
−(−1)

=
1

 (1− )


Hence evaluating the elasticities at ( ) = (  1) gives

 =



= (1− )(  1)

−(−1) =
1


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 = 

"



− 

µ




¶2
+





#

=
1


− 1

2
+
1


(1− )(  1)

−(−1)
µ
1


− 1
¶

=
− 1
2

 − 1




B. Proof of Proposition 1

Proof of Proposition 1: Use (20) in (16) to find that

̂ = Ψ̂ +

X
=1


1

Ψ

h
( )

()
 − (−1 )

()
−1
i


Hence it suffices to show that

0 =

−1X
=1

∙


Ψ

( )− +1+1+1

Ψ+1

( +1)

¸

()


=


− 1
−1X
=1

∙


Ψ

− +1+1

Ψ+1

¸
()

()


=


− 1
−1X
=1

∙
( )



Ψ

− +1( +1)


Ψ+1

¸
( )

−()
()
 

where the first line uses (17) and the fact that 
()
0 = 

()

 = 0 the second uses (5),

and the third uses (9). From (13), the term in brackets in the last line is zero, for all

. ¥

C. Matrix M and proofs of Results 2 - 6

Differentiate (13) and use (11) to get


()
 = − 1

Ψ

(−1 )
()
−1

+

∙
1

Ψ

( ) +
1

Ψ+1

( +1) + 

¸

()


− 1

Ψ+1

(+1 +1)
()
+1  = 1   − 1
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Write this in matrix form as

() = ()

where () is defined in (22), and  is a tridiagonal matrix of dimension ( − 1) 
with rows (0  0   +1 0  0) where

 ≡  − ( + +1)  0  = 1   − 1 (41)

 ≡
h
̂( +1)− ̂( )

i
()  0  = 1   − 1

 ≡ − 1

Ψ

(−1 )  0  = 2  

 ≡ − 1

Ψ

( )  0  = 1   − 1

The matrix in (21) is the inverse,  = −1

To characterize  define the constants {}−1=0  {}=1  by

0 ≡ 1 1 ≡ 1 (42)

 ≡ −1 − −2  = 2   − 1;
 ≡ 1 −1 ≡ −1 (43)

 ≡ +1 − +1+1+2  =  − 2  1

Lemma A1 shows that these constants and certain sums are positive.

Lemma A1: The constants satisfy   0 all  and   0 all  and in addition

−1 + −2  0  = 2   − 1 (44)

 + +1  0  =  − 2  1 (45)

Proof of Lemma A1: Use (41) in (42) to find that

 + +1−1 = −1 −  (−1 + −2)   = 2   − 1
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Since   0   0 +1  0 all  it follows that

−1  0 and −1 + −2  0 =⇒  + +1−1  0 and   0

Since 1 = 1  0 and

1 + 20 = 1 + 2  0

by induction (44) holds. Similarly, use (41) in (43) to find that

 + +1 = +1 − +1 (+1 + +1+2)   =  − 2  1

so

+1  0 and +1 + +1+2  0 =⇒  + +1  0 and   0

Since −1 = −1  0 and

−1 + −1 = −1 + −1  0

by induction (45) holds. ¥

Proof of Lemma 2: The matrix  has elements (see Huang and McColl, 1997)

 =
1

−1
−1+1  = 1   − 1 (46)

+1 = −+1+2

+1

  =    − 2

−1 = − −2
−1

  =   2

Since    0 and    0, all  clearly   0 all  . In addition, clearly the

columns satisfy (24), where

+1 ≡ −+1+2

+1

  = 1   − 2 (47)

−1 ≡ − −2
−1

  = 2   ¥
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Proof of Lemma 3: From the definitions of ̂ and Ψ̂


()

 = 
( )

( )
−
R 
−1

( )()R 
−1

( )()


and since  is a CES function,

( ) = (1− )−1( )1

Hence 
()

 T 0 asZ 

−1
( )

£
( )

1−1 − ( )
1−1¤ () T 0 (48)

An analogous argument (with careful attention to signs) establishes that 
()

−1 T 0 asZ 

−1
( )

£
(−1 )

1−1 − ( )
1−1¤ () S 0 (49)

Recall that (· ) is increasing in its first argument, and   1 For  ≥ 1 the term
in square brackets in (48) is positive over the range of integration, so 

()

  0 For

 ≤ 1 the term in square brackets in (49) is negative, so 
()

−1  0. In other cases

the signs are ambiguous. ¥

Proof of Proposition 4: For  = 1 the claims are immediate from (23) and

Lemmas 2 and 3. For  6= 1 the same is true for  = 1 and  =  since (23) has only

one term.

For  6= 1 and  6= 1  use the first line of (24), with  =  = − 1 in (23) to find
that


()

 = −1−1
()

−1 +
()



=
+1

−1

³
−−2()−1 + −1

()



´
 (50)
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where the second line uses (46) and (47). Similarly, use the second line of (24), with

 =  =  in (23) to find that


()

−1 = −1−1
()

−1 + −1
()



=
−2
−1

³
−

()

−1 − +1
()



´
 (51)

Suppose   1 Then 
()

  0 so the second term in (50) is positive. If in addition


()

−1 ≥ 0 then the first term is nonnegative, so 
()

  0 If 
()

−1  0 then

0 

Z 

−1
( )

1()  (−1 )
1−1

Z 

−1
( )()

 ( )
1−1

Z 

−1
( )()

so
¯̄̄

()

−1

¯̄̄
 

()

  Hence by Lemma A1 the sum in parenthesis in (50) is positive. In

(51), the fact that
¯̄̄

()

−1

¯̄̄
 

()

  does not help in applying Lemma A1, so the sign

is ambiguous.

Similarly, suppose   1 Then 
()

−1  0 so the first term in (51) is positive. If in

addition 
()

 ≥ 0 then the second term is nonnegative, so ()−1  0 If 
()

  0 thenZ 

−1
( )

1()  ( )
1−1

Z 

−1
( )()

 (−1 )
1−1

Z 

−1
( )()  0

so
¯̄̄

()



¯̄̄
 

()

−1 Hence by Lemma A1 the sum in parenthesis in (51) is positive. In

(50), the fact that
¯̄̄

()



¯̄̄
 

()

−1 does not help in applying Lemma A1, so the sign

is ambiguous. ¥

Proof of Proposition 5: Recall from (41) that

( ) = (−1 ) all  (52)
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For    use the first line in (25) in (26) to find that

̂
()
 =

1

Ψ

[( ) − (−1 )]
()
−1

=
1

Ψ

∙
−+1



( )− (−1 )

¸

()
−1

= − 1

Ψ

∙

+1



+ 1

¸
(−1 )

()
−1 (53)

T 0 as 
()

 S 0

where the second line uses the definition of  the third uses (52), and the last uses

Lemma A1 and Proposition 4. Similarly, for   , use the second line in (25) in

(26), and the definition of −1 to find that

̂
()
 =

1

Ψ

[( )− −1(−1 )]
()


=
1

Ψ

∙
( ) + 

−2
−1

(−1 )

¸

()


=
1

Ψ

∙
1 + 

−2
−1

¸
( )

()
 (54)

T 0 as 
()

−1 T 0   

For  =  the first term in (27) is clearly positive. If  ≥ 1 then the second term
is also positive. If in addition 

()

−1 ≤ 0 then last term is nonnegative, and ̂
()

  0.

If 
()

−1  0 use the fact that equilibrium requires

(−1 −1)−1 = (−1 )

before and after the shock. Hence

̂−1 − ̂ =
h
̂(−1 )− ̂(−1 −1)

i 
()

−1
(−1)

+ ̂(−1 ) (55)

For 
()

−1  0 both terms on the right are positive, so ̂  ̂−1 Hence ̂  ̂−1

and as shown above, in this case ̂
()

−1  0
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If   1 then the first and third terms in (27) are positive. If in addition 
()

 ≥
0 then second term is nonnegative, and ̂

()

  0. If 
()

  0 use the fact that

equilibrium requires

( ) = ( +1)+1

before and after the shock. Hence

̂ − ̂+1 =
h
̂( +1)− ̂( )

i 
()



()
− ̂( +1)

For 
()

−1  0 both terms on the right are negative, so ̂  ̂+1 Hence ̂  ̂+1

and as shown above, in this case ̂
()

+1  0 ¥

Proof of Proposition 6: For    use (53), the fact that 
()
 

()
−1 =  and

the definition of  to find that

̂
()
+1

̂
()


= −+1


+1+2+1 + 1

+1 + 1

+1





=
−+1 (+1+2 + +1)

+1 + +1 − +1+1+2

=
−+1 (+1+2 + +1)

+1 − +1 (+1 + +1+2)
 1   

where the second line uses the definitions of  the third uses the definition of 

and the inequality follows from Lemma A1 and the fact that +1  0

Similarly, for    use (54), the fact that 
()
−1

()
 = −1 and the definitions of

−1 −1 and −1 to find that

̂
()
−1

̂
()


= −−1


1 + −1−3−2
1 + −2−1

−2
−1



=
−−1 (−2 + −1−3)

−1−2 − −1−1−3 + −2

=
−−1 (−2 + −1−3)

−1−2 − −1 (−2 + −1−3)
 1    ¥

Proof of Proposition 7: For  6=  the claims are immediate from (28) and

Propositions 5 and 6.
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For  =  there are two cases. If 
()

−1  0 then ̂
()

−1  0 and ̂
()

−1  0 Since both

terms on the right in (55) are positive, it follows that ̂
()

  ̂
()

−1  0 This argument

always holds if  ≤ 1 and holds for   1 if ()−1  0

If   1 and 
()

−1  0 then ̂
()
  0 and ̂

()
  0 all    In addition, since


()

  0 in this case ̂
()
  0 and ̂

()
  0 all    Since Σ

=1 ̂
()
 = 0 it follows

that ̂
()

  0 ¥

Proof of Proposition 8: For  ∈ (−1 )  the claim is immediate from

Propositions 4 and 7. For skill bin  note that ̂(−1) = ̂−1  0 and ̂() is

increasing in  for  ∈ (−1 )  ¥

D. One-sector example with wage declines

For a one-sector example where the wage falls for some workers, let  = 3 and  = 2

and let the skill distribution be discrete, also with three types. Let    = 1 2 3

be the skill types and the number of workers of each type. The parameters are

3 = 10 000 2 = 4 1 = 1 02 = 1012

3 = 10 000 2 = 4 1 = 095

3 = 099 2 = 00090 1 = 00010

3 = 0988912 2 = 0007991 1 = 0003097

 = 022  = 05  = 12

The vast majority of firms have technology 3 and the vast majority of the workforce

has skill 3 = 3 and these levels are much higher than the others. Hence the increase

in technology 2 leaves final output virtually unchanged, and the price change at 1

firms depends almost entirely on their own output change. In the initial equilibrium

all workers with skill 3 are employed at firms with technology 3 and all with skill

2 are matched with technology 2 Workers with skill 1 are divided between firms

with technologies 1 and 2 The increase in 2 reallocates some additional 1 workers
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to 1 firms, and 1 falls. Workers with skill 1 take a wage cut equal to decline in 1.

E. Two-sector example with wage declines

Equilibrium in the example in section 4.D requires that no worker can increase his

wage by changing jobs, or

 ( ) ≤  ( )    = 1 2 3

It suffices to show that this condition holds for   = 1 2 and for   = 2 3

Suppose  =  so ( ) =   = 1 2 3 Since  = 1 2 are in the same

sector, 21 = (21)
−1

 Hence for   = 1 2 we need

 (2 1)

2
≤
µ
2

1

¶−1
≤ 1

 (1 2)


Let  = 12 and write this condition as

 (1 ) ≤ 1 ≤ 1

 (1 −1)


Since  = 2 3 are in different sectors, and  = 3

3

2
=





µ
2



¶1
=
1− 





3

µ
2



¶1
=

1− 



(1− ̂)
(−1)
1 + ̂

(−1)
2


(−1)
3

µ
2

3

¶1
=

1− 



h
(1− ̂) ()

(−1)
+ ̂(−1)

i
1

=
1− 


−1

£
(1− ̂)(−1) + ̂

¤


where  = 23  1 Then the required condition is

 (1 ) ≤ 1− 


−1

£
(1− ̂)−(−1) + ̂

¤−1 ≤ 1

 (1 −1)


For  = 05  = 03  = 40  = 065 and ̂ = 075 the required conditions hold

around  = 015 and  = 070 and for these parameters  + 1  1
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