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1 Introduction

Term structure analysis is a powerful setting for evaluating a model’s ability to describe asset

price data for two reasons. First, any model that satisfies a minimal requirement—that it

rules out arbitrage opportunities—imposes strict testable restrictions on the joint behavior

of prices along the term structure. Specifically, no-arbitrage prices must obey the law of

iterated values, as the prices of long maturity claims must reflect investors’ expectations

about the future value of short maturity claims.1 This places tight bounds on the extent of

covariation between prices at different maturities that is admissible within a given model.

Too much (or too little) covariation between long and short maturity prices, relative to the

covariation allowable within a model, can rule out a model as a viable descriptor of the

economy. Second, term structure data are unique in economics in how accurately they are

described with parsimonious models,2 and are thus ideal proving grounds for discriminating

between alternative models.

In this paper, we document a form of excess volatility in prices along the term structure

that is irreconcilable with “standard” asset pricing models. Our central finding is that price

fluctuations at different points in the term structure are internally inconsistent with each

other—prices on the long end of the term structure are far more variable than justified by the

behavior of short end prices—given usual modeling assumptions. The consistency violations

are highly significant both statistically and economically. Perhaps most interestingly, excess

volatility of long maturity prices is evident in a large number of asset classes, including

claims to equity and currency volatility, sovereign and corporate credit default risk, com-

modities, and inflation. Only for the term structure of Treasuries do we find that violations

of model restrictions are economically small, consistent with the findings of a large literature

on interest rate models.3

We define as “standard” any model in which cash flows are driven by a vector autoregres-

sion under the risk-neutral pricing measure, a class of models that we refer to as “affine-Q.”4

This class encompasses many leading asset pricing paradigms, from structural equilibrium

models with long run risks (Bansal and Yaron, 2004) or variable rare disasters (Wachter,

2013),5 to reduced-form models ubiquitous in fixed income and derivatives pricing (Duffie,

1For seminal work on the role of cross-equation restrictions and the law of iterated values in rational
models, see Samuelson (1965), Hansen and Sargent (1980), Hansen and Richard (1987), Anderson, Hansen
and Sargent (2003), Hansen and Scheinkman (2009), and Hansen (2012).

2For example, a linear three-factor model explains the panel of Treasury interest rates for maturities of
one up to thirty years with an R2 in excess of 99%.

3See, for example, Joslin, Singleton and Zhu (2011).
4Common notation refers to the real-world statistical measure as “P” and the risk-adjusted pricing mea-

sure as “Q.” Section 2 discusses the origins and interpretation of the Q measure in detail.
5In Appendix C we discuss affine structural models in more detail. The long run risks and disaster models

are affine under the assumption of unit intertemporal elasticity of substitution (IES). With non-unit IES,
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Pan and Singleton, 2000). The affine-Q class has become pervasive precisely due to its

convenience in delivering closed-form solutions in diverse valuation settings.6

We focus on the risk-neutral, or “Q,” representation of structural and reduced-form mod-

els based on a feature that is crucial for thinking about excess price volatility. By its defi-

nition, the Q measure incorporates all potential variation in discount rates.7 Therefore, any

inference regarding price volatility based on estimates of the Q measure explicitly accounts

for discount rate behavior. This is in contrast to the notion of excess volatility famously

documented by Shiller (1979, 1981) and others, in which price fluctuations are deemed ex-

cessive relative to predictions from a specific model—one with constant discount rates. A

potential resolution of the Shiller puzzle is to recognize that discount rates are variable, an

insight that lies at the foundation of leading frameworks in modern finance.8 By using the Q
representation of models in our analysis, any excessive volatility that we document must be

coming from sources other than the types of discount rate variation that can be represented

within an affine-Q model. In short, we choose the affine-Q specification as the null model

for our analysis based on its great flexibility for nesting many leading economic frameworks

and because it explicitly accounts for what has become the de facto explanation for excess

volatility, time-varying discount rates.

In addition to estimating the magnitude and pervasiveness of excess volatility, we also

characterize the specific nature of the affine-Q violation and show that all asset classes deviate

from the model in the same way. We also show that the data is inconsistent with several

non-linear models that have been studied in the literature. Finally, we find evidence that

trading against long maturity excess volatility is profitable, even after adjusting for exposure

to standard risk factors.

1.1 A One-factor Example

Our main empirical finding is that, in every asset class that we analyze, long maturity prices

overreact to short maturity price fluctuations relative to the predictions of an affine-Q model.

A simple example illustrates the nature of this overreaction.

Consider a term structure of claims to the one-factor cash flow process xt. For concrete-

ness, think of xt as the realized variance of the aggregate stock market return in period t,

researchers routinely analyze affine approximations to the model’s true non-linear dynamics. Appendix C
also discusses affine models with learning.

6Furthermore, the affine-Q class nests a wide range of dynamics by allowing the data to choose the
appropriate number of driving factors. Its flexibility accurately approximates non-linear models as well, a
property that we illustrate empirically in Section 4.

7More specifically, the Q measure incorporates variation in risk premia, which is the primary driver of
total discount rate variation. Throughout we refer to discount rates and risk premia interchangeably.

8See, for example, Campbell and Shiller (1987, 1988a,b, 1991), Fama and Bliss (1987), Campbell (1987,
1991, 1995), Cochrane (1992, 2008, 2011), and Cochrane and Piazzesi (2009).
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and consider valuing a derivatives contract whose payoff is determined by xt. Under the

pricing measure Q, cash flows evolve according to9

xt = ρxt−1 + Γεt.

We abstract from constants, risk-free rate adjustments, and heteroskedasticity in this exam-

ple in the interest of simplicity. The price of a n-maturity forward claim on these cash flows

is

ft,n = EQ
t [xt+n]. (1)

The term structure of forward prices at maturities 1, ..., N is therefore given by

ft,1 = ρxt, ft,2 = ρ2xt, ..., ft,N = ρNxt. (2)

The key cross-equation restrictions in this model require that the term structure of prices

obeys a strict one-factor structure, and that the only admissible shape for the price curve is

one in which the factor loadings follow a geometric progression in ρ (the parameter governing

cash flow dynamics under Q). This restriction is equivalently represented with prices of

cumulative claims, defined as pt,n = EQ
t [xt+1 + ...+ xt+n], in which case the term structure

takes the form:

pt,n = (ρ+ ρ2 + ...+ ρN)xt.

Tests of the model’s restrictions hinge on an estimate of ρ. Fortunately, ρ is easily

estimated from regressions of prices onto prices. For example, let the first maturity claim

price, ft,1, stand in for the latent factor xt. Let b2 denote the (population) slope coefficient

in a regression of the price at maturity two, ft,2, onto ft,1. According to Equation (2), b2

exactly recovers ρ. This regression is intuitive. The relative valuation of the first two claims

perfectly reveals the cash flow persistence that investors perceive. If investors price assets

as though xt is very persistent, a rise in the short price ft,1 will coincide with a rise in ft,2 of

nearly the same magnitude, which indicates that ρ is near one under the investors’ subjective

pricing measure.

If we project prices for remaining maturities 3, ..., N onto the short price, we recover a

sequence of regression coefficients denoted b3, ..., bN that are “unrestricted” in the sense that

they are not forced to be jointly determined by ρ according to (2). At the same time, these

regressions can be recast in their “restricted” form, where the restriction in (2) relates, for

9Autoregressive models for variance are standard in the time series and derivatives pricing literature.
See for example Andersen et al. (2003) and Ait-Sahalia, Karaman and Mancini (2015). Additional model
features, such as conditional heteroskedasticity, are typically included to ensure the xt process remains
positive. For linear claims such as that in (1), heteroskedasticity is irrelevant for our results because the
error term is mean zero.
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example, bN to b2 by:

bN = (b2)N−1. (3)

We convert this restriction into a test of excess volatility by constructing a variance ratio

statistic for each maturity N :

V RN =
V ar(bNft,1)

V ar((b2)N−1ft,1)
.

The numerator, V ar(bNft,1), is the explained variance in the unrestricted regression of long-

end prices (ft,N) onto the short end (ft,1). The denominator, V ar((b2)N−1ft,1), is the ex-

plained variance of the same regression under restriction (3).10 Under the null model, the

restricted and unrestricted variances are the same and V RN = 1. If the ratio statistic sig-

nificantly exceeds one, the price at maturity N varies more than is justified by the behavior

of the short end of the term structure. The same variance ratio test can be applied to

cumulative claims as well.

This one-factor example is intentionally simplified to illustrate our approach for testing

excess volatility along the term structure. In Section 2, we develop an estimation and

inference approach for V RN in fully general K-factor affine specifications.

1.2 A Representative Term Structure

Figure 1 illustrates the behavior of variance ratios in one of our datasets—the term structure

of variance swaps—which are claims to the cumulative variance of the S&P 500 index over

the life of the contract.11 An unrestricted linear two-factor model provides an excellent

description of the term structure, delivering an R2 of 99.6% for the panel of prices.12 The

solid black line plots the explained swap price volatility from an unrestricted regression of

each long maturity claim on the first two short maturity claims. The dashed line plots the

explained variation from the regression that imposes the model restrictions. The variance

ratio statistic for each maturity is printed above the unrestricted volatility estimates and

the blue shaded region represents the point-wise 95% bootstrap confidence interval for price

variance in the restricted model.

At 24 months, the variance ratio statistic reaches 2.15, meaning that the variability in long

maturity prices is more than twice as large as that allowed by the affine model restriction, and

is highly statistically significant. The high variance ratio can be thought of in the following

10Note that V RN is simply the squared ratio of the unrestricted regression coefficient to the restricted
coefficient. This is true in any one-factor model.

11These data are described in detail in Section 3.
12This panel R2 is computed as the fraction of the total variance explained by the first two principal

components.
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Figure 1: Variance Swap Tests
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Note. The figure plots the standard deviation of prices under the unrestricted factor model (solid line) and

under the restricted model (dashed line). The circles in the unrestricted line represent the maturities we

observe in the data. The numbers next to each circle are the Variance Ratios at each maturity. The shaded

area encloses the 97.5th and 2.5th percentiles of the model-implied variance in bootstrap simulations. The

left axis reports the volatility of prices.

way. The concave shape of price volatility at the short end of the curve suggests that cash

flows mean revert fairly quickly under Q. But this appears inconsistent with indications of

much higher persistence implied from the long end. As a result, unrestricted price volatility

increases with maturity at a much faster rate than the price volatility predicted by the model.

Note that both curves represent “explained” price volatilities from regressions of long prices

onto short prices. That is, both the unrestricted and restricted model describe the portion

of long maturity price fluctuations that is captured by behavior at the short end. The high

variance ratio therefore indicates that the prices at the long end of the curve react to the

short end much more strongly in the data than affine model dynamics allow.

The excess volatility of long maturity claims cannot be explained by movements in dis-

count rates. Any discount rate variation that is describable within the affine class is subsumed

by our model. Our price-on-price regressions estimate the dynamics of the latent factors un-

der the pricing measure, and we allow the data to determine the appropriate number of

factors driving the term structure. This gives our approach the flexibility to consistently es-

timate any specification in the affine-Q class, regardless of whether the factors are driven by

discount rate variation or physical cash flows. Nor can high variance ratios be explained by
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a poor fit from the factor model. The R2 from the unrestricted factor specification is nearly

100% in all of our term structures, meaning that an unconstrained linear model does an

excellent job describing the data. Instead, the high variance ratio is a violation of the cross-

equation restrictions of the affine model. That is, the data are exceedingly well described

by a linear factor model, but with factor loadings that differ from the loadings implied by

model restrictions.

Behavior of the variance swap term structure is representative of our broader empirical

findings. In all asset classes that we study we document excess volatility of long maturity

prices similar to that in Figure 1. Only in the term structure of Treasuries is excess volatil-

ity economically small (though statistically significant), indicating that affine models are

especially well suited to the interest rate market, a finding that we return to below.

1.3 Potential Explanations

Tests of excess volatility are fundamentally tests of market efficiency, and are therefore

subject to the joint hypothesis problem described by Fama (1970, 1991):

Market efficiency per se is not testable. It must be tested jointly with some model of

equilibrium, an asset-pricing model. ... As a result, when we find anomalous evidence

on the behavior of returns, the way it should be split between market inefficiency or a

bad model of market equilibrium is ambiguous.

In the last part of the paper, we investigate how the sources of excess volatility should

be “split between market inefficiency,” i.e. mispricing along the term structure, “or a bad

model of market equilibrium” in the form of model misspecification. While it is impossible

to draw unambiguous conclusions or to exhaust the list of possible explanations, analyzing

leading candidates helps refine our basic facts. In Section 4, we examine four potential

explanations for our findings: omitted factors, non-linear dynamics, long memory dynamics,

and temporary mispricing of long maturity claims.13

First, if the true data generating process is a K-factor affine model but we use fewer than

K factors in our analysis, the variance ratio statistic is likely to diverge significantly from

one. However, omitted factors are unlikely to explain our findings because an unrestricted

factor model explains more than 99% of the variation in each term structure we study.

We show via simulation that it is essentially infeasible for an omitted factor to generate a

variance ratio far above one while at the same time producing an unrestricted R2 over 99%.

Additionally, we conduct robustness checks that gradually increase the number of factors

13We also consider there the role of measurement error in our empirical tests, and show that it is a
quantitatively unviable explanation of our findings.
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used in our tests. This pushes the factor model R2 even closer to 100% yet still produces

variance ratios significantly in excess of one.

Second, we explore a large class of non-linear dynamic specifications known as smooth-

transitioning autoregressive (STAR) models. In most parameterizations, STAR models are

very closely approximated by a low-dimension affine model and therefore do not produce

variance ratios above one. For the most extreme non-linear specifications it is possible to

generate variance ratios that statistically reject the affine restrictions, but even in these cases

the variance ratios are substantially smaller than those found in the data.

Third, we explore a wide range of long memory models in the stationary ARFIMA family.

These models can exhibit persistence that decays much more slowly than the autoregressive

structure assumed in affine-Q specifications. The vast majority of ARFIMA specifications

appear well approximated by simple affine models and do not lead to high variance ratios.

However, as the long memory parameter reaches the boundary of the non-stationary range,

we show that it is possible to generate variance ratios as high as three at the 24 month

maturity. But when we allow for one or two extra factors, the variance ratios again shrink

to one, which is inconsistent with the behavior we find in the data.

Finally, we construct a trading strategy to explore the possibility of mispricing as a po-

tential driver of excess volatility, and to quantify the economic magnitude of the deviation

from the affine-Q specification. The strategy posits that the estimated affine model reflects

the true value of claims, so that any excessive fluctuations of long maturity prices are tempo-

rary and potentially exploitable mispricings. The trade is implemented by buying (selling)

long maturity claims when they are undervalued (overvalued) relative to the affine model,

and hedges this position by selling (buying) short maturity claims in the exact proportion

dictated by the estimated model. If there is no mispricing in the true data generating pro-

cess, then we expect the trading strategy to perform poorly in terms of risk-adjusted returns.

But if the hypothesized mispricing exists, then the strategy may appear profitable even after

adjusting for risk.

In the variance swap market, we find that the trading strategy yields an annualized

out-of-sample Sharpe ratio of 1.2 on average, and is not explained by exposure to standard

risk factors. The strategy’s performance is not driven by any single subsample, and its

largest losses are unassociated with the two recessions in our sample (the Great Recession

and the 2001 recession). This is not conclusive evidence of mispricing—high average returns

may represent compensation for some risk that we have not considered. In this case, the

strategy’s performance quantifies the economic importance of risk factors missed by affine-Q
models. We also explore limits to arbitrage in this market that can lead these mispricings

to persist (Shleifer and Vishny, 1997).
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1.4 Literature Review

Perhaps the most important predecessor of our paper is the seminal contribution of Stein

(1989), who compares the volatility of short and long maturity S&P 100 options. He finds ex-

cess volatility of one-year option prices and interprets it as evidence of investor overreaction.

Our paper builds on Stein’s original insight with a few key differences. First, he analyzes

comovement of long and short maturity prices relative to cash flow persistence estimated

from the P measure. In other words, the reference model of Stein (1989) does not account

for discount rate variation, nor do the interest rate volatility tests of Shiller (1979) or the

equity volatility tests of Shiller (1981) and LeRoy and Porter (1981). Our excess volatility

test explicitly accounts for discount rate variation by estimating cash flow dynamics under

the Q measure. In addition, Stein (1989) uses a one-factor model for volatility, while our

approach allows for an arbitrary number of factors and extends to a wide range of asset

classes.14

Our findings are also related to Gurkaynak, Sack and Swanson (2005), who show that

the responsiveness of long run Treasury bond yields to macroeconomic announcements is

excessive relative to established “new-Keynesian” DSGE models. As in Shiller (1979, 1981)

and Stein (1989), this reference model does not account for rational discount rate variation.

More recently, Hanson and Stein (2015) study overreaction at the long end of the Treasury

yield curve focusing on FOMC announcement days. An interesting distinction from our work

is that long maturity Treasury rates exhibit by far the least excess volatility among the asset

classes we study.

The Treasury yield curve has been subject of a large literature. Early contributions

by Shiller (1979) and Singleton (1980) demonstrated excess volatility of long-term bonds

relative to the expectations hypothesis model, while later literature has worked extensively

with affine-Q specifications that explicitly account for time variation in discount rates. For a

review and recent contributions, see for example Ang and Piazzesi (2003), Dai and Singleton

(2002), Duffee (2002), Le, Singleton and Dai (2010), Piazzesi (2010), and Joslin, Singleton

and Zhu (2011). That literature has typically found that affine no-arbitrage restrictions

hold quite well in the interest rate market. We confirm this fact by showing that model

violations in the Treasury market are economically small compared to violations in derivatives

14Pontiff (1997) documents excess volatility of closed-end mutual funds that also rules out discount rate
variation as an explanation.
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markets.15

Our evidence lends support to recent efforts to understand the key role of expectations

formation in financial markets (for example, Hansen, 2014; Greenwood and Shleifer, 2014;

Barberis et al., 2015a,b; Bordalo, Gennaioli and Shleifer, 2015; Gennaioli, Shleifer and Ma,

2015). Our trading strategy analysis in Section 4.5 suggests there may be high costs borne by

investors who overreact due to extrapolative expectations or other belief distortions. While

observing prices and their comovement allows us to detect overreaction at the long end of the

curve, it does not allow us to determine the underlying mechanism driving this overreaction.

Our findings highlight a potentially fruitful setting for future research into how agents form

expectations over multiple horizons.

2 Asset Term Structures in Linear Models

In this section we develop our general approach to testing the internal consistency of asset

term structures in the affine-Q setting.

2.1 Claims by Maturity

Our focus is on the joint price behavior of claims to the same underlying cash flow process

but with different maturities. Let xt denote a scalar cash flow. For most of our analysis, we

focus on linear claims to the xt process. We study the extension to exponential-linear claims

in Section 2.5.1.

At time t, a linear n-maturity forward claim promises a one-time stochastic cash flow

of xt+n to be paid in period t + n. Under the weak assumption that a model admits no

arbitrage opportunities, there exists a pricing measure Q under which prices of such claims

are expectations of future cash flows discounted at the risk-free interest rate. We assume

that no-arbitrage is satisfied, thus the n-maturity forward price is representable as

ft,n = EQ
t

[
xt+n

St
St+n

]
(4)

where St is the value of a risk-free account that pays the instantaneous short-term rate.

In our empirical analysis, risk free rate variation is negligible compared to risky asset price

15Our focus is on volatility of prices at different maturities. A distinct and growing literature studies risk
premia along various term structures. Backus, Boyarchenko and Chernov (2015) study a few of the term
structures that we analyze. van Binsbergen, Brandt and Koijen (2012) and van Binsbergen et al. (2013)
analyze risk premia of dividend strips. Giglio, Maggiori and Stroebel (2015a,b) study the term structure
of risk premia in housing markets. Dividend strip and housing data do not have maturity structures rich
enough for our analysis.

10



variation in almost all asset classes.16 So, to reduce notation in the remainder of this section,

we assume that St is constant and equal to one. We return to a detailed analysis of risk-free

rates and associated robustness checks in Appendix D.

The pricing of forward claims is easily recast in terms of linear cumulative claims that

promise a sequence of cash flows through maturity. The time t price of an n-maturity

cumulative claim is a sum of forward prices,

pt,n = EQ
t [xt+1 + ...+ xt+n] = ft,1 + ...+ ft,n.

Under no-arbitrage, the pricing measure possesses a martingale property that binds prices

together across time and maturity,

ft,n = EQ
t [ft+1,n−1] and pt,n = EQ

t [pt+1,n−1] + ft,1,

which follows from the law of iterated expectations,

ft,n = EQ
t [xt+n] = EQ

t

[
EQ
t+1[xt+n]

]
= EQ

t [ft+1,n−1].

2.2 Cash Flow Dynamics Under Q

Affine models assume that the cash flow process obeys a linear factor structure, and that

these factors evolve as a vector autoregression (VAR) under Q. In particular, let Ht be a

vector of K factors with Q-dynamics given by

Ht = ρHt−1 + Γεt. (5)

Under Q, the K × K parameter matrices ρ and Γ govern transition probabilities and εt is

mean zero and orthogonal to Ht−1. Cash flows are determined by the factors according to

xt = δ0 + δ′1Ht

where δ0 is a scalar and δ1 is a K × 1 vector.

Since the factors, Ht, are latent in our setting, model identification requires a normal-

ization of model parameters. We impose the normalization that the matrix ρ is diagonal

(so that its diagonal elements, which are also its eigenvalues, directly reveal factors’ decay

rates under Q), and that δ1 is a vector of ones. These identification assumptions impose no

economic restrictions, but ensure that the model we bring to the data has exactly as many

16The obvious exception is the Treasury bond market, in which case we account for risk-free rate variation
in the standard way.
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parameters as there are observables. For a detailed discussion of our normalization choices,

see Joslin, Singleton and Zhu (2011) and Hamilton and Wu (2012).17

Finally, for notational ease in this section, we set δ0 = 0. This is not without a loss of

generality, as δ0 determines the overall price level of claims in the term structure. But, for

our purpose of understanding the volatility of prices, δ0 is constant and eventually drops

from our analysis. We can now rewrite the cash flow as

xt = 1′Ht. (6)

We refer to the class of models satisfying Equations (5) and (6) as “affine-Q.” Models

with this structure are ubiquitous in the asset pricing literature due to their convenience for

describing prices of linear (and exponentially-linear) cash flow claims.

Most importantly for our analysis, the cash flow distribution under measure Q includes

not only the physical variation in the cash flows but also describes any effects that risk

premium variation has on asset prices. In Appendix H, we provide a simple example showing

how the transformation from real-world physical probabilities to risk-neutral probabilities

exactly accounts for effects of discount rate variation.18 Throughout our analysis, we directly

infer behavior of cash flows under Q, and therefore fully allow for time-varying discount rates

(so long as their dynamics are affine).

2.3 Term Structure of Prices

Given (5) and (6), the price of a linear forward claim with maturity n is

ft,n = 1′ρnHt. (7)

Equation (7) contains a set of cross-equation restrictions implied by the affine-Q model.

Prices at all maturities must obey a strict factor structure so that any and all comovement

among prices must be due to Ht. Furthermore, the loadings at each maturity must abide

by a specific structure—they must follow a geometric progression in ρ. It is also easy to see

that this specification satisfies the law of iterated expectations:

EQ
t [ft+1,n−1] = EQ

t [1′ρn−1Ht+1] = 1′ρn−1EQ
t [Ht+1] = 1′ρn−1ρHt = 1′ρnHt = ft,n.

17In the exponential-affine setting, we require the additional assumption that εt is Gaussian. In this
setting, the covariance matrix of the errors, Γ, is the same under P and Q.

18In particular, we present an affine model in which cash flows and risk prices each follow an independent
one-factor process under the physical measure P, and show that this implies a two-factor model for cash
flows under the Q measure. In this example, the second Q factor captures the effects of risk premia on asset
prices.
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Our empirical test investigates the extent to which observed term structures adhere to the

model restrictions.

2.4 A Convenient Recursive Representation

Equation (7) implies that the latent factors Ht are exactly recoverable from any set of K

prices (either forwards or cumulative claims) at different maturities. In turn, this also implies

that the price at any maturity j can be represented as an exact linear function of a set of K

different prices at any maturity other than j.

In particular, denote the K × 1 vector of time t prices for forwards with maturities 1

to K as Ft,1:K = (ft,K , ..., ft,1)′, and likewise for Ft,2:K+1, Ft,3:K+2, and so forth. Define

b = (b1, ..., bK)′ to be the coefficient in a projection of ft,K+1 onto Ft,1:K . In this model, the

projection is exact so there is no residual,

ft,K+1 = b′Ft,1:K . (8)

This equation simply states that in a linear model with K factors, the (K + 1)-period

forward can be expressed as an exact linear combination of maturities 1 to K. Because the

vector Ft,1:K plays a special role the rest of the paper, we refer to it simply as the “short

end” of the term structure; i.e., the set of short-term claims that exactly span the full term

structure.

This equation only links maturities 1 through K+1. Next, we derive a recursive relation

that links the entire price curve to the short end in a convenient way. In particular, any two

blocks of K consecutive forward prices with maturity shifted by one period (for example,

Ft,1:K and Ft,2:K+1) are linked by the equation:

Ft,j+1:K+j = BFt,j:K+j−1, B =



bK bK−1 ... b2 b1

1 0 ... 0 0

0 1 ... 0 0
... ...

0 0 ... 1 0


. (9)

By the definition of b in (8), the relationship in (9) holds for j = 1. It follows from the law

of iterated expectations that (9) holds for j = 2 because

EQ
t [Ft+1,2:K+1] = BEQ

t [Ft+1,1:K ]⇔ Ft,3:K+2 = BFt,2:K+1.

A recursive argument therefore establishes (9). It pins down the price of any forward on the
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term structure with the prices at the K immediate neighboring maturities via the matrix B.

Iteratively substituting (9) into itself implies

Ft,j+1:K+j = BFt,j:K+j−1 = B2Ft,j−1:K+j−2 = ... = BjFt,1:K . (10)

The geometric recursion in (10) further shows that prices at any maturity are pinned down

by any K prices, even those at distant maturities. In particular, the equation links any price

to the “short-end” vector Ft,1:K , where the coefficients are entirely determined by the powers

of B.

Equation (10) is merely a restatement of the cross-equation restrictions summarized by

Equation (7). However, the restrictions in (7) face the practical difficulty that they relate

the restrictions to unobserved factors. What makes (10) powerful is that the restrictions are

stated only in terms of observable prices. Specifically, the affine model structure requires

not only that prices are perfectly correlated with the rest of the maturity curve, but limits

the admissible shapes of the curve to those with geometrically decaying loadings (Bj) in

regressions involving prices at different maturities.

While forwards are more convenient in mathematical derivations, it is more convenient

to work with cumulative prices in empirical analyses (we discuss this further below). The

representation of restriction (10) in terms of prices of cumulative claims is

Pt,j+1:K+j = (I +B + ...+Bj)R−1Pt,1:K . (11)

where Pt,j:m = (pt,m, pt,m−1, ..., pt,j)
′. The B matrix is from Equation (9) and R is the K×K

upper-triangular matrix of ones, which facilitates the algebraic adjustment from forwards

to sums of forwards.19 Representations (10) and (11) are exactly equivalent and we work

interchangeably with the two.

2.5 Testing for Excess Comovement

We present now our general test for overreaction. For our analysis, we use prices for the first

K maturities on the short end of the term structure to represent the K latent factors. In

the preceding discussion we considered population projections, but to formalize the test we

work with sample regressions. First, for each maturity j = K + 1, ..., N , we regress ft,j on

to Ft,1:K ,

ft,j = âj + b̂′jFt,1:K + ut,j. (12)

19Because pt,n = pt,n−1+ft,n for all n, we can write Pt,2:K+1 = Pt,1:K +Ft,2:K+1. Pt,1:K = RFt,1:K because
cumulative prices are sums of forwards, and Ft,2:K+1 = BFt,1:K by iterated expectations. Substituting, we
reach Pt,2:K+1 = RFt,1:K + BFt,1:K = (R + B)Ft,1:K , and one more substitution arrives at Pt,2:K+1 =
(R+B)R−1Pt,1:K = (I +B)R−1Pt,1:K .
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We allow for a small measurement error term ut,j to avoid stochastic singularity following

the term structure literature.

We construct a test of overreaction in the form of a variance ratio statistic at each matu-

rity j. The coefficient b̂j in Equation (12) is the unrestricted OLS regression estimate. The

numerator of the variance ratio statistic for any maturity j > K + 1 is the explained vari-

ance in the unrestricted regression and equals b̂′jΣ̂1:K b̂j, where Σ̂1:K is the sample covariance

matrix of Ft,1:K .

The denominator of the variance ratio is the explained variance in the restricted version

of (12), where the constraint is the cross-equation restriction in Equation (10). The estimate

B̂ for the recursions in Equation (9) and (10) is obtained by using the estimated b̂K+1 as

the first row of B and leaving all other rows unchanged. The constrained loading of ft,j on

Ft,1:K , denoted b̃j, is the first row of the matrix B̂ raised to the power j −K:

b̃′j = e1(B̂j−K), e1 = (1, 0, ..., 0). (13)

The explained variance in the constrained regression is therefore b̃′jΣ̂1:K b̃j, and the test

statistic is

V Rj =
b̂′jΣ̂1:K b̂j

b̃′jΣ̂1:K b̃j
. (14)

As we consider the time series variation of some long maturity price ft,j, we wonder the

extent to which this variation is consistent with variation at other maturities, from the point

of view of an affine K-factor model. The V Rj statistic calculates the unconditional covaria-

tion of the long and short end prices and reports the fraction of this variation consistent with

the model’s cross-equation restrictions. Under the null of an affine K-factor model, V Rj = 1.

Any deviation from unity (above and beyond that due to sampling variation) indicates a vi-

olation of the model’s restrictions. Variance ratios that are significantly greater than unity

indicate that long maturity prices overreact to movements at the short end, relative to model

predictions.

The variance ratio in (14) is based on forward prices, but the test is equivalently formu-

lated from prices of cumulative claims. The test structure is identical, only the unrestricted

and restricted regression coefficients (b̂ and b̃) need modification. In analogy with (12), let d̂j

be the OLS slope estimate from an unconstrained regression of pt,j on Pt,1:K . The constrained

regression coefficient, denoted d̃j, comes from the cross-equation restriction in Equation (11):

d̃′j = e1(I + B̂ + ...+ B̂j−K)R−1 (15)
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and the variance ratio test statistic is

V Rj =
d̂′jΣ̂1:K d̂j

d̃′jΣ̂1:K d̃j
. (16)

Our empirical work uses the cumulative form in (16) for the following reason. If the eigen-

values of the risk-neutral cash flow persistence matrix ρ are below one in absolute value,

then the system is stationary. In this case, forward prices at long maturities converge to a

constant (and the denominator of V Rj converges to 0) because cash flows mean revert under

the pricing measure. So, in the stationary case, infinite maturity assets have undefined vari-

ance ratios under the null. While this is not a pressing practical concern (most claims have

maturities up to a few years), it is avoided by testing with cumulative claims data rather

than forwards.

There are many potential ways to formulate tests of the affine model’s restrictions, and

many of these are asymptotically equivalent. Our specific test construction has the attractive

interpretation as a measure of excess volatility relative to a benchmark model. Our test choice

is inspired by, and designed to remain comparable with, the rich history of excess volatility

tests studied by Shiller (1981), Stein (1989), Campbell and Shiller (1988a), Campbell (1991),

Cochrane (1992), and many others.

Under the null of an affine no-arbitrage model, the restricted and unrestricted loading

vectors b̂j should equal b̃j element-by-element. When there is more than one factor in the

model, it raises the question of how to best evaluate the joint restrictions that apply to

multiple loadings. An attractive feature of the variance ratio test is that it offers a sensible

aggregation of all of the loading comparisons. The total explained variance in the restricted

and unrestricted models are

K∑
k=1

K∑
l=1

b̃j,kb̃j,lσ̂k,l and
K∑
k=1

K∑
l=1

b̂j,kb̂j,lσ̂k,l.

Rather than comparing loadings element-wise, the variance ratio sums loadings into a scalar

in order to compare alternative models. The weights assigned to elements in the sum are

based on the (co)variances of the short maturity prices. The prices that most strongly

(co)vary are also the most informative about the dynamics of the model, and their factor

loadings receive the largest weights in our test.

In Appendix B.1 we describe a bootstrap procedure for conducting inference in small

samples, which we use to construct confidence intervals in our main analysis. These cal-

culations answer the question, “How likely are we to observe a given variance ratio given

the sampling error of model parameter estimates?” In Appendix B.2, we report simulations
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demonstrating the finite sample performance of our estimating and testing approach. In par-

ticular, we show that model parameters and their standard errors are accurately estimated

from short maturity prices alone, even when one of the factors has very low variance and is

extremely persistent. We then show that our approach of estimating on the short end and

testing on the long end produces accurate inference about the validity of the affine model.

2.5.1 Exponential-affine Models

The linear claim structure of Equation 4 is well suited for modeling variance claims,20 which

comprise several of the term structures we study. Claims in other asset classes, such as

interest rates or credit default swaps (CDS), are more naturally modeled as exponential-

affine claims. In that case, it is the log of xt that is linear in factors Ht.

The model restrictions and testing procedures we derived above also apply in the exponential-

affine setting under two additional assumptions regarding the distribution of factor innova-

tions, Γεt, in Equation (5). First, εt follows a Gaussian distribution under Q. Second,

Γεt is homoskedastic or, alternatively, it is heteroskedastic but its conditional volatility is

uncorrelated with the factors (as in unspanned volatility models).

In exponential-affine models, the price of a cumulative claim is:

pt,n = EQ
t [exp (xt+1 + ...+ xt+n)] .

Interest rate claims are the leading example in this class, where rt is the instantaneous

interest rate and xt = −rt. Prices are then related to factors according to21

log pt,n = 1′
[
ρ+ ρ2 + ...+ ρn

]
Ht + constant. (17)

For some claims it is preferable to model individual forwards with an affine-exponential form:

log ft,n = logEQ
t [exp (xt+n)] = 1′ρnHt + constant. (18)

The pricing formulas of Equations (17) and (18) differ from the simple affine form in (7)

only by a constant due to assumptions on the distribution of factor innovations. Thus, (17)

and (18) recover all the necessary structure to perform estimation and testing as described

above, subject to the modification that we analyze log prices rather than price levels.

In the remainder of the paper, we focus on the homoskedastic case for three reasons.

20See Egloff, Leippold and Wu (2010), Ait-Sahalia, Karaman and Mancini (2015), and Dew-Becker et al.
(2015).

21A minor adaptation for the case of bonds is that powers of ρ range from 0 to n− 1 rather than from 1
to n, though this is inconsequential for our variance ratio test.
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First, many of the asset classes we analyze (such as variance and inflation swaps) are typically

modeled as claims to the level of xt, in which case heteroskedasticity does not affect pricing.

Conditional variance enters only in exponential models through the Jensen inequality term.

Second, conditional heteroskedasticity affects the loadings on the factors in exponential-

affine models only to the extent that the factors themselves span the volatility of the errors.

The term structure literature finds evidence of a large unspanned volatility component in

interest rates (see, for example, Collin-Dufresne and Goldstein, 2002). So-called unspanned

volatility models fix the loadings of bond prices on volatility factors to be zero. In this case,

the factor loadings for log prices follow the same recursion as in standard homoskedastic

models (Creal and Wu, 2015).22

In the remaining case where factor shock volatility is in fact spanned by prices, the

magnitude of the effect on factor loadings is shown in the bond market to be small relative

to the part of the loading coming from the claim’s direct exposure to factors. Nonetheless,

spanned volatility models can potentially affect our variance ratio test and Appendix D.3

performs robustness tests that directly account for heteroskedasticity. Our main conclusion

from this check is that heteroskedasticity of factor innovations is not a central driver of our

results.

3 Empirical Findings

This section presents our main empirical findings. We study term structures of variance

swaps, equity options, currency options, credit default swaps, commodity futures, inflation

swaps, and Treasury bonds.

3.1 Implementation

For each asset class, we map the term structure to either the linear or the exponentially-

affine specification (discussed below, case by case). To minimize the potential confounding

effects of illiquidity in these term structures, we focus on the most liquid contracts available

for each asset class.

A key input to our tests is an estimate for the number of factors, K. For each term

structure, we set K to the number of principal components necessary to explain at least 99%

of the variation in the panel of prices at all available maturities.23 We make an exception for

Treasury yields by directly assuming three factors based on standard practice in the interest

22For further discussion of the unspanned volatility case, see Collin-Dufresne and Goldstein (2002), Dai
and Singleton (2003), Joslin (2006), Bikbov and Chernov (2009), and Creal and Wu (2015).

23We conduct this principal components step using variance-standardized prices, so that all points in the
term structure are on equal footing in determining the number of factors.
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rate literature, though two principal components explain 99.9% of the variation in the panel.

In later sections, we establish the robustness of our results to different choices of K.

From here, we use the first K short maturity prices to represent the factor space. We

regress the price of the K + 1 maturity claim on the first K maturities to estimate the

baseline loadings (vector b in Equation (8)). These serve as the basis for restricted regression

coefficients for maturities K + 2 through N .24

3.2 Term Structure Tests by Asset Class

For each asset class, we describe the data and discuss any contract-specific or institutional

features that need to be considered in the empirical analysis. Appendix E provides further

in-depth descriptions of our data.

3.2.1 S&P 500 Variance Swaps

The first market we study is for variance swaps on the S&P 500 index. The variance swap

market has the fascinating feature that it allows investors to trade direct claims on the risk-

iness of equities. A long variance swap position receives cash flows at maturity proportional

to the sample variance of the S&P 500 over the life of the contract. Let RVt denote the sum

of squared daily log index returns during calendar month t. The payoff of an n-maturity

variance swap is
∑n

j=1RVt+j. Ignoring risk-free rate variation (as is typical in this literature),

the price of a variance swap corresponds to the Q-expectation of the payoff:

pt,n = EQ
t

[
n∑
j=1

RVt+j

]

This structure maps directly into the simple affine framework of Section 2 with xt = RVt.

We model RVt as a linear function of latent factors, and explore robustness to using an

exponential-affine specification in Appendix D.2.

Variance swaps are traded in a liquid over-the-counter market with a total outstanding

notional of around $4 billion in “vega” at the end of 2013, meaning that a movement of one

point in volatility would result in $4 billion changing hands. Bid-ask spreads for maturities

24In Section 5, we discuss why treating the first K prices as an exact representation of the latent factor
space is a powerful approach for detecting violations of the model’s internal consistency conditions. It differs
from a common practice in the term structure literature of estimating factors as principal components using
price data at all available maturities, which is motivated by arguments of efficiency and overcoming potential
measurement error in prices. Section 5.2 explains why model comparisons that rely on data from the full
term structure can have limited power to detect the patterns of no-arbitrage violations we uncover in this
paper. Appendix D.4 explains why our results are inconsistent with effects of measurement error. Finally,
following the term structure literature, we impose stationarity of cash flows under the Q measure, and we
require the eigenvalues of the transition matrix to be real; see Appendix A for more details.
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Figure 2: Variance Swap Tests: Loadings
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Note. The figure plots the loadings of prices of each maturity on the two factors (1-month and 2-month

price). Solid lines indicate loadings in the unrestricted model, dashed lines indicate loadings in the restricted

model.

up to 24 months are relatively low, at around 1-2%. In addition, the liquidity of the swap

market is supported by option market liquidity. Variance swaps are anchored to the prices

of S&P 500 index options by a no-arbitrage relationship because options can be used to

synthetically replicate the swap.25

We use daily price data for cumulative claims at all available maturities (1, 2, 3, 6, 12,

and 24 months) during the period 1995 to 2013. Our baseline test uses K = 2, as two

components explain 99.6% of the variance in the panel, consistent with existing literature.26

Our main findings for variance swaps are reported in Figure 1 in the introduction. The

horizontal axis shows maturity of claims in months and the vertical axis shows the time series

standard deviation of daily swap prices. The solid black line plots the explained swap price

volatility from an unrestricted regression of each long maturity claim on the first K short

maturity claims—this is the square root of the numerator in the variance ratio test. Points

corresponding to observed maturities are marked with a circle. The dashed line plots the

explained variation from the restricted regression that imposes the affine model’s consistency

conditions based on coefficient estimates in a regression of price K + 1 on prices for the first

25Dew-Becker et al. (2015) show that the term structure of variance swap prices indeed closely matches
the term structure of options-based synthetic swaps (more commonly known as the VIX).

26E.g., Egloff, Leippold and Wu (2010),Ait-Sahalia, Karaman and Mancini (2015), and Dew-Becker et al.
(2015).
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Figure 3: Q-persistence Estimated Along the Term Structure
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Note. Estimated persistence parameters in the two factor variance swap model. Persistences are re-

estimated using data from various points in the term structure. Each value is plotted against the longest

maturity claim used in its estimation.

K maturities—this the square root of the test’s denominator. The variance ratio statistic

for each maturity is printed above the unrestricted volatility estimates. The test statistic is

only available for maturity K + 2 and higher because the first K + 1 maturities are used to

estimate model parameters. Finally, the blue shaded region represents the point-wise 95%

bootstrap confidence interval of predicted price volatility.

Plotting price variability in terms of standard deviation is convenient for visualizing

the degree of cash flow persistence under the pricing measure. For a cumulative claim,

the coefficient in a regression of long prices onto short prices is a geometric series in the

persistence parameter, ρ. For example, in a one-factor model, the model-based standard

deviation of an n-maturity claim is
(∑n

j=1 ρ
j
)√

V ar(pt,1). If cash flows are integrated under

the pricing measure (ρ=1), then the standard deviation is a linear function of maturity. On

the other hand, if the Q-persistence of cash flows is in (0,1), then the standard deviation of

price is a concave function of maturity.

For variance swaps (indeed for all other term structures we study), the unrestricted

estimate of price volatility is concave in maturity, indicating stationarity of cash flows under

the pricing measure. This is a first suggestion that variability on the long end is inconsistent

with integrated or explosive model dynamics under Q.

As described in the introduction, the unrestricted price variance at 24 months more than

doubles the variance allowed under the affine pricing model’s restriction. Comovement among

prices at the short end of the curve suggests that cash flows mean revert relatively quickly

under Q. But this is not borne out on the long end—model-restricted volatilities increase

with maturity at a much slower rate than the unrestricted volatility. Recall that these are

“explained” price volatilities from regressing onto short-end prices. The high variance ratio
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therefore indicates that the prices at the long end of the curve react to the short end much

more strongly than the affine model dynamics allow. There is overreaction at the long end

relative to the short end, and relative to the estimated affine model.

Figure 2 plots estimated loadings of prices at each maturity on the model’s two factors for

both the restricted and the unrestricted model. The figure shows that long maturity prices

overreact because they load too heavily on each factor, relative to the loadings predicted by

the null model.

Two points warrant special emphasis regarding these results. First, the excess volatility

of long maturity claims cannot be explained by movements in discount rates, as any discount

rate variation that is describable within the affine class is subsumed by the Q model. Second,

the data are exceedingly well described by a linear factor model (evident from an unrestricted

R2 near 100%), but with factor loadings that sharply differ from those implied by model

restrictions.

In our main test, we estimate the two factor persistences from the short end of the curve,

regressing the third shortest maturity claim on the two shortest maturities. Figure 3 provides

another visualization of how the data deviate from the affine model. We estimate the two

factor persistences from each point along the maturity curve. First, we estimate them from

a regression of maturity 3 prices on prices for maturities 1 and 2, then from a regression of 6

on 2 and 3, then 12 on 3 and 6, and finally 24 on 12 and 6. The figure shows the persistence

parameter estimates at different points on the curve. Under the null of the affine model both

lines should be flat, as the implied factor persistence should be internally consistent along

the curve. Instead, the figure shows that estimated persistence increases with maturity (for

both factors). In other words, the data behave as though they are generated by a linear

two factor model, but that investors implicitly think of factors as more persistent when they

value longer maturity claims.

3.2.2 Equity Implied Variance

A well known result in option pricing establishes that variance swaps can be synthesized from

a portfolio of put and call options with different strike prices.27 Synthetic variances swaps are

frequently encountered in practice. A prominent example is the VIX index maintained by

the Chicago Board Options Exchange, whose squared value replicates the price of a variance

swap on the S&P 500 index.

For many option underlyings, however, a reliable VIX construction is unavailable due

to the lack of deep out-of-the-money options. As an alternative, we study term structures

of at-the-money (ATM) option implied volatilities.28 Motivated by Carr and Lee (2009),

27See Britten-Jones and Neuberger (2000) and Jiang and Tian (2005).
28Appendix E.1 discusses synthetic variance swap (VIX) term structures in more detail. We also conduct
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Figure 4: Implied Volatilities of Equities (I)
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Note. See Figure 1.

who show that ATM implied volatilities approximate prices of claims to realized volatility

(
√
RV ), we treat implied variances as proxies for the price of a claim to realized variance.

This is the same approach taken in Stein (1989)’s seminal work on excess volatility in the

options market.

Figures 4 and 5 show variance ratio tests for term structures of equity options. We report

results for three individual stocks (Apple, Citigroup, and IBM), two domestic stock indices

(S&P 500 and NASDAQ), and three international stock indices (STOXX 50, FTSE 100, and

DAX).

The results corroborate those observed for variance swaps. Variance ratios at the longest

maturities (from 18 to 30 months) range between 1.6 and 4.8 and are significantly different

from one at the 95% level. The only exception is NASDAQ, for which the variance ratio is

1.1 at the long end and is insignificant.

a robustness analysis comparing VIX and ATM implied volatility. In data sets with a sufficient number of
long dated OTM options to construct the VIX term structure, we show that VIX-based variance ratio tests
behave the same as our main results that use ATM implied volatility.
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Figure 5: Implied Volatilities of Equities (II)
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3.2.3 Currency Implied Variances

We next study the term structure of currency options. As in the case of equity options, we

treat implied variances at different maturities as proxies for variance swaps, and apply the

same variance ratio test for linear claims that we used to study variance swaps. Our data

are for three of the highest volume currency pairs (GBP-USD, GBP-JPY, and USD-CHF)

from JP Morgan, covering the period 1998-2014, with maturities up to 24 months. Variance

ratio tests based on currency options are plotted in Figure 6, and share the same patterns

found in term structures of other volatility claims.

3.2.4 Interest Rates

US government bond prices are among the most well studied data in all of economics. Our

US bond data comes from Gurkaynak, Sack and Wright (2006). The data consist of zero-

coupon nominal bonds with maturities of 1 to 15 years for the period 1971 to 2014, and is
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Figure 6: Currency Implied Variance
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Figure 7: Treasuries
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available at the daily frequency (we do not use higher maturities because their sample starts

later). The term structure is bootstrapped from coupon bonds and uses strict interpolation

(no extrapolation), so that a maturity is present only if enough coupon bonds are available

for interpolation at that maturity.

The pricing model we use for interest rates is the standard homoskedastic exponential-

affine model. We discuss this specification in detail in Appendix D and show empirically that

heteroskedasticity plays a minor role in the variance ratios we estimate. It is well known

from the interest rate literature that three factors provide a good fit of the model, and

our estimates confirm that three factors explain more than 99.9% of the common variation

among log yields.

The variance ratios tests in Figure 7 also show that yields deviate only slightly from
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the affine model restrictions. The maximum variance ratio is 1.2 at 15 years. While this

is statistically greater than one and corroborates the excess volatility results of Gurkaynak,

Sack and Swanson (2005) and others, it is economically the smallest excess volatility effect

that we find among all of the term structures that we study. It is interesting that early

affine term structure models were formulated to describe the Treasury market, and this is

the market in which affine models indeed appear to perform best.29

3.2.5 Credit Default Swaps

Credit default swaps (CDS) are the primary security used to trade and hedge default risk of

corporations and sovereigns. As of December 2014, the outstanding notional value of single-

name CDS was $10.8 trillion. Our daily CDS data is from MarkIt and includes maturities

of 1, 3, 5, 7, 10, 15, 20, and 30 years.30

Among the different CDS contracts written on the same reference entity, we choose those

with highest liquidity. These are CDS written on senior bonds, with modified-restructuring

(MR) clause, and denominated in US dollars.31 Our CDS analysis focuses on the period

from January 2007 onwards. We choose the three most traded sovereigns (Italy, Brazil, Rus-

sia) and the three most traded corporates (JP Morgan, Morgan Stanley, Bank of America)

according to 2008 volume. In the plots below, we focus on maturities up to 15 years for

individual names, and up to 30 years for sovereign CDS. Confidential DTCC data indicate

that following 2008 there is positive volume at 15 years for our corporate names and 30 years

for our sovereign names.

In Appendix E we describe how to map CDS prices into the framework of Section 2.

The link to the affine setup is based on an exponential-affine specification for defaultable

bonds from Duffie and Singleton (1999), noting that the CDS spread can be expressed as an

approximate linear function of the yield of a defaultable bond.

Figure 8 reports variance ratio tests for CDS markets. For individual names, variance

ratios are as high as 2.8 at 15 years (with the exception of JP Morgan, whose long maturity

variance ratio is insignificantly different from one). For sovereign CDS, data show variance

ratios in excess of six at long maturities. Overall, CDS results indicate a qualitatively and

quantitatively significant overreaction similar to other asset classes considered in this paper.

29In Appendix E.2, we estimate ρ at different points of the Treasury curve like we did for variance swaps
in Figure 3. The resulting ρ values are nearly flat across maturities for the two largest factors, showing
that deviations from the affine model in this market are small and again confirming earlier results from the
interest rate literature.

30We interpolate maturities 2 and 4 years from the observed CDS of maturities 1,3 and 5 years, using a
cubic spline. This allows us to extract the factors from the very short end of the curve. Results are similar
if the factors are extracted from maturities 1, 3, and 5.

31For sovereigns, we use contracts with the CR clause, as more data is available than for the MR contracts.
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Figure 8: Credit Default Swaps

(a) Bank of America (b) Morgan Stanley (c) JP Morgan

1 3 6 9 15
Maturity (years)

0.02

0.05

0.07

0.10

0.12

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=2, R2=99.5%

1.02
1.06

1.11

1.32

2.12
Unrestricted
Restricted
95% Test

1 3 6 9 15
Maturity (years)

0.03

0.07

0.10

0.13

0.16

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=2, R2=99.5%

1.04
1.10

1.23

1.56

2.76
Unrestricted
Restricted
95% Test

1 3 6 9 15
Maturity (years)

0.01

0.02

0.03

0.04

0.05

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=3, R2=99.7%

0.95

0.74

0.67

0.79

Unrestricted
Restricted
95% Test

(d) Italy (e) Russia (f) Brazil

1 7 14 21 30
Maturity (years)

0.06

0.12

0.18

0.25

0.31

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=2, R2=99.8%

0.96
0.96

1.01

1.20

1.90

2.99

6.21

Unrestricted
Restricted
95% Test

1 7 14 21 30
Maturity (years)

0.08

0.16

0.25

0.33

0.41
P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=2, R2=99.8%

1.04
1.12

1.41

2.03

3.88

6.79

14.78

Unrestricted
Restricted
95% Test

1 7 14 21 30
Maturity (years)

0.04

0.08

0.12

0.16

0.21

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=2, R2=99.7%

1.06
1.17

1.49

2.28

4.49

7.78

17.62
Unrestricted
Restricted
95% Test

Note. See Figure 1.

3.2.6 Inflation Swaps

We obtain inflation swaps data from Bloomberg. We observe the full term structure between

one and 30 years at the daily frequency over the period 2004 to 2014. As reported in Fleming

and Sporn (2013), “The U.S. inflation swap market is reasonably liquid and transparent.

That is, transaction prices for this market are quite close to widely available end-of-day

quoted prices, and realized bid-ask spreads are modest.” The same data we use is also

studied by Fleckenstein, Longstaff and Lustig (2013).

The term structure model for inflation swaps falls neatly within the exponential-affine

specification of Section 2 (with additional model details in Appendix E). Figure 9 shows

that the variance ratio pattern for inflation swaps is a more extreme version of the pattern

in other asset classes, in that price volatility is at first strongly concave in maturity but then

rises rapidly between 15 and 30 years to maturity. Variance ratios at the long end reach

beyond 6.0, and are thus inconsistent with affine model restrictions.

3.2.7 Commodity Futures

Commodity futures data are from CME Group. We select the two most traded contracts

for which we observe at least 1,000 daily observations at both the short end of the term

structure (1 month) and at the long end (24 months). These are gold futures and crude oil
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Figure 9: Inflation Swaps

1 7 14 21 30
Maturity (years)

0.02

0.03

0.05

0.07

0.09

P
ri
ce

V
ol

at
il
it
y

(d
ai

ly
)

Factors=4, R2=99.4%

1.00 0.88

1.51

2.79

6.10

Unrestricted
Restricted
95% Test

Note. See Figure 1.

futures.

Appendix E describes how we map futures prices into the (exponential) affine setup.

Note that these contracts reflect Q-expectations of the future price of the underlying, which

is in turn linked to the current price of the underlying and to the Q-expectation of the

convenience yield. One of the advantages of modeling only the Q measure is that we do not

have to explicitly model or estimate the physical process for the convenience yield and can

instead work solely with futures prices. Figure 10 shows variance ratios that are significantly

higher than one in both commodity futures markets at the 24 month maturity.

4 Potential Sources of Violation

In this section we explore potential explanations behind the pervasive evidence of excess price

volatility relative to the affine-Q model. We classify possibilities into four forms of model

misspecification, i) omitted factors, ii) long memory Q-dynamics of cash flows, iii) non-linear

Q-dynamics, and iv) temporary mispricings along the term structure. Our intention in this

section is not to exhaustively explore alternative explanations. Nor can we categorically rule

out some forms of misspecification. Instead, our aim in this section is to provide the reader

with intuition for how certain affine model violations can impact the behavior of the variance

ratio test.

We argue that missing factors are unlikely to generate patterns that we see in the data.

We also show in simulations that non-linear dynamics and long-range dependence can po-
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Figure 10: Commodity Futures

(a) Gold Futures (Comex)
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tentially generate high variance ratios, but that incorporating just one or two additional

factors in the test drops the variance ratios back to nearly one, and this is not the case in the

data when we add an extra factor. Mispricing of long maturity claims due to overreaction

emerges as a potential driver of high variance ratios, as we document a profitable trading

strategy that exploits excessive fluctuations of long maturity prices.

4.1 When the Affine Model is Misspecified

We start with a general characterization of our tests under model misspecification. Our

estimator assumes a K-factor affine-Q model of prices along the term structure. If this is

not the true data generating process, then the population projection in Equation (8) becomes

ft,K+1 = b′Ft,1:K + ut (19)

or, in analogy to the matrix recursion in (9),

Ft,2:K+1 = BFt,1:K + Ut, (20)

with B taking the same structure as earlier and Ut = (ut, 0, ..., 0)′. Equation (19) now

contains a residual that is solely due to specification error.

Under misspecification, the coefficient B in (20) is no longer fixed and instead becomes

specific to the maturities used in the projection. For other maturities, the projection coeffi-

cient generally takes a different value. This reflects the fact that cross-equation restrictions

of the affine model in (10) are only satisfied when the model is correctly specified.
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A key question is whether the violations of the cross-equation restrictions observed in

the data can tell us anything about the nature of the model misspecification. We arrived at

the no-arbitrage restrictions in (10) by iterating expectations in the price-on-price projection

equation. Repeating this using the representation of Equation (19) and imposing the no-

arbitrage condition that EQ
t [ft+1,j] = ft,j+1, we find for all j > 1 that

Ft,j+1:K+j = BjFt,1:K +

j∑
l=0

BlEQ
t [Ut+l]. (21)

Equation (21) is an exact representation of prices at all maturities regardless of misspecifi-

cation (assuming there is no arbitrage). The first term on the right-hand side captures the

variation in Ft,j+1:K+j that is consistent with the affine model restrictions given projection

(19). The second term captures the deviation from the model. We can decompose the be-

havior of this deviation by projecting it onto Ft,1:K . All elements of the vector Ut+1 other

than the first are zero, so we write this projection as

e1

j∑
l=0

BlEQ
t [ut+l] = γK+jFt,1:K + ζt,K+j,

where γK+j is a K-vector and ζt,K+j is scalar. This decomposition allows us to write (21) as

Ft,j+1:K+j = (Bj + γK+j)Ft,1:K + ζt,K+j (22)

where the projection residual ζt,K+j is orthogonal to the first K prices, Ft,1:K . When testing

model restrictions, we estimate the unrestricted linear projection of Ft,j+1:K+j on to Ft,1:K

in (22) and compare the estimated projection coefficient, (Bj + γK+j), to the affine-model-

restricted coefficient, Bj.

The behavior of the unrestricted projection is informative about the nature of the mis-

specification. Two stark empirical facts emerge uniformly from data in all asset classes.

First, the unrestricted linear factor model (22) provides an excellent fit of the data, with R2

approaching 100%. Second, variance ratios are significantly greater than one.

Together, these facts provide insights about the behavior of the specification error term,∑j
l=0 B

lEQ
t [Ut+l]. High variance ratios tell us that the total variation of the specification

error, V ar(
∑j

l=0 B
lEQ

t [Ut+l]), must be large. At the same time, an unrestricted R2 ap-

proaching 100% means that the portion of the specification error that is uncorrelated with

the short maturity prices, V ar(ζt,K+j), must be tiny. In other words, the specification error

must be nearly perfectly correlated with the factors from the short end. This is evidently the

case, as high variance ratios are equivalent to the unrestricted projection coefficients being
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Figure 11: Effects of Missing Factors
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significantly larger in magnitude than the model restriction allows—the γK+j coefficients are

far from zero (as found in Figure 2).

4.2 Missing Factors

Even if the true model were an affine factor model, prices might appear excessively volatile

if the estimated model has too few factors relative to the truth. Two pieces of evidence

indicate that omitted factors are unlikely to explain our findings.

An omitted factor that is consistent with our estimation results must have a particular

set of traits described in Section 4.1. It must be volatile and persistent enough to generate

high variance ratio at long maturities. Yet it must also be highly correlated with the other

factors, as too much unique variation in the factor will pull the R2 below the values found

in the data.

A calibration shows that such a factor is essentially infeasible from a quantitative stand-

point. Consider a term structure whose data-generating process is a two-factor model of

cash flows. Factor i has variance σ2
i and persistence of ρi, i = 1, 2, and the factors have

a correlation of φ. What happens when we estimate an affine model with K = 1, thereby

misspecifying the model to have too few factors? Figure 11 shows the possible scenarios for

the (population) R2 and variance ratio statistic at a maturity of 24 periods. The calculations

are based on a range of values for the persistence of the second factor (ρ2) and how correlated
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Figure 12: Variance Swaps: Varying the Number of Factors
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the factors are (φ). We fix the monthly persistence of the first factor to ρ1 = 0.5, and fix

the variability of the second factor relative to the first at either σ2
2/σ

2
1 = 0.10 (left panel) or

0.25 (right panel).

We find no combination of parameters that can simultaneously generate an R2 over 99%

and a variance ratio that is meaningfully greater than one. The best chance comes when

the second factor is extremely persistent (ρ2 → 1) and highly correlated with the first factor

(φ → 1). This rather strange second factor influences long-end variances due to its strong

serial correlation, yet it is masked by the first factor due to their high correlation, which

allows the model to achieve a very high R2 with a single factor. However, even in this “best”

case, the variance ratios from the misspecified model rise only a few percentage points above

one so long as the R2 is near 99%.32

Second, if a missing factor were driving our results, we can account for it in our empirical

analysis with a simple robustness check that allows for additional factors in the model.

Figure 12 shows a sequence of variance swap test plots with the number of factors increasing

from one to three. With one factor, the model R2 is 94.1%, and the variance ratio at 24

months is 5.61. The two-factor case is the main result reported in Figure 1, which has an R2

of 99.6% and a long-end variance ratio of 2.15. Finally, with three factors, the R2 exceeds

99.9%, and continues to produce large economic and statistical rejections of the affine model

(V R24 = 2.16). We see this type of behavior throughout the asset classes we study. Table

A8 in Appendix F documents similarly high and significant variance ratios as we gradually

expand the number of factors beyond that of our benchmark analysis in Section 3. Very

broadly, our conclusions are unaffected by adding factors beyond those needed to explain at

least 99% of the total term structure variation.33

32The quantitative results in this example are quite general; the figure shows a conservative set of parameter
values. Considering more factors, allowing for a higher ratio of σ2

2/σ
2
1 , or allowing for greater persistence in

the first factor typically make it even less likely that a missing factor can explain our findings.
33There is of course always a factor model that delivers variance ratios equal to one—it is a model with the
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Figure 13: Long Memory Mean Reversion
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over 25 periods, assuming an AR(1) coefficient of 0.75 and d values of 0, 0.10, 0.30, and 0.49.

4.3 Long Memory

Excessive volatility of long-lived claims intuitively raises the possibility that our findings

are due to long memory cash flow dynamics that are poorly captured by the more rapid,

geometric mean reversion inherent in affine models.

Our data suggest that cash flows are stationary under Q in all asset classes we study; this

is for example evident from the concave shape of price volatility versus maturity. However,

it is possible that cash flows are stationary under Q yet they mean revert more slowly than

an autoregression would suggest. Granger and Joyeux (1980) propose the broad class of

fractionally integrated, or ARFIMA, models to capture precisely this type of long memory

behavior. An ARFIMA process is indexed by a parameter d that determines its degree of

long-range dependence. When d is in the interval (0,0.5), it is positively fractionally inte-

grated yet stationary (the special case of d = 0 corresponds to a standard ARMA process).

We investigate the effect of estimating an affine (short memory) model when the data

number of factors equal to the number of maturities observed in the term structure. This extreme model is
a reminder that the modeler’s objective is to maximize the variety of phenomena explained by a model while
minimizing the number of inputs and parameters necessary to do so. Adding factors eats up valuable cross-
equation restrictions that give the model its economic and statistical content. Besides the evident inability
of additional factors to reconcile the data with affine models, resorting to richer parameterizations when a
great majority of data variation is already explained is scientifically unsatisfying. Duffee (2010) raises an
additional concern about using too many factors. He shows that overfitting the interest rate term structure
with more than three factors leads to implausibly high Sharpe ratios for some fixed-income portfolios.
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Table 1: Effects of Long Memory

AR(1)=0.25 AR(1)=0.50 AR(1)=0.75
d K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

0.10 1 96.8 2.0 2.9 99.1 1.3 1.7 99.9 1.0 1.1
0.10 2 100.0 1.0 1.2 100.0 1.0 1.0 100.0 1.1 1.2
0.10 3 100.0 1.0 1.0 100.0 1.0 1.0 100.0 1.0 1.0

0.20 1 97.1 2.4 4.1 98.9 1.5 2.2 99.9 0.9 0.9
0.20 2 100.0 1.0 1.2 100.0 1.0 1.0 100.0 1.1 1.3
0.20 3 100.0 1.0 1.0 100.0 1.0 1.0 100.0 1.0 1.0

0.30 1 97.7 2.5 4.8 99.1 1.5 2.4 99.9 0.7 0.6
0.30 2 100.0 1.0 1.1 100.0 1.2 1.4 100.0 1.0 1.3
0.30 3 100.0 1.0 1.0 100.0 1.0 1.0 100.0 1.0 1.1

0.40 1 98.3 2.4 5.0 99.4 1.3 2.2 99.9 0.5 0.3
0.40 2 100.0 1.0 1.1 100.0 1.5 2.8 100.0 1.0 1.2
0.40 3 100.0 1.0 1.0 100.0 1.0 1.0 100.0 1.0 1.1

0.49 1 98.7 2.3 4.9 99.6 1.1 1.8 99.9 0.4 0.1
0.49 2 100.0 1.0 1.0 100.0 1.4 2.7 100.0 1.0 1.2
0.49 3 100.0 1.0 1.1 100.0 1.0 1.0 100.0 1.0 1.2

Note. Variance ratios and R2 computed in simulations of an ARFIMA(1,d,0) model. d corresponds to

the order of integration; K is the number of factors used in the variance ratio test. V R12 and V R24 are

the variance ratios at 12 and 24 month maturities. AR(1) is the autoregressive coefficient in the ARFIMA

model.

is in fact fractionally integrated. No-arbitrage term structure prices become intractable to

derive analytically in the ARFIMA setting, but are easily evaluated via simulation. We

simulate term structure prices assuming an ARFIMA(1,d,0) model using a grid of values for

d ∈ (0, 0.5) and values of the AR coefficient of 0.25, 0.50, or 0.75. Figure 13 demonstrates

the range of long-memory behavior that is embedded in our simulated term structure. The

extremely slow decay for the case d = 0.49 illustrates how an ARFIMA process is difficult

to distinguish from an integrated process as d approaches the upper limit of the stationary

range.

We calculate prices at maturities up to 24 periods and use a time series sample size of

1,000 periods. Then we estimate and construct variance ratio tests using the misspecified,

short memory affine model with either one, two, or three factors. Results reported in Table

1 show that it is uncommon to find a model that produces an R2 greater than 99% along

with a variance ratio above two. When this does occur, it is because the long memory

behavior is close to non-stationary. In these cases, inclusion of an “extra” factor (beyond

the 99% R2 requirement) brings variance ratios close to one. Evidently, despite its incorrect

specification, the affine model with two or three factors is an accurate enough approximation

of the ARFIMA process that the misspecification can go undetected. The ability of one or
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Figure 14: Non-linear Cash Flow Dynamics
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Note. The figure shows how the conditional mean of a logistic STAR process depends on the current value

of the process xt. The lines and panels correspond to different parameterization of the STAR process that

vary γ and ρ parameters.

two additional factors (beyond the 99% R2 requirement) to drive variance ratios toward one

in simulations is an important difference versus the data. In the missing factor robustness

checks of Table A8, we find variance ratios in the data that remain well above one despite

inclusion of an extraneous factor.

4.4 Non-linearities

A third potential explanation of our findings is that cash flows evolve non-linearly. In this

section, we explore the effects of estimating and testing restrictions of a misspecified affine

model when the true cash flow process has non-linear dynamics.

We study a class of processes known as smooth transition autoregressive (STAR) mod-

els.34 As emphasized by Granger and Terasvirta (1993), STAR models encompass a broad

variety of non-linear dynamics that have proven successful in modeling economic time series.

While far from exhaustive, they allow us to gain some insight into the role that non-linearities

play in our empirical results.

We assume that cash flows evolve according the one-factor non-linear process

xt = ρxt−1

(
1− (1 + e−γ(xt−1−c))−1

)
+ (1− ρ)xt−1(1 + e−γ(xt−1−c))−1 + εt. (23)

34Teräsvirta (1994) provides an excellent econometric treatment of STAR models.
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Table 2: Effects of Non-linearity

ρ=0.01 ρ=0.10 ρ=0.25
γ K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

0.1 1.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 3.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00

0.5 1.0 98.6 1.22 1.49 99.9 1.04 1.04 100.0 1.00 1.00
0.5 2.0 100.0 1.04 1.16 100.0 1.01 1.02 100.0 1.00 1.00
0.5 3.0 100.0 1.01 1.09 100.0 1.00 1.00 100.0 1.00 1.00

1.0 1.0 99.8 1.02 1.04 99.7 1.05 1.07 100.0 1.01 1.01
1.0 2.0 100.0 1.01 1.01 100.0 1.01 1.01 100.0 1.00 1.00
1.0 3.0 100.0 1.00 0.98 100.0 0.99 0.99 100.0 1.00 1.00

5.0 1.0 99.9 1.00 1.01 99.9 1.01 1.02 100.0 1.00 1.00
5.0 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
5.0 3.0 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.00

Note. Variance ratios and R2 computed in simulations of a logistic STAR model with parameters γ and ρ.

K is the number of factors used in the variance ratio test. V R12 is the variance ratio at 12 months maturity,

and V R24 is the test at 24 months.

Equation (23) is the most commonly used variant in the STAR class and is known as the

logistic STAR model. It nests the standard linear autoregression, but allows for the process

to transition between high and low serial correlation depending on the state of the process.35

The degree of non-linearity is governed both by ρ and γ.

Figure 14 plots the model-implied relationship between xt and EQ
t [xt+1], illustrating the

extent of non-linearity accommodated by STAR models. When ρ is close to either 0 or 1,

the model exhibits extreme state-dependence in cash flows, transitioning between dynamics

that are very persistent in some periods and nearly i.i.d. in others. For a given value of ρ,

higher γ produces higher curvature and can even mimic a kink when γ is very large.

Term structure prices are analytically intractable for STAR models, but are easy to

calculate via simulation. We calculate no-arbitrage prices in the STAR model at maturities

up to 24 periods and use a time series sample size of 1,000 periods. Then we estimate and

construct variance ratio tests using the misspecified affine model with up to three factors.

The results are reported in Table 2. In this large family of non-linear models (including

rather extreme non-linearities under certain parameterizations), the variance ratio does not

rise far above one in any specification. In other words, the affine specification is a very good

approximation to the true non-linear Q-dynamics and the variance ratio does not detect

significant violations of cross-equation restrictions.

35By incorporating time variation in autocorrelation, the STAR model’s non-linearities accommodate
parameter instability that may arise, for example, from investors learning about ρ.
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In Appendix G we explore more complex non-affine specifications, including heteroskedas-

tic STAR models, mixture STAR/long memory models, and multifractal models. The be-

havior of variance ratio statistics in these simulated settings is similar to those in Tables 1

and 2.

4.5 Overreaction and Other Expectation Errors

A fourth possibility for explaining variance ratios greater than one is that the affine model

is indeed an accurate description of the true value of claims, but that some of these claims

are subject to temporary mispricing.

We can characterize what any mispricing must look like if prices along the term structure

follow an (unrestricted) linear factor model. For illustration, suppose that a term structure

of forward prices is exactly described by a one-factor model, so that (suppressing constants)

ft,1 = b1xt, ft,2 = b2xt, ..., ft,n = bnxt. (24)

In order for this term structure to satisfy no-arbitrage, it must be the case that the loadings

follow a geometric progression in some constant ρ:

b1 = ρ, b2 = ρ2, ..., bn = ρn. (25)

If the factor loadings behave in any other way, they violate the law of iterated expectations.

To prove this, first note that forward prices must be linear in the factor by assumption,

meaning that ft,j = EQ
t [xt+j] = bjxt. Second, by the law of iterated expectations, any

forward price today also represents an expectation of tomorrow’s price of a forward with

shorter maturity.

ft,j = EQ
t [xt+j] = EQ

t

[
EQ
t+1[xt+j]

]
= EQ

t [ft+1,j−1].

If we fix the initial coefficient to b1 = ρ, these two properties together imply that b2 = b2
1 =

ρ2, which in turn implies b3 = ρ3, and so forth. This argument establishes the following

proposition in the one-factor case, and easily generalizes to the case of multiple factors.

Proposition. If a term structure of prices obeys an exact affine factor model, then mispric-

ings exist along the term structure if and only if factor loadings have non-geometric decay.

This simple result is powerful for understanding the nature of affine model violations

documented above. The unrestricted model in our variance ratio tests takes a linear factor

form much like (24), and we find that this model provides an excellent description of the

data with R2 values near 100%. At the same time, the high variance ratios reveal that

the bj coefficients decay at a less than geometric rate. This violates the structure in (25),
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suggesting that the law of iterated expectations may be violated, which can in turn lead to

mispricings. The empirical fact that the loadings decay more slowly than the affine model

allows tells us that the nature of the model violation is one of overreaction at the long end

of the term structure.

An important caveat is that the term structure R2 for the unrestricted linear model is not

identically 100%, which means that the conditions of the proposition are not exactly satisfied,

and thus the slow decay in coefficients detected by high variance ratios is potentially due

to the affine model being misspecified. This is another way of stating the joint hypothesis

problem that arises in any asset pricing model test: Is a rejection indicating that the null

model is incorrect, or that the model is right on average but asset prices sometimes deviate

from “true” value? This issue makes it difficult to discern whether the affine model is

violated due to misspecification, or due to mispricings arising from investor behaviors (such

as a tendency to commit errors when iterating expectations).

Two questions arise as we consider the possibility that prices occasionally reflect expec-

tation errors. First, can we find evidence that favors this view over the alternative of an

incorrect econometric model with no mispricing? Second, what type of investor behavior

might lead to mispricing? We address these questions in turn.

4.5.1 Trading Strategy Evidence

An approach that begins to address the joint hypothesis problem is to understand whether

model deviations appear profitable, above and beyond equilibrium compensation for bearing

risk. If there exists a strategy that exploits deviations from the null model to earn large

trading profits while taking on little risk, it may be evidence of mispricing as a driver of

excess volatility.

Under the null hypothesis of a K-factor affine model, we can determine at any point

in time whether a long maturity claim is overpriced or underpriced relative to the model

by comparing traded versus fitted prices (where fits are an estimated function of the first

K short maturity prices, as in Equation (11)). Our evidence of long maturity overreaction

suggests that large increases in short maturity prices tend to drive long maturity prices above

their model-predicted values. Similarly, large drops in the short end tend to push long-end

prices below their predicted value. This amounts to temporary over or undervaluation of

long claims (relative to the model).

The logic of the strategy presented below begins with the presumption that the estimated

affine model is correct on average, so that observed price deviations from the model are

temporary and expected to correct. Under this presumption, an investor who detects that

traded prices at some maturity have deviated from those predicted by the model can exploit
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the deviation, and can hedge the underlying factor risk using claims at other maturities.

To make the strategy concrete, consider taking a position at time t in a claim with

maturity N + n > K and holding this position for n periods. At t + n, the maturity of the

position has shortened to N , and is expected to have a correct price (based on the model) of

pt+n,N = aN + (bN)′Pt+n,1:K (26)

where aN and bN are model-implied coefficients as in Equation (11). And, over the n-period

investment period, the claim has paid out cash flows of xt+1, ..., xt+n.

Construction of the strategy works backward from t+ n (when the trade is unwound) to

initiation of the trade at time t. In particular, we seek a trade that is expected to have zero

liquidation value at t + n, but that generates a positive cash flow at initiation. Equation

(26) suggests comparing the prices of two portfolios at time t. Portfolio A simply buys the

(N + n)-maturity claim at a price of pt,N+n. After holding A for n-periods, it has yielded

cash flows of xt+1, ..., xt+n and has ongoing value of pt+n,N .

Portfolio B is designed to replicate the right-hand-side of Equation (26). First, it invests

the present value of aN in the n-maturity risk-free bond (for simplicity let us assume that

the risk-free rate is zero). Next, it buys all claims with maturities of n + 1, ..., n + K,

corresponding to the price vector Pt,n+1:n+K . The exact number of shares purchased in each

claim is given by the vector bN . Third, it buys (1− (bN)′1) shares of an n maturity claim

with price pt,n.

After n periods, the risk-free bond has matured with a value of aN and the position

(bN)′Pt,n+1:n+K has ongoing value of (bN)′Pt+n,1:K . The n-maturity claim has expired with

no remaining value, but has ensured that the intermediate cash flows generated over the life

of the trade are exactly xt+1, ..., xt+n. In short, portfolio B exactly replicates the expected

future value of portfolio A and exactly matches all intermediate cash flows generated by A,

as described in Table 3.

Because portfolio B is an exact hedge to portfolioA according to the model, any difference

in the time t initiation prices of A and B represents a mispricing. If the price of B exceeds

that of A, the strategy establishes a long position in A and a short position in B, and

vice versa. This strategy generates a strictly positive cash flow at time t, exactly offsets

all intermediate cash flows, and has zero liquidation value in expectation.36 Note that even

when the investor’s presumed affine model is correct on average (so that the investor can

accurately detect temporary deviations from the model) this is not a pure arbitrage. It is

rather a “good deal on average,” as the investor faces uncertainty about when the deviation

36In practice, the liquidation equation (26) does not hold exactly. To minimize the liquidation risk, aN
and bN are based on unrestricted regressions of N -maturity prices on prices for maturities 1 through K.
This minimizes the squared liquidation error.
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Table 3: Replication Strategy for Trading

Strategy A Strategy B
Date Ongoing Value Cash Flows Ongoing Value Cash Flows

t pt,N+n 0 b′NPt,1+n:K+n + (1− b′N1)Pt,n 0

t+ 1 pt+1,N+n−1 xt+1 b′NPt,1+n−1:K+n−1 + (1− b′N1)Pt,n−1 xt+1

...

t+ n pt+n,N xt+n b′NPt,1:K + 0 xt+n

Note. Portfolio A buys the N + n-maturity claim at a price of pt,N+n. Portfolio B replicates A under the

affine null model, investing the present value of aN in the n-maturity risk-free bond (we simplify with a

risk-free rate of zero), buying all claims with maturities of n+ 1, ..., n+K with the number of shares in each

claim given by the vector bN , and buying (1− (bN )′1) shares of an n-maturity claim.

will correct and whether it will widen before shrinking.

We compute the return to this strategy taking into account realistic constraints on cap-

ital and margining of positions. In particular, we assume that each trade must be fully

collateralized on both the long position and short position (an initial margin requirement of

100%). That is, if the strategy is allocated C dollars of capital to invest, the absolute value

of costs for the buy and sell positions must not exceed C. We denote q as the number of units

we trade, which we solve for given the capital requirement. ZS is the per-unit cost of the

short position, and ZL the per-unit cost of the long position. We write ZL = ZS −Π, where

Π > 0 is the immediate per-unit profit realized from the trade (no-arbitrage is equivalent to

Π = 0). Therefore, the number of units traded, q, must satisfy

C ≥ qZL + qZS

or therefore

q ≤ C

2ZS − Π
.

This caps the number of units that can be traded depending on capital and margin. Larger

positions can be taken when more capital is available and when haircuts are smaller. These

constraints also have the attractive feature that the size of the trade is increasing in the size

of the initial profit, Π, relative to a unit position in one leg of the trade, ZS.

We implement the trading strategy in the variance swap market and normalize trading

capital C to one each period. We recreate a purely out-of-sample execution of the strategy.

That is, when deciding on a trade at time t, estimated model parameters (particularly those

of aN and bN) and position choices only use data that an investor would have access to in real

time (the history of term structure prices through date t). We re-estimate the model each day
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Table 4: Trading Strategy Sharpe Ratios

Longest
Mispricing Maturity Simulations
Threshold Traded Variance Swaps Missing Factor Long Memory Non-linear

50 15 0.73 -0.01 -0.01 0.00
50 18 1.17 -0.01 0.03 0.00
50 21 0.94 -0.01 0.00 0.01
50 24 0.56 -0.01 -0.02 0.01

75 15 1.43 0.00 0.00 0.01
75 18 1.68 0.00 0.00 0.01
75 21 1.37 0.00 -0.01 0.02
75 24 0.50 0.00 0.02 0.02

90 15 1.56 0.00 0.05 0.03
90 18 1.96 0.00 -0.02 0.03
90 21 1.91 0.00 -0.05 0.04
90 24 1.61 0.00 -0.05 0.05

Average 1.28 0.00 -0.01 0.02

Note. The table reports annualized Sharpe ratios for trading strategies that exploit mispricing relative to

the affine-Q model. All strategies are implemented using information available to the investor at the time of

the trade, and use a one month holding period (n = 1) for each trade. The first column reports at what level

of mispricing (relative to the historical distribution) a trade is executed. The second column reports which

maturity (N + n) the trading occurs on. The third column reports the trading strategy applied on actual

variance swap data, while the remaining columns implement the trading strategy on different simulated

datasets. Simulations are based on affine-Q models and therefore the investor operating the trading strategy

is using a misspecified model.

using the most recent 250 trading days. We only trade in periods when the initiation profit

Π is sufficiently large, which avoids trading on small mispricings that are indistinguishable

from estimation noise. We examine thresholds based on the historical distribution of Π.

Therefore, at each date t, the initial profit is being compared only with backward looking

information and the trading choice preserves the out-of-sample character of the trade.

The “Variance Swaps” column in Table 4 reports the annualized Sharpe ratios of a

trading strategy using month-end prices, for a one month holding period (n = 1), with

various choices for the maturity of the long-end claim being traded (N + n =15, 18, 21, or

24 months), and with various thresholds for trade initiation (equal to the 50th, 75th, or 90th

historical percentile for Π).37

We obtain consistently high Sharpe ratios in all cases, often above 1, and we find higher

Sharpe ratios in cases where Π is required to exceed a higher threshold (cases in which the

model identifies a large mispricing).

37The threshold maps approximately into the fraction of days traded, with the 50th percentile trade
triggered about half of the time and 90th percentile trade initiated roughly one day in ten.
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As highlighted in Sections 4.3 and 4.4, variance ratios above one may arise due to model

misspecification, in the sense that observed claims are never mispriced but the true model

is not affine. Trading based on a misspecified model (e.g. one with non-linearities or long-

range dependence), when in fact no mispricings exist, should not produce trading profits.

To confirm this intuition, we also report results for our trading strategy applied in simulated

models. We compare against three models in which long maturity variance ratios are greater

than one because the estimated affine model is misspecified, but in which the simulated

claims are always correctly priced. These include

1. the two factor affine model with ρ1 = 0.9 and ρ2 = 0.5, but estimated assuming a

single factor structure

2. the long memory ARFIMA model with d = 0.3 and AR(1) coefficient 0.25

3. the non-linear logistic STAR model with parameters ρ = 0.01 and γ = 0.5.

In each of these cases, we simulate a sample of 10,000 term structure observations, and run

the same trading strategy that we use for the variance swap data. As expected, Sharpe ratios

in these cases are uniformly close to zero.

While the Sharpe ratios in the variance swap trade are on average quite high, this is

not evidence per se that long maturity claims are subject to mispricing. It is possible, for

example, that a trading strategy based on a misspecified model would yield high average

returns by inadvertently loading heavily on risk factors that are not well captured by the

affine model.

To test whether this is the case, we compute the alpha of the trading strategy relative

to various asset pricing factors. We focus on the 18-month maturity with a mispricing

threshold of 50% and one month holding period. We scale the trading strategy to have a

yearly standard deviation of 20%, comparable with the market. The average annualized

return of this strategy is 23% and its Sharpe ratio of 1.26. The alpha relative to the Fama

and French (1993) three-factor model is 21% per annum and is highly statistically significant,

meaning almost none of the strategy’s performance is captured by exposure to the Fama-

French factors. We obtain nearly identical results (alpha of 22%) when we add two more

factors representing shocks to the level and slope of the variance swap curve.38 The Sharpe

ratios associated with this trading strategy thus do not seem explained by exposure to

standard risk factors.

Figure 15 further details the performance of the trading strategy. The upper left panel

shows when the strategy calls for a buy or a sell position in the long maturity swap. The

38We construct variance swap term structure factors by first calculating monthly returns to variance swaps
at all maturities, then extracting the first two principal components from this return panel. We construct
alphas with respect to a factor model that includes the Fama-French factors plus the two variance swap
factors. See Dew-Becker et al. (2015) for additional details.
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Figure 15: Variance Swap Trading Strategy Performance
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Note. Behavior of one-month holding period returns when the trading strategy focuses on long-end claims

with 18 months to maturity and uses a backward-looking mispricing threshold of 50% to determine whether

a trade is initiated. The strategy is scaled to have an annual standard deviation of 20%. Clockwise from

the upper left, we report the direction of trade in the long maturity claim, time series of monthly realized

returns, rolling 60-month Sharpe ratio, and histogram of realized returns.

strategy frequently changes the direction of the trade. In the average month, the long matu-

rity claim is 26% likely to be traded in the opposite direction from the previous month. This

frequent sign switching is the reason why the strategy’s returns are essentially uncorrelated

with standard risk factors.

The upper right panel shows the time series of returns to the strategy. It only trades when

the signal is sufficiently strong (when the deviation from the model price is greater than the

median historical mispricing, given real-time information). Returns during traded months

are shown by black circles, and returns in non-traded (weak signal) months are shown in

gray crosses. The histogram for returns in traded and non-traded months is shown in the

lower left panel. Traded returns are positively skewed. While some the largest losses occur

during risky episodes, including a loss of 3.6% in August 1998 amid the Russian default

and LTCM crisis and a loss of 3.1% in January of 2009, the overall Sharpe ratio during the
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financial crisis is 0.49. The lower right panel shows subsample annualized Sharpe ratios for

the strategy calculated over a 60-month rolling window. No one subsample appears to drive

the strategy’s overall performance, and the rolling Sharpe ratio never falls below 0.5.

Trading strategy results for variance swaps indicate that an investor who treats the affine

model as the true value process and trades against deviations of actual prices from model

predictions earns high average returns, and these are not easily explained as compensation

for bearing risk. This raises the possibility that the overreaction of long maturity claims

reflects temporary mispricing. Yet it is by no means conclusive evidence of mispricing. It

is always possible that high average returns represent compensation for some risk that we

have not accounted for in our model. In this case, our trading strategy can be viewed as

quantifying the economic importance of risk factors and risk premia that are missed by

affine-Q models.

If the attractive performance of the excess volatility trading strategy is due to mispricing

rather than risk, the next important task is to understand barriers that prevent arbitrageurs

from exploiting and eliminating the anomaly (Shleifer and Vishny, 1997). The most natural

limits to arbitrage to consider are transactions costs, which can be substantial in an OTC

derivatives market such as that for variance swaps. Industry sources suggest that variance

swap transaction costs are typically 1% to 2% of the value of a position, consistent with the

findings of Avellaneda and Cont (2011). We analyze the strategy’s performance assuming

tradings costs of this magnitude for all legs of the trade (long and short, at initiation and

liquidation). We assume that an investor takes these costs into consideration and only

initiates a trade when the mispricing is sufficiently large after costs.

Panel A of Table 5 reports Sharpe ratios and Panel B reports the fraction of periods in

which a trade is triggered for each version of the strategy. Trading costs erode a substantial

portion of the strategy’s profits. A proportional cost of 2% entirely eliminates the benefit of

the one-month holding period strategy, indicating that prices do not converge enough over

one month to cover the cost of trading. Convergence improves with longer holding periods

of three or six months, in which cases the Sharpe ratio remains above 0.50 on average after

costs. This represents more than a 50% decline from the Sharpe ratio ignoring trading costs

and requires arbitrageurs stomach convergence risk over longer intervals. The table also

suggests that, in response to trading costs, an arbitrageur can boost Sharpe ratios by only

trading on very large mispricings (such as those above the 90th percentile). Requiring such

a high threshold, however, reduces the number of tradable periods to roughly one in ten.

This is costly to arbitrageurs whose undeployed capital idly awaits trading opportunities.

In summary, Table 5 suggests that excess volatility of long maturity claims may be perpet-

uated by limits to arbitrage in the form of transaction costs, infrequent profit opportunities,

and long holding periods.
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Table 5: Trading Strategy with Transaction Costs

Longest
Mispricing Maturity 0% TC 1% TC 2% TC
Percentile Traded 1M 3M 6M 1M 3M 6M 1M 3M 6M

Panel A: Sharpe Ratio

50 15 0.73 0.80 0.69 -0.75 0.30 0.56 -2.01 -0.23 0.16
50 18 1.17 1.26 0.98 -0.11 0.77 0.84 -1.38 0.40 0.52
50 21 0.94 1.12 1.10 -0.27 0.69 0.80 -1.49 0.31 0.34
50 24 0.56 0.69 0.49 -0.88 0.22 0.16 -1.95 -0.24 -0.13
75 15 1.43 0.84 1.17 -0.09 0.49 0.86 -1.51 0.35 0.35
75 18 1.68 1.34 1.52 0.50 0.99 1.13 -0.87 1.11 0.73
75 21 1.37 1.46 1.43 0.14 0.97 1.02 -0.91 0.59 0.72
75 24 0.50 0.72 0.63 -0.70 0.23 0.51 -1.47 -0.22 0.18
90 15 1.56 1.82 1.25 -0.08 1.07 1.02 -1.96 0.55 1.33
90 18 1.96 2.26 1.70 1.05 2.28 1.59 -0.69 1.69 1.19
90 21 1.91 2.45 1.54 0.75 2.18 1.20 -0.22 1.49 1.04
90 24 1.61 0.58 0.93 0.17 0.23 0.60 -1.46 0.50 0.54

Average 1.28 1.28 1.12 -0.02 0.87 0.86 -1.33 0.53 0.58

Panel B: Trading Frequency

50 15 0.54 0.50 0.51 0.47 0.44 0.39 0.38 0.34 0.32
50 18 0.55 0.50 0.49 0.47 0.45 0.43 0.41 0.39 0.35
50 21 0.54 0.51 0.49 0.49 0.43 0.45 0.41 0.37 0.38
50 24 0.57 0.52 0.54 0.50 0.44 0.45 0.40 0.38 0.35

75 15 0.33 0.31 0.29 0.30 0.25 0.24 0.24 0.21 0.18
75 18 0.33 0.28 0.30 0.28 0.26 0.24 0.23 0.23 0.22
75 21 0.33 0.28 0.31 0.30 0.25 0.28 0.25 0.22 0.22
75 24 0.33 0.32 0.34 0.27 0.29 0.27 0.21 0.21 0.21

90 15 0.16 0.12 0.14 0.14 0.10 0.11 0.13 0.09 0.06
90 18 0.16 0.14 0.14 0.14 0.10 0.12 0.13 0.09 0.09
90 21 0.15 0.13 0.14 0.14 0.09 0.13 0.13 0.08 0.11
90 24 0.16 0.17 0.14 0.15 0.13 0.11 0.11 0.12 0.10

Note. Panel A reports annualized Sharpe ratios for variance swap trading strategies that exploit mispricing

relative to the affine-Q model assuming all positions pay a transactions costs (TC) of 0%, 1%, or 2% of the

value of the position. We consider holding periods of one month (1M), three months (3M), and six months

(6M). Panel B reports the fraction of periods in which mispricings are sufficiently large to trigger a trade.

4.5.2 Extrapolation and Mispricing

In this subsection, we address the question of “What type of investor behavior might lead

to mispricing?” by presenting a specific example of a model that results in mispricing of

long maturity claims relative to short claims. The example is motivated by a foundational

assumption in behavioral economics that investors over-extrapolate when forming expecta-

tions. Barberis (2013) explains,

This assumption is usually motivated by Kahneman and Tversky (1974)’s represen-
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tativeness heuristic. According to this heuristic, people expect even small samples of

data to reflect the properties of the parent population. As a result, they draw overly

strong inferences from these small samples, and this can lead to over-extrapolation.

A number of recent models explore the usefulness of extrapolative expectations in matching

a variety of asset pricing phenomena, including excess price volatility in equity and credit

markets.39 These models do not examine how expectation formation varies with the horizon

of the expectation, and in particular have not explored the implications that extrapolation

may have for price volatility along a term structure. Yet given that the affine model’s

inconsistency stems from long maturity factor loadings appearing too high—so that the

long end of the price curve appears to overreact—extrapolation is a natural candidate for a

behavioral bias that might produce systematic mispricing along the term structure.40

In our stylized example, investor behavior implies an exact affine factor model for term

structure prices, but with factor loadings that decay non-geometrically. Suppose that the

cash flow process that establishes “correct” prices is a first order autoregression:

xt+1 = (1− ρ)µ+ ρxt + εt+1.

We assume that investors, however, form biased expectations due to extrapolation. Their

extrapolative expectations are summarized by replacing the long run mean of cash flows, µ,

with a distorted mean,

µθt = µ+ θ(xt − µ).

The distortion represents the investor’s tendency to over-emphasize recent data when con-

templating the cash flow distribution. If recent cash flows exceed the long run mean, investors

believe that this mean is higher than in fact it is, and vice versa when xt is below µ. In each

period t, µθt stands in as investors’ belief for the long run mean as they value cash flows at

all future horizons. This leads to a term structure of forward prices that violates the law of

iterated expectations:

ft,n = Eθ
t [xt+n] = (1− ρn)µθt + ρnxt = (1− ρn)(1− θ)µ+ [(1− θ)ρn + θ]xt

This form of expectation error produces a term structure of prices that is exactly described

by an affine one-factor model, but with factor loadings that decay slower than geometrically

with maturity. So, by the proposition above, this term structure admits mispricing.

39For example, Barberis and Shleifer (2003), Greenwood and Shleifer (2014), Barberis et al. (2015b),
Barberis et al. (2015a), Bordalo, Gennaioli and Shleifer (2015), and Gennaioli, Shleifer and Ma (2015).

40Furthermore, assets markets that have typically been modeled using extrapolation, such as stocks, mort-
gages, and corporate bonds, are long-duration assets. Thus, excess volatility in these markets is likely to be
a similar phenomenon to the long maturity excess volatility that we document in many other markets.
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5 Robustness

In this section we examine alternative formulations for the test of cross-equation restrictions.

We show that our results are insensitive to measurement error in prices, and we provide

additional evidence of excess volatility in subsample analysis.

5.1 Misspecification vs. Measurement Error

In the model setting of Section 2, we assume that prices are observed perfectly. Models

of the bond term structure often consider prices that are observed with measurement error

(see, for example, Joslin, Singleton and Zhu, 2011). In the presence of measurement error,

estimates of ρ can suffer from attenuation bias, and this potentially biases long maturity

variance ratios.

While measurement error in prices may impact our tests in theory, Appendix D.4 shows

that this is a quantitatively remote possibility in practice for several reasons. First, we

provide simulation-based evidence that measurement error as large as the observed bid-

ask spread has essentially no effect on our variance ratio statistic. Second, we show that

in order to generate variance ratios in line with those in the data, the standard deviation

of measurement error would need to be many times larger than observed bid-ask spreads

(seven times larger in the variance swap market, and 10 times in the Treasury market).

Third, we show that an instrumental variables correction for measurement error produces

variance ratios nearly identical to our baseline results. Fourth, estimates of ρ extracted from

various points on the term structure (shown in Figure 3) are gradually increasing in maturity,

a pattern at odds with measurement error explanations. Measurement error is likely to be

most severe at long maturities where liquidity is lower, which predicts that ρ estimates would

decline with maturity, and which is the opposite of what we find in the data.

5.2 Why Test Long Maturities?

Are long maturity claims excessively volatile relative to the affine model, or are short matu-

rity claims not volatile enough? In this subsection we discuss our choice to focus our tests

on long maturity price volatility.

The first reason for our emphasis on long maturity excess volatility is that prices on the

short end of the term structure do not appear to fluctuate excessively when compared to

underlying physical cash flows, while long maturity prices do. While we conduct our main

tests using only price data, the affine model also has implications about the comovement of

prices with their underlying cash flows, as we analyze in this section.

Variance swaps provide a valuable case study because the underlying cash flow process
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Figure 16: Price Sensitivity to Underlying Physical Cash Flows

(a) S&P 500 Variance Swaps (b) Inflation Swaps
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Note. The figure reports the regression coefficients of cumulative prices (scaled by the model-predicted

loadings) on the underlying cash flow, for variance swaps (left) and inflation swaps (right).

is observable.41 Payoffs to these securities are determined by the variance of S&P 500

index returns that is realized over the life of the contract. That is, realized variance (RVt)

corresponds to the cash flow variable xt in our model. Because realized variance is public

information, it serves as a natural anchor for understanding potential over or underreaction of

swap prices. For illustration, suppose that the Q-dynamics of realized variance are described

by a one-factor model42

RVt+1 = c+ ρRVt + εt+1.

A regression of the two month swap on the one month swap implies a persistence estimate

of ρ̂ = 0.83.

To understand the sensitivity of prices to fluctuations in realized variance, we can scale

the price of the j-maturity claim by the model-predicted loading, pt,j/
∑j

i=1 ρ̂
i, and regress

this on RVt. Following Equation 2, if the model is correctly specified, the scaled price should

equal RVt (plus a constant), and therefore this regression coefficient should equal one.

The left panel of Figure 16 plots the results of these sensitivity regressions. At the short

end of the curve, the estimated sensitivity coefficient is 0.95, and the 95% confidence interval

includes 1.0, indicating that the one month swap price reacts to realized variance in a manner

entirely consistent with the one-factor model. At longer maturities, sensitivities rise sharply

above one, suggesting that long maturity prices overreact to fluctuations in realized S&P

41Contrast this with, for example, CDS term structures for which the underlying xt corresponds to an
unobservable default intensity.

42An unrestricted one-factor model explains 94% of the variation in the variance swap term structure.
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500 return variance given a one-factor model.

Another asset class with an observable underlying cash flow process is the inflation swap

term structure. These claims pay off realized CPI inflation over the life of the contract.

Regressing the scaled inflation swap price,43 pt,j/
∑j

i=1 ρ̂
i, on realized inflation delivers a

sensitivity coefficient of 1.08 for the one year contract and a 95% confidence interval that

includes 1.0. The sensitivity estimates increase with maturity and the confidence intervals

beyond four years no longer include one.

In summary, short maturity prices comove with current cash flows precisely as the model

would predict. On the other hand, the long end of the curve is not only comoving too strongly

with short-term prices, but overreacting to realized cash flows as well. This observation

leads us to interpret our results as overreaction at the long end of the curve rather than

underreaction at the short end.

Appendix B.3 provides additional arguments in favor of our approach to testing (and

provides supporting estimation and simulation evidence). There, we argue that testing the

model using the long or the short end of the curve will yield asymptotically identical test

results. We prove this in the analytically tractable one-factor case.

We also compare our variance ratio test with alternative specification tests (based on

likelihood ratios) that extract factors from the entire term structure via principal components

and use these to assess the overall fit of the model. Tests that extract factors from the entire

term structure can lack power to detect the type of model violation that we document in the

data. To show this, we simulate data sets that feature excess volatility only at the long end

of the curve, and find that full term structure likelihood-based criteria reject the misspecified

model less frequently than our variance ratio tests. These simulations capture the intuition

that likelihood-based comparisons of the full term structure lack power because they average

over model errors at all maturities. But prices of some claims (especially at the short half of

the curve) are consistent with the null model. Averaging errors from the short end together

with errors from the long end dulls the test’s ability to detect the model violation at the

long end. In contrast, variance ratios deliver a pointed evaluation of the consistenty between

prices at short maturities and each specific long maturity. Furthermore, even if a likelihood-

based test rejects a model, it is generally silent on the reason for the rejection, while our

variance ratio statistics clearly illustrate which parts of the term structure are inconsistent

with each other.
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Figure 17: Variance Swaps: rolling estimates and tests
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Note. The figure plots the VR at maturities 6 months, 12 months, and 24 months obtained using a rolling

4-year window for estimation and testing.

5.3 Stability in Subsamples

One advantage of our test is that it only uses comovement among prices to estimate and

test the model. These covariances are precisely estimated even when a short time series is

available, therefore our test can be conducted within short rolling subsamples. In Figure 17

we report variance ratio estimates in the variance swap market for a four-year rolling window.

Variance ratios at 24 months are far above one for the majority of the sample, and reach

peaks of nearly 8 in some subperiods. This demonstrates first that our findings are robust

to alternative data samples. Perhaps more importantly, it illustrates that our main results

are unlikely to be driven by instability of the affine model. For rolling estimation windows

as short as six months we find results quantitatively similar to our full sample estimates.

6 Conclusion

We find that prices of long maturity claims are dramatically more variable than justified by

standard models. Our tests of excess volatility exploit the strict overidentification restrictions

from term structure asset pricing, in which prices at all maturities are linked by the law of

iterated values and the implied dynamics of the factors driving cash flows. We use the short

43In a one-factor affine model for inflation swaps, the estimated Q-persistence parameter for annual infla-
tion is ρ̂ = 0.46.
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end of the term structure to learn the implied cash flow dynamics perceived by investors

under the pricing measure, Q, and reject the hypothesis that estimated short end behavior

is consistent with prices at long maturities.

Our findings suggest that the puzzle of excess volatility is a pervasive phenomenon,

manifesting in a wide variety of markets including those for equity and currency volatility,

sovereign and corporate default risk, commodities, and inflation. Excess volatility relative to

the affine model cannot be explained by time variation in discount rates, as this is accounted

for in our estimation of Q risk-neutral model dynamics. Only for the term structure of

Treasuries is the degree of excess volatility economically small, consistent with the historical

success of affine models for describing interest rates.

We show that all asset classes deviate from the model in the same way, with long maturity

claims nearly perfectly correlated with, but overreacting to, fluctuations in short maturity

prices. We also investigate a number of well studied non-affine models, none of which appear

to capture the behavior of long maturity claims in the data. Lastly, we show that trading

against long maturity excess volatility appears profitable after adjusting for exposure to

standard risk factors. But our analysis into the sources of excess volatility is by no means

exhaustive and calls for deeper investigation in future research. Our findings also call for

more research into how agents form expectations over multiple horizons and the extent to

which investor behavior is consistent with the law of iterated values.
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Internet Appendix for

“Excess Volatility: Beyond Discount Rates”

Stefano Giglio Bryan Kelly

A Model Identification and Estimation

In this appendix we show how to estimate the matrix B of size K ×K in a setting in which: 1)
any G ≥ K maturities at the short end of the curve are observed and are used to construct the K
factors, and 2) the G maturities observed are not necessarily consecutive (for example, one wants
to extract K = 2 factors using maturities 1, 2, 4 or 1, 3, 6). If G > K, the first K principal
components of the G observed maturities are used as factors Ht (which will still be a K-element
vector). We proceed with the derivation assuming cumulative claims are used, but an equivalent
derivation holds when using forwards.

We refer to the G maturities observed at the short end of the curve as n1, ..., nG, and to the
vector of those prices as Pt,G. We assume that each individual observed price in the term structure
has potential measurement error:

pt,n = 1′
[
ρ+ ρ2 + ...+ ρn

]
Ht + ut,n

while the first K principal components of Pt,G are observed without error:

P t = f · Pt,G

where f is an K ×G matrix selecting the first K principal components of Pt,G (referred to as P t).
Naturally, this nests the case (studied in the paper) in which exactly the first K maturities are
observed without error and used as factors (K = G): in that case, f is simply the identity matrix.

We can prove the following Proposition, that shows how to recover the matrix ρ in this setting
(and therefore in turn recover all loadings of long-term prices onto the short-end factors P t under
the model).

Proposition 1. Consider the regression of a price pt,nG+1 onto the factors P t:

pt,nG+1 = d+ c′P t + ut,nG+1

All eigenvalues ρi of ρ are among the roots of the polynomial equation[
1 + ρi + ...+ (ρi)

nG+1−1
]

= c̃1

[
1 + ρi + ...+ (ρi)

n1−1
]

+ ...+ c̃G
[
1 + ρi + ...+ (ρi)

nG−1
]

where all of the coefficients c̃ depend exclusively on the factor loadings f and on the regression
coefficients c.

Proof. Start by defining
Sn ≡ 1′(ρ+ ρ2 + ...+ ρn)

Sn is a 1×K vector that depends only on the diagonal matrix ρ. We can therefore write for each
price:

pt,n = SnHt + ut,n
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Note that calling ρi the ith element of the diagonal of ρ, we can rewrite Sn as:

Sn =


ρ1 + ...+ ρn1
ρ2 + ...+ ρn2

...
ρK + ...+ ρnK


′

The assumption that the principal components P t are observed without error yields:

P t = f ·


Sn1

Sn2

...
SnG

Ht

where n1, n2, ... are the observed maturities. Consider now the regression (allowing for sample
error):

pt,nG+1 = d+ c′P t + ut,nG+1

and project each side of the equation on Ht (noting that ut,nG+1 is orthogonal to Ht). The loadings
on Ht on the two sides of the equation must match. Therefore:

SnG+1 = c′f


Sn1

Sn2

...
SnG

 = c̃


Sn1

Sn2

...
SnG


where the last equality is obtained by defining c̃ = c′f , a 1×H vector that depends only the factor
loadings f and the regression coefficients c. We can then write:

SnG+1 = c̃1S
n1 + c̃2S

n2 + ...+ c̃GS
nG

where c̃i is the i-th element of c̃. Now, given that as shown above each element i of Sn depends
only on element i of the diagonal of ρ, this is a system of K independent equations, each of the
form: [

ρi + ρi + ...+ ρ
nG+1−1
i

]
= c̃1

[
ρi + ρi + ...+ ρn1−1

i

]
+ ...+ c̃G

[
ρi + ρi + ...+ ρnG−1

i

]
Finally, we can divide by ρi throughout (assuming ρi 6= 0) and obtain:[

1 + ρi + ...+ (ρi)
nG+1−1

]
= c̃1

[
1 + ρi + ...+ (ρi)

n1−1
]

+ ...+ c̃G
[
1 + ρi + ...+ (ρi)

nG−1
]

Note that each element i of ρ needs to satisfy this equation: the matrix ρ can therefore be
computed by finding the roots of this polynomial equation. This structure has the convenient
feature that we can estimate state dynamics from the yields without any maximization (as is
typical in term structure models).

Once ρ has been recovered, we can construct Sn for each maturity n. Since

P t = SHt
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where

S = f


Sn1

Sn2

...
SnG


is a K ×K matrix, we can write:

Ht = S
−1
P t

Therefore, we can also write

pt,n = SnS
−1
P t + ut,n

The matrix of loadings on the “observable factors” P t is therefore SnS
−1

. These factors can be used
to construct a variance ratio test that compares the variance of the component of pt,n predicted
(in unrestricted regressions) by the factors P t to the variance predicted under the model (with

coefficients SnS
−1

).
One final consideration is that there will generally be nG+1 − 1 roots of this polynomial (some

of them potentially complex or explosive), while we only seek K parameters. This equation shows
that the Q dynamics and the comovements of prices only identify the eigenvalues of ρ up to the
set of roots of this polynomial. It does not tell us which roots to choose, as they imply the same
covariance among prices (while a full MLE procedure that exploits both information about the P
and the Q dynamics will be able to choose among them). Of course, in our baseline case, where we
only select the first K prices as factors, we will always have as many roots as parameters (K).

We use the following selection procedure for the roots. First, we only consider non-explosive
roots. This is motivated by the unambiguous empirical fact that price variances are concave in
maturity for all the markets we study, especially at the short end of the curve where our estimation
is coming from. (If prices rise less than linearly with horizon, the system is best described by
stationary dynamics.) Second, among the non-explosive roots, we select the K most persistent
ones. This choice is conservative in terms of implications for long maturity excess volatility. Finally,
following the term structure literature, we only consider real roots (see the discussion in Joslin,
Singleton and Zhu (2011)).

B Model Testing

B.1 Bootstrap Inference

We obtain bootstrap standard errors using the semiparametric bootstrap procedure described in
Davidson and MacKinnon (2004). Bootstrap standard errors are used to test the null hypothesis
that the variance ratio at a given maturity n > K is equal to one, or equivalently that the covariance
of prices at maturity n > K are consistent with the model estimated from the vector of prices at
maturities 1:K + 1.

The bootstrap proceeds as follows. First, we construct fitted errors under the null for each time
t and all maturities n as:

ε̂t,n = pt,n − p̂t,n
where p̂t,n is the price predicted by the model under the null (and relying on ρ̂ estimated from the
regression of pt,K+1 on Pt,1:K). Next, an AR(1) for the errors is estimated for each maturity:

ε̂t,n = γnε̂t−1,n + ût,n
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Table A6: Simulated Variance Ratio Tests Under Correct Specification

σ2
2/σ

2
1 = 0.25 σ2

2/σ
2
1 = 0.10 σ2

2/σ
2
1 = 0.05 σ2

2/σ
2
1 = 0.01

ρ2 5% 10% Std(V R)
BSE(V R) 5% 10% Std(V R)

BSE(V R) 5% 10% Std(V R)
BSE(V R) 5% 10% Std(V R)

BSE(V R)

0.9000 0.103 0.149 0.896 0.129 0.169 0.873 0.113 0.162 0.835 0.030 0.052 1.836

0.9500 0.043 0.097 0.876 0.078 0.123 0.871 0.094 0.130 0.862 0.136 0.167 0.786

0.9900 0.009 0.041 0.911 0.023 0.061 0.853 0.032 0.075 0.871 0.067 0.105 0.885

0.9990 0.019 0.037 1.182 0.024 0.054 1.052 0.033 0.069 0.951 0.071 0.116 0.942

0.9999 0.057 0.091 1.447 0.060 0.104 1.070 0.067 0.109 0.978 0.099 0.152 0.958

Note. Realized rejection rates across 5,000 simulations at 5% and 10% bootstrap critical values. Std(V R)
BSE(V R)

is the ratio of the standard deviation of 24-month variance ratio statistics to the median bootstrap standard

error across simulations.

This step allows us to explicitly account for the time-series correlation properties of the errors.
Each bootstrap sample is obtained by jointly resampling the error innovations ût,n across matu-

rities. Denote with tildes the quantities that are generated in each bootstrap sample; for example,
the resampled error innovations u are denoted ũt,n. Using the estimated persistence γ̂n for each
maturity, together with the resampled error innovations ũt,n, we generate a panel of resampled
errors ε̃t,n. The bootstrapped prices are then constructed as:

p̃t,n = p̂t,n + ε̃t,n

Using the resample term structure of prices constructed the bootstrap sample prices, p̃t,n, we re-
run our entire analysis. Importantly, we re-estimate the matrix ρ in the bootstrap sample (obtaining
ρ̃) and obtain the variance ratio test statistic. Because we re-estimate ρ in each bootstrap sample,
our procedure takes into account sampling uncertainty regarding the decay rate under Q. We
conduct all of bootstrap inference using 1,000 bootstrap samples.

We have derived the analytical asymptotic distribution of the variance ratio statistic and com-
pared this with the finite sample bootstrap-based inference, and they behave similarly in moderately
sized samples. We find that bootstrap standard errors are more conservative in small samples and
thus base our main analysis on these. Details for the derivation of the asymptotic distribution and
its comparison with the bootstrap distribution are available upon request.

B.2 Finite Sample Simulations

Our approach to inference for variance ratios relies on factor persistences estimated from prices
on the short end of the term structure. A natural concern is that it may be hard to estimate the
behavior of a small but very persistent factor from the short end alone. In other words, even when
the model is correctly specified, one may be concerned that short end prices are not informative
enough about the Q-dynamics of low volatility/high persistence factors, and that this may lead to
inappropriate inference. In this appendix, we show that this is not the case. Short maturity prices
are sufficiently informative about low frequency Q-dynamics so that our variance ratio tests always
retain correct size. That is, when the null hypothesis is true, we reject the null approximately 5%
of the time when we use a 5% critical value, we reject the null approximately 10% of the time when
we use a 10% critical value, and so forth. In other words, our rejection of the affine model is not
driven by our choice to estimate model parameters using short end prices.

Our estimation and inference procedure is well behaved because our bootstrap distribution for
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the variance ratio statistic takes into account sampling variation in the parameters estimated from
the short end. If there are some parameters that are hard to accurately estimate (for example, the
persistence parameter for a low variance factor), the variation in bootstrap samples fully accounts
for this.

To understand the performance of our inference approach we conduct simulations. We generate
term structures of prices with maturities up to 24 periods assuming a two-factor model. The first
factor is the dominant factor and has variance σ2

1 = 1 and persistence ρ1 = 0.75. For the weaker
second factor, we consider a gradually decreasing range of variance (σ2

2/σ
2
1 → 0) and a gradually

increasing range of persistence (ρ2 → 1). Based on 1,000 periods of simulated term structure prices,
we estimate the model using the shortest maturities (1,2, and 3) and calculate the variance ratio
statistic, its standard error, and its p-value for the 24-month claim. We generate 5,000 such samples
at each set of parameters, and report summary statistics across simulations. We report the realized
rejection rates based on 5% and 10% critical values of the test. We also report the ratio of the
standard deviation of the variance ratio statistic to the median bootstrap standard error across
simulation; which should be near one if the test is behaving appropriately. Results are shown in
Table A6.

Overall, finite sample inference behaves reasonably. The test seems to reject too infrequently,
and the realized standard deviation of the variance ratio statistic tends to be slightly smaller than
the asymptotic standard error. These facts indicate that the critical values that we use in our
empirical analysis are slightly conservative.

B.3 Long Maturities vs. Short Maturities

In this section we provide additional motivational evidence for our choice of testing overreaction of
the long end of the curve relative to the short end.

B.3.1 Alternative Formulations of the Test

While Figure 16 motivates our test’s emphasis on long maturity excess volatility, there are a mul-
titude of ways to formulate tests of cross-equation restrictions. One natural alternative to our
approach is to estimate model parameters from the long end of the term structure, and perform
variance ratio tests on the short end. This alternative is statistically equivalent to the test that we
propose, but can conceal important model violations.

For illustration, consider a setting where prices in fact obey a strict one-factor structure, but
where the no-arbitrage cross-equation restrictions are violated. In particular, suppose that prices
on the short end of the term structure (j=1,2) behave according to pt,j = (ρS + ... + ρjS)xt while

prices on the long end (j=N -1,N) are pt,j = (ρL + ...+ ρjL)xt, with ρL > ρS > 0.
In the population version of our baseline test, we estimate the model parameter from a regression

of pt,2 on pt,1 and therefore recover ρS , which we use to impose model restrictions. Next we
estimate an unrestricted regression of long maturity price pt,N on pt,1, which has a coefficient of
Cov(pt,N , pt,1)/V ar(pt,1) = (ρL + ...+ ρNL )/ρS . We compare this to the restricted regression of pt,N
on pt,1 imposing ρL = ρS , which implies a coefficient of (ρS + ...+ ρNS )/ρS . The variance ratio for
the long maturity test is therefore

V RN =

(
ρL + ...+ ρNL
ρS + ...+ ρNS

)2

.

In the alternative approach of estimating from the long end and testing on the short end, the
model parameter is derived from regressing pt,N on pt,N−1, yielding an estimate equal to ρL. The
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unrestricted regression coefficient of the short maturity price pt,1 on pt,N is ρS/(ρL + ...+ ρNL ) and
the restricted coefficient is ρL/(ρL + ... + ρNL ). The variance ratio for the short maturity test is
therefore

V R1 =

(
ρS
ρL

)2

.

Clearly, tests based on V R1 and V RN are equivalent as deviations from unity occur in both cases
if and only if ρL 6= ρS . An important difference between the two tests is how they aggregate
specification errors along the term structure. A value of V R1 near to but just below one may
indicate an important model violation. For example, if ρS = 0.97 and ρL = 0.99 and we are
considering maturities up to 24 periods, then V R1 = 0.92 and V R24 = 2.49. In this example,
the model violation is one of high duration. Its impact on the behavior of short maturity claims
is limited, as indicated by the small deviation of V R1 from one, while it is a crucial violation for
understanding the pricing of long maturity claims.

This example is representative of price behavior in all asset classes we study. Term structure
data very broadly imply high cash flow persistence, so the most useful securities for identifying
model violations are those with long maturities. Prices of these claims aggregate parameter dis-
crepancies over long horizons, making it particularly easy to visualize the internal inconsistency of
prices for a given model, as in Figure 1.

Another testing approach is to use a likelihood ratio or other distance metric to compare pricing
errors between two models—one model that imposes pricing restrictions versus a more general model
with weaker restrictions—using prices from the entire term structure for estimation (as in Bekaert
and Hodrick, 2001). In our setting, a natural implementation of this approach would estimate latent
factors by extracting principal components from the panel of all maturities. Then, parameters of
the null model (e.g., a one-factor affine no-arbitrage model) are estimated by minimizing pricing
errors, and the overall fit is compared to that of a specific alternative (e.g., a two-factor model).
This test has the benefit of using information throughout the term structure and generally has
excellent power for distinguishing between alternative models.

We find, however, that this approach often lacks power to reject the null model in the presence
of long maturity overreaction like that documented in Section 3. A simulation is helpful for under-
standing how standard model comparison tests can fail to detect overreaction. We generate data
from a one-factor model with maturities of up to 24 periods. Simulated prices behave very similarly
to an affine model except that long maturity prices overreact and therefore violate the no-arbitrage
internal consistency conditions. In particular, for short maturities (j=1,...,12), factor loadings are
given by

∑j
i=1 ρ

i
S , while for long maturities (j=13,...,24) the loadings are

∑j
i=1 ρ

i
L, where ρL > ρS .

In each simulation, we generate 10 years of monthly data. From simulated prices, we estimate
a one-factor model that extracts a single component from the full panel of prices, then estimate the
model’s single model parameter ρ by minimizing the sum of squared pricing errors at all maturities.
We compare this fit to an otherwise identical model that allows for two principal component factors,
again estimating this model’s two persistence parameters by minimizing pricing errors. We then
compare the models in two ways. First, we calculate the ratio of mean squared pricing errors for
the one-factor and two factor model (MSE1/MSE2). Adding factors can only improve the model’s
fit. High values indicate that moving to two factors produces a large improvement in fit. We
also report the Bayesian Information Criterion (BIC) for each model assuming that errors are
normally distributed. The BIC trades off model fit versus parameterization, with lower values of
BIC indicating a superior model. Because the BIC is based on log likelihoods of the estimated
models, BIC comparison is conceptually similar to conducting a likelihood ratio test.

Table A7 shows simulation results. We consider various degrees of model misspecification
described by a given combination of ρS and ρL, and report the average of each model statistic
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Table A7: Model Comparison Using Full Term Structure

Misspecification
ρS ρL MSE1/MSE2 BIC1 BIC2 V R24

0.75 0.80 1.020 -866 -909 1.76
0.75 0.85 1.057 -674 -688 3.43
0.75 0.89 1.078 -580 -558 6.43

0.85 0.90 1.011 -795 -768 2.23
0.85 0.95 1.024 -634 -551 5.87
0.85 0.99 1.023 -575 -453 14.61

0.90 0.95 1.006 -796 -707 2.64
0.90 0.99 1.010 -667 -544 6.56
0.95 0.99 1.002 -847 -724 2.49

Note. The table reports statistical tests of an affine model with violation of arbitrage. The model is a one

factor model, but specified such that for maturities up to 12, Q-persistence is ρS , while for maturities above

12 it is ρL. The table reports the ratio of mean squared pricing errors for a 1 and 2 factor model as well as

the BIC criterion for one and two factors. The last column reports the variance ratio at 24 months using

the number of factors selected by the BIC criterion.

across 1,000 simulations. Overall, simulations show that it is difficult to reject the one-factor model
based by comparing it with an encompassing two-factor model. The improvements in mean squared
error are small, usually less than a few percent. And, in most of the cases we consider, the BIC
prefers the one-factor model (superior BIC values are shown in bold).

For comparison, we also report our one-factor variance ratio test, which estimates the model’s
single parameter from the first two maturities and tests cross-equation restrictions for the longest
maturity (24 months). In contrast to the full term structure model comparison approach, our
variance ratio test easily detects the internal consistency violation with variance ratios above two
in all cases but one (in all cases, the variance ratio is significantly greater than one at the 5%
level or better). The reason for the discrepancy between the two approaches is that our test is
explicitly designed to detect the type of overreaction found in the data and built into the data
generating process (DGP) for these simulations. The information criterion, on the other hand,
relies on assessing the one-factor model solely based on its performance relative to the two-factor
model. But, in this example, both models are misspecified, so the likelihood of rejecting the null
is small. Of course, if the alternative specification matched the DGP, the BIC would always select
the alternative over the null. In reality, the exact nature of the misspecification is unknown, and
the variance ratio test is well suited to detect overreaction without the need to specify a particular
alternative.

C Affine Representation of Structural Models

The affine-Q representation is typically associated with reduced-form models, as in Duffie, Pan and
Singleton (2000). However, many workhorse structural asset pricing models also feature affine Q
dynamics. In this section we briefly review the Q-dynamics of prevalent consumption-based models.

We begin with the long run risks models of Bansal and Yaron (2004), in which log consumption
growth and its volatility follow linear dynamics. The log pricing kernel is approximately linear (the
linearity is exact with unit EIS, and the linear approximation is extremely accurate, as shown in
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Dew-Becker and Giglio (2013)). In this model the log price and the log price-dividend ratio of all
consumption or dividend strips are linear functions of the model’s state variables (the persistent
consumption growth term xt and the conditional variance of consumption growth σ2

t ). Prices
of consumption and dividend strips therefore follow an exponentially affine specification (with
heteroskedasticity).

A related paper, Drechsler and Yaron (2011), extends the model to match the variance risk
premium. Dew-Becker et al. (2015) solve for the term structure of variance swaps in that model.
In that model the Q−dynamics of variance are linear, and the log pricing kernel is linear (under
the standard approximation), and thus variance swaps also follow an affine structure. Note that in
this paper the distribution of the shocks is not normal under Q (due to the presence of jumps), but
this is irrelevant for the term structure of variance swaps because these are linear (not exponential)
claims to future variance.

Next, we consider two time-varying rare disaster models, Gabaix (2012) and Wachter (2013).
In Gabaix’s model, the use of linearity-generating processes (LGP) implies that the (level) price-
dividend ratio is linear for all dividend strips. While the LGP assumption buys tractability in
modeling price-dividend ratios, the term structure of claims does not follow linear dynamics; the
model therefore is not nested in the affine-Q class. In Wachter (2013), on the other hand, the
prices and price-dividend ratios for consumption and dividend strips are loglinear in the disaster
probability λt, which itself follows a (linear) square-root process. The model therefore follows in
the category of exponential affine-Q models with heteroskedasticity, like long run risks.

Finally, the habit formation model of Campbell and Cochrane (1999) does not map directly
into the affine specification, as discussed in Wachter (2005).

A number of papers have explored the relationship between learning and excess volatility, such
as Timmermann (1993); Barsky and De Long (1993); Veronesi (1999); Pástor and Veronesi (2003,
2009b,a). In some (but not all) cases, such as in Barsky and De Long (1993), adding learning to the
model preserves the affine-Q structure. In other cases, learning about model parameters induces
non-linearities, with which we deal directly in Section 4.4.

D Risk-free Rate Variation, Heteroskedasticity and Other

Considerations

In this section we consider in greater detail some additional theoretical consideration that may
play a role in our analysis, including the role of interest rate variation, heteroskedasticity, and
measurement error.

D.1 Stochastic Risk-free Rates

For many of the asset classes considered in this paper, time variation in the risk-free rate plays a
minor role in determining the volatility of prices along the term structure, and is typically ignored in
the literature (for example, Ait-Sahalia, Karaman and Mancini (2015) ignore risk-free rate variation
when pricing variance swaps).

For other asset classes, interest rate variation plays a more important role. Here we show that
in exponential-affine models where not only log cash flows xt but also short-term rates rt are linear
functions of the factors, our test is valid even in the presence of (unmodeled) stochastic interest
rates. Consider in particular a cumulative contract that pays all the cash flows at maturity, and
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Figure A18: Variance Swap Tests: Linear vs. Exponential-Affine
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(b) Exponential-affine model
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has an upfront payment of the price. Then, we can write the price as:

pt,n = EQ
t

[
ext+1+...+xt+n

ert+...+rt+n−1

]
= EQ

t

[
eyt+1+...+yt+n

]
(27)

where yt = xt − rt−1. If yt is a linear function of the factors (for example because xt and rt−1 are
driven by the same factors), we can simply see this price as a claim to risk-free-adjusted cash flows
yt. Finally, remember that none of our analysis requires us to actually observe the cash flow (in
this case yt): it is enough to know that the price is determined according to an exponential-affine
model in some cash flow yt.

The argument also holds when all payments are exchanged at maturity, since in that case

pt,n = EQ
t

[
EQ
t [ert+...+rt+n ]

ert+...+rt+n
ext+1+...+xt+n

]

which means that we can construct the price p̃t,n = pt,nδt,n, where δt,n is the price of a risk-free
bond with maturity n, and the adjusted price p̃t,n will have the same form as (27).

D.2 Linear Versus Exponential Representations

In modeling the market for volatility claims we have followed the literature in writing the payoff as
a linear function of underlying factors. We now explore the robustness of our results to a common
non-linear functional form. We study an alternative model for volatility claims in which realized
variance is assumed to be exponentially linear in the factors:

RVt = exp(xt), xt = δ0 + δ′1Ht

with Ht conditionally normally distributed and homoskedastic (we treat the heteroskedastic case
below). In this case, the log price of a forward claim to one period of variance at time t+ n is

ln pn,t = EQ
t [exp(xt+n)] = 1′ρnHt + constant.
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We construct psuedo-cumulative claims whose prices are the sum of the log prices of the individual
cash flows,

p̃t,n =

n∑
j=1

ln pt,n

These do not correspond to log prices of tradable cumulative contracts, but instead are a way to
aggregate the log forward prices into a form for which our variance ratio tests are applicable.

Figure A18 reports variance ratios for cumulative variance swap prices when realized variance
is assumed to be affine in levels as in Figure 1 (left panel) or affine in logs (right panel).44 The
figure shows that there is little difference between variance ratio tests in the two contexts. In both
cases, the null model is significantly rejected with variance ratios above 2.0 at 24 months.

D.3 Heteroskedasticity Adjustment in Exponential-affine Models

The exponential-affine model for volatility described in the previous section also allows us to un-
derstand the effects of stochastic volatility on the model-predicted factor loadings (remember that
stochastic volatility is inconsequential for the test when modeling volatility in a linear framework).

Below we derive the model-predicted factor loadings in the exponential-affine model for volatility
when the conditional variance of the factors is assumed to be proportional to the one-period price
(the VIX), capturing the intuition that as the VIX increases, future fluctuations in variance will
be more pronounced:

V art(Ht+1) = ΓtΓ
′
t = ΓΓ′σ2

t

with:
σ2
t = a ∗ f1,t

for a > 0 a proportionality constant. In this model, the loadings of log forward prices ft,n on
the factors follow:

b1 = 1′ρ+
1

2
a(1′ΓΓ′1)1′ρ

bn+1 = b′nρ+
1

2
a(b′nΓΓ′bn)1′ρ

Given that empirically a > 0 (the volatility of volatility increases when the VIX is high),
it immediately follows that the heteroskedasticity adjustment will slow down the decay of factor
loadings as the maturity increases. Potentially, this effect can generate higher factor loadings at
higher maturities under the null, thus reducing the heteroskedasticity-corrected variance ratios. It
is therefore important to quantify the magnitude of this adjustment.

Below we discuss in detail how the adjustment term at each maturity n, 1
2a(bnΣΣb′n)1′ρ, can be

estimated by regressing the conditional variance of ft,n on f1,t. We can then use these estimated
adjustment terms to study how the factor loadings bn change once we account for heteroskedasticity.
Figure A19 reports the loadings of log cumulative variance swap prices, pt,n, onto the first two
prices, in the null model with and without heteroskedasticity adjustment, as well as the unrestricted
loadings. The figure shows that quantitatively the heteroskedasticity adjustment has only a minor
effect on the loadings on the two factors.

44To construct the log prices of variance forwards, we interpolate the variance swap curve using a cubic
spline. Our original test on variance swaps does not require any interpolation, but working with forwards
does. The results of Figure A18 are robust to different methods of interpolation.
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Figure A19: Variance Swap Loadings (Homoskedastic vs Heteroskedastic
model)
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D.3.1 Derivation and Estimation

We consider here the case of forward claims on a cash flow exp{xt}, where xt is linear in the factors.
Assume that P dynamics follow:

Ht+1 = c+ ρPHt + Γtεt+1

xt = δ0 + 1′Ht

The one-period stochastic discount factor follows:

Mt,t+1 = exp(−rt −
1

2
λ′tλt − λ′tεt+1)

where the vector λt captures the time-varying prices of risk of the different shocks.
The term Γt captures stochastic conditional volatility of the factors; we specify the exact as-

sumptions about the dependence of Γt on time-t information below.
For any forward asset on a cash flow xt, with maturity n+ 1, we have the recursive equation:

ft,n+1 = Et[exp{−rt −
1

2
λ′tλt − λ′tεt+1}ft+1,n]

(where the expectation Et is under the physical measure).
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Now, we conjecture that the forward price is an exponentially-affine function of the factors:

ft,n+1 = exp{an+1 + bn+1Ht}

Taking logs:

an+1 + bn+1Ht = lnEt[exp{−rt −
1

2
λ′tλt − λ′tεt+1 + an + bnHt+1}]

= lnEt[exp{−rt −
1

2
λ′tλt − λ′tεt+1 + an + bn(c+ ρPHt + Γtεt+1)}]

= −rt −
1

2
λ′tλt + an + bn(c+ ρPHt) +

1

2
Vt((−λ′t + bnΓt)εt+1)

= −rt −
1

2
λ′tλt + an + bn(c+ ρPHt) +

1

2
λ′tλt +

1

2
bnΓtΓtb

′
n − b′nΓtλt

= −rt + an + bnc+ bnρ
PHt +

1

2
bnΓtΓtb

′
n − b′nΓtλt

For the very first maturity (i.e. ft,1), we have:

a1 + b1Ht = lnEt exp{−rt −
1

2
λ′tλt − λ′tεt+1 + xt+1}}

= lnEt exp{−rt −
1

2
λ′tλt − λ′tεt+1 + δ0 + 1′[c+ ρPHt + Γtεt+1]}}

= −rt + δ0 + 1′c+ 1′ρPHt +
1

2
1′ΓtΓ

′
t1− 1′Γtλt

In both expressions for n = 1 and for n > 1, we have the terms ΓtΓ
′
t and Γλt that are functions

of time-t information. To find an exponentially-affine solution, these terms need to be linear in the
factors. Following the term structure literature, we assume that ΓtΓ

′
t is linear in Ht (which makes

the term bnΓtΓtb
′
n also linear in Ht). In particular, we assume that:

Vt(Ht+1) = ΓtΓ
′
t = ΓΓ′σ2

t

with:
σ2
t = a ∗ f1,t

for some a > 0.
λt is assumed to follow:

λt = Γ−1
t Γ(λ+ ΛHt)

This makes the term Σtλt also linear in Ht. In addition, if the risk-free rate is rt = a0 + a1Ht, the
term a1 would also enter the recursion for bn. In what follows, we ignore risk-free rate variation as
it plays a minor role in the pricing of variance swaps.

We can rewrite the expressions under Q, using the same normalizations we have used in our
main analysis: ρ ≡ ρP−ΓΛ (the VAR companion matrix under Q) is diagonal, and cQ ≡ c−λΓ = 0.
We can then rewrite the expressions as:

an+1 + bn+1Ht = an + bnc+ bnρ
PHt +

1

2
bnΓΓσ2

t b
′
n − b′nΓ(λ+ ΛHt)

a1 + b1Ht = δ0 + 1′c+ 1′ρPHt +
1

2
1′ΓΓ′σ2

t 1− 1′Γ(λ+ ΛHt)
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or:

an+1 + bn+1Ht = an + bnρHt +
1

2
bnΓΓb′nσ

2
t

a1 + b1Ht = δ0 + 1′ρHt +
1

2
1′ΓΓ′1σ2

t

Now, recall that σ2
t = a ∗ f1,t = a1′ρHt. The expressions then become:

an+1 + bn+1Ht = an + bnρHt +
1

2
bnΓΓb′n(a1′ρHt)

a1 + b1Ht = δ0 + 1′ρHt +
1

2
1′ΓΓ′1(a1′ρHt)

We can now match coefficients on Ht, and obtain:

b1 = 1ρ+
1

2
1′ΓΓ′1(a1′ρ)

bn+1 = bnρ+
1

2
b′nΓΓbn(a1′ρ)

To learn about the magnitude of the coefficient adjustments 1
21
′ΓΓ′1(a1′ρ) and 1

2b
′
nΓΓbn(a1′ρ),

we proceed as follows. First, note that the conditional variance of the log cash flow in the model is
(up to a constant):

Vt(xt+1) = 1′ΓΓ′1(a1′ρHt) = 1′ΓΓ′1aft,1

Therefore, regressing Vt(xt+1) onto ft,1 would yield an estimate of the term 1′ΓΓ′1a. This would al-
low us to estimate the heteroskedasticity adjustment for b1. Next, consider the conditional variance
of the first log price (from the left-hand side of the equations above):

Vt(ft+1,1) = b′1ΓtΓtb1 = b′1ΓΓb1aft,1

The regression coefficient of Vt(ft+1,1) onto ft,1 yields an estimate of b′1ΓΓb1a, which we can use
to adjust the coefficient b2 for the effects of conditional volatility. Continuing the recursion, this
allows us to compute the adjustment for all maturities.

Two final notes on the implementation. First, the most natural way to implement the condi-
tional variance regression is to regress the monthly realized volatility of each variable (xt, ft,1, ft,2,
and so on, computed as the sum of changes in log prices during the month). While we don’t observe
high-frequency data on realized volatility xt within a month, we can use the realized volatility of
ft,1 as a proxy. Second, log realized volatilities for maturities above 12 are very noisy, due to the
interpolation-induced errors. We therefore apply the regression coefficients estimated for maturity
12 to all higher maturities. This procedure is conservative because the coefficients of this regression
appear to be strongly decreasing with maturity (so after maturity 12 they should be even lower
than those observed at maturity 12); in addition, the theory predicts that they should be decreasing
as maturity increases, since the overall volatility of forwards should converge to zero as maturities
increase.

As a robustness test, we also compute the volatility adjustments by using the the month-to-
month squared change in price as left-hand side variable as opposed to the within-month realized
volatility. The results are essentially identical.
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D.4 Measurement Error

In the theoretical setting of Section 2, the prices derived in Equations (7) and (10) show that the
value of a claim at any maturity is representable as an exact, error-free linear function of prices of
claims at other points on the term structure.

As Piazzesi (2010) notes, observed prices may not perfectly represent the theoretical expecta-
tions of investors, but instead may also include “measurement errors” that arise from data entry
errors, building price series from multiple (and potentially asynchronous) data sources, vendors that
interpolate data to fill in missing prices, etc. In the context of US treasury yields, Cochrane and
Piazzesi (2005) find evidence indicating that the data indeed contain patterns that are a signature
of measurement error.

Measurement error potentially influences our parameter estimates and test statistics. While
in our setup measurement error at all maturities above K is explicitly incorporated (and thus
the standard errors of our test correctly account for it), we assume that maturities 1, ...,K are
observed without error. This is not an unreasonable assumption because for many term structures
we consider, short maturity claims are indeed the most liquid.

If, however, maturities 1, ...,K are subject to measurement error, the regression that extracts
the matrix ρ will suffer from attenuation bias, and this affects our variance ratio test. We address
this in two ways. First, we show that for reasonable values for the magnitude of measurement
error, the distortion relative to the model without measurement error is minimal. Second, we use
errors-in-variables methods to conduct tests that are robust to measurement error. The resulting
tests produce nearly identical findings to those in Section 3, indicating that measurement error is
not responsible for the long maturity excess volatility that we document.

More formally, we use a tilde to represent error-ridden observable prices45

f̃t,j = ft,j + vt,j , j = 1, ..., N.

The variance ratio test in Equation (14) depends on coefficient estimates in restricted and unre-
stricted projections of the error-free long maturity price ft,K+j onto error-free short-maturity prices
Ft,1:K .46 When the error-free projections are infeasible due to noise in prices, consistency of the
variance ratio test faces two obstacles. First, we require a consistent estimate of the unrestricted
coefficient based on noisy data f̃t,K+j and F̃1:K (in analogy with Equation (12)) in order to calcu-
late the numerator of the variance ratio. Second, we need a consistent estimate of the restricted
coefficient to construct the denominator of the variance ratio (which relies on b in Equation (8))
but that is based on the noisy short-end prices f̃t,K+1 and F̃1:K .

To understand the magnitude of the measurement error problem, we look at term structures
for which we have information about the bid-ask spread—for variance swaps and Treasuries. A
reasonable calibration for the standard deviation of the measurement error is the bid-ask spread
itself (0.3 annualized volatility points for short maturity variance swaps, and 1bp for short maturity
Treasury bond yields). First, we add iid measurement error of this magnitude to the actual data,
and recompute the variance ratios (top row of Figure A20). For both variance swaps and Treasuries,
the addition of measurement error has tiny effects on the observed variance ratios.

45Piazzesi (2010), in Section 6, gives an excellent overview of model specification choices when affine term
structures are subject to measurement error. If we assume, as is often the case in affine models, that the
first K prices are perfectly observed and only maturities K + 1 to N are subject to errors, then our baseline
estimator in Section 2 remains consistent, and p-values of our test retain appropriate size due to our bootstrap
standard errors.

46The specific form of the weighting matrix, which take the value Σ̂1:K Equation (14), appears in both
the numerator and denominator and is thus not crucial for consistency of the test.
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Figure A20: Calibration of Measurement error
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(b) Adding m.e. to the data: Treasuries
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(c) Adding m.e. to no-arb model: VS
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(d) Adding m.e. to no-arb model: Treasuries
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Second, we use the data to construct term structure prices that exactly satisfy the affine model
form. To do this, we estimate the model from the short end of each curve and construct the new
dataset using the fitted prices from the model. In this artificial dataset, prices at all maturities are
fully consistent with the short end, and variance ratios are one at all maturities. Next, we add iid
measurement error to this artificial dataset, re-estimate the model, and calculate variance ratios.
Now, the extent to which variance ratios differ from one is due entirely to measurement error. The
bottom row shows the results for variance swaps and Treasuries, again confirming the small effect
of measurement error on our variance ratio test.

We can use the same procedure to calibrate how large measurement error is needed to generate
the variance ratios we see in the data. For variance swaps, we need measurement error with
standard deviation of more than 2 volatility points, i.e. 7 times the bid-ask spread at the short
end of the curve. For Treasuries, we need measurement error with standard deviation of at least
10bp, 10 times the average bid-ask spread of short-maturity bonds. These results show that in both
markets, we need unrealistic measurement error to produce variance ratios as high as we document.

Next, we describe an instrumental-variable correction for measurement error. Instrumental
variables (IV) methods are a common means of consistently estimating a regression coefficient
when the independent variable is observed with error. For example, suppose the affine model has
a single factor and the errors are uncorrelated across maturities. In this case, b is consistently
estimated by an IV regression of f̃t,2 on f̃t,1, using any other price f̃t,j at maturity j > 2. If the

71



Figure A21: Instrumental Variables Adjustment for Measurement Error
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(b) Variance swaps (instr. S&P 500 IV)
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(c) Russia CDS (instr. Brazil CDS)
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errors are uncorrelated across maturities, f̃t,j is a valid instrument for the noisy dependent variable
f̃t,1. By the same rationale, the unrestricted long-end projection coefficient can be consistently
estimated as well. Given consistent estimates of b and the long maturity unrestricted coefficient,
the variance ratio test will be consistent. The only qualitative difference versus Equation (14) is
that the weighting matrix will be replaced with an estimate of short maturity noisy price variance,
V ar(F̃t,1:K).

In practice, however, it is quite likely that measurement errors are correlated across maturities,
so the strategy of instrumenting with other maturities in the same term structure fails to satisfy the
exclusion restriction. It is less likely that measurement errors would be correlated across different
term structures. We therefore use prices from different but related term structures as instruments
to help resolve potential inference problems due to errors-in-variables bias.

As a first example, we revisit the two-factor affine model for the term structure of Apple’s
variance claims studied in Figure 4. If prices are measured with error, then we must instrument
the regressions of f̃Apple

t,j on F̃Apple
t,1:2 (for j = 3, ..., 24). As instruments, we use short-end prices of

claims to IBM variance, F̃ IBM
t,1:2 . This approach is valid under the conditions that true, error-free

short prices FApple
t,1:2 and F IBM

t,1:2 are correlated between the different term structures but the errors

vApple
t,1:2 and vIBM

t,1:2 ) = 0 are not. Indeed, the volatility of individual stocks tend to exhibit strong
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cross correlation,47 but there is no obvious reason to suspect that errors in the measurement of
their prices are correlated.

The variance ratio test results for this example are plotted in the left panel of Figure A21.
Test statistics based on the IV adjustment are nearly identical to those in the baseline estimation.
The same is true if we instrument the variance swap term structure tests using implied volatilities
of the S&P 500 options (second panel), and if we instrument the Russian CDS term structure
with Brazilian CDS spreads (third panel). In all cases, values of instrumented test statistics are
quantitatively similar to those in Section 3, suggesting that our main findings cannot be explained
by measurement error.48

E Data Details and Asset-specific Modeling Consider-

ations

In this section we show how each asset class considered maps into our linear or loglinear framework.

E.1 Variance Swaps and Related Variance Derivatives

As discussed in the text, the price of a variance swap follows:49

pt,n = EQ
t

 n∑
j=1

RVt+j


We then model RVt as a linear function of the factors, which immediately yields:

pt,n = an + b′nHt (28)

An attractive feature of the simple payoff structure of variance swaps is that dependence of
prices on factors, b′nHt, is robust to many modifications of the factor model. For example, because
the swap price is the expected value of the level of RVt, having both prices and payoffs linear in
the factors no longer requires Gaussianity. Any shock distribution with constant means implies the
pricing structure in (28).

One important consideration to keep in mind is that because variances are non-negative, a
homoskedastic linear Gaussian model is an imperfect description of RVt. Stochastic variance is
a standard feature in the bond and option pricing literatures, and a number of solutions exist
that ensure positive variances. The most common solution is to use a CIR volatility process. In
these models, the model innovations remain standard normal, but are multiplied by a volatility
that scales with the factors (and hence with the level of volatility). The modified model takes the

47See Kelly, Lustig and Van Nieuwerburgh (2013) and Herskovic et al. (2014).
48In the case of Russian CDS, the standard errors of the instrumented statistics are much larger than our

estimates based on OLS, which is likely due to the fact that Russian and Brazilian CDS spreads share a
much lower correlation than, for example, Apple and IBM implied volatilities.

49We ignore risk-free rate variation, since its volatility and correlation with the variance swap payoff are
small, following Ait-Sahalia, Karaman and Mancini (2015), Egloff, Leippold and Wu (2010), Dew-Becker
et al. (2015).
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general form50

Ht = ρHt−1 + Σt−1ut

where Σt−1 is a constant function of Ht−1. When the model is specified at a high enough frequency
(going to continuous time in the limit), and assuming appropriate Feller conditions for the model
parameters (see Dai and Singleton (2002)), the probability of variance going below zero tends to
zero.

Note that this stochastic volatility case only affects the scale of the innovation ut. Therefore,
the expected level payoff in is unaffected, hence equation (28) is also unaffected. Different versions
of this model are applied by Ait-Sahalia, Karaman and Mancini (2015), Egloff, Leippold and Wu
(2010), Dew-Becker et al. (2015).

As discussed in the text, in some of our tests we take ATM implied variance as a proxy for the
risk-neutral expected variance. This is motivated by the theoretical result of Carr and Lee (2009)
who show that to a first-order approximation, ATM implied volatility corresponds to the price of a
volatility swap (a claim to realized volatility). Perhaps more importantly, our use of ATM is also
motivated by practical considerations. ATM volatility is more widely available, especially for long
dated options, because it only requires one ATM option price to construct. The synthetic variance
swap price, VIX2, can be calculated for all of our option term structures but is less stable than
ATM implied volatility due to its reliance on OTM option prices, of which fewer are available at
long maturities.

Our variance swap data comes from two industry sources, both described in Dew-Becker et al.
(2015). Our implied variance series are obtained from Optionmetrics (equity derivatives) and JP
Morgan (currency IV).

Our analysis of the term structure of ATM implied variance uses the same model as for variance
swaps, but sets pt,n = IV n

t , where IV n
t is the n-maturity option-implied variance. To construct

implied variances at constant monthly maturities from observed options (whose maturities are fixed
in calendar time), we linearly interpolate the implied volatilities.

As a robustness check, we also construct the term structure of the VIX using option prices,
following the SVI fitting procedure described in Dew-Becker et al. (2015). Note that we need
to both interpolate and extrapolate the implied volatility curve (using the SVI model), and the
relative scarcity of out-of-the-money options at long maturities can result in noisy VIX estimates.
Also, for some of our options sample, there are not enough OTM options available to estimate the
VIX at maturities above one year. We report the results using sample dates where the entire term
structure up to 18 months is observed (for all contracts, we have between 1,000 and 2,000 days
that can be used for estimation). Figure A22 shows that the variance ratios for the term structure
of the VIX behave very similarly to the ones constructed for implied volatilities (Figure 4), though
with larger confidence intervals.

E.2 Treasuries

Our development of the exponential-affine model for interest rates follows Hamilton and Wu (2012),
who study the class of Gaussian affine term structure models developed by Vasicek (1977), Duffie,
Kan et al. (1996), Dai and Singleton (2002), and Duffee (2002), and studied by many others.

In the Gaussian affine term structure model, bonds are claims on short-term interest rates.
One-period log risk-free rate xt is a linear function of the factors with factor dynamics under the

50For infinitesimal time intervals, the variance may be constructed to maintain strictly positive variance
while retaining the Gaussianity of factor innovations, ut. In discrete time, this heteroskedastic Gaussian
process does not perfectly rule out negative variances, but may be constructed to do so with probability
arbitrarily close to one.
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Figure A22: VIX term structure
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(b) Citigroup IV
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(c) IBM IV
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(d) S&P 500 IV
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pricing measure described by a VAR, just as in our main set-up. The price of a risk-free bond that
pays $1 after n periods is

Pt,n = EQ

exp

− n∑
j=1

xt+j

 . (29)

We assume that factor shocks are homoskedastic Σt = Σ following Hamilton and Wu (2012), which
implies that the log bond price is

pt,n ≡ logPt,n = an + bnHt.

The factor loading depends only on the persistence of the factors:

bn = 1′(I + ρ+ ...+ (ρ)n−1). (30)

The intercept is an inconsequential constant function of remaining model parameters, and drops
out from all variance calculations.

We conclude by reporting the estimates of ρ obtained by regressions of prices for contiguous
maturities at different points in the term structure. The figure shows that for U.S. treasuries,the
estimated persistence is stable along the entire term structure.
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Figure A23: Q-persistence Estimated Along the Term Structure of Treasuries
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E.3 Credit Default Swaps

To model CDS spreads, we apply the reduced-form modeling of Duffie and Singleton (1999), in
which the price of a defaultable bond is written in terms of a default intensity process λt and a
process of loss given default Lt. The precise relationship between the price of the bond at time t,
Pt, and the processes for λt and Lt does not directly map into our general framework of Section 2.

However, Duffie and Singleton (1999) show that under the assumption of fractional recovery of
market value in case of default, the price of a defaultable zero-coupon bond can be written as:

Pt,n = EQ
t

[
exp(−

ˆ n

t
Rsds)

]
with

Rs = rs + λsLs

where λt is the default intensity and Lt the loss given default. The defaultable bond can be modeled
as a default-free bond with a default-adjusted interest rate. We assume that: 1. rs and λsLs are
linear in the factors; 2. underlying factors are homoskedastic; and 3. coupons on the underlying
defaultable bonds are small enough (relative to the default-adjusted interest rate) so that the yield
of an n-maturity defaultable bond with coupon is close to an n-maturity zero-coupon defaultable

76



bond. We can then write:

pt,n = log(Pt,n) = −nynt = (anr + anλL) + (bnr + bnλL)Ht

while for the default-free bond (with log yield yF ) we have:

−nynF,t = anr + bnrHt

To link the bond price to the observed CDS spread, we start from the approximate bond-CDS
basis relation, that states

Znt ' Y n
t − Y n

F,t

i.e. the CDS spread Znt with maturity n is approximately equal to the yield of the bond Y n
t of that

maturity in excess of the corresponding risk-free rate Y n
F with the same maturity.

Given that both Y n
t and Y n

F,t are close to zero, we can write the yield spread to a first-order
approximation as:

Y n
t − Y n

F,t ' log(1 + Y n
t )− log(1 + Y n

F,t) = ynt − ynF,t
so that:

nZnt ' n(ynt − ynF,t) = −anλL − bnλLHt

This representation allows us to focus on the cross-section of CDS spreads stripped of the
risk-free rate dynamics, which will highlight the factor structure in default risk.

E.4 Inflation Swaps

Inflation swaps are claims to future inflation where the the buyer commits to pay a predetermined
amount (1+pt,n)n−1 and receives [I(t+n)/I(t)]−1, where I(t) is the price level index. Risk-neutral
pricing implies:

(1 + pt,n)n − 1 = EQ
t

[
I(t+ n)

I(t)
− 1

]
Calling πt = ∆lnI(t), and moving to continuous time, we can write:

Pt,n = ept,nn = EQ
t

[
exp(

ˆ t+n

t
πsds)

]
Just as in the case of bonds, we will have that log cumulative prices n · pt,n will be linear in the
factors:

n · pt,n = an + bnHt

E.5 Commodity Futures

Call Ft,n the price of a future with maturity n. As in Duffie (2010) and Casassus and Collin-Dufresne
(2005), if St is the value of the underlying at time t, we have:

Ft,n = EQt [St+n]

Now, if Xt = log(St), then we have:

Ft,n = EQt [exp{Xt+n}]
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We can rewrite Xt as:

Xt+n = Xt +

n∑
s=1

xt+s

with
xt = ∆Xt

We may model these growth rates as functions of latent factors, so that:

xt = δ′1Ht

Ft,n = EQt [exp{Xt +
n∑
s=1

xt+s}]

We can therefore rewrite:
Ft,n
St

= EQt [exp{
n∑
s=1

xt+s}]

which therefore has the standard affine form. Note also that we can rewrite the expression for the
futures without reference to the underlying, rescaling each future by the price of the first-maturity
future:

Ft,1 = StE
Q
t [exp{xt+1}]

so that:
Ft,n
Ft,1

=
EQt [exp{

∑n
s=1 xt+s}]

EQt [exp{xt+1}]
' EQt [exp{

n∑
s=2

xt+s}]

This expression maps directly into our exponential-affine framework.
Note finally that given the futures have fixed calendar time expiration dates, we linearly inter-

polate log future prices to obtain constant-maturity prices with monthly maturities.

F Missing Factors: Empirical Evidence

Table A8 reports robustness checks varying the number of factors, K. For each term structure, the
middle number of factors is the number used in our baseline analysis. We compare these results
to tests that include one additional or one less factor. For each choice of K we report the term
structure panel R2 along with variance ratios and their bootstrap p-values at various maturities.

Table A8: Robustness to Varying the Number of Factors

K Mat. V R p-value R2 K Mat. V R p-value R2

Variance Swaps Apple IV
2 24 4.30 0.00 0.988 1 3 1.10 0.00 0.967
2 48 9.83 0.00 0.988 1 6 1.55 0.00 0.967
2 60 11.68 0.00 0.988 1 12 3.17 0.00 0.967
2 120 11.24 0.04 0.988 1 18 5.44 0.00 0.967
3 24 3.67 0.02 0.999 2 3 1.00 0.33 0.994
3 48 8.39 0.01 0.999 2 6 1.09 0.00 0.994
3 60 9.99 0.02 0.999 2 12 1.60 0.00 0.994
3 120 10.03 0.09 0.999 2 18 2.37 0.00 0.994
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4 24 1.24 0.76 0.999 3 3 1.00 1.00 0.999
4 48 1.97 0.60 0.999 3 6 1.16 0.00 0.999
4 60 2.26 0.55 0.999 3 12 1.91 0.00 0.999
4 120 2.88 0.49 0.999 3 18 3.04 0.00 0.999

Citigroup IV IBM IV
1 3 0.95 1.00 0.982 1 3 1.15 0.00 0.973
1 6 0.88 1.00 0.982 1 6 1.87 0.00 0.973
1 12 1.33 0.00 0.982 1 12 4.52 0.00 0.973
1 18 2.18 0.00 0.982 1 18 8.05 0.00 0.973
2 3 1.00 0.62 0.998 2 3 1.00 0.94 0.997
2 6 1.08 0.00 0.998 2 6 1.08 0.00 0.997
2 12 1.98 0.00 0.998 2 12 1.60 0.00 0.997
2 18 3.51 0.00 0.998 2 18 2.34 0.00 0.997
3 3 1.00 0.00 0.999 3 3 1.00 0.00 0.999
3 6 1.02 0.00 0.999 3 6 1.05 0.00 0.999
3 12 1.61 0.00 0.999 3 12 1.48 0.00 0.999
3 18 2.64 0.00 0.999 3 18 2.10 0.00 0.999

S&P 500 NASDAQ IV
1 3 1.21 0.00 0.961 1 3 1.10 0.00 0.986
1 6 2.05 0.00 0.961 1 6 1.48 0.00 0.986
1 12 5.07 0.00 0.961 1 12 2.70 0.00 0.986
1 18 9.03 0.00 0.961 1 18 4.46 0.00 0.986
2 3 1.00 0.18 0.995 2 3 1.00 0.96 0.998
2 6 0.97 0.95 0.995 2 6 0.98 0.97 0.998
2 12 1.20 0.00 0.995 2 12 1.01 0.41 0.998
2 18 1.60 0.00 0.995 2 18 1.10 0.04 0.998
3 3 1.00 1.00 0.998 3 3 1.00 0.00 1.000
3 6 0.98 0.99 0.998 3 6 1.03 0.00 1.000
3 12 1.23 0.03 0.998 3 12 1.22 0.00 1.000
3 18 1.68 0.01 0.998 3 18 1.51 0.00 1.000

Stoxx 50 IV FTSE 100 IV
1 12 1.24 0.00 0.964 1 12 1.06 0.09 0.970
1 18 1.65 0.00 0.964 1 18 1.23 0.00 0.970
1 24 1.99 0.00 0.964 1 24 1.47 0.00 0.970
1 30 2.67 0.00 0.964 1 30 1.87 0.00 0.970
2 12 1.01 0.39 0.998 2 12 1.58 0.00 0.998
2 18 1.22 0.00 0.998 2 18 2.40 0.00 0.998
2 24 1.42 0.00 0.998 2 24 3.42 0.00 0.998
2 30 1.84 0.00 0.998 2 30 4.81 0.00 0.998
3 12 0.92 0.97 0.999 3 12 1.39 0.00 0.999
3 18 1.07 0.09 0.999 3 18 1.60 0.00 0.999
3 24 1.26 0.00 0.999 3 24 1.89 0.00 0.999
3 30 1.68 0.00 0.999 3 30 2.41 0.00 0.999

DAX IV GBP/USD IV
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1 12 1.22 0.00 0.976 1 3 1.04 0.08 0.970
1 18 1.64 0.00 0.976 1 6 1.35 0.00 0.970
1 24 2.08 0.00 0.976 1 12 2.59 0.00 0.970
1 30 2.79 0.00 0.976 1 24 8.04 0.00 0.970
2 12 1.05 0.10 0.999 2 3 1.00 0.62 0.998
2 18 1.30 0.00 0.999 2 6 1.10 0.00 0.998
2 24 1.57 0.00 0.999 2 12 1.54 0.00 0.998
2 30 2.03 0.00 0.999 2 24 3.34 0.00 0.998
3 12 1.04 0.12 0.999 3 3 1.00 1.00 1.000
3 18 1.35 0.00 0.999 3 6 1.01 0.00 1.000
3 24 1.73 0.00 0.999 3 12 1.11 0.00 1.000
3 30 2.36 0.00 0.999 3 24 1.55 0.00 1.000

GBP/JPY IV USD/CHF IV
1 3 1.07 0.02 0.952 1 3 1.01 0.30 0.956
1 6 1.70 0.00 0.952 1 6 1.19 0.01 0.956
1 12 4.14 0.00 0.952 1 12 1.91 0.00 0.956
1 24 13.02 0.00 0.952 1 24 4.65 0.00 0.956
2 3 1.00 0.81 0.997 2 3 1.00 0.66 0.996
2 6 1.11 0.00 0.997 2 6 1.12 0.00 0.996
2 12 1.49 0.00 0.997 2 12 1.68 0.00 0.996
2 24 2.83 0.00 0.997 2 24 3.68 0.00 0.996
3 3 1.00 0.00 1.000 3 3 1.00 1.00 0.999
3 6 1.02 0.00 1.000 3 6 1.01 0.00 0.999
3 12 1.10 0.00 1.000 3 12 1.18 0.00 0.999
3 24 1.42 0.00 1.000 3 24 1.82 0.00 0.999

Treasuries BofA CDS
1 5 0.94 0.75 0.985 1 5 1.09 0.25 0.948
1 7 0.92 0.69 0.985 1 7 1.21 0.18 0.948
1 10 0.93 0.60 0.985 1 10 1.51 0.09 0.948
1 15 1.05 0.45 0.985 1 15 2.70 0.01 0.948
2 5 1.02 0.00 0.999 2 5 1.06 0.00 0.995
2 7 1.08 0.00 0.999 2 7 1.11 0.00 0.995
2 10 1.23 0.00 0.999 2 10 1.32 0.00 0.995
2 15 1.66 0.00 0.999 2 15 2.12 0.00 0.995
3 5 1.00 0.09 1.000 3 5 0.99 0.91 0.999
3 7 1.01 0.02 1.000 3 7 0.96 0.98 0.999
3 10 1.05 0.01 1.000 3 10 0.97 0.73 0.999
3 15 1.22 0.00 1.000 3 15 1.19 0.06 0.999

Morgan Stanley CDS JPM CDS
1 5 1.70 0.00 0.960 2 5 0.99 0.57 0.985
1 7 2.32 0.00 0.960 2 7 0.83 1.00 0.985
1 10 3.51 0.00 0.960 2 10 0.82 0.93 0.985
1 15 7.12 0.00 0.960 2 15 1.06 0.38 0.985
2 5 1.10 0.00 0.995 3 5 0.95 0.98 0.997
2 7 1.23 0.00 0.995 3 7 0.74 1.00 0.997
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2 10 1.56 0.00 0.995 3 10 0.67 1.00 0.997
2 15 2.76 0.00 0.995 3 15 0.79 0.67 0.997
3 5 0.99 0.93 0.999 4 5 0.97 0.96 0.999
3 7 0.99 0.83 0.999 4 7 0.82 0.99 0.999
3 10 1.07 0.06 0.999 4 10 0.85 0.58 0.999
3 15 1.55 0.00 0.999 4 15 1.27 0.19 0.999

Italy CDS Russia CDS
1 10 0.79 0.94 0.972 1 10 1.77 0.00 0.981
1 15 0.75 0.97 0.972 1 15 3.22 0.00 0.981
1 20 0.73 0.98 0.972 1 20 5.49 0.00 0.981
1 30 0.71 0.98 0.972 1 30 11.77 0.00 0.981
2 10 1.20 0.00 0.998 2 10 2.03 0.00 0.998
2 15 1.90 0.00 0.998 2 15 3.88 0.00 0.998
2 20 2.99 0.00 0.998 2 20 6.79 0.00 0.998
2 30 6.21 0.00 0.998 2 30 14.78 0.00 0.998
3 10 1.64 0.01 1.000 3 10 1.78 0.00 1.000
3 15 2.80 0.01 1.000 3 15 3.13 0.00 1.000
3 20 4.48 0.01 1.000 3 20 5.25 0.00 1.000
3 30 9.34 0.00 1.000 3 30 11.12 0.00 1.000

Brazil CDS Inflation Swaps
1 10 1.14 0.70 0.963 3 10 1.14 0.11 0.988
1 15 1.13 0.73 0.963 3 15 2.01 0.00 0.988
1 20 1.14 0.71 0.963 3 20 3.73 0.00 0.988
1 30 1.16 0.69 0.963 3 30 8.17 0.00 0.988
2 10 2.28 0.00 0.997 4 10 0.88 0.99 0.994
2 15 4.49 0.00 0.997 4 15 1.51 0.00 0.994
2 20 7.78 0.00 0.997 4 20 2.79 0.00 0.994
2 30 17.62 0.00 0.997 4 30 6.10 0.00 0.994
3 10 1.11 0.09 0.999 5 10 1.00 0.62 0.997
3 15 1.37 0.05 0.999 5 15 1.77 0.00 0.997
3 20 1.72 0.03 0.999 5 20 3.27 0.00 0.997
3 30 2.73 0.01 0.999 5 30 7.12 0.00 0.997

Note. For each term structure, the table reports the variance ratio test and a p-value for the one-sided

test that variance ratio is greater than 1. Each panel reports the test for a different number of factors (first

column) and at a different maturity (second column). The table also reports the panel R2, computed as the

fraction of the total variation explained by the first K principal components.

G Additional Simulations of Non-affine Models

This appendix present results when from applying our variance ratio tests to additional non-affine
term structure. Table A9 extends the analysis of non-linear logistic STAR model to allow for
heteroskedastic shocks. The specifications are identical to those in Table 2 and the shocks share
the same the unconditional shock variance. In Table A9, however, the shocks follow a GARCH(1,1)
process with parameters of α = 0.05 and β = 0.90. The results and conclusions from Table 2 are
unaffected by the presence of heteroskedasticity.
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Table A9: Non-linear Specification with Heteroskedasticity

ρ=0.01 ρ=0.10 ρ=0.25
γ K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

0.1 1.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 3.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00

0.5 1.0 99.0 1.10 1.21 99.8 1.03 1.04 100.0 1.00 1.00
0.5 2.0 100.0 0.97 0.94 100.0 1.00 1.00 100.0 1.00 1.00
0.5 3.0 100.0 0.99 0.99 100.0 1.01 1.01 100.0 1.00 1.00

1.0 1.0 99.8 1.02 1.05 99.7 1.05 1.07 99.9 1.00 1.00
1.0 2.0 100.0 1.00 1.01 100.0 0.99 0.98 100.0 1.00 1.00
1.0 3.0 100.0 0.99 0.98 100.0 0.99 0.99 100.0 1.00 1.00

5.0 1.0 99.9 1.01 1.01 99.9 1.01 1.02 100.0 1.00 1.00
5.0 2.0 100.0 1.00 1.00 100.0 0.99 0.98 100.0 1.00 1.00
5.0 3.0 100.0 0.99 0.97 100.0 0.99 0.98 100.0 1.00 1.00

Note. Variance ratios and R2 computed in simulations of a logistic STAR model with parameters γ and

ρ. Shocks are GARCH(1,1) with parameters α = 0.05 and β = 0.90, and with an unconditional standard

deviation of one. K is the number of factors used in the variance ratio test. V R12 is the variance ratio at 12

months maturity, and V R24 is the test at 24 months.

Next, we analyze the behavior of the variance ratio test for models with more complicated Q-
dynamics. In particular, Table A10 reports results for various processes that additively combine a
non-linear logistic STAR component (as in Section 4.4) and an ARFIMA component (as in Section
4.3). Because these specifications involve richer driving processes that the individual STAR and
ARFIMA analyses in the main text, we allow the estimated affine model to have up to four factors.
Again, this extended analysis does not change our conclusions from the main text.

Finally, we simulate the multifractal model of Calvet and Fisher (2004) for variance, and study
the term structure of variance claims with up to 24 months maturity. We use the same parameter-
ization of the variance process as in Calvet and Fisher (2004). Figure A24 shows that a 2-factor
affine model generates a variance ratio of 1.7 at 24, and adding a third factor brings the variance
ratio down to 1.2.
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Table A10: Non-linear and Long Memory Mixture Models

AR(1)=0.25 AR(1)=0.50 AR(1)=0.75
d K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

Panel A: Non-linear component ρ = 0.01, γ = 0.1
0.10 2 100.0 1.10 1.22 100.0 1.11 1.31 100.0 1.06 1.22
0.10 3 100.0 1.00 1.04 100.0 1.01 1.09 100.0 1.02 1.14
0.10 4 100.0 1.00 1.02 100.0 1.00 1.00 100.0 1.00 1.00

0.20 2 100.0 1.02 1.26 100.0 1.22 1.69 100.0 1.10 1.37
0.20 3 100.0 1.00 1.09 100.0 1.01 1.14 100.0 1.03 1.20
0.20 4 100.0 1.00 1.05 100.0 1.00 0.99 100.0 1.00 1.01

0.40 2 100.0 0.95 0.98 100.0 1.36 2.32 100.0 1.08 1.37
0.40 3 100.0 1.01 1.14 100.0 1.01 1.16 100.0 1.02 1.21
0.40 4 100.0 1.03 1.25 100.0 1.00 0.99 100.0 1.01 1.07

0.49 2 100.0 1.06 1.34 100.0 1.38 2.47 100.0 1.03 1.22
0.49 3 100.0 1.01 1.14 100.0 1.01 1.17 100.0 1.01 1.16
0.49 4 100.0 1.03 1.27 100.0 1.00 0.99 100.0 1.02 1.18

Panel B: Non-linear component ρ = 0.01, γ = 0.5
0.10 2 99.9 1.04 1.16 100.0 1.04 1.16 100.0 1.06 1.22
0.10 3 100.0 1.01 1.09 100.0 1.01 1.07 100.0 1.01 1.10
0.10 4 100.0 1.02 1.13 100.0 1.02 1.13 100.0 1.02 1.11

0.20 2 99.9 1.03 1.14 99.9 1.06 1.21 100.0 1.08 1.28
0.20 3 100.0 1.01 1.10 100.0 1.00 1.07 100.0 1.02 1.13
0.20 4 100.0 1.02 1.13 100.0 1.02 1.13 100.0 1.02 1.13

0.40 2 99.9 1.03 1.17 99.9 1.16 1.53 100.0 1.11 1.47
0.40 3 100.0 1.01 1.13 100.0 1.01 1.13 100.0 1.03 1.24
0.40 4 100.0 1.03 1.19 100.0 1.02 1.16 100.0 1.02 1.18

0.49 2 99.8 1.05 1.25 99.9 1.21 1.74 100.0 1.12 1.55
0.49 3 100.0 1.01 1.15 100.0 1.02 1.19 100.0 1.04 1.27
0.49 4 100.0 1.03 1.24 100.0 1.02 1.13 100.0 1.02 1.19

Panel C: Non-linear component ρ = 0.01, γ = 5.0
0.10 2 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.01 1.02
0.10 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 0.99
0.10 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

0.20 2 100.0 1.00 0.99 100.0 1.00 1.00 100.0 1.02 1.09
0.20 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 0.99
0.20 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.00

0.40 2 100.0 1.00 0.99 100.0 1.01 1.03 100.0 1.01 1.05
0.40 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.00
0.40 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

0.49 2 100.0 1.00 0.99 100.0 1.03 1.10 100.0 1.00 1.01
0.49 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.01
0.49 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

Note. Variance ratios and R2 computed in simulations of a mixture model that is the sum of ARFIMA(1,d,0)

and logistic STAR(ρ, γ) processes. K is the number of factors used in the variance ratio test. V R12 is the

variance ratio at 12 months maturity, and V R24 is the test at 24 months.
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Figure A24: Multifractal Variance Model
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Note. Simulation of the multifractal volatility model as in Calvet and Fisher (2004), and variance ratio test

with 2 factors (left panel) or 3 factors (right panel). See also Figure 1.

H Example: Transformation of P Model to Q Model

This appendix provides a brief affine example illustrating how the risk-neutral, or Q, measure
representation of a model accounts for any factors that drive time variation in risk premia. First
we analyze a general two-factor affine specification. Then we specialize to the case where cash
flows follow a one-factor model under P, but due to time-varying risk premia, cash flows follow a
two-factor model under Q. For further details, we refer readers to Hamilton and Wu (2012).

Suppose that two factors given by vector Ft drive the physical distribution of the economy
(including both cash flows and risk premia). Assume the P distribution of the factors is

Ft+1 = c+ ρFt + Σut+1

where ut+1 is bivariate standard normal. The claim being priced is an n-period pure discount asset
that has cash flow at maturity of Xt+n (where Xt = exp(δ′Ft)). Preferences are represented by
the stochastic discount factor (SDF) Mt+1, whose behavior depends on factor shocks ut+1 and risk
price λt = ΛFt according to

Mt+1 = exp

(
−1

2
λ
′
tλt − λ′tut+1

)
The claim price is a function of Ft and follows the price recursion

Pt(Ft) = Et[Pt+1(Ft+1)Mt+1] =

ˆ
Pt+1(Ft+1)Mt+1φ(Ft+1;µt,ΣΣ′)dFt+1. (31)

In this example, the physical measure (P) is described by the multivariate normal density function
φ having mean µt = EP

t [Ft+1] and covariance matrix ΣΣ′.
To derive the equivalent “risk-neutral” pricing measure (Q), we rewrite the price as

Pt(Ft) = EQ
t [Pt+1(Ft+1)] (32)

where Mt+1φ(Ft+1;µt,ΣΣ′) is a transformation of the original probability measure into the new
measure Q. Like φ, Mt+1φ is a multivariate normal density. The mean of this density is µQt =
µt−Σλt, and its variance is the same as φ’s. Any claim whose price depends only on the factors Ft
and can be represented by equation 31, can equivalently be represented by equation 32 where there
is no explicit SDF/risk premium adjustment but where the mean of the factors has been additively
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shifted by an amount −Σλt.
Under the original measure P, the dynamics of Ft are linear, i.e.

µt = EtFt+1 = c+ ρFt.

Importantly, the dynamics of Ft under the new measure Q remain linear. Given the form assumed
for λt and the derived equation for µQt , we have

µQt = (c+ Σλ) + (ρ− ΣΛ)Ft.

Also note that the main persistence parameter relevant for term structure pricing is the Q-persistence,
which in this example is

ρQ = ρ− ΣΛ. (33)

H.1 Cash Flows with One Factor Under P, Two Factors Under Q
We now specialize from the preceding example. First, assume that the two factors evolve au-
tonomously, so that ρ is diagonal with elements ρ1 and ρ2, and also assume that the shocks to the
two factors are entirely uncorrelated, so that σ12 = 0. Next, suppose that physical cash flows are
driven only by the first factor,

Xt = exp(F1t)

while risk prices are driven only by the second factor,

λt = F2,t.

Now, the only role of F2t is to describe time variation in the price of risk for the physical cash flow,
Xt—it does not affect Xt’s P-dynamics directly. To summarize,

δ =

[
1
0

]
, Λ =

[
0 1
0 0

]
, ρ =

[
ρ1 0
0 ρ2

]
, and Σ =

[
σ1 0
0 σ2

]
.

The dynamics of Ft under Q are immediate from 33, and the Q-persistence parameter is

ρQ =

[
ρ1 −σ1

0 ρ2

]
.

In other words, under P, cash flows are only driven by the first factor, and this evolves as an
autonomous AR(1) process. But, under Q, the evolution of the first factor is no longer autonomous
(as seen from ρQ) and instead is a VAR(1). So cash flows are a one-factor model under P, but a two-
factor model under Q. The difference stems from the fact that the Q measure incorporates variation
in risk premia, which in this example is represented with an additional cash flow factor in the Q
measure. In our paper, we estimated the dynamics of the Q measure directly, including estimating
the number of factors driving cash flows under Q. In this way, the null models throughout our
analysis allow for any time variation in risk premia that is describable within the affine framework.
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