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1 Introduction

Monetary policy responded aggressively to the fallout caused by the 2008 financial crisis

by cutting the Federal Funds rate all the way to zero, issuing forward guidance and conduct-

ing large-scale asset purchases. Yet despite these large, and unprecedented policy actions,

the recovery from the Great Recession has been slow. This seemed to support the hypoth-

esis that in the aftermath of financial crises, recoveries are typically sluggish. The basis of

this “financial crises recoveries are different” hypothesis is typically cross-country empirical

evidence as in Reinhart and Rogoff (2008) and Cerra and Saxena (2008). Yet, we currently

lack a clear conceptual or empirical understanding of the mechanisms that might render

recoveries after financial distress different from other recoveries.

We propose a novel mechanism that dampens the potency of monetary policy, particu-

larly after financial crises. We focus on the phenomenon of loan retrenchment, commonly

associated with financial distress, whereby banks seek to systematically reduce their expo-

sure to non-tradable loan risks. We build on the framework of Froot and Stein (1998),

which provides a unified perspective on risk management and capital structure in financial

institutions. In our micro-founded model, loan retrenchment combined with loan liquidation

costs reduces the pass-through from monetary policy rate changes to loan supply (the “Bank

Lending Channel”), which attenuates the effectiveness of monetary policy.

To build intuition, consider the case were bank loans are completely illiquid, so retrench-

ing banks cannot actively reduce their loan portfolio. Thus, their target loan exposure is

less than their actual loan exposure. A reduction in the monetary policy rate does increase

the target loan exposure of these banks, but so long as it is below the actual loan exposure

no new loans will be forthcoming. By contrast, a bank that does not retrench will increase

loan supply since its target loan exposure increased. The same logic also applies to mone-

tary policy rate increases: a retrenching bank cannot reduce its loan exposure due to loan

illiquidity, dampening the impact of monetary policy on loan supply, whereas an expanding
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bank can reduce new loan issuance. Thus, the degree of loan retrenchment is an important

state variable influencing the effectiveness of monetary policy rate reductions, a mechanism

we call “financial dampening.”

We empirically investigate how financial dampening mitigates the transmission of mon-

etary policy shocks on local lending. Like much of the empirical literature on financial

frictions, we face an identification challenge since local loan volumes could be driven by local

loan demand shocks, rather than changes in loan supply. To understand how to overcome

this identification problem, we incorporate it into our model: a low sensitivity of loan quan-

tities to monetary policy shocks can occur either because of supply-driven loan retrenchment

or constrained local loan demand. Simple OLS estimates therefore do not correctly uncover

financial dampening.

To show how our spatial IV-strategy can overcome this identification problem, our model

also incorporates two previously documented features of U.S. banking. First, U.S. banking

is very local as emphasized by Becker (2007). We independently document this local nature

by showing that more than 50% of commercial banks essentially operate only in one county,

65% only in one metropolitan area, and over 95% only in one state. Second, commercial

banks are typically part of larger financial conglomerates or bank holding companies (BHC).

Furthermore, BHCs do not only own commercial banks from several distinct areas, but BHC-

member banks share a single internal capital market (Houston, James, and Marcus, 1997;

Campello, 2002). In the model, local banks use this internal capital market to insure against

non-tradable risks from illiquid local loans.

These features imply that an increase in the BHC’s internal capital cost imparts a com-

mon force for supply-driven loan retrenchment across all BHC-member banks, since now in-

surance against non-tradable risks becomes more expensive. Further, geographically-separate

BHC-member banks are not subject to the same local demand constraints. Thus, average

loan retrenchment at spatially-separate BHC-member banks can be used as an instrument

for local loan retrenchment. We then show that if banks are small and demand shocks
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are spatially uncorrelated, then our instrument can consistently estimate the importance of

supply-driven financial dampening.

We derive the empirical specification for our IV strategy from the model and estimate

results consistent with our theory: in response to a -1% monetary policy shock, a bank at the

25th percentile of the loan growth distribution increases its loan growth by 3.25 percentage

points less than a bank at the 75th percentile according to our baseline specification. We

provide several robustness checks that our estimates are not biased by spatial correlation of

local demand shocks, reverse causality from large BHC-member banks, or regulatory changes.

We also show that financial dampening channel is distinct from other bank characteristics

such as bank size (Kashyap and Stein, 2000), the level of leverage (Bernanke, Gertler, and

Gilchrist, 1999; Van den Heuvel, 2005), and capital growth which can capture profitability

or bank-specific weaknesses.

We then show that employment growth responds significantly less to monetary policy in

counties with banks subject to supply-driven loan retrenchment. The employment effects of

monetary policy are 0.52 percentage points lower after two years for counties at the 25th per-

centile of the loan growth distribution compared to the median county. Assuming that the

median county corresponds to aggregate employment effects, this renders monetary policy

only half as effective at stimulating employment growth in counties at the 75th percentile. We

then apply these estimates to the U.S. economy, where loan growth in post-1990 recoveries

was substantially slower, and the fraction of retrenching banks remained persistently higher,

than in pre-1990 recoveries. These calculations imply that the financial dampening mecha-

nism accounts for 0.85 percentage points slower employment growth in post-1990 recoveries.

This suggests that financial dampening is likely an important mechanism in the aggregate,

and a micro-founded and empirically-supported mechanism for why recoveries after financial

distress may be slow.

This paper relates to at least five strands of literature. First, it emphasizes the role of

financial intermediation in the propagation of monetary shocks, as in Kashyap and Stein
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(1995, 2000), Campello (2002) and Landier, Sraer, and Thesmar (2013) among others. Rel-

ative to the existing literature we propose a novel mechanism—financial dampening—that

affects the strength of this “bank lending channel.” Van den Heuvel (2005) also emphasizes

state-contingency of the credit channel when the level of leverage is close to the regulatory

maximum.1 Our mechanism instead emphasizes the desired change in loan holdings, which

is not dependent on being close to a capital requirement. We provide empirical results show-

ing that our financial dampening channel is distinct from regulatory capital considerations.

First, we drop banks and BHCs close to regulatory capital requirements. Second, we control

for leverage as well as leverage categories to separate Van den Heuvel’s regulatory capital

channel from financial dampening. While we find evidence consistent with Van den Heuvel

(2005), our estimates of the financial dampening channel are unchanged, suggesting that it

operates independently from his mechanism.

Second, our work is related to the empirical work on the link between financial shocks

and real economic outcomes (Peek and Rosengren, 2000b; Chodorow-Reich, 2014; Amiti and

Weinstein, 2013; Giroud and Mueller, 2015). Using lenders operating in multiple geographic

areas to control for local loan demand is similar is spirit to Peek and Rosengren (2000a),

Amiti and Weinstein (2013), Greenstone, Mas, and Nguyen (2014) and Mondragon (2014).

These papers are either event studies of natural experiments or rely on annual variation.

By contrast, we construct a quarterly panel dataset of lenders, which is better suited to

analyze the impact of financial dampening on monetary policy transmission at business

cycle frequencies. Furthermore, while this literature analyzes the real effects of financial

shocks, we focus on the degree to which financial sector retrenchment dampens the real

effects of monetary policy.

Third, our banking model features two key ingredients. We stress the connection of

capital cushions and the optimal exposure to non-tradable loan risks following the theoret-

1In his model banks close to minimum capital requirements have non-monotonic lending behavior, by
first retrenching and then gambling for resurrection. For medium values of leverage, banks reduce lending
as they try to avoid hitting the minimum capital requirement. With a high level of leverage banks are very
close to bankruptcy and optimally expand lending due to the fact that bankruptcy costs are limited.
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ical framework of Froot and Stein (1998). Consistent with this framework, Cebenoyan and

Strahan (2004) show that the subset of banks actively selling loans hold systematically less

capital than other banks. We also follow a broad theoretical and empirical literature em-

phasizing the illiquidity of bank loans, which creates asymmetric loan portfolio adjustment

costs (e.g, Diamond and Dybvig, 1983; Kashyap and Stein, 1995; Bianchi and Bigio, 2014,

among many others). We do not provide a deep micro-foundation for illiquidity and instead

appeal to existing work highlighting market and/or information frictions that generate illiq-

uidity (e.g., Diamond, 1984; Holmstrom and Tirole, 1997; Afonso and Lagos, 2012). To the

extent that liquidation costs are greater in times of financial distress, the financial damp-

ening channel becomes more important. Thus, our results also relate to Coval and Stafford

(2007), Campbell, Giglio, and Pathak (2011), Ellul, Jotikasthira, and Lundblad (2011) and

Greenwood and Thesmar (2011) that empirically document how higher selling pressure leads

to disproportional price discounts. Understanding asymmetries in financial market is also

the focus recent dynamic equilibrium models with financial frictions (e.g., Brunnermeier and

Sannikov, 2014; He and Krishnamurthy, 2013).

Fourth, our work shows that commercial banks may fail to increase loan growth, even if

monetary policy reduces funding costs by lowering monetary policy rates. This suggests that

financial dampening may be an important ingredient for quantitative business cycle models

with financial frictions (e.g., Bernanke et al., 1999; Gertler and Karadi, 2011).2 In these

models, the effectiveness of monetary policy is increasing in the level of leverage, whereas

financial dampening mechanism emphasizes the desired change in financial sector loan hold-

ings. Thus, even if current leverage is high, as in the most recent recession (He, Khang, and

Arvind, 2010; Ang, Gorovyy, and Van Inwegen, 2011), the effectiveness of monetary policy

can be attenuated by the desire of the financial sector to retrench. We do not study the direct

effect of financial sector retrenchment on economic activity, as is done by Eggertsson and

Krugman (2012), Guerrieri and Lorenzoni (2012) and Mian, Rao, Sufi et al. (2013) among

2Bigio (2014) explores how asymmetric information can imply the failure of endogenous equity injections
as a stabilizing force for financial intermediaries hit by negative shocks.
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others.

Fifth, our results imply that the effectiveness of monetary policy is contingent on the

state of the financial sector. Existing work has instead emphasized differential effectiveness

in recessions and expansions (e.g., Angrist, Jordà, and Kuersteiner, 2013; Barnichon and

Matthes, 2014; Tenreyro and Thwaites, 2013) or based on uncertainty (Vavra, 2013).

2 Model

2.1 Overview Our model is an extended version of the seminal analysis of Froot and Stein

(1998), which provides a unified treatment of risk management and capital structure choice

for financial institutions. We extend their framework in three ways to align the model with

our specific empirical application. First, we model the behavior of local BHC subsidiaries,

which are connected through a BHC internal capital market. Second, each local bank can

choose to invest in either safe, liquid securities or create/liquidate illiquid, risky loans. Third,

we allow for unobservable changes in local loan demand that will affect the responsiveness of

banks to monetary policy and therefore complicate identification of a supply-driven financial-

dampening channel. We directly derive our estimation equation and instrumental-variable

strategy from this model.

2.2 Economic Environment and Timing Our exposition closely follows Froot and Stein

(1998). Let i ∈ Ωh index a local bank that is part of a bank holding company h. We assume

for simplicity that each bank i is a small part of the BHC and each bank operates on a

separate island. Each local bank i has the choice to invest in illiquid loans or liquid, safe

securities. We denote these choices as Li,h and Si,h respectively. These investments are in

turn funded by an exogenously given local deposit base D̃i,h or capital provided by the BHC,

denoted Ki,h. A local bank’s balance sheet is therefore given by

Li,h + Si,h = D̃i,h +Ki,h (1)
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Figure 1 – Timing

The model has two subperiods as shown in figure 1. In period 1, local banks start with

a given deposit base D̃i,h and a given past loan portfolio Li,h,0. Local banks decide how

much to invest in loans and safe securities Li,h and Si,h, while at the same time deciding

how much capital Ki,h to demand from the BHC internal capital market. Safe securities

Si,h and deposits D̃i,h pay the same safe return rF , while loans Li,h pay a random return

rL ∼ N(r̄L, σ2
ε).3

We assume throughout that banks’ loan portfolio risks are untradable. This assumption

can be relaxed following the original model of Froot and Stein (1998), where banks optimally

hedge all tradable risks away so that only non-tradable risks remain on banks balance sheets.

Our model can therefore be understood as a model of the net exposure to non-tradable loan

risks, after tradable risks have been hedged using derivatives.

Since our model focuses on non-tradable loan portfolio risks, loans are subject to quadratic

liquidation costs. Thus, to liquidate x ∗ 100 percent of its initial loan portfolio, the bank has

to pay a cost Ψ(x)Li,h,0 = ψ
2
x2I {x < 0}Li,h,0 as in Stein (1998), where I{•} is an indica-

tor function. Similar assumptions are typical in the literature (e.g., Diamond and Dybvig,

1983; Kashyap and Stein, 1995; Bianchi and Bigio, 2014).4 The liquidation costs apply to

total loan liquidations, and thus also apply to banks with a net increase in loan volumes if

3We can let deposit rates differ from the safe rate without affecting our derivations. E.g., Drechsler,
Savov, and Schnabl (2014) emphasize that deposit rates are a function of a local bank’s market power.

4Among others, Diamond (1984), Holmstrom and Tirole (1997), and Afonso and Lagos (2012) provide
micro-founded mechanism for loan illiquidity.
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gross liquidations are positive. To capture this potential excess of gross flows over net flows,

we assume that between the initial loan stock Li,h,0 and new choice Li,h a random fraction

δLi,h,0 of loans are paid off and χLi,h,0 commitments are drawn. Let z = χ − δ be the net

percentage change in loans from drawn commitments and maturing loans.5 The quantity z

is observable by the bank at the time Li,h is chosen (but not by the econometrician who can

only see ∆Li,h

Li,h,0
=

Li,h−Li,h,0

Li,h,0
). Thus, the growth rate of bank loans is x =

∆Li,h

Li,h,0
− z and the

liquidation cost is6

Ψ

(
∆Li,h
Li,h,0

, z

)
Li,h,0 =

ψ

2

(
∆Li,h
Li,h,0

− z
)2

I
{

∆Li,h
Li,h,0

< z

}
Li,h,0 (2)

In period 2, loan outcomes are realized so that overall profits from lending are

wi,h = (1 + rL)Li,h − (1 + rF )D̃i,h + (1 + rF )Si,h −Ψ

(
∆Li,h
Li,h,0

, z

)
Li,h,0

= (rL − rF )Li,h + (1 + rF )Ki,h −Ψ

(
∆Li,h
Li,h,0

, z

)
Li,h,0

(3)

where the second line follows from the definition of the bank balance sheet.

Following Froot, Scharfstein, and Stein (1993) and Froot and Stein (1998), banks use their

period 1 proceeds to invest in a non-stochastic investment opportunity, which we denote

by Ii,h = wi,h. As Froot and Stein (1998), we assume that returns in the non-stochastic

investment are captured by a concave function F (I).7 After these returns are realized, banks

pay capital back to the BHC, at a BHC specific capital rate (1 + rh) = (1 + θh)(1 + rF ),

where the BHC-premium θh is strictly positive and exogenous to the bank. This premium

can be thought of as being determined by a potentially time-varying external financing costs

for the BHC.

Two features of the set-up are particularly important. First, the curvature from F (•)

5In line with this interpretation, Bassett, Chosak, Driscoll, and Zakrajšek (2014) stress that a the loan
portfolio is not fully under a bank’s control, because consumers and firms can draw on commitments (e.g.,
credit lines, credit cards) and expand the banks balance sheet. They show that this effect is particularly
pronounced in the 2007-2009 recession.

6We assume that new commitments cannot be immediately liquidated.
7In Froot and Stein (1998), the bank is also able to raise additional equity at this stage, subject to a

convex equity cost. We leave it out for simplicity since it does not affect our derivations.
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endogenously creates risk aversion in financial institutions, as low realizations of wi,h imply

high marginal returns F ′(wi,h), and vice versa. Second, since capital from the BHC, Ki,h,

enters cash flows (3), it can be seen as insurance against low loan returns rL. The higher the

capital cushion Ki,h, the more the bank is protected against low loan return realizations, and

the less risk averse the bank will be. This creates a positive demand for BHC-level capital

despite its costly premium θh > 0.

We now formally summarize this discussion.

2.2.1 Optimization Problems

Period 2 Payoffs

Period 2 investment decisions in the non-stochastic investment opportunity can be summa-

rized as follows

P (wi,h) = max
Ii,h

F (Ii,h)

s.t. Ii,h = wi,h

The final payoff as a function of realized period 1 investments is therefore the return from

the investment opportunity net of equity repayment,

V (wi,h, Ki,h) = P (wi,h)− (1 + rh)Ki,h

Period 1 Payoffs

As the return on loans, rL, is a random variable, banks in period 1 optimally choose loans

Li,h and capital Ki,h to maximize expected utility:

max
Li,h,Ki,h

E[V (wi,h, Ki,h)]

s.t. wi,h = (rL − rF )Li,h + (1 + rF )Ki,h −Ψ(∆Li,h/Li,h,0, z)Li,h,0

rL = r̄L + ε

ε ∼ N(0, σ2
ε)
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where, as before, we substituted for the bank balance sheet (1). Banks take all interest rates

and returns as given.

2.2.2 Risk Aversion of Banks

To tractably describe risk aversion of banks under normal risks, we choose a linear-

exponential payoff function for the non-stochastic investments:

F (I) = AI +B

(
1− 1

g
e−gI

)
⇒ P (w) = Aw +B

(
1− 1

g
e−gw

)
(4)

where A,B > 0, so that the marginal payoff of cash flows is always positive but decreasing.

We also restrict A ≤ 1, so that the demand for BHC-capital Ki,h is always finite.

This functional form combines two attractive properties. First, it features decreasing risk

aversion, so that banks with larger values of cash flows wi will exhibit more risk-seeking be-

havior. For low values of cash flows wi, the bank will exhibit risk aversion with an coefficient

of absolute risk aversion g, while for large values of wi, the bank will be risk-neutral. Second,

due to its combination of linear and exponential utility terms, we are able to analytically

solve for risk aversion once we combine this utility with normally distributed loan returns.

2.3 Optimal loan supply: level and responsiveness Under these parametric assump-

tions we can analytically characterize the optimal loan supply.

Proposition 1 The optimal loan supply is given by

LSi,h(z) =
r̄L − rF − ∂Ψ(∆LS

i,h/Li,h,0,z)

∂∆LS
i,h/Li,h,0

Gh · σ2
ε

(5)

where the absolute risk aversion coefficient is

Gh =
g(1− A+ θh)

1 + θh
> 0 (6)

Proof See appendix A.1.
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The numerator in (5) is the expected excess return, which consists of the expected loan

premium and the marginal liquidation cost ∂Ψ
∂∆LS

i,h/Li,h,0
(which may be zero). The denomi-

nator is the BHC-specific absolute risk aversion Gh and the variance of loan returns.

The second key result from this proposition is that bank risk aversion is determined by

the BHC-level cost of capital. Intuitively, a low premium θh increases capital cushion Ki,h,

which increases cash wi,h carried into period 2 for the non-stochastic investment opportunity.

Since that investment opportunity is concave, variations in wi,h are less costly at higher levels

of the capital cusion Ki,h. Thus, the bank becomes less risk averse the higher the capital on

its books. Conversely, the higher the premium, the less capital the bank demands and the

greater its risk aversion,

∂G

∂θh
=

g · A
(1 + θh)2

> 0

In equation (5) the actual liquidation costs are unobservable, so we can only estimate

outcomes for the average loan supply LSi,h = EzL
S
i,h(z). This is equal to,8

LSi,h =
r̄L − rF − Φ′(∆LSi,h/Li,h,0)

Gh · σ2
ε

(7)

where

Φ′

(
∆LSi,h
Li,h,0

)
≡ Ez

[
∂Ψ(∆LSi,h/Li,h,0, z)

∂∆LSi,h/Li,h,0

∣∣∣∣∣ ∆LSi,h
Li,h,0

]

Assuming a uniform distribution for z, z ∼ U [−a, a], in appendix B we show that the

marginal liquidation cost has the properties Φ′(0) < 0, Φ′′(0) > 0 and Φ′′′(0) < 0. Figure 2

plots a numerical example of the average marginal liquidation costs across banks. The key

property for our analysis is that the marginal liquidation costs are asymmetric — they are

higher the more loans are already sold.

8We cannot back out z from equation (5) because the excess loan return, the risk aversion, and the
variance are not directly observable. One can interpret LSi,h(z) − EzLSi,h(z) as the structural error in our
estimation equation.
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Figure 2 – Comparison of quadratic liquidation cost Ψ
(

∆LS
i,h

Li,h,0
, z = 0

)
with expected liquida-

tion cost Φ
(

∆LS
i,h

Li,h,0

)
≡ Ez

[
Ψ
(

∆LS
i,h

Li,h,0
, z
)∣∣∣ ∆LS

i,h

Li,h,0

]
. Parameterization: z ∼ U [−a, a], a = ψ = 1.

The advantage of incorporating the excess of gross flows over net flows through the

random variable z, is that it smooths out the marginal liquidation costs as illustrated in

figure 2. Thus, we gain the existence of a third derivative at 0, which allows us to summarize

the asymmetry of loan liquidation costs at that point.

We next characterize the response of loan supply to monetary policy changes. We begin

by discussing our assumptions on how changes in monetary policy rates affect the return on

safe assets rF and loans r̄L in our model. First, we interpret monetary policy shocks as ex-

ogenous changes in the safe interest rate rF . If one interprets the safe asset as Federal Funds,

then the transmission is direct and one-for-one. More generally, the empirical literature on

the term structure of interest rates has shown that short term interest rates respond strongly

to changes in the Federal Funds rate, see Cook and Hahn (1989) and Kuttner (2001). If one

instead focuses on the funding costs of banks, then the federal funds rate directly influences

the interbank loan rate, and (through arbitrage) loan rates on close substitutes, such as

money market funds and deposits.9

9Bianchi and Bigio (2014) emphasize this market as a source of funds for banks engaged in liquidity
management.
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Second, we assume that monetary policy does not fully pass through to the expected loan

return ∂r̄L

∂rF
= µ < 1. Incomplete pass-through is consistent with the data (Fuster, Goodman,

Lucca, Madar, Molloy, and Willen, 2013; Scharfstein and Sunderam, 2013) and, in the model,

provides a mechanism for increases in loan supply following a reduction in monetary policy

rates. Theoretically, this assumption can be motivated by adverse selection considerations as

in Stiglitz and Weiss (1981), where increases in loan rates induce a selection of bad risks into

the loan portfolio of banks and vice-versa. Such a view is consistent with the interpretation

of our model as capturing the net exposure to non-tradable, illiquid loan risks.

We next characterize how loan supply responds to an exogenous change in the risk-free

rate rF .10

Proposition 2 The response of loan supply to exogenous changes in the risk-free rate is

approximately given by

∂ lnLSi,h
∂rF

≈ − 1− µ
r̄L − rF − Φ′(0) + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2
ln

(
LSi,h
Li,h,0

)
(8)

Proof See appendix A.2.

Proposition 2 captures the financial dampening mechanism that we try to measure. Ac-

cording to equation (8), banks that are in the process of reducing their risk-exposure to

loans LSi,h < Li,h,0 respond less to exogenous changes changes in monetary policy when loan

liquidation costs are asymmetric, Φ′′′(0) < 0. Thus, banks will expand loans less to policy

rate reductions, as well as contract loans less in response to policy rate increases.

To understand the key underlying intuition, consider the extreme case where banks can-

not liquidate loans, so the marginal liquidation cost is infinite. In that case, banks that

would want to contract loan supply (absent liquidations costs) to LSi,h < Li,h,0, will simply

10We can also allow for changes in the loan risk, ∂ lnσ2

∂rF
> 0. Then equation (8) becomes,

∂ lnLSi,h
∂rF

≈ −
1− µ+ ∂ lnσ2

∂rF
[r̄L − rF − Φ′(0)]

r̄L − rF − Φ′(0) + Φ′′(0)︸ ︷︷ ︸
<0

+
(1− µ)Φ′′′(0)− Φ′′(0)∂ lnσ2

∂rF
[r̄L − rF − Φ′(0) + Φ′′(0)]

[r̄L − rF − Φ′(0) + Φ′′(0)]2︸ ︷︷ ︸
<0

ln

(
LSi,h
Li,h,0

)
,

and dampening effects arise even with complete loan-rate pass-through (µ = 1).
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keep their current loan portfolio LSi,h = Li,h,0. A reduction in policy rates does raise the

ideal loan supply LSi,h, but no new loans will be forthcoming so long as the ideal loan supply

remains less than the original loan portfolio. The loan portfolio will be stuck at Li,h,0 and

the monetary transmission mechanism through bank lending is completely dampened. By

contrast, a bank that does not want to liquidate loans is not subject to these liquidation

costs and will increase loan supply. For finite marginal liquidation costs the loan supply

response at retrenching banks is positive but dampened relative to banks not retrenching.

Hence, we call this mechanism “financial dampening.”

A corollary is that financial dampening becomes more important the higher the marginal

liquidation costs are. We can measure the strength of the financial dampening channel

as the ratio of the dampening coefficient to the base loan response (the intercept) in (8),

FD ≡ −Φ′′′(0)
r̄L−rF−Φ′(0)+Φ′′(0)

> 0. It is then straightforward to show that FD becomes larger

as liquidation costs rise ∂FD
∂ψ

> 0. Thus, we expect financial dampening to be particularly

important during times of financial distress when liquidation costs are particularly high (e.g,

Coval and Stafford, 2007; Campbell et al., 2011; Ellul et al., 2011; Greenwood and Thesmar,

2011).

The mechanism applies equally to monetary policy rate decreases and increases. In

the case where liquidation cost is infinite, a retrenching bank cannot further reduce its

loan supply following an increase in the safe rate rF . But a bank that already plans to

increase loan supply can simply chose to do so less. While financial dampening does apply

symmetrically, in what follows we will focus on interest rate decreases. This is because we

expect this mechanism to be particularly important when the financial sector as a whole

retrenches, which is also when central banks would want to counteract any adverse real

effects with monetary policy rate reductions.

2.4 Local loan demand and identification Because loan supply is not directly observ-

able, we cannot estimate equation (8). This creates an identification problem because re-

alized loan volumes can be driven by either supply or demand. This is a standard concern
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in the literature and it also applies to our analysis of the responsiveness of loan volumes to

monetary policy. We formalize this idea as follows. Local markets are subject to possible

constrained loan demand, which captures variations in loan investment opportunities. In

each location, denote Lci,h as maximum possible loan supply. Realized loan volumes are then

given by

lnLi,h = min{lnLSi,h, lnLci,h}

= lnLSi,h + xi,h · (lnLci,h − lnLSi,h)

where xi,h = I{lnLci,h < lnLSi,h} is an indicator whether a bank is constrained by local loan

demand. In this demand constrained case, there is no response of loan quantities to monetary

policy due to lacking loan demand. This channel is completely real and demand-driven and

not related to the “lending view” of monetary transmission. We assume that banks are small

relative to their local area, so that variation in local loan demand lnLci,h determines whether

the loan demand constraint xi,h binds, instead of changes in target loan supply moving a

bank into a constraint. As a consequence LSi,h and xi,h are independent random variables.

We further discuss the importance of this assumption in the context of our IV strategy.

The response of loan volumes of bank i to changes in the policy rate rF can be summarized

as

∂ lnLi,h
∂rF

=

−
1−µ

r̄L−rF−Φ′(0)+Φ′′(0)
+ (1−µ)Φ′′′(0)

[r̄L−rF−Φ′(0)+Φ′′(0)]2
×∆ lnLi,h if lnLSi,h ≤ lnLci,h

0 if lnLSi,h > lnLci,h

2.4.1 Endogeneity problem

The simplest version of our main estimation equation can be written as

∂ lnLi,h
∂rF

= α + β∆ lnLi,h + ui,h (9)
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where

α = − 1− µ
r̄L − rF − Φ′(0) + Φ′′(0)

(10)

β =
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2
(11)

ui,h = xi,h (−α− β ×∆ lnLi,h) (12)

∆ lnLi,h = ∆ lnLSi,h + xi,h
(
∆ lnLci,h −∆ lnLSi,h

)
(13)

The resulting OLS regression would therefore be a regression of loan growth at bank i on

interest rate shocks ∂rF and the interaction of interest rate shocks ∂rF with lagged changes

in loan growth. The problem is that even under the small bank assumption, unobserved

variation in local loan demand will drive both local loan volumes (13) and the error term (12)

through the constraint indicator xi,h. Thus, even if β = 0, the OLS estimate is biased towards

finding evidence for financial dampening, E[β̂OLS] < 0.11 Intuitively, the OLS estimate also

reflects that demand-constrained areas have low loan growth and low sensitivity of loan

growth to changes in monetary policy rates.

2.4.2 Instrumental Variables Strategy

BHC common variation and instrument

To illustrate our instrumental variable strategy, we focus on variation in the in BHC specific

costs of capital θh. This triggers common variation in loan supply across all BHC member

banks, through the BHC-internal capital market.

∆ lnLSi,h = −G
h′

Gh
dθh

11Formally, if β = 0, then Cov(∆ lnLi,h, ui,h) = −αCov(∆ lnLi,h, xi,h) < 0 yielding a downward bias.
When β < 0 then the bias can be either downward or upward, and, empirically, we find an upward bias.
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Based on this common variation, we construct loan growth of BHC banks that are “else-

where”, i.e., not in the same location as bank i. This is defined as

∆ lnL−i,h =
1

N

∑
j 6=i

∆ lnLj,h

= (1− x̄)

(
−G

′

G
dθBHC

)
+ xj,h∆ lnLcj,h

=⇒ ∆ lnL−i,h = (1− x̄)∆ lnLSi,h + xj,h∆ lnLcj,h

where a bar over a variable denotes a cross-sectional average across all banks in BHC locations

other than bank i. Elsewhere loan growth captures the common variation in BHC level risk

premium θh, up to scale. It also captures the (unobserved) fraction of BHC member banks

that is under loan demand constraints x̄, so we cannot directly infer changes in optimal loan

supply from loan growth of BHC member banks “elsewhere.” However, an advantage of IV

estimation is that we do not need this information. We only need the instrument to be

correlated with the local loan supply and uncorrelated with local loan demand constraints.

Proposition 3 If all banks are small in their local area and local loan demand shocks are

uncorrelated across banks of the same BHC, then loan growth at other banks within the same

BHC, ∆ lnL−i,h is uncorrelated with the error term ui,h in estimating equation (9). Therefore

the IV estimator

β̂IV =
Cov

(
∂ lnLi,h

∂rF
,∆ lnL−i,h

)
Cov (∆ lnLi,h,∆ lnL−i,h)

is consistent, and recovers the parameter β in (9).

Proof See appendix A.3.

We note that our IV-strategy identifies the parameter of interest even if loan retrenchment

is not exogenous at the BHC level as we assumed above. For our purposes, it suffices

that BHC level variation is not correlated with local demand conditions, conditional on

(aggregate) controls we add to equation (9). In that sense, the source of variation at the

BHC level is not important: any variation in BHC-level loan retrenchment that satisfies the
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exclusion restriction for the local banks, such as a higher BHC cost of capital, greater BHC

risk aversion etc., will identify the structural parameter β.

Thus, our IV-strategy can overcome the identification problem and recover the impor-

tance of supply-driven financial dampening. In our empirical analysis we will pay particular

attention that our results are not driven by correlated shocks across banks. The small bank

assumption is less critical because violations of it create a bias against us. In particular, if it

is violated, then banks with high loan growth are more likely to be demand-constrained, and

then those banks will also exhibit weaker reactions to monetary policy shocks. By contrast,

the financial dampening mechanism implies that banks with low loan growth will exhibit

weaker sensitivity.12

3 Data

We next describe the data we use to construct our outcome variables and instrument.

Bank level data We use the Report of Condition and Income data available from the

Federal Reserve Bank of Chicago and WRDS. It captures all commercial banks regulated by

the Federal Reserve System, the Federal Deposit Insurance Corporation and the Comptroller

of the Currency. The data are at a quarterly frequency from 1976 to 2010. This dataset has

been previously used by Kashyap and Stein (2000) and Campello (2002) among others.13 Our

sample begins in 1986 onwards when the BHC consolidated statements are also available.

We further restrict our analysis to banks whose head office is insured by either the FDIC,

the National Credit Union Savings Insurance Fund, and/or its resident state. This removes

U.S. branches of foreign banks as well as domestic national trusts. Whenever a bank merger

12Formally, the covariance between the instrument and the error term is positive, Cov(∆ lnL−i,h, ui,h) =
−α(1 − x̄)Cov(∆ lnLSi,h, xi,h) > 0, since absent the small bank assumption higher loan supply makes the
constrained regime more likely, Cov(∆ lnLSi,h, xi,h) > 0. This generates an upward bias in the IV estimate.

13Goetz, Laeven, and Levine (2011) also exploit the geographic dispersion of banks to examine how mergers
of geographically separate banks affect the riskiness of a BHC. Unlike us, they use the headquarter state
to assign banks to locations. Drechsler et al. (2014) employ the same data to document that monetary
transmission also works through a deposit channel.
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occurs, we treat the resulting entity as a new bank. We identify mergers using the bank

merger files available from the Federal Reserve Bank of Chicago website.

We match commercial banks to bank-holding-companies (BHCs) using the regulatory

high-holder identifier (RSSD9348). We first check if the commercial bank regulatory data

consistently aggregate, by comparing them with the BHC consolidated statements. In table

1 we document the ratio of total commercial bank assets, loans and capital at a BHC to the

BHC-reported total assets, loans and capital. For most BHC-quarter observation that ratio

is close to 1 for assets and loans, implying that the commercial bank data are consistent

with the BHC data. The match is worse on bank and BHC book capital.

Table 1 – Consistency of Commercial Bank Balance Sheets with BHC Consolidated State-
ments

1 5 10 25 50 75 90 95 99 N∑
Bank Assets

BHC Assets 0.63 0.95 0.98 0.99 1.00 1.00 1.00 1.01 1.07 136370∑
Bank Loans

BHC Loans 0.65 0.97 1.00 1 1 1 1.00 1.00 1.06 136369∑
Bank Capital

BHC Capital 0.39 0.77 0.85 0.95 1.00 1.17 1.41 1.63 2.54 136370
Notes: Balance sheet variables of matched commercial banks are aggregated and divided by the correspond-
ing variables in the BHC reports. A value of 1 indicates a perfect match. Data is at the BHC-quarter level.
Source: Report of Condition and Income, BHC consolidated statements, and authors’ calculations.

In table 2 we compare size and leverage of unmatched commercial banks (not part of

a BHC) with those of matched banks. Among matched commercial banks we further dis-

tinguish between those that are the sole member of a BHC and those that are part of a

multi-bank BHC. We find that unmatched and sole-member banks are both significantly

smaller on average than commercial banks in multi-bank BHCs. Since our estimation strat-

egy requires the presence of at least two banks in a BHC, we invariably select on banks that

are larger than average.

We merge these data with the FDIC’s Summary of Deposit survey. This dataset reports

branch-level deposits as of June 30th for all FDIC-insured institutions since 1994. It includes

member banks, non-member banks and thrifts, among others. We exploit the exact coding

of branch locations to determine a banks zone of operation. Let diblt be total deposits at
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Table 2 – Average Bank Size and Leverage Comparison by BHC Membership
Assets Loans Leverage Obs.

Matched banks (1 bank in BHC) 235885.0 150858.7 11.3 582853
Matched banks (>1 bank in BHC) 1885055.7 1032120.6 11.9 390644
Unmatched banks 480872.0 192450.6 10.6 702425
Notes: Average across banks for assets, loans and leverage by category. “Obs.” denotes the total number
of observations in the asset category. Categories are banks not matched to a BHC (unmatched), banks that
are the only member of a BHC (1 bank in BHC), and banks that are part of a multi-bank BHC (>1 bank
in BHC). Observations are at the bank-quarter level. Source: Report of Condition and Income and authors’
calculations.

branch b of bank i in location l at time t. For each bank we calculate its total yearly deposits

in location l by summing over all local branches, dilt =
∑

b diblt. We consider four levels of

geographical aggregation l: counties, micro- or metropolitan statistical areas (mSA/MSA),

combined statistical areas (CSAs) and states. For each bank with at least one branch in

location l, we construct the share of its deposits in that area for a given year silt = dilt∑
l dilt

.

For counties that do not belong to mSA/MSAs we report the county deposit-share as part

of the mSA/MSA and CSA level. For mSA/MSAs that are not part of a CSA we report the

mSA/MSA share.

To illustrate the geographical concentration of banks we calculate the maximum deposit-

share over all locations for a given bank-year, smaxit = maxl silt. This gives us a single ob-

servation for each bank-year pair. Table 3 tabulates the percentiles of the smaxit -distribution.

Banking is already quite concentrated at the county level. Over half of our bank-year obser-

vations are located in a single county. Aggregating further we find that 65% of bank-years

are located in a single mSA/MSA, 70% in one CSA, and more than 95% in a single state.

Table 3 – Distribution of Banks’ Maximum Share of Deposits across Locations
Percentile 0.1 1 5 10 25 40 50 N
County level 0.11 0.23 0.42 0.53 0.77 0.96 1.00 195531
MSA level 0.15 0.28 0.49 0.60 0.87 1.00 1.00 195529
CSA level 0.17 0.30 0.51 0.64 0.93 1.00 1.00 195529
State level 0.34 0.66 1.00 1.00 1.00 1.00 1.00 195524
Notes: Observations are at the bank-year and calculated separately for each location level. Source: FDIC
Summary of Deposit and authors’ calculations.
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We exploit this geographical concentration to match banks to locations. Our baseline

rule is to assign banks to the smallest level of geographical aggregation such that 95% of

all bank deposits are located within that area. For instance, a bank that is equally spread

over 3 counties belonging to a single MSA, will be assigned to the MSA where it has 100%

market share. We do not assign a location to banks that straddle state borders if it has less

than 95% market share in a single state. We view our 95% rule as a sensible benchmark

to capture essentially all major operations of a bank, while still allowing for minor presence

elsewhere. In a robustness check we use a more conservative 100% threshold.

If a bank changes location (its deposit share drops below 95%), we do not assign a location

to it throughout the sample. Thus, our definition of a location is a fixed attribute. For all

banks present in 1994 we then backcast location to the beginning of the sample in 1986. A

drawback is that we cannot assign a location to any bank that ceases to exist before 1994.

These location assignments are only sensible if banks also lend primarily where they

have branches. While our data do not speak directly to this assumption, the local nature

of commercial banking has been documented elsewhere. Brevoort, Holmes, and Wolken

(2009) show that the median distance between a small business and a branch of its primary

lender is between 3-4 miles. Further, more than 80% of a commercial banks’ loans are made

within a 30-mile radius even in the mid-2000s. Becker (2007) documents that cities with

a demographically-induced high deposit supply also tend to have high local loan volumes.

Nguyen (2015) also documents that the closing of a branch causes significant disruptions in

local credit supply. This suggests that our location assignments capture a significant part of

the banks area of operation.

In short, we obtain a set of commercial banks that operate in different locations but

are owned by the same BHC. We use this spatial separation to construct our retrenchment

measure that is independent of local demand shocks. Let Liht be total loans at bank i

matched to BHC h at time t. Total BHC loans are Lht =
∑

i∈Ωh
Liht, where Ωh is the set of

banks in BHC h. We define total BHC assets that are spatially separate from location l of
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bank i (“elsewhere loans”) as,

L−l,ht =
∑
k∈Ωh

LkhtI{sklt < 0.05} (14)

where I{sklt < 0.05} is an indicator that bank k in BHC h has fewer than 5% of its deposits

in location l. This indicator is a substantive-presence test. We classify a bank’s loans as

essentially independent of local demand shocks in area l if its deposit share in l is sufficiently

small—less than 5%. Note that this automatically excludes bank i, which has at least 95%

of its deposits in location l. However, it can include national banks, so long as they only

have a minor (relative) presence in location l.

We then sum over all banks in the BHC that pass this test, which creates a measure

of total BHC level loans that are independent of shocks to area l. Our empirical strategy

is then to instrument the degree of bank-level loan retrenchment, measured by local loan

growth ∆ lnLiht, using elsewhere loan growth, ∆ lnL−l,ht. As a robustness check we use the

more stringent presence test that a bank has zero deposits in location l.

Our instrumental variable strategy requires that we assign a bank to location l and that

at least one other BHC-member bank does not operate in location l. Table 4 compares banks

for which we can and cannot implement this strategy. Compared with the sample of banks

in table 2 we still select among relatively large commercial banks, although we do drop some

of the largest banks in the sample. This is because we cannot assign national banks to a

single location.

Table 4 – Average Balance Sheet Size of Banks in Multi-Bank BHCs.
Assets Loans Leverage Obs.

Geographically-separate bank in BHC 1186385.0 725140.7 11.6 142993
No geographically-separate bank in BHC 3650195.8 2018798.8 11.5 82896
Notes: Average size and leverage for banks in multi-bank BHCs where we can construct a retrenchment
measure excluding the current bank and average size and leverage for banks in multi-bank BHCs where we
cannot do so. Source: Report of Condition and Income, FDIC Summary of Deposit and authors’ calculations.

Because the bank regulatory data are very noisy we follow the existing literature (Kashyap
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and Stein, 2000; Campello, 2002) and remove extreme growth rates. For all variables we

drop the top and bottom 0.5 percent of all observations. Table 5 tabulates cross-sectional

summary statistics for our key variables of interest: asset growth, loan growth, leverage

growth, and our instrument, the four-quarter growth rate of loans at BHC-member banks

located elsewhere.

Table 5 – Commercial Bank Balance Sheets Summary Statistics

Mean SD 25
pctile Median 75

pctile Observations

Asset growth (one-quarter) 1.72 5.39 −1.04 1.21 3.74 122531
Loan growth (one-quarter) 2.11 6.24 −0.95 1.69 4.54 122067
Leverage growth (one-quarter) −0.0086 7.78 −3.28 −0.41 2.78 122526
Loan growth (four-quarter) 9.46 17.3 0.70 7.34 14.9 121816
Elsewhere loan growth (four-quarter) 9.64 12.4 2.85 8.29 14.5 123627
Notes: Summary statistics for bank-level variables used in the baseline regressions. Elsewhere loan growth
is the loan growth at spatially-separate banks of the same BHC. Growth rates are log changes multiplied by
100. Growth rates in the top and bottom 0.5 percentile were dropped. Source: Report of Condition, FDIC
Summary of Deposit and Income and authors’ calculations.

Monetary Policy Shocks We use the Romer and Romer (2004) monetary policy shock

series (“Romer-shocks”). These are residuals from a regression of the federal funds rate

on lagged values and the Federal Reserve’s information set based on Greenbook forecasts.

As argued by Romer and Romer (2004) these are plausibly exogenous with respect to the

evolution of economic activity. We update the Romer-Romer shock series up to December

2007.14 We sum the shocks to a quarterly frequency and merge them with the bank data.

The advantages of using a monetary shock relative to a time-series of nominal interest

rates are threefold. First, it provides a closer match the theory, where the safe interest rate

changes exogenously. Second, since monetary policy shocks are unanticipated, banks cannot

adjust their portfolio in anticipation of these shocks, which matches our theoretical set-up.

Third, endogenous changes in interest rates may be negatively correlated with BHC capital

premia θ or loan risks σ2
ε , so the total effect on loan supply is ambiguous, unlike for monetary

policy shocks.
14These data are publicly available at https://sites.google.com/site/johannesfwieland/Monetary_shocks.zip.
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4 Results

We add a lag structure to equation (9), which was found to be relevant in previous

bank-level studies (Kashyap and Stein, 1995; Landier et al., 2013; Van den Heuvel, 2012).

Hamilton (2008) argues that the lag structure reflects search frictions by prospective home

owners, which causes a delays a change in mortgage loans. We estimate equation (9) with 8

lags as well as controls for the level of leverage and the un-interacted elsewhere loan growth,

∆ lnLi,h,t =αi + γt +
8∑

k=0

βk∆rt−k∆
4 lnLi,h,t−1−k +

8∑
k=0

δk∆rt−kφi,h,t−1−k

+
8∑

k=0

θ1kφi,h,t−1−k +
8∑

k=0

θ2k∆
4 lnLi,h,t−1−k (15)

+
8∑

k=0

θ3k∆
4 lnL−l,h,t−1−k +

8∑
k=1

γ1k∆ lnLi,h,t−k + δ × controls + εit.

Given the lag structure, we instrument nine endogenous variables, {∆rt−k∆4 lnLi,h,t−1−k}k=0,...,8,

using nine instruments, {∆rt−k∆4 lnL−l,h,t−1−k}k=0,...,8.

The time fixed-effects absorb any correlation between the endogenous variables and in-

struments induced by aggregate business cycle variation (e.g., common demand shocks).

Further, we interact the contemporaneous monetary policy shock with lagged loan growth.

This implies that retrenching is pre-determined with respect to the monetary policy shock,

which ensures that causality does not run from monetary policy to bank-level retrenching.

The fourth term in equation (15) interacts the monetary policy shock with leverage. We

control for leverage to avoid conflating financial dampening with a standard financial ac-

celerator or the capital adequacy channel of Van den Heuvel (2005). The final two terms

control for bank-level dynamics in the dependent variable and other sources of bank-level

heterogeneity. For example, bank size has been shown to affect monetary policy responsive-

ness (Kashyap and Stein, 2000), and differential capital growth rates can capture differences

in bank profitability and its influence on responsiveness to monetary policy.
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Table 6 – First-stage estimates for bank deleveraging interacted with the monetary shock
Dependent variable: ∆rt−lag ∗ 4Q Loan Growtht−lag−1

Lag
0

Lag
1

Lag
2

Lag
3

Lag
4

Lag
5

Lag
6

Lag
7

Lag
8

(1) (2) (3) (4) (5) (6) (7) (8) (9)
∆rt ∗ 4Q BHC Loan Growtht−1 0.25∗∗∗−0.0028−0.0033 0.011∗∗ 0.015∗∗∗−0.00061 0.0043 0.0068 0.0052
∆rt−1 ∗ 4Q BHC Loan Growtht−2 −0.0032 0.26∗∗∗−0.00022−0.0082 0.0093∗∗ 0.012∗∗ 0.0011 0.0048 0.0058
∆rt−2 ∗ 4Q BHC Loan Growtht−3 0.000027−0.0021 0.27∗∗∗ 0.0063 0.0012 0.0026 0.017∗∗∗−0.00040 0.0095∗
∆rt−3 ∗ 4Q BHC Loan Growtht−4 −0.0050−0.00056−0.00096 0.28∗∗∗ 0.0048 0.0065 0.0045 0.018∗∗∗ −0.0049
∆rt−4 ∗ 4Q BHC Loan Growtht−5 0.018∗∗∗−0.0028−0.00077−0.00036 0.28∗∗∗−0.0056 0.0072 0.0095∗ 0.018∗∗∗
∆rt−5 ∗ 4Q BHC Loan Growtht−6 0.0055 0.013∗∗∗−0.011∗∗−0.00055−0.0034 0.30∗∗∗−0.0063 0.0044 0.0057
∆rt−6 ∗ 4Q BHC Loan Growtht−7 −0.014∗∗∗ 0.0077∗ 0.015∗∗∗−0.012∗∗−0.0019−0.0063 0.31∗∗∗−0.0048 −0.0029
∆rt−7 ∗ 4Q BHC Loan Growtht−8 0.011∗∗−0.0093∗∗ 0.0083∗∗ 0.016∗∗∗−0.0074−0.0011−0.0040 0.31∗∗∗ −0.0011
∆rt−8 ∗ 4Q BHC Loan Growtht−9 0.0000400.012∗∗∗−0.010∗∗∗ 0.0061 0.018∗∗∗−0.0055−0.0036−0.0023 0.33∗∗∗
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sum: ∆r * 4Q BHC Loan Growth .27*** .28*** .27*** .29*** .31*** .3*** .33*** .35*** .36***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.15 0.15 0.16 0.16 0.15 0.15 0.14 0.13 0.12
Observations 80,934 80,934 80,934 80,934 80,934 80,934 80,934 80,934 80,934
Notes: First-stage estimates of equation (15). The dependent variable is the Romer-Romer shock interacted with 4Q loan growth. The IV is the
Romer-Romer shock interacted with 4Q loan growth at spatially separate banks of the same BHC. Lags refer to the lag of the dependent variable.
Additional controls are bank leverage. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.1 First stage In table 6 we report the first stage estimates of equation (15), focussing on

the coefficients on the instrument. The coefficient on the lag of BHC loan growth interacted

with the Romer-shock corresponding to the same lag of of the dependent variable ranges from

0.25 to 0.33 at lags 0 through 8 and is highly statistically significant. All other instrument

coefficients are at least an order of magnitude smaller and often statistically insignificant.

This pattern likely reflects the lack of serial correlation of the monetary policy shocks.

The bottom part of the table reports the sum of the first-stage coefficients on the instru-

ments, which ranges from 0.27 to 0.36. The F-test that the sum of coefficients equals zero

is strongly rejected at the 0.1% level. Of course, a weak instrument test has to jointly test

these restrictions across all equations, which we report along with our main results.

4.2 Main Results Table 7 presents our baseline IV estimates. The dependent variable is

total loan growth of bank i at time t. For ease of exposition we only list the coefficients on

the interaction of the Romer-shock with the loan growth variable, {βk}8
k=0. This quantity the

cumulative effect of financial dampening on the bank lending channel. While the calculation

ignores potential dynamic feed-back through lags of ∆ lnLi,h,t, in practice such effects are

negligible. We report the sum of coefficients of this and other interactions at the bottom of

the table together with the p-value of a χ2-test that the sum is zero. All standard errors are

robust and clustered at the bank level.

The first column presents IV estimates based on equation (15) controlling only for bank-

level leverage. As predicted by the model, the individual coefficients on the interaction of

monetary shocks with loan growth are consistently negative and highly significant. The sum

of the coefficients is -22.9 and significant at the 0.1% level. The economic magnitude of

this coefficient is large. It implies that a bank at the 25th percentile of the loan growth

distribution will expand its loan portfolio by 3.25 percentage points less relative to a bank at

the 75th percentile following one percentage point reduction in monetary policy rates. Thus,

loan supply at retrenching bank is less sensitive to monetary policy shocks as implied by our
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Table 7 – IV estimates for Loan Growth
Dependent variable: 1Q Loan Growth

Baseline
Capital
(Book)
Controls

Capital &
Portfolio
Controls

Capital &
Perfor-
mance
Controls

(1) (2) (3) (4)
∆rt ∗ 4Q Loan Growtht−1 −0.96 −0.71 −1.53 −1.02
∆rt−1 ∗ 4Q Loan Growtht−2 −3.00 −4.01 −3.25 −2.09
∆rt−2 ∗ 4Q Loan Growtht−3 0.45 −0.73 0.024 −1.78
∆rt−3 ∗ 4Q Loan Growtht−4 −3.63 −4.70 −5.18 −3.46
∆rt−4 ∗ 4Q Loan Growtht−5 −3.89 −3.80 −3.31 −2.74
∆rt−5 ∗ 4Q Loan Growtht−6 −5.51∗∗ −6.52∗∗ −6.40∗∗ −8.98∗∗∗
∆rt−6 ∗ 4Q Loan Growtht−7 −3.76 −5.14∗ −6.20∗ −4.81
∆rt−7 ∗ 4Q Loan Growtht−8 2.22 1.56 2.84 2.56
∆rt−8 ∗ 4Q Loan Growtht−9 −4.96∗∗ −6.17∗∗ −6.94∗∗ −7.25∗∗
Time FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Sum: ∆r * 4Q Loan Growth -23.05*** -30.21*** -29.96*** -29.59***
p-value (0.001) (0.001) (0.001) (0.003)
Sum: ∆r * Leverage 2.08* 2.25** 2.74** 2.15*
p-value (0.054) (0.048) (0.018) (0.079)
Sum: ∆r * 4Q Capital Growth 9.87** 10.28** 11.43**
p-value (0.038) (0.034) (0.025)
Sum: ∆r * Size 6.53 3.96 2.87
p-value (0.288) (0.533) (0.662)
Sum: ∆r * LTA -4.5***
p-value (0.006)
Sum: ∆r * CTA 2.78
p-value (0.678)
Sum: ∆r * 4Q Allowance Change -65.82
p-value (0.568)
Sum: ∆r * 4Q Charge-off Change 25.87
p-value (0.754)
F-statistic 39.44 29.99 31.37 30.19
R2 0.07 0.07 0.07 0.08
Observations 80,934 80,032 79,620 76,692
Notes: IV estimates of equation (15). The IV is the Romer-Romer shock interacted with 4Q loan growth
at spatially separate banks of the same BHC. Additional controls are bank leverage, the banks median share
in total assets (size), book capital growth from bank regulatory data, the median loan-to-asset ratio (LTA),
the median cash-to-asset ratio (CTA), changes in the loan-loss allowance to loan ratio and changes in the
charge-off to loan ratio. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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theory. The F-statistic is 38.71, which suggests that we do not suffer from a weak instrument

problem.15

The economic magnitude of the financial dampening channel is comparable to other

effects that have been highlighted in the existing literature. For instance, Kashyap and Stein

(1995) show that loan growth at small banks rises by 0.3% more following a 1% reduction in

interest rates than loan growth at large banks (their figure 2). In Kashyap and Stein (2000)

the differential liquidity between the 10th and 90th generates a 0.8− 5.3% difference in loan

growth after two years to the same monetary policy shock. Landier et al. (2013) show that

the income gap difference between 25th and 75th percentile cause a 1.6% difference in loan

growth after 4 quarters.

In the second column we add interactions of book capital growth and bank size with the

monetary policy shock. As our measure of bank size we use a bank’s median asset share

over its lifetime. Controlling for book capital serves two purposes. First, in our baseline

model we disallowed direct equity issuance by the bank (only internal capital markets where

available), so holding equity fixed more closely approximates the model on that dimension.

Second, it ensures that our estimates are not driven by unprofitable, weak banks that shrink

their balance sheet because their capital is declining. We find that while these controls are

significant, they only raise our coefficient of interest. This effect is largely driven by the

capital growth control. It suggests that retrenching banks accumulate more capital to limit

the decline in loan growth. By holding capital growth fixed we hold this mitigating factor

fixed, which increases the estimated impact of financial dampening.

Another concern is that differential responses across banks are driven by differences in

portfolio risks across banks. For example, the balance sheet of banks with a higher loan-

to-asset ratio is likely more sensitive to monetary policy shocks, which may induce more

15The Stock and Yogo (2005) critical value for one endogenous variable and nine instruments is 36.19 and
for two endogenous variables and nine instrument it is 27.51. The monotonicity implies that we clear the
threshold for our just-identified setting with nine endogenous variables. Angrist and Pischke (2009) further
argue that weak identification problems in just-identified IV manifest themselves in wide standard errors in
the second stage but our second-stage coefficient are fairly precisely estimated.
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volatile loan supply at these banks. In column 3 we add controls for the loan-to-asset and

cash-to-asset ratio measured as averages over a banks lifetime. These controls also do not

change our coefficient of interest, but we do find a greater sensitivity of loan quantities at

banks with higher loan-to-asset ratios.

An alternative way to ensure that our results are not driven by potentially time-varying

differences in bank profitability or portfolio selection is to control for loan charge-offs or loan-

loss allowances, which capture the amount of non-performing loans at banks. In column 4,

we use changes in the charge-off to loan ratio and the loan-loss allowance to loan ratio to

again ensure that our estimates are again not driven by weak banks. As in the other columns,

we still find consistent evidence for financial dampening.

We next explore on what other dimensions retrenching banks differentially adjust their

balance sheets in response to monetary policy shocks. First, in table 8 we use total asset

growth of bank i at time t as our dependent variable. The retrenchment effects are also

present for asset growth. The sum of coefficients on the loan growth interaction range from

-8 to -12, but they are at best borderline significant. Nevertheless, the economic magnitudes

are large: according to column 1 a banks who’s loan growth has been 10 percentage points

slower will expand their asset growth by 0.88 percentage points less than the average bank

following a 1 percentage point monetary policy rate reduction. Because the estimate is

smaller than that for loan growth, it implies that a retrenching bank tilts its portfolio away

from loans towards other assets compared to a bank that does not retrench. This suggests

that retrenching banks adjust the portfolio composition of their assets to reduce riskiness as

well as the overall size of their balance sheets. This is consistent with our theory.

While our model does not make a direct prediction about the change in leverage, this

outcome is also of interest since deleveraging has accompanied historical episodes of financial

retrenchment and, in particular, financial crises (Reinhart and Rogoff, 2008; Schularick and

Taylor, 2012). We therefore estimate equation (15) using leverage growth as dependent

variable and tabulate the estimates in table 9. The estimate in column 1 implies that a
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Table 8 – IV estimates for Asset Growth
Dependent variable: 1Q Asset Growth

Baseline
Capital
(Book)
Controls

Capital &
Portfolio
Controls

Capital &
Perfor-
mance
Controls

(1) (2) (3) (4)
∆rt ∗ 4Q Loan Growtht−1 −0.76 −1.58 −2.58 −0.50
∆rt−1 ∗ 4Q Loan Growtht−2 −0.41 −0.25 −0.36 −0.99
∆rt−2 ∗ 4Q Loan Growtht−3 0.57 1.43 2.37 1.24
∆rt−3 ∗ 4Q Loan Growtht−4 −1.92 −2.32 −2.27 −3.36
∆rt−4 ∗ 4Q Loan Growtht−5 0.16 1.30 1.35 1.74
∆rt−5 ∗ 4Q Loan Growtht−6 −2.94 −3.42 −3.90 −3.66
∆rt−6 ∗ 4Q Loan Growtht−7 −2.80 −3.53 −3.49 −3.11
∆rt−7 ∗ 4Q Loan Growtht−8 −0.98 −1.59 −0.91 −3.05
∆rt−8 ∗ 4Q Loan Growtht−9 0.29 −0.0030 −0.20 −0.43
Time FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Sum: ∆r * 4Q Loan Growth -8.779 -9.96 -10 -12.12
p-value (0.144) (0.192) (0.205) (0.153)
Sum: ∆r * Leverage .66 .52 .53 1.03
p-value (0.456) (0.574) (0.574) (0.295)
Sum: ∆r * 4Q Capital Growth 4.79 4.37 7.27*
p-value (0.238) (0.292) (0.087)
Sum: ∆r * Size -1.31 -3.01 -1.07
p-value (0.843) (0.667) (0.879)
Sum: ∆r * LTA 2.94**
p-value (0.02)
Sum: ∆r * CTA -3.65
p-value (0.56)
Sum: ∆r * 4Q Allowance Change -6.34
p-value (0.946)
Sum: ∆r * 4Q Charge-off Change 89.12
p-value (0.18)
F-statistic 40.59 27.95 33.14 35.89
R2 0.11 0.11 0.11 0.11
Observations 79,913 79,102 78,706 75,822
Notes: IV estimates of equation (15). The IV is the Romer-Romer shock interacted with 4Q loan growth
at spatially separate banks of the same BHC. Additional controls are bank leverage, the banks median share
in total assets (size), book capital growth from bank regulatory data, the median loan-to-asset ratio (LTA),
the median cash-to-asset ratio (CTA), changes in the loan-loss allowance to loan ratio and changes in the
charge-off to loan ratio. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9 – IV estimates for Leverage Growth
Dependent variable: 1Q Leverage Growth

Baseline
Capital
(Book)
Controls

Capital &
Portfolio
Controls

Capital &
Perfor-
mance
Controls

(1) (2) (3) (4)
∆rt ∗ 4Q Loan Growtht−1 5.36 5.07 4.64 4.95
∆rt−1 ∗ 4Q Loan Growtht−2 1.71 1.86 2.53 1.39
∆rt−2 ∗ 4Q Loan Growtht−3 −7.59∗ −9.77∗∗ −10.9∗∗ −9.93∗
∆rt−3 ∗ 4Q Loan Growtht−4 −3.76 −4.52 −4.10 −7.68
∆rt−4 ∗ 4Q Loan Growtht−5 1.27 1.87 1.77 2.43
∆rt−5 ∗ 4Q Loan Growtht−6 −3.01 −3.42 −3.83 −3.27
∆rt−6 ∗ 4Q Loan Growtht−7 −0.14 −0.20 0.65 0.18
∆rt−7 ∗ 4Q Loan Growtht−8 −5.77∗∗ −7.40∗∗ −7.96∗∗ −7.38∗
∆rt−8 ∗ 4Q Loan Growtht−9 −4.03 −4.93 −6.17∗ −5.61
Time FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Sum: ∆r * 4Q Loan Growth -15.97* -21.45* -23.33** -24.92**
p-value (0.068) (0.056) (0.047) (0.044)
Sum: ∆r * Leverage 1.61 .8 .73 1.34
p-value (0.27) (0.593) (0.639) (0.393)
Sum: ∆r * 4Q Capital Growth 16.36*** 16.89*** 17.41***
p-value (0.008) (0.009) (0.008)
Sum: ∆r * Size 3.24 4.38 8.08
p-value (0.755) (0.695) (0.447)
Sum: ∆r * LTA 3.27*
p-value (0.06)
Sum: ∆r * CTA -5.01
p-value (0.618)
Sum: ∆r * 4Q Allowance Change -79.12
p-value (0.586)
Sum: ∆r * 4Q Charge-off Change 52.99
p-value (0.606)
F-statistic 40.56 27.87 33.07 35.88
R2 0.12 0.13 0.13 0.13
Observations 79,911 79,101 78,705 75,821
Notes: IV estimates of equation (15). The IV is the Romer-Romer shock interacted with 4Q loan growth
at spatially separate banks of the same BHC. Additional controls are bank leverage, the banks median share
in total assets (size), book capital growth from bank regulatory data, the median loan-to-asset ratio (LTA),
the median cash-to-asset ratio (CTA), changes in the loan-loss allowance to loan ratio and changes in the
charge-off to loan ratio. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1.32 percentage point reduction in leverage for a bank with 10 percentage point slower loan

growth following a one percentage point monetary policy rate reduction. This is consistent

with essentially all the reduction in asset growth being used to reduce leverage, as implied

by our baseline model. Adding controls in columns 2 through 4 increases this estimate to

the point where it is also statistically significant at conventional levels.

4.3 Robustness In table 10 we document additional results for loan growth to assess the

robustness of our results. For brevity we only report the sum of coefficients on loan growth

interacted with the Romer-Romer shock, their p-value and (if applicable) the first-stage F-

statistic. The control sets are the same as in the previous tables. In the first row we tabulate

the baseline estimates and in the second the OLS estimates for the same sample of banks.

These are approximately one-half to one-quarter of the IV estimates, although still highly

significant. This suggests, that if our instruments are weak in some specification, they are

biased towards the OLS estimates and will underestimate the effect of financial dampening.

Interestingly, the OLS estimates for the full sample of banks, including national banks

not assigned to a location, are quite similar to the OLS estimates for the sub-sample (not

shown). Indeed, they are stable even when we only include banks whose balance sheet

exceeds ten billion 2005 dollars. This is at least suggestive evidence that loan retrenchment

is also important in the full sample, and that our IV estimates generalize beyond the sample

of banks where we can implement the estimation strategy.

Our second set of exercises provides additional evidence for the exclusion restriction. In

our theory, BHC-member banks are linked through common cost of capital. However, if

there is a dominant bank in the BHC, then local demand conditions may affect portfolio

decisions by other banks. In our baseline sample the median loan share in the BHC is 10.3%,

but some banks do have a much larger loan share. We therefore exclude banks whose loan

share in the BHC exceeds 20%. In this sub-sample the median loan share is 4.6% and our

estimated coefficients are slightly larger, suggesting that our instrumental variable strategy

is not confounded by banks with large BHC loan shares.
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Table 10 – Robustness Exercises
Dependent variable: 1Q Loan Growth

Baseline Capital
Controls

Capital &
Portfolio
Controls

Capital &
Performance
Controls

Baseline estimates
Sum: ∆r * 4Q Loan Growth -23.05*** -30.21*** -29.96*** -29.59***
p-value (0.001) (0.001) (0.001) (0.003)
F-statistic 39.44 29.99 31.37 30.19

OLS Estimates (same sample)
Sum: ∆r * 4Q Loan Growth -7.82*** -7.59*** -7.19*** -3.27
p-value (0.000) (0.002) (0.005) (0.192)
F-statistic

Excluding banks with 20% or higher share of total BHC loans
Sum: ∆r * 4Q Loan Growth -28.04*** -35.63*** -37.43*** -29.89**
p-value (0.002) (0.002) (0.002) (0.021)
F-statistic 22.14 18.09 17.23 17.07

Excluding banks in same mSA/MSA/CSA from BHC-instrument
Sum: ∆r * 4Q Loan Growth -29.43*** -39.95*** -40.31*** -40.87***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 33.47 24.21 24.32 20.97

Excluding banks in same State from BHC-instrument
Sum: ∆r * 4Q Loan Growth -59.45*** -83.79*** -85.51*** -86.04**
p-value (0.003) (0.005) (0.007) (0.013)
F-statistic 6.65 4.12 3.69 3.23

Controlling for local loan growth
Sum: ∆r * 4Q Loan Growth -21.41*** -28.35*** -28.73*** -26.95**
p-value (0.006) (0.004) (0.004) (0.014)
F-statistic 29.05 26.80 24.97 27.53
Notes: Robustness checks of equation (15). The IV is the Romer-Romer shock interacted with 4Q loan
growth in matched banks operating elsewhere. Baseline and control specifications are as in table 7. “OLS
estimates” report OLS estimates of equation (15). “Excluding banks with 20% or higher share of total
BHC loans” excludes banks whose share of loans in the BHC exceeds 20%. “Excluding banks in same
mSA/MSA/CSA from BHC-instrument” defines a bank’s location as the largest of County/mSA/MSA/CSA
and thus excludes any other bank in that location from the instrument. “Excluding banks in same State
from BHC-instrument” defines a bank’s location as its state (subject to the 95% rule) and thus excludes any
other bank in the same state from the instrument. “Controlling for local loan growth” adds a control for
loan growth at the banks’ location excluding the current bank. Standard errors are clustered at the bank
level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11 – Robustness Exercises (continued)
Dependent variable: 1Q Loan Growth

Baseline Capital
Controls

Capital &
Portfolio
Controls

Capital &
Performance
Controls

Excluding banks near regulatory threshold
Sum: ∆r * 4Q Loan Growth -28.59*** -31.95*** -33.16*** -29.63**
p-value (0.004) (0.004) (0.005) (0.021)
F-statistic 19.33 24.52 26.32 28.54

Excluding BHCs with > 20% of loans at banks near regulatory threshold
Sum: ∆r * 4Q Loan Growth -36.61*** -38.71*** -39.44*** -36.61***
p-value (0.002) (0.002) (0.002) (0.009)
F-statistic 27.41 29.00 27.61 28.07

Leverage categories (20, 40, 60, 80, 98, 99.5 percentiles)
Sum: ∆r * 4Q Loan Growth -24.62*** -31.95*** -31.8*** -31.01***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 42.38 32.90 34.04 33.67

Dependent variable: 1Q Loans and Unused Commitments Growth
Sum: ∆r * 4Q Loan Growth -22.62*** -30.38*** -30.78*** -29.55***
p-value (0.001) (0.001) (0.001) (0.004)
F-statistic 37.39 28.07 30.28 31.01

Starting sample in 1994
Sum: ∆r * 4Q Loan Growth -19.51** -26.47** -25.98** -29.42**
p-value (0.021) (0.021) (0.029) (0.019)
F-statistic 21.50 22.04 21.16 19.73

Using 100% deposit share to assign location and 0% in major-presence test
Sum: ∆r * 4Q Loan Growth -29.23*** -36.89*** -36.41*** -36.19***
p-value (0.000) (0.000) (0.000) (0.001)
F-statistic 25.57 19.97 31.43 25.62
Notes: Robustness checks of equation (15). The IV is the Romer-Romer shock interacted with 4Q loan
growth in matched banks operating elsewhere. Baseline and control specifications are as in table 7. “Exclud-
ing banks near regulatory threshold” excludes banks for which the regulatory indicator (RCFD6056) is zero
or (if unavailable) the risk-adjusted capital ratio is below 12.5%. “Excluding BHCs with > 20% of loans at
banks near regulatory threshold” excludes banks whose BHC-loan-weighted average of the regulatory indica-
tor exceeds 0.2. “Leverage categories (20, 40, 60, 80, 98, 99.5 percentiles)” replaces the linear leverage control
with leverage categories with cut-offs at the 20, 40, 60, 80, 98 and 99.5 percentiles. “Dependent variable: 1Q
Loans and Unused Commitments Growth” adds unused loan commitments to the dependent variable. “Start-
ing sample in 1994” starts the estimation in 1994 when the FDIC Summary of Deposits is first available.
“Using 100% deposit share to assign location and 0% in major-presence test” only assigns banks to locations
if all their deposits are located their (rather than 95% in the baseline), and replaces the 5% threshold of the
major-presence test (14) with a 0% threshold. Standard errors are clustered at the bank level. ∗ p < 0.1, ∗∗
p < 0.05, ∗∗∗ p < 0.01
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Next, we investigate if our results are driven by correlated demand shocks across banks

within the same BHC. We first exclude all banks from the BHC instrument that are located

in the same local labor market, defined as the largest of the County/mSA/MSA/CSA that

the local bank is part of. This removes 8% of banks from our baseline sample and should

eliminate any correlation from common shocks within these local labor markets from our

instrument. However, if anything we estimate larger effects from financial dampening.

A more aggressive strategy is to repeat this exercise defining the local labor market

using state-delineations. This removes 51% of all banks from our baseline sample, which is

reflected in our lower F-statistics. But even so, we still find statistically significant effects

from financial dampening in this specification.

As a second check, we construct local loan growth excluding the current bank to capture

common unobserved local demand shocks. We sum up all assets at banks in location l

of bank i but not including bank i. When there are no such banks we move up to the

next geographical level until this set is non-empty. If all banks at the same location are

similarly affected by local demand conditions, then this strategy would help us control for

local demand. Adding this control has little effect on the strength of financial dampening.

Overall, these results suggests that our instrument is largely orthogonal to local demand

shocks as required by proposition 3.

In table 11 we next examine whether our estimates could be driven by regulatory limits.

For example, the regulator may force banks to shed loans and simultaneously limit new

loan creation. Retrenching banks could be close to regulatory capital requirements and thus

less able to issue more loans following a reduction in monetary policy rates. Examining

this hypothesis is somewhat limited by data availability. From the call reports we can

construct the risk-adjusted capital ratio (Tier1 plus Tier 2 capital divided by risk-adjusted

assets) only from 1996 onwards. The call data from 1990 to 2001 also contains a regulatory

indicator (RCFD6056) if total capital exceeds 8% of adjusted total assets. We therefore

splice the data as follows: we use the regulatory indicator whenever available. When it is
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not available, we set it to 0 if the risk-adjusted capital ratio is below 12.5%. For the overlap

period, this threshold corresponds to the 80th percentile of the risk-adjusted capital ratio

when the regulatory indicator is 0 and the 21st percentile when the regulatory indicator is

1. We then exclude banks from the sample whenever the regulatory indicator is zero. For

this sub-sample we find, if anything, stronger effects from financial dampening.

We then check if this mechanism could apply at the BHC level. For example, the regulator

may force all BHC member banks to shed loans and limit new loan creation. To capture

this possibility, we measure what fraction of BHC loans are at banks close to the regulatory

limit by weighting the bank regulatory indicator with the bank’s loan share in the BHC.

We then exclude all banks/BHCs from the sample for which more than 20% of loans are

at BHC-member banks close to regulatory limits. Again, our estimates increase slightly.

This suggests, that our results suggests that we do not conflate financial dampening with

regulatory policies.

A particular model of how banks respond to regulatory minimums is Van den Heuvel

(2005), which predicts that bank lending exhibits non-monotonic behavior in leverage. We

therefore replace our linear leverage control with categorical variables. We use leverage

quintiles supplemented with separate categories for the top 2% and top 0.5% of bank leverage.

We find that banks with relatively low leverage (below the 98th percentile) have the strongest

response; banks with high leverage (between the 99.5th and 98th percentile) have the weakest

response; and banks with very high leverage (top 0.5th percentile) have an intermediate

response to monetary policy. This non-monotonicity is consistent with Van den Heuvel’s

implication that high-leverage financial intermediaries may retrench and very-high-leverage

banks may gamble for resurrection. However, this mechanism is distinct from financial

dampening as adding these controls does not affect our estimates of the financial dampening

effect.

Next we examine if retrenching banks replace on-balance sheet loans with off-balance

sheet commitments, which may also be indicative of regulatory arbitrage. Alternatively,
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retrenching banks may also reduce their exposure to unused commitments as emphasized

by Bassett et al. (2014) for the 2007-2009 recession. Thus, our outcome variable is now the

growth rate of loans and unused commitments. Our estimates are almost unchanged relative

to our baseline model, which suggests that banks reduce their off-balance sheet portfolio

proportionally with on-balance sheet loans. This is consistent with our interpretation of

loan retrenching.

In the construction of bank locations we only have FDIC deposit data from 1994 onwards,

and we assume that a bank’s location in 1994 is also its location before 1994. We think this

is a sensible assumption since location concentration was likely decreasing over time, but in

table 11 we also present results using sample after 1994. These estimates are very similar

to the whole sample, although our F-statistics are somewhat smaller than in our baseline.

Thus, this assumption is not driving our results. Further, the regulatory regime has changed

considerably over the 1980s, with, for instance, the abolition of Regulation Q and relaxation

on interstate banking restrictions (Goetz et al., 2011; Van den Heuvel, 2012). That our

estimates are essentially unchanged after 1994 is further evidence that financial dampening

is present across regulatory regimes.

Finally, we use a more stringent location assignment, that matches banks only to locations

with 100% of their total deposits rather than 95% in the baseline. Further, in the construction

of our instrument we only include banks that have no deposits in the current location rather

than less than 5% (equation (14)). Our results are not sensitive to this choice.

In short, we find that financial dampening is a robust feature of bank responses to

monetary policy shocks.

4.4 Local outcomes We next determine if other commercial banks in a location offset

the financial dampening effect at retrenching banks. This is likely a necessary condition for

financial dampening to have real effects.16

16We can only test for substitution in credit quantities. Our data do not allow us to check to what extent
such loan substitutions have the same interest rate.
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We first collapse the balance sheet information to the county level. For banks that operate

in multiple counties, we apportion the balance sheet using the fraction of the banks’ deposits

located in the county in the previous year. The implicit assumption is that a bank’s loan

growth within a year is the same in each county l it operates, ∆ lnLilt = ∆ lnLit. For the

following year the county-weights adjust based on local deposit changes and we assume that

these capture changes in local loan growth. If these assumptions are incorrect, then our

outcome variable will be more noisy, but it should not bias our coefficients of interest.

We weigh each bank in a county by its local deposit share in the previous year, s̃il,t−1 =

dil,t−1

dl,t−1
. We then construct two measures of loan growth. The first only includes banks

in our baseline sample (“in-sample”), which are banks assigned to a location for which we

can construct the elsewhere loan growth instrument. The second measure (“all”) are all

commercial banks with a presence in location l,

∆ lnLtype
lt =

∑
i∈type s̃il,t−1∆ lnLit∑

i∈type s̃il,t−1

, type ∈ {in-sample, all}

The “in-sample” banks account, on average, for 30.9% of county-level deposits. The banks

in the “all” loan growth measure, on average account for 80.4% of local deposits. Thrifts

account for the remaining share.

We repeat the same calculations to obtain two measures of local loan growth, ∆ lnLtype
lt ,

and elsewhere loan growth ∆ lnLtype
−l,t . With these data we estimate our baseline specification

(15) at the county level.

The first column of table 12 is a regression analogous to the results in table 7, except

that all variables are measured at the county level rather than at the bank level. We have

the same outcome variable, ∆ lnLin-sample
lt , the same IV strategy, and the same sample of

banks.17 One difference is that the county-level regression weighs banks based on their local

importance. Nevertheless, the estimates in column (1) of table 12 are quite close to our

bank-level results.

17As in our baseline regressions, we trim the top 0.5% and bottom 0.5% of the balance sheet variables.
For employment growth, which is less noisy, we trim the top and bottom 0.01%.
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In column (2) of table 12 the outcome variable is loan growth at all commercial banks,

∆ lnLall
lt . This regression captures if other banks compensate for the relative reduction in

local loan growth due to financial dampening at the in-sample banks. The total effect in

column (2) is of similar size as in column (1), suggesting that there is little substitution to

other banks and that financial dampening does affect local loan growth.

Table 12 – IV estimates at County level
Dependent
variable: 1Q Loan Growth 1Q Employment

Growth

Banks in-sample All banks Local
employment

(1) (2) (3)
∆rt−0 ∗ 4Q Loan Growtht−1 0.20 2.87 −3.22
∆rt−1 ∗ 4Q Loan Growtht−2 −3.95 −3.38∗∗ −0.33
∆rt−2 ∗ 4Q Loan Growtht−3 −2.63 −2.00 −3.36∗
∆rt−3 ∗ 4Q Loan Growtht−4 1.39 −0.96 3.13
∆rt−4 ∗ 4Q Loan Growtht−5 −0.63 −1.17 −6.15∗∗∗
∆rt−5 ∗ 4Q Loan Growtht−6 2.34 1.07 1.62
∆rt−6 ∗ 4Q Loan Growtht−7 −5.87∗∗∗ −3.89∗∗∗ −2.34
∆rt−7 ∗ 4Q Loan Growtht−8 4.27∗ 2.85∗ 3.16
∆rt−8 ∗ 4Q Loan Growtht−9 −11.6∗∗∗ −6.95∗∗∗ −1.25
Time FE Yes Yes Yes
County FE Yes Yes Yes
Sum: ∆r * 4Q Loan Growth −16.46∗∗∗ −11.57∗∗∗ −8.74∗
p-value (0.009) (0.005) (0.078)
Sum: ∆r * Leverage 0.31 −.01 1.91∗∗
p-value (0.776) (0.994) (0.039)
F-statistic 42.80 43.81 35.64
R2 0.06 0.15 0.11
Observations 96.535 96.535 96.332
Notes: IV estimates of equation (15) at the County level. The dependent variable is in the table header.
In-sample banks are banks for which we can construct the instrument based on BHC-member banks located
elsewhere. All banks are all commercial banks in the bank regulatory data. The employment regressions
are weighted by the County deposit-share of in-sample banks. The IV is the Romer-Romer shock interacted
with 4Q loan growth in matched banks operating elsewhere. Standard errors are clustered at the County
level. Additional controls are 8 lags of the dependent variable and 8 lags of leverage and its interaction with
the Romer-Romer shock.

To determine whether financial dampening also affects real economic outcomes at the

county level, in column (3) we use county employment growth as an outcome variable. The

regression equations are otherwise identical to columns (1) and (2). We weigh observations
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by the deposit share of in-sample banks to capture how important our retrenching variable

is for the county.18 We find that the effect of financial dampening on local employment is

sizable, persistent and statistically significant. Figure 3 plots the implied lower employment

growth in a county at the 25th percentile of the loan growth distribution compared to a

county at the 50th percentile following a -1% monetary policy shock, along with the 95%

confidence interval. The differential effect amounts to an annualized 0.52 percentage points

weaker employment growth over two years. To put our quantitative results in perspective,

for the U.S. economy as a whole, a -1% monetary policy shock leads to a peak increase in

employment of 1% after 29 months.19 If the aggregate effect applies at the median county,

then the peak response is only −0.48% at the 25th percentile of the county loan growth

distribution. Thus the stimulative effect of monetary policy is almost cut in half in counties

with moderate loan retrenchment. This relative slowdown in employment growth suggests

that financial dampening could be an important contributor to slow recoveries from recessions

featuring loan retrenchment by the financial sector.

To gauge the aggregate implications of our estimates, we apply them to differential loan

retrenchment in pre-1990 and post-1990 recessions. Figure 4a displays the time-variation in

financial sector real loan growth from the flow of funds averaged around pre-1990 recessions

and post-1990 recessions. Real loan growth falls significantly more in post-1990 recessions:

during and after the recession it is on average 3.83 percentage points lower than in pre-1990

recessions. Figure 4b shows that this correlates with weaker employment growth post-1990.

The decline in aggregate loan growth in post-1990 is also accompanied with a greater

incidence of loan retrenchment among banks. From the call report data we construct the

share of banks whose real four-quarter loan growth is negative and plot the time series in

18Alternatively, we could regress local employment growth on local loan growth instrumenting with else-
where loan growth and elsewhere loan growth interacted with the monetary policy shock. Results are
qualitatively similar in that case. A disadvantage of this second specification is that we cannot directly test
for the dampening effect since we cannot separate the effect of elsewhere loan growth from its interaction
with the monetary policy shock.

19This statement is based on regressing aggregate employment growth on the monetary policy shock,
∆ ln et = α+

∑36
j=0 βjrt−j + εt and reporting the peak impact at 29 months,

∑29
j=0 βj .
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Figure 3 – Differential employment growth following a -1% monetary policy shock in a county at
the 25th percentile of the loan growth distribution compared to a county at the 50th percentile.
Dashed lines represent the 95% confidence interval.

figure 5. The data show that there is a persistent increase in the share of retrenching banks in

post-1990 recessions. By contrast, following the 1981-2 recession that share dropped quickly.

Along with the aggregate quantities, this fact also suggests that financial dampening is likely

a much more important mechanism in post-1990 recessions than before.

Applying our estimates to the differential loan growth in post-1990 recessions implies

an annualized 0.167 percentage point slower employment growth over two years for each

percentage point of lower monetary policy rates. Since the Federal Funds Rate has fallen on

average by 5.1 percentage points in post-1990 recessions, the cumulative effect is to reduce

annual employment growth by 0.85 percentage point over two years. For comparison, average

employment growth was 0.7% per year in post-1990 recoveries and 2% per year in pre-1990

recoveries, suggesting that financial dampening can potentially explain up to two thirds of

the slowdown in recovery speed after 1990. Thus, extrapolating from our micro-evidence

suggests that financial dampening may also be quantitatively important at the aggregate

level. More generally, it provides a microfounded and empirically-supported mechanism for

why recoveries after financial crises may be slow.
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Figure 4 – Four-quarter real loan growth rate for the U.S. financial sector and four-quarter civilian
employment growth rate for the U.S. economy averaged over pre- and post-1990 recessions and
centered around recession start dates. Loan growth is deflated using the U.S CPI. Source: U.S.
Flow of Funds and FRED.
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is deflated using the U.S CPI. Source: U.S. Call Report Data and FRED

A limitation of these calculations is that they take monetary policy as given. But, in

principle, the central bank could simply cut interest rates more aggressively to compensate

for financial dampening. In our view there are two reasons why such a response is likely

limited in practice. First, the central bank must have been aware of the degree of financial

dampening present. To the extent that it has relied on models that do not incorporate

this channel it is unlikely that its past responses were fine-tuned to the financial dampening

channel. This conjecture is also supported by the persistence of loan retrenchment at a

substantial fraction of banks in post-1990 recessions. Second, the zero-lower bound may

constrain the central bank’s ability to compensate for financial dampening. Indeed, since

financial dampening renders monetary policy rate reductions less effective, the central bank

may run into this constraint precisely at the time when monetary policy rates need to be

cut the most to stimulate the economy to a desired effect. Thus, in our view the calculations

assuming no central bank response to financial dampening are a reasonable starting point.
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5 Conclusion

We document new evidence suggesting that loan retrenchment by banks attenuates the

effectiveness of monetary policy, a mechanism we call financial dampening. We derive condi-

tions under which financial dampening arises in a model of BHC member banks that share an

internal capital market. The key ingredients are the usage of capital as cushion against non-

tradable loan risks and loan liquidation costs. Our theory implies that retrenching banks,

which face higher marginal liquidation costs, will expand loan supply less in response to a

reduction in monetary policy rates compared to banks that do not retrench.

We test our baseline theory with micro-data on financial intermediation and Romer and

Romer (2004) monetary policy shocks. A key obstacle is to separate the loan supply effects

from loan demand. We derive an IV-strategy from our model, which exploits exploit the

spatial concentration of U.S. banks and linkages across banks through common BHC-internal

capital markets. We instrument loan retrenchment at a bank with average retrenchment at

banks belonging to the same controlling BHC, but operating in a separate geographical area.

We find that this instrument has significant predictive power. Our estimates imply that in

response to a 1% monetary policy shock, a bank at the 25th percentile of the retrenchment

distribution increases its loan growth by 3.25 percentage points more than a bank at the

75th percentile.

At the county level we do not find evidence that the financial dampening effect on loan

supply is offset by other local banks. Instead, we estimate that counties with lower loan

growth from financial dampening have persistently lower employment growth. Applying

our estimates to the differential deleveraging patterns in pre-1990 and post-1990 recessions

suggest that financial dampening may be a quantitatively important factor in slow post-1990

recoveries. This evidence provides a microfounded and empirically supported rationale for

why recoveries from financial sector retrenchment, such as deep financial crises, may be slow.

Our results also suggest policy implications that we did not focus on in this paper. In
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particular, monetary policy may want to cut monetary policy rates more aggressively in

recessions accompanied by financial sector retrenchment than in other recessions. Further-

more, if the zero-lower bound is a binding constraint on monetary policy, then our analysis

suggests how non-traditional monetary policy tools working through bank balance sheets

may support the traditional interest rate channel. On the asset side, direct purchases of

bank loans such as during the TARP program, will mitigate financial dampening by re-

ducing the loan liquidation costs ψ. On the liability side, capital subsidies can reduce risk

premia θh, lower bank risk aversion, and thereby reduce loan retrenchment. We leave a more

detailed study of these policy implications for future work.
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A Proofs

A.1 Proof of Proposition 1 For convenience, we restate the optimization problem of

period 1 here:

max
Li,h,Ki,h

E[V (wi,h, Ki,h)]

s.t. wi,h = (rL − rF )Li,h + (1 + rF )Ki,h −Ψ(∆Li,h/Li,h,0, z)Li,h,0

rL = r̄L + ε

ε ∼ N(0, σ2
ε)

V (wi,h, Ki,h) = P (wi,h)− (1 + rh)Ki,h

The first order condition with respect to BHC capital Ki,h is given by

E[P ′(wi,h)](1 + rF )− (1 + rh) = 0 (16)

The first order condition with respect Li,h is given by

E

[
P ′(wi,h)

(
rL − rF − ∂Ψ(∆Li,h/Li,h,0, z)

∂∆Li,h/Li,h,0

)]
= 0 (17)

Manipulating this first order condition (17)

∂E[P (wi,h)]

∂Li,h
= E

[
P ′(wi,h) ·

∂wi,h
∂Li,h

]
= E [P ′(wi,h)] · E

[
∂wi,h
∂Li,h

]
+ Cov

(
P ′(wi,h),

∂wi,h
∂Li,h

)
= E [P ′(wi,h)] · E

[
∂wi,h
∂Li,h

]
+ E[P ′′(wi,h)]Cov

(
wi,h,

∂wi,h
∂Li,h

)
= E [P ′(wi,h)] · E

[
rL − rF − ∂Ψ(∆Li,h/Li,h,0,z)

∂∆Li,h/Li,h,0

]
+ E[P ′′(wi,h)]Cov

(
wi,h, r

L − rF − ∂Ψ(∆Li,h/Li,h,0,z)

∂∆Li,h/Li,h,0

)
= E [P ′(wi,h)] ·

[
r̄L − rF − ∂Ψ(∆Li,h/Li,h,0,z)

∂∆Li,h/Li,h,0

]
+ E[P ′′(wi,h)]Li,hσ

2
ε

where from the second to the third line, we used the fact that Cov(f(x), y) = E[f ′(x)]Cov(x, y)
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for normally distributed random variables. Defining risk aversion as

Gh = −E[P ′′(wi,h)]

E[P ′(wi,h)]

=
g(1− A+ θh)

1 + θh

where the second line follows from the definition of P (w) in (4) and the first order condition

(16) and the definition of the BHC capital premium 1 + θh = 1+rh

1+rF
.

Therefore, the optimal loan supply is given by

LSi,h(z) =
r̄L − rF − ∂Ψ(∆Li,h/Li,h,0,z)

∂(∆LS
i,h/Li,h,0)

Gh · σ2
ε

A.2 Proof of Proposition 2 We differentiate (7) with respect to rF to obtain:

∂ lnLSi,h
∂rF

= − 1− µ
r̄L − rF − Φ′(∆Li,h/Li,h,0)

− (1 + ∆Li,h/Li,h,0)Φ′′(∆Li,h/Li,h,0)

r̄L − rF − Φ′(∆Li,h/Li,h,0)

∂ lnLSi,h
∂rF

= − 1− µ
r̄L − rF − Φ′(∆Li,h/Li,h,0) + (1 + ∆Li,h/Li,h,0)Φ′′(∆Li,h/Li,h,0)

We then approximate around Li,h = Li,h,0:

∂ lnLSi,h
∂rF

≈ − 1− µ
r̄L − rF − Φ′(0) + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2
ln

(
Li,h
Li,h,0

)

Our micro-foundation for the asymmetric adjustment costs (appendix B) imply Φ′(0) < 0,

Φ′′(0) > 0, Φ′′′(0) < 0, so that the loan supply response is given by

∂ lnLi,h
∂rF

≈ − 1− µ
r̄L − rF − Φ′(0) + Φ′′(0)

+
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2
ln

(
Li
Li,0

)
(18)

52



A.3 Proof of Proposition 3 For convenience, we restate our core estimating equation

again:

∂ lnLi,h
∂rF

= α + β∆ lnLi,h + ui,h

α = − 1− µ
r̄L − rF − Φ′(0) + Φ′′(0)

β =
(1− µ)Φ′′′(0)

[r̄L − rF − Φ′(0) + Φ′′(0)]2

ui,h = xi,h (−α− β ×∆ lnLi,h)

The instrumental variables estimator is defined as

β̂IV =
Cov

(
∂ lnLi,h

∂rF
,∆ lnL−i,h

)
Cov (∆ lnLi,h,∆ lnL−i,h)

=
Cov (α + β ×∆ lnLi,h + ui,h,∆ lnL−i,h)

Cov (∆ lnLi,h,∆ lnL−i,h)

= β +
Cov (ui,h,∆ lnL−i,h)

Cov (∆ lnLi,h,∆ lnL−i,h)

where the key term is

Cov (∆ lnL−i,h, ui,h)

= Cov
(

(1− x̄)∆ lnLSi,h + xj,h ·∆ lnLcj,h , xi ·
(
−α− β ·

[
∆ lnLSi,h + xi,h ·

(
∆ lnLci,h −∆ lnLSi,h

)]))
= Cov

(
(1− x̄)∆ lnLSi,h , xi,h ·

(
−α− β

[
∆ lnLSi,h + xi,h ·

(
∆ lnLci,h −∆ lnLSi,h

)]))
= −α(1− x̄)Cov

(
∆ lnLSi,h, xi,h

)︸ ︷︷ ︸
=0

−(1− x̄)β E[xi,h(1− xi,h)]︸ ︷︷ ︸
=0

V ar[∆ lnLSi,h]

− (1− x̄)β Cov
(
∆ lnLSi,h, x

2
i∆lnL

c
i,h

)︸ ︷︷ ︸
=0

= 0

where the second line uses that demand constraints are uncorrelated across banks in dif-

ferent locations and the third line uses the independence of xi,h from ∆ lnLSi,h (small bank

assumption).
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B Expected liquidation costs

In the equation (5) the actual marginal adjustment costs are unobservable, because z is

unobserved by the econometrician. Thus, we can only capture the average cost of liquidations

for a given observed change in loan exposure. Assuming a uniform distribution for z, z ∼

U [a, b], the average marginal liquidation cost for a bank is,

Φ′
(

∆Li,h
Li,h,0

)
= Ez

 ∂Ψ

∂
∆Li,h

Li,h,0

(
∆Li,h
Li,h,0

, z

)
= Ez

[
ψ

(
∆Li,h
Li,h,0

− z
)
I
{

∆Li,h
Li,h,0

− z < 0

}]
= ψ

∆Li,h
Li,h,0

Prz
(

∆Li,h
Li,h,0

− z < 0

)
− ψEz

[
zI
{

∆Li,h
Li,h,0

< z

}]

= ψ
∆Li,h
Li,h,0

b− ∆Li,h

Li,h,0

b− a
− ψ

b2 −
(

∆Li,h,0

Li,h,0

)2

2(b− a)

where I{•} is an indicator function and the last line assumes that observed loan growth

is within the bounds b > ∆Li,h

Li,h,0
> a. Crucial for our purposes, the adjustment costs are

asymmetric

Φ′
(

∆Li,h
Li,h,0

)
= −ψ

2

(
b− ∆Li,h

Li,h,0

)2

b− a
< 0

Φ′′
(

∆Li,h
Li,h,0

)
=
ψ(b− ∆Li,h

Li,h,0
)

b− a
> 0

Φ′′′
(

∆Li,h
Li,h,0

)
=
−ψ
b− a

< 0

Evaluated at zero:

Φ′ (0) = − ψb2

2(b− a)
< 0

Φ′′ (0) =
ψb

b− a
> 0

Φ′′′ (0) = − ψ

b− a
< 0

With a symmetry, a = −b, we have Φ′ (0) = −ψa
4
, Φ′′ (0) = ψ

2
, and Φ′′′ (0) = − ψ

2a
.
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