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Abstract

In our incomplete markets economy financial frictions affect the optimal inflation target.
Households choose portfolios consisting of risky (uninsurable) capital and money. Money is a
bubbly store of value. The market outcome is constrained Pareto inefficient due to a pecuniary
externality. Each individual agent takes the real interest rate as given, while in the aggregate it
is driven by the economic growth rate, which in turn depends on individual portfolio decisions.
Higher inflation due to higher money growth lowers the real interest rate (on money) and tilts the
portfolio choice towards physical capital investment. The optimal inflation target boosts growth
and welfare and is higher for emerging market economies.

1 Introduction

How do financial frictions affect the optimal inflation rate? Can financial frictions alone annul the
long-run super-neutrality of money? Should the inflation rate be higher in emerging market economies
with less developed financial markets than in advanced economies, as is currently observed?1

To answer these questions we set up an incomplete markets model in which households choose
portfolios consisting of risky (physical) capital and money. Physical capital holdings are encumbered
with idiosyncratic risk. Financial frictions prevent the diversification of the idiosyncratic risk. Our
analysis in this paper can be seen as a simplified discrete-time version of the “I Theory of Money”
(Brunnermeier and Sannikov, 2015) – but without the “I”, the intermediaries and inside money, and
with an exclusive focus on the long-run steady state.

Like in Samuelson’s (1958) OLG and in Bewley’s (1980) uninsurable endowment risk model, money
serves as a store of value and can have positive value despite the fact that it never pays any dividends.
Diamond (1965) introduces physical capital in Samuelson’s OLG model and Aiyagari (1994) in Bew-
ley’s incomplete markets setting (but capital drives out money). In our setting, money and physical
capital coexist and agents choose portfolios. Like in Diamond and Aiyagari, the market outcome is
dynamically inefficient. In contrast, however, to Diamond and Aiyagari, in which the interest rate
is too low and savings and physical capital investment are excessive, in our setting the real risk-free
interest rate is too high and the investment rate is inefficiently low.

∗Brunnermeier: Princeton University, Department of Economics, Princeton, NJ, 08544, email:
markus@princeton.edu. Sannikov: Princeton University, Department of Economics, Princeton, NJ, 08544, USA,
email: Sannikov@princeton.edu. We thank Itamar Drechsler for helpful comments and Yann Koby, Christian Wolf and
especially Sebastian Merkel for excellent research assistance.

1The differences in inflation targets between emerging market and advanced economies are documented e.g. in Table
1 in Fraga, Goldfajn, and Minella (2004) and Table 4.1 of International Monetary Fund (2005).
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The market outcome is constrained Pareto inefficient due to pecuniary externalities. Each indi-
vidual agent takes the real interest rate as given, while in the aggregate it is driven by the economic
growth rate, which in turn depends on individual portfolio decisions. Higher inflation due to higher
money growth lowers the real interest rate (on money) and tilts the portfolio choice towards physical
capital investment. This boosts the overall physical investment and endogenous growth rate.

We are able to solve the model and conduct the welfare analysis in closed form. We show that there
is an optimal level of long-run inflation in a setting in which seigniorage is handed out in a wealth-
distribution-neutral way. A government that faces the same constraints as markets can orchestrate a
Pareto welfare improvement simply by printing the right amount of money. Second, we show that in
countries with higher idiosyncratic risk, e.g. because the domestic financial sector is less developed,
the optimal inflation rate is higher.

Most existing literature explores various rationales other than financial frictions to determine the
optimal inflation and money growth rate.2 The Friedman Rule advocates a policy that minimizes
the cost of holding currency. Hence, currency should appreciate at the real risk-free rate of return,
which implies deflation (unless currency, like short-term government debt, earns interest). Most New
Keynesian models with price stickiness à la Calvo (1983) recommend a zero inflation rate in steady
state. Zero inflation minimizes the price dispersion between firms that accidentally had a chance to
readjust their prices and those who did not have this opportunity. A higher inflation target can be
justified if nominal interest rates are subject to the zero lower bound (ZLB). Hitting the ZLB may
lead to an excessively high real interest rate causing output losses. In our setting the real interest rate
is also too high, even without the ZLB, and capital investment is depressed. Tobin (1972) argues in
favor of a positive inflation rate in order to overcome frictions resulting from downward wage rigidities.
Phelps (1973) criticizes the Friedman rule and conjectures that the inflation tax should be part of
an overall optimal tax scheme. Yet, the Friedman rule has turned out to be remarkably robust. A
higher inflation tax may be optimal, only if it counteracts some monopolistic distortions or extends
to an otherwise untaxable large shadow economy. In our setting inflation acts as a Pigouvian tax on
money holding to overcome pecuniary externalities.

2 The Economy

2.1 Model Setup

Our economy is populated by a continuum of households with identical preferences but potentially
different levels of wealth. Each household manages a private firm which operates a linear production
technology with capital as the single input. Firms are subject to idiosyncratic, (real) cash-flow shocks
of size proportional to the level of capital they manage. In addition, households can hold money, a
bubble asset, which does not pay any dividends nor provides any other intrinsic service.

Time is divided into discrete intervals of length ∆t, indexed by j.3 The timing within each
period is as follows: Households enter period j with physical capital holdings kj and nominal money
holdings mj . First, the physical capital produces output Akj∆t, cash-flow shocks are realized and the
household receives transfers from the government’s seigniorage income. Second, households choose
the investment rate ιj . That is, they decide how many output units ιjkj∆t they use to produce new

2See e.g. Schmitt-Grohé and Uribe (2010) and Woodford (1990).
3As is common in discrete time models, we sum flows and ignore compounding effects within a ∆t-period, while

across periods we take compounding into account. For ∆t = 1 our model resembles a standard discrete time model.
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physical capital. Consequently, physical capital grows to kj+1 = (1 + (Φ(ιj)− δ)∆t)kj , where δ is the
depreciation rate, and the concave function Φ(ι) reflects investment adjustment costs. Specifically,
we assume the following functional form Φ(ι) = 1

κ log (1 + κι) with adjustment cost parameter κ. At
the end of a period, households make their portfolio and consumption choices. That is, they trade
physical capital, money and output goods to obtain the new capital holding kj+1 and nominal money
holding mj+1 and consume the rest.

The consumption good serves as our numeraire. We restrict attention to equilibria with constant
real price of physical capital q. The real value of aggregate physical capital, Kj , is qKj . The real
value of total money supply is pKj . In other words, p ≥ 0 is the real value of money normalized by the
size of the economy, measured by the aggregate capital stock, Kj .

4 The total wealth in the economy

is (p + q)Kj . Given the quantity of money of Mj , the price level in the economy is Pj :=
Mj

pKj
. The

government chooses the money growth rate µ, i.e. Mj+1 = (1 + µ∆t)Mj , which impacts the real
return on money Rmj . The seigniorage revenues are redistributed in proportion to each household’s

wealth, wj .
5

We assume that all household maximize expected log utility with a time preference rate of ρ∆t.
Given initial capital and nominal money holdings k0 and m0, any household in the economy solves
the problem

max
{cj ,kj+1,mj+1,ιj}∞j=0

E

 ∞∑
j=0

(
1

1 + ρ∆t

)j
log cj ·∆t


s.t. (cj + ιjkj)∆t+ qkj+1 +

mj+1

Pj
=

Akj∆t+ zj + q (1 + (Φ(ιj)− δ)∆t) kj +Rmj
mj

Pj−1
+ τjwj

wj = qkj +
mj

Pj−1
,

where zj are real cash flow shocks and τjwj are transfers from the government.6 Households face
idiosyncratic cash-flow shocks zj which are proportional to the size of their business measured in the
units of capital employed in production:

zj = σεj
√

∆tkj

where εj is an iid shock, both over time and across households, with zero mean and unit variance,7

σ > 0 is a parameter. The shock is scaled by
√

∆t instead of ∆t to ensure that its impact does not
become smaller with decreasing period length ∆t. In sum, all flow variables contain a ∆t-term, all
shocks a

√
∆t-term, while stocks do not depend on the length of the time period.

4p is also assumed to be a time-invariant constant, but this assumption is not essential and just made for convenience:
one can show that a time-invariant q implies a time-invariant p in any equilibrium.

5In a world in which interest is paid on outside money (reserves) µ refers to the money growth beyond the interest
payment while overall inflation is growing with the total money growth rate.

6Money holdings mj in the beginning of period j are divided by Pj−1, not Pj , because Rm
j is already the real rate

of return.
7Note that the distribution needs to have bounded support to avoid the possibility of wealth becoming negative.

Unbounded normally distributed shocks only work in the continuous-time limit.
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2.2 Optimality Conditions

Lemma 1. The optimal internal investment rate ι∗ is an intra-period problem, solves q = 1
Φ′(ι∗) =

1 + κι∗ and is identical across all households and constant over time.

Note that if all households choose the same investment rate ι∗, the law of motion of the aggregate
capital stock is

Kj+1 = (1 + (Φ(ι∗)− δ)︸ ︷︷ ︸
g:=

∆t)Kj .

The (gross) returns on physical capital and on money are then given by

Rkj = 1 +

(
A− ι∗

q
+ g

)
∆t+

σ

q
εj
√

∆t,

Rmj =
1 + g∆t

1 + µ∆t
.

Let the“portfolio return” if the household holds a fraction xk in physical capital and fraction
(1− xk) in money be

Rpj (x
k
j ) := xkjR

k
j + (1− xkj )Rmj + τj

We include seigniorage transfers τj as they are also proportional to household wealth. Denote by
w′j = qkjR

k
j +

mj

Pj−1
Rmj + τjwj household wealth immediately before consumption (sometimes referred

to as “cash at hand”), i.e. for period j, w′j − cj∆t = wj+1. Given the optimal investment rate ι∗ one
can then rewrite the household’s problem as a Bellman equation in terms of the single state variable
w′8:

V (w′) = max
c,xk

(
log c ·∆t+

1

1 + ρ∆t
E[V (Rp(xk)(w′ − c∆t))]

)
This is a standard consumption-savings and portfolio optimization problem. We conjecture a value

function of the form V (w′) = α0 + α1 logw′, where α0, α1 are undetermined coefficients. Using this
conjecture the right-hand side of the problem becomes

1

1 + ρ∆t
α0 + max

c

(
log c ·∆t+

1

1 + ρ∆t
α1 log (w′ − c∆t)

)
+ max

xk

1

1 + ρ∆t
α1E[logRp(xk)]

This conveniently separates the maximization problems with respect to c and xk. The consumption
problem can be solved explicitly and doing so also verifies the conjectured functional form of the value
function.

Lemma 2. The optimal consumption level is c∗ = ρ
1+ρ∆tw

′.

We solve the portfolio choice problem for an approximate solution which becomes exact as ∆t→ 0,
i.e. in the continuous-time limit. This solution is obtained by evaluating E[logRp(xk)] using a Taylor

8Henceforth we suppress period subscripts in our notation, whenever making them explicit does not provide additional
clarity.
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expansion around Rp(xk) = 1 up to a term of order ∆t. Since Rp(xk) = 1 + O(
√

∆t), we need to

include only terms up to degree 2. Notice also that (Rp(xk)− 1)2 = xk σ
2

q2 ε
2∆t+ o(∆t). Hence,

E[logRp(xk)] = E[
(
Rp(xk)− 1

)
− 1

2
(Rp(xk)− 1)2] + o(∆t) =

≈
(
g − τ + xk(

A− ι∗

q
+ µ)− 1

2
(xk)2σ

2

q2

)
∆t

where in the last equation we use the fact that ε has zero mean and unit variance. This approximated
portfolio problem is now quadratic in xk and straightforward to solve.

Lemma 3. The optimal portfolio share of capital is xk∗ = E[Rk−Rm]
V ar[Rk−Rm]

= q(A−ι∗)
σ2 + q2µ

σ2 .

2.3 Market Clearing Conditions

The goods market clears if total output equals the sum of investment and consumption. Since indi-
vidual cash-flow shocks cancel out in the aggregate and every households chooses the same ι∗,9

AKj∆t = ι∗Kj∆t+ Cj∆t

for every period j. By Lemma 2 individual consumption is a constant fraction of end of period wealth
before consumption w′j , which easily aggregates to Cj = ρ

1+ρ∆tW
′
j . By households’ budget constraints,

W ′j = Cj∆t+Wj+1 =
ρ

1 + ρ∆t
∆tW ′j +Wj+1,

hence

W ′j = (1 + ρ∆t)Wj+1 = (1 + ρ∆t)
Kj+1

Kj
(p+ q)Kj = (1 + ρ∆t)(1 + (Φ(ι∗)− δ)∆t)(p+ q)Kj

Substituting this into the market clearing equation and dividing by Kj yields

A∆t = ι∗∆t+ ρ
[
∆t+ (Φ(ι∗)− δ)(∆t)2

]
(p+ q).

The difference between end of period wealth W ′j just before consumption and beginning of period
wealth Wj introduces the extra term (Φ(ι∗) − δ) in the goods market clearing condition, which
reflects the growth of the economy within a period. This term does not arise when the period length
∆t vanishes or Φ(ι∗) turns out to be equal to δ. To be able to solve the model in closed form, we
will in the following ignore this extra term of order (∆t)2.10 After dividing by ∆t, the goods market
clearing equation becomes

A = ι∗ + ρ(p+ q). (1)

The capital market clears if aggregate capital demand equals capital supply, xk∗W
q = K. Using

W = (p+ q)K and the optimal portfolio share from Lemma 3 yields

1

p+ q
=
A− ι∗

σ2
+
qµ

σ2
. (2)

The money market clears by Walras law.

9Capital letters are the aggregate counterparts of the lower-case letters in the individual decision problem.
10As in the portfolio choice problem this means that we are approximating the model for small ∆t by its continuous-

time limit. Note that we do not make two sequential approximations: the goods market clearing equation containing
the (∆t)2-term is exact and does not depend on the (approximated) solution to the portfolio choice problem.
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2.4 Equilibrium

Proposition 1. The following three equations approximatively characterize equilibrium prices p, q
and investment rate ι∗ in discrete time and exactly in the continuous-time limit:

q = 1 + κι∗

ρ(p+ q) = A− ι∗

σ2

q + p
= A− ι∗ + qµ

While these three equations can in principle be solved in closed form, the solution is significantly
simplified, if it is expressed in terms of a monotone transformation µ̂ := xk∗µ of money growth.11 To
ensures that capital has a positive value irrespectively of the choice of µ > 0, we assume:

Assumption 1. 1 + κA > κ
√
ρσ

Proposition 2. In the “monetary equilibrium’’ in which money and capital have positive value12

p =
σ(1 + κρ)√

ρ+ µ̂
− (1 + κA), (3)

q = 1 + κA− κρσ√
ρ+ µ̂

, (4)

ι∗ = A− ρ σ√
ρ+ µ̂

, (5)

where the transformed money growth rate µ̂ = xk∗µ is strictly increasing in µ, and this equilibrium

exists if µ̂ < σ2
(

1+κρ
1+κA

)2

− ρ.

There always exists a second moneyless equilibrium with p = 0, q = 1+κA
1+κρ , ι∗ = A−ρ

1+κρ .

Proposition 2 reveals that in economies with high idiosyncratic risk, e.g. with poorly developed
(internal) financial markets, money is more valuable. Indeed, for money to have positive value some
minimum amount of idiosyncratic risk is necessary. Note that capital investment yields positive output
Akj , while money does not. For sufficiently low σ or sufficiently high A, capital investment is too
attractive and we are in a moneyless economy, i.e. p = 0. Another interesting fact is that the capital
depreciation rate δ does not affect prices nor the investment rate. However, it does affect the evolution
of individual and aggregate capital and through it also households’ overall utility level.

Note that in the moneyless equilibrium xk∗ = 1 and hence equilibrium is determined by the first
two equations in Proposition 1 with p = 0.

Most of the remaining discussion will be based on the monetary equilibrium of Proposition 2 in
which the value of physical capital and money is positive.

3 Welfare

In this section we derive households’ overall expected utility as a function of exogenous parameters
and transformed money growth rate µ̂. The tractability of our framework allows us to characterize

11Due to the monotonic relationship, any qualitative statement in terms of µ̂ holds also in terms of µ and vice versa.
12These equations also hold for the special case of no capital adjustment costs, κ = 0. In this case our model is a

version of Angeletos (2007) but with money.
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welfare as a function of the portfolio return and asset prices in closed form without approximation.
Going beyond that, and in order to characterize welfare as a function of exogenous parameters and
of the government policy variable µ̂, we use our approximated equilibrium prices and returns. As our
equilibrium results are exact in the continuous time limit, so are our welfare results.

Using the conjectured form of the value function, plugging in the optimal consumption solution
from Lemma 2 and as a place holder xk∗ for the optimal portfolio choice, we solve for the unknown
coefficients of the value function, α0 and α1 in terms of model parameters and the expected log
portfolio returns E[logRp(xk∗)]:

α0 = V0 +
1 + ρ∆t

ρ2

E[logRp(xk∗)]

∆t
,

α1 =
1 + ρ∆t

ρ
,

where V0 only contains terms depending on ρ and ∆t. Thus, the value function is given by

V (w′) = V0 +
1 + ρ∆t

ρ2

E[logRp(xk∗)]

∆t
+

1 + ρ∆t

ρ
logw′

Next, we would like to express welfare not as function of w′, but as a function of the initial capital
endowment k0. Note that

w′0 = Rp0w0 = Rp0(p+ q)k0.

Since the portfolio return Rp0 depends on cash flow shocks in period 0, V (w′0) is from an ex-ante
perspective random. Hence, we take expectations and obtain

U := E[V (w′0)] = V0 +
1 + ρ∆t

ρ2

E[logRp(xk∗)]

∆t
+

1 + ρ∆t

ρ

(
E[logRp(xk∗)] + log (p+ q)k0

)
= V0 +

(1 + ρ∆t)2

ρ2

E[logRp(xk∗)]

∆t
+

1 + ρ∆t

ρ
log (p+ q)k0

Finally, we replace terms E[logRp] and p+ q for which we have approximate closed-form expres-
sions.13 Recall E[logRp] from the proof of Lemma 3 and ι∗, p + q from Proposition 2. Normalizing
w.l.o.g. k0 = 1, we obtain

Proposition 3. The expected utility of a household with initial capital stock k0 = 1 is

U = V0 +

1
κ log

(
1 + κA− κρσ√

ρ+µ̂

)
− δ + ρ− 1

2 (ρ+ µ̂)

ρ2
+

log
(

σ√
ρ+µ̂

)
ρ

.

If we assume that all households are equally wealthy in the beginning we can simply integrate over
all individual households’ utility levels. That is, we can simply take an individual household’s utility
level as our economy wide welfare measure. In this case any welfare improvement is also a Pareto
improvement.14

13This is the only point at which we approximate our welfare derivation. The previous equation holds exactly for
any ∆t > 0, but has the disadvantage that it includes E[logRp(xk∗)] for which we do not have an exact closed form if
∆t > 0.

14Note that we are only assuming that households start with identical initial capital and money endowments. However,
the wealth distribution in our economy will not stay the same over time. Some households will experience negative
shocks and others positive shocks, such that the wealth distribution becomes more and more dispersed.
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4 Optimal Money Growth and Inflation Rate

Increasing the money growth rate increases inflation and lowers the real return on money. This
encourages households to tilt their portfolio towards real assets at the expense of money holdings.
The higher investment rate increases the real growth rate in the economy – a point originally made
by Tobin (1965). Sidrauski (1967) showed that this is not welfare improving within a representative
agent model, i.e. absent financial frictions. Our analysis revives Tobin’s intuition by showing that the
welfare-maximizing money growth rate is not zero in a setting with incomplete markets. In particular,
if the (uninsurable) idiosyncratic risk is sufficiently large, the optimal money growth rate is positive.

Proposition 4 (Optimal money growth). There always exists a unique optimal growth rate of money
µ∗, which is positive (negative), if

σ > (<)
2
√
ρ(Aκ+ 1)

1 + 2κρ
.

The competitive equilibrium outcome with µ = 0 is constrained Pareto inefficient except for the
knife-edge case in which this condition holds with equality.15

In addition, in the equilibrium with money growth rate µ∗ money always has a strictly positive
value.

The steady state (long-run) money growth rate affects the equilibrium allocation and economic
growth. In short, money is not superneutral, despite the absence of any nominal rigidities and of the
transaction role of money.

Corollary 1 (No Superneutrality). Money is not superneutral in our flexible price (steady state)
economy since a steady state increase in money supply growth affects the steady state economic growth
rate Φ(ι∗)− δ.

As one increases money growth, output also increases. However, output maximizing money growth
is excessive since it ignores the utility costs from bearing idiosyncratic risk. Indeed, it would make
money so unattractive that it loses its value altogether, leading to a suboptimal welfare outcome as
the last part of Proposition 4 reveals.

Zero money growth is also constrained Pareto inefficient, despite perfect competition and flexible
prices. A government that faces the same constraints as markets can orchestrate a Pareto welfare
improvement simply by printing the right amount of money. Competitive equilibrium prices are
distorted due to pecuniary externalities. Each individual household does not internalize that, by
tilting its portfolio towards real assets, it boosts real growth in the economy and with it also the real
interest rate on money holdings. The social planner internalizes this pecuniary externality and an
inflation tax works like a Pigouvian tax in this environment.

Finally, the optimal money growth rate is higher for economies with higher idiosyncratic risks.

15The optimal transformed money growth rate µ̂∗ is characterized by

(1 + κA)
√
ρ+ µ̂∗(2 +

µ̂∗

ρ
) = σ(1 + κ(2ρ+ µ̂∗)).
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Proposition 5 (Comparative Statics). The optimal money growth rate µ∗ is strictly increasing in
idiosyncratic risk σ.16

Proposition 5 provides an explanation for why emerging market economies have higher inflation
targets than advanced economies in which financial markets enable better risk sharing. Inflation

π = µ− (Φ(ι∗(µ))− δ)

increases in µ, but less than one-to-one since a higher µ also boosts the growth rate of the economy
through a higher investment rate ι∗(µ). Note that δ affects the optimal inflation target but not the
optimal money growth rate.

5 Robustness

The result about the optimal money growth rate (Proposition 4) depends on the nature of shocks
considered. For example, if contrary to our setup cash-flow shocks z were nominal instead of real,
one could eliminate uncertainty completely by inflating away the value of money. Thus, the welfare-
maximizing money growth rate µ in such a setting would sufficiently high, such that value of money
p = 0. In contrast, in a setting with real cash flow shocks it is always optimal to have a strictly
positive value of money, even if this can only be achieved with negative money growth.

In a different setting, if shocks were shocks to physical capital like in Brunnermeier and Sannikov
(2014), the optimal money growth rate would be lower. With capital shocks an additional pecuniary
externality emerges. A lower price of capital q reduces the impact of idiosyncratic shocks. For
example, when a machine breaks down it is cheaper to replace it. Since each individual decision
maker takes q as given, she does not internalize that by tilting the portfolio choice towards money,
they together as a group lower q and hence, lower the idiosyncratic risk exposure. This effect can offset
the pecuniary externality discussed in the preceding section, such that the set of model parameters
for which a social planner prefers negative money growth is larger. That is, taxing capital holding
and subsidizing money holding is more often optimal. Consistent with the prediction of the Friedman
rule, the optimal inflation rate might then be negative, even though the underlying rationale is very
different.

However, this second pecuniary externality only exists in the presence of technological illiquidity,
i.e. if κ > 0. If capital can costlessly be converted into consumption and vice versa the price of capital
q is always 1 and capital shocks and real cash flow shocks have identical consequences.

Finally, note that our qualitative conclusion about the relationship between idiosyncratic risk and
the optimal money growth rate continues to hold for this alternative shock structure. The findings
that the optimal money growth rate is increasing with idiosyncratic risk and that the optimal money
growth rate is positive, if risk is large relative to the discount rate, is robust to this variation of the
model, whereas the exact condition for positivity of µ∗ given in Proposition 4 is not.

16While the full proof of this result can be found in Appendix A.10, we want to illustrate its main idea for the special
case of no capital adjustment costs, κ = 0. In this case, the characterization of µ̂∗ from footnote 15 simplifies to√

ρ+ µ̂∗(2 +
µ̂∗

ρ
) = σ.

Since the left-hand side is increasing in µ̂∗, a higher σ on the right must be accommodated by a higher µ̂∗ for the
equation to hold.
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6 Conclusion

This paper contributes to the literature on the optimal steady state rate of inflation and hence on the
optimal inflation target. It emphasizes the importance of financial frictions. Pecuniary externalities
make the Friedman Rule supoptimal and destroy super-neutrality of money despite the absence of
nominal rigidities. Inflation acts like a Pigouvian tax that corrects the pecuniary externalities due
to financial frictions. Interestingly, it provides a rationale why emerging economies in which financial
markets are less developed should have a higher inflation target – a description which fits reality.
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A Appendix

A.1 Proof of Lemma 1: Optimal Investment Rate

Since only the current investment rate appears in the budget constraint, but no lagged or future
investment rates, the choice of the optimal investment rate ιj is an intra-period problem. The agent
chooses ιj in order to maximize total resources available for consumption and portfolio investments
in the end of period j. This is achieved by maximizing

qΦ(ιj)k̂j∆t− ιj k̂j∆t, (A.1)

which results in the – due to concavity of Φ also sufficient – first-order condition q = 1
Φ′(ι∗j ) = 1 +κι∗j .

If κ > 0, this condition can be inverted to obtain ι∗j and one sees that ι∗ is a constant both over
time and across agents.

In the case κ = 0, the condition instead leads to q = 1 and using the fact that Φ(ιj) = ιj one
observes that (A.1) vanishes in this case irrespectively of the choice of ιj . We therefore can also in
this case impose a common investment rate ι∗.17

A.2 Return on Money and Transfers from Seignorage

Recall that the evolution of the aggregate money stock is Mj+1 = (1 + µ∆t)Mj and that the real
value of the money stock in period j is assumed to be given by pKj with a time-invariant constant
p ≥ 0. The real rate of return on money from j to j + 1 is therefore

Rmj+1 :=
pKj+1/Mj+1

pKj/Mj
=

Mj

Mj+1

Kj+1

Kj
=

1

1 + µ∆t

Kj+1

Kj

Due to Lemma 1 (constant investment rate) the (gross) growth rate of the capital stock between two
successive periods is time-invariant and given by 1 + g∆t with g = Φ(ι∗) − δ.18 Therefore, the real
return on money is time-invariant as well and given by

Rmj = Rm =
1 + g∆t

1 + µ∆t
.

Seignorage revenues in period j are

Sj :=
Mj −Mj−1

Mj
pKj =

µ∆t

1 + µ∆t
pKj .

Because they are redistributed to households in proportion to their wealth, a household with wealth
wj must receive

wj
(p+ q)Kj

Sj =
p

p+ q

µ∆t

1 + µ∆t
wj

17In the model without adjustment costs, there is an economically insignificant multiplicity in the problem with
respect to the individual choices of ιj : since physical investment and capital purchases on the capital market are from
an individual household’s point of view equally effective instruments to reach the desired target capital stock kj+1, the
identity of who makes physical investments and who buys capital on the market does not matter. The assumption,
that everyone chooses the same investment rate is therefore without loss of generality.

18Compare also the discussion in the main text after the statement of Lemma 1.
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The variable τ not fully specified in the main text is therefore given by

τ := τ(∆t) :=
p

p+ q

µ∆t

1 + µ∆t
.

A.3 Proof of Lemma 2: Optimal Consumption-Savings Decision

Recall that the consumption problem is

max
c

(
log c ·∆t+

1

1 + ρ∆t
α1 log (w′ − c∆t)

)
.

The first-order condition with respect to c is

0 =
1

c
∆t− 1

1 + ρ∆t
α1

∆t

w′ − c∆t
⇒ c =

w′

∆t+ α1

1+ρ∆t

Substituting this back into the Bellman equation and using that the term depending on xk is inde-
pendent of wealth verifies the conjectured form of the value function. By comparing coefficients one
can recover α1:

α1 = ∆t+
1

1 + ρ∆t
α1 ⇒ α1 =

1 + ρ∆t

ρ
(A.2)

Consumption is thus given by

c =
w′

∆t+ 1
ρ

=
ρ

1 + ρ∆t
w′

A.4 Proof of Lemma 3: Solution to the approximated Portfolio Choice
Problem

The approximated portfolio choice problem is a quadratic optimization problem in xk, thus the optimal
xk∗ is just the linear coefficient divided by −2 times the quadratic coefficient, which yields exactly
the result stated in Lemma 3.

A.5 Proof of Proposition 1

This Proposition just collects equations derived elsewhere in the paper. The first equation is from
Lemma 1, the remaining two equations are the market clearing equations (1) and (2) derived in the
main text.

A.6 Proof of Proposition 2

We prove this result in several steps. Some technical details are relegated to online appendix B.3
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A.6.1 Formal Solution of Equilibrium Equations in Terms of µ̂

Substituting µ = µ̂
xk∗ = µ̂(p+q)

q into the equilibrium equations stated in Proposition 1 yields the
equation system

q = 1 + κι∗

ρ(p+ q) = A− ι∗

σ2

q + p
= A− ι∗ + (p+ q)µ̂

Substituting the second into the third gives

σ2

q + p
= (ρ+ µ̂)(p+ q)⇒ (p+ q)2 =

σ2

ρ+ µ̂
⇒ p+ q = ± σ√

ρ+ µ̂

Here, only the positive solution is reasonable. Substituting this result into the second equation yields

ι∗ = A− ρ(p+ q) = A− ρ σ√
ρ+ µ̂

and from the first one gets q:

q = 1 + κι∗ = 1 + κA− κσρ√
ρ+ µ̂

Finally, p is given by

p = p+ q − q =
σ√
ρ+ µ̂

− 1− κA+
κσρ√
ρ+ µ̂

=
σ(1 + κρ)√

ρ+ µ̂
− (1 + κA)

A.6.2 Equilibrium Existence under Assumption 1

The formal solutions for p and q derived in part 1 might be negative, but under the assumption of
free disposal of money and capital such equilibria cannot exist. Instead, the obtained solutions are
only valid, if p, q ≥ 0. In particular, then the total value of capital qKt must be positive and therefore
also the share q

p+q of aggregate wealth which is held in capital. In equilibrium this share coincides

with xk∗, the common capital portfolio share chosen by all households, thus the condition xk∗ > 0 is
necessary for an equilibrium with positive value of capital to exist. On the other hand, if xk∗ > 0,
then due to p+ q ≥ 0, q is also positive.

It is therefore sufficient to show that under Assumption 1 there is a solution to the equilibrium
equations which implies xk∗ > 0 for any choice of µ. This involves using the equilibrium equations
to solve for xk∗ = q/(p + q) explicitly in terms of µ, not just in terms of µ̂ = µxk∗ – a tedious, but
straightforward calculation, the interested reader can find in the online appendix B.3.1. Here, we only
state the result.

Lemma A.1. Under Assumption 1, in any equilibrium with money and capital xk∗ is given by

xk∗ = µ
(1 + κA)2

2σ2
− κρ+

1 + κA

σ

√
µ2

4

(
1 + κA

σ

)2

− κρµ+ ρ (A.3)

and this quantity is strictly positive for all µ.

We conclude that the formal expression for q in equation (4) is positive for all µ and that an
equilibrium with money and capital exists, whenever p is also nonnegative.
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A.6.3 Parameter Restriction for Money to have Value in Equilibrium

By free disposal money must have a nonnegative value in any equilibrium, i.e. p ≥ 0. Comparing this
with equation (3) yields the restriction

µ̂ < σ2

(
1 + κρ

1 + κA

)2

− ρ (A.4)

for money to have positive value.19

A.6.4 Moneyless Equilibrium

In the economy without money (or where money does not have a positive value) there is no portfolio
choice problem, instead all agents choose xk = 1. The derivation of the goods market clearing equation
and the optimal physical investment rule remain valid, however. Hence, the equilibrium is described
by the first two equations in Proposition 1, if one substitutes in p = 0:

q = 1 + κι∗

ρq = A− ι∗

One easily verifies, that q = 1+κA
1+κρ , ι∗ = A−ρ

1+κρ solve this linear system.

A.6.5 Monotonicity of “Transformed” Money Growth µ̂ in µ

This is implied by the following technical result µ̂ whose proof can be found in online appendix B.3.2.

Lemma A.2. Under Assumption 1 xk∗(µ) is a strictly increasing function in µ.

A.7 Calculation of the Undetermined Coefficients α0, α1 in the Value Func-
tion

The coefficient α1 was already determined in the proof of Lemma 2, α1 = 1+ρ∆t
ρ , see equation (A.2).

Substituting this and the optimal choices c and xk into the right-hand side of the Bellman equation
yields

1

1 + ρ∆t
α0 + log

(
ρ

1 + ρ∆t
w′
)
·∆t+

1

ρ
log

(
w′
(

1− ρ∆t

1 + ρ∆t

))
+

1

ρ
E[logRp(xk)]

=
1

1 + ρ∆t
α0 + log

(
ρ

1 + ρ∆t

)
·∆t+

1

ρ
log

(
1

1 + ρ∆t

)
+

1

ρ
E[logRp(xk)] +

1 + ρ∆t

ρ
logw′

α0 must be equal to the constant term in this expression (constant in the sense that it has no w′

inside it), which yields an equation for α0. Solving for α0 and collecting all terms only depending on
ρ and ∆t but nothing else into a constant V0 results in

α0 = V0 +
1 + ρ∆t

ρ2

E[logRp(xk)]

∆t

19In case this inequality holds with equality, p = 0 and equations (3), (4), (5) coincide with the moneyless equilibrium.
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A.8 Proof of Proposition 3

Everything follows immediately from the arguments preceding the statement of the proposition.

A.9 Proof of Proposition 4

We prove the results in multiple steps. First, note that welfare is concave in a certain transformation
of the objective.

Lemma A.3 (Concavity of Welfare). Welfare can be written as a function of the transformed policy
variable φ := σ√

ρ+µ̂
, which is a monotone (decreasing) transformation of µ̂ and in which it is strictly

concave. The resulting expression is

U = U0 +

1
κ log (1 + κA− κρφ)− δ + ρ− 1

2
σ2

φ2

ρ2
+

log φ

ρ

Proof. The continuous-time limit of welfare is

U = U0 +

1
κ log

(
1 + κA− κρσ√

ρ+µ̂

)
− δ + ρ− 1

2 (ρ+ µ̂)

ρ2
+

log
(

σ√
ρ+µ̂

)
ρ

.

The substitution φ = σ√
ρ+µ̂

obviously leads to the expression stated in the assertion. In addition, this

function is clearly concave in φ.

All the claims of Proposition 4 are derived from the following simple lemma, whose proof can be
found in online appendix B.4.1.

Lemma A.4. The sign of ∂U
∂φ is always identical to the sign of the function

f : (0,∞)→ (−∞,∞), f(φ) = (σ2 + ρφ2)(1 + κA− κρφ)− ρφ3

The set of potential values of transformed money growth µ∗ is an open interval (µ̂,∞) ⊂ (−ρ,∞)20

and since the function
(−ρ,∞)→ (0,∞), µ̂ 7→ σ√

ρ+ µ̂

is bijective, if is sufficient to show that there is a welfare-maximizing φ∗ ∈ (0,∞) with φ∗ ≤ σ√
ρ+µ̂

=: φ

to prove that there is a welfare-maximizing µ̂∗ ∈ (−ρ,∞), which in turn implies the existence of a
welfare-maximizing money growth rate µ∗ by Proposition 2.

Due to the concavity result in Lemma A.3 and the properties of f defined in Lemma A.4 it
is sufficient to prove f(φ) < 0 and f(φ) > 0 for some φ ∈ (0, φ). Then there must be an optimal

φ∗ ∈ (φ, φ). By choosing φ large enough, such that the corresponding value of µ̂ satisfies the condition
(A.4) for money to have value with equality, the strictly decreasing relationship between φ and µ̂
guarantees that the optimal µ̂∗ will satisfy (A.4) with strict inequality, i.e. money has a positive
value, if transformed money growth is µ̂∗.

For the value of f at the upper bound φ we deal with the cases κ = 0 and κ > 0 separately. If
κ = 0, then q is always equal to 1 and thus φ = ∞. The terms of highest order in the polynomial f

20µ̂ is given by the value for µ̂ such that q in equation (4) is 0.
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have a negative coefficient, so f(φ) → −∞ < 0 as φ → φ = ∞ in this case. If instead, κ > 0, then
the upper bound φ is the unique value, such that

0 = q = 1 + κA− κρσ√
ρ+ µ̂

= 1 + κA− κρφ,

i.e. φ = 1+κA
κρ . Evaluating f at this point yields

f

(
1 + κA

κρ

)
=

(
σ2 + ρ

(1 + κA)2

κ2ρ2

)(
1 + κA− κρ1 + κA

κρ

)
︸ ︷︷ ︸

=0

−ρ
(

1 + κA

κρ

)3

< 0.

Next, we determine the lower bound φ such that (A.4) is satisfied with equality. This is the case
if

φ =
1 + κA

1 + κρ
.

Evaluating f at this particular value of φ yields

f

(
1 + κA

1 + κρ

)
= σ2(1 + κA)

(
1− κρ

1 + κρ

)
+ ρ

(1 + κA)3

(1 + κρ)2

(
1− κρ

1 + κρ

)
− ρ

(
1 + κA

1 + κρ

)3

= σ2 1 + κA

1 + κρ
+ ρ

(
1 + κA

1 + κρ

)3

− ρ
(

1 + κA

1 + κρ

)3

= σ2 1 + κA

1 + κρ
> 0

It is left to show the positivity condition for µ∗ and the equation characterizing µ̂∗. The former
result is obtained by evaluating f at the φ value implied by µ = 0, i.e. φ = σ/

√
ρ, whereas the latter

is a simple reformulation of the condition f(φ∗) = 0 which is necessary and sufficient for optimality
of φ∗ due to the concavity of U and Lemma A.4. Details are left out here and can be found in online
appendix B.4.2 and B.4.3. For later reference we state here the equation characterizing µ̂∗ in a slightly
different – but obviously equivalent – form:

Lemma A.5. The optimal money growth rate µ̂∗ is characterized by the equation

0 =
1 + κA

ρ

√
ρ+ µ̂∗

3
− κσ(ρ+ µ̂∗) + (1 + κA)

√
ρ+ µ̂∗ − σ(1 + κρ)

A.10 Proof of Proposition 5: Comparative Statics

We show that the optimal µ̂ is strictly increasing in σ. Since µ̂ is strictly increasing in µ, this implies
the assertion.

The optimal µ̂ must satisfy the equation given in Lemma A.5:

0 =
1 + κA

ρ

√
ρ+ µ̂

3
− κσ(ρ+ µ̂) + (1 + κA)

√
ρ+ µ̂− σ(1 + κρ)
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One can rewrite this as follows

(1 + κA)

√
ρ+ µ̂

3
/ρ+

√
ρ+ µ̂

κ(ρ+ µ̂) + κρ+ 1
= σ. (A.5)

The right-hand side is strictly increasing in σ, while the left-hand side does not directly depend on σ.
Thus µ̂ is strictly increasing in σ, if and only if the left-hand side of this equation is strictly increasing
in µ̂, which we prove in the following. For notational convenience, we show that the left-hand side
is strictly increasing in ψ :=

√
ρ+ µ̂. Since ψ in turn is strictly increasing in µ̂, this is sufficient. In

terms of ψ equation (A.5) can be stated as

(1 + κA)
ψ3/ρ+ ψ

κψ2 + κρ+ 1
= σ

Ignoring the positive constant term (1 + κA), its left-hand side derivative is

∂

∂ψ

ψ3/ρ+ ψ

κψ2 + κρ+ 1
=

3ψ2/ρ+ 1

κψ2 + κρ+ 1
− 2κ

ψ4/ρ+ ψ2

(κψ2 + κρ+ 1)2

=
3κ(ψ4/ρ+ ψ2) + 3ψ2/ρ+ κψ2 + κρ+ 1

(κψ2 + κρ+ 1)2
− 2κ(ψ4/ρ+ ψ2)

(κψ2 + κρ+ 1)2

=
κ(ψ4/ρ+ ψ2) + 3ψ2/ρ+ κψ2 + κρ+ 1

(κψ2 + κρ+ 1)2
> 0
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