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1. Introduction 

 A major research initiative in financial economics focuses on the determinants of 

the cross-sectional and time series properties of asset returns. There are two prominent 

classes of asset pricing models with microeconomic foundations that address this issue: 

the CAPM and the consumption CAPM (along with their numerous extensions). These 

models, while theoretically elegant, prove inadequate when confronted with data.1 This 

has led to a third class of largely ad hoc empirical factor models that attempt to connect 

the expected returns on the assets with their ‘betas’.2 While these models invoke some 

version of the arbitrage pricing theory (APT) and the ICAPM (Merton (1973)) for 

theoretical justification, it is not clear that they succeed as asset pricing models, in the 

sense of connecting returns to ‘risk premia’.3 A key abstraction common to these models 

is that information is costless and investors hold fully diversified portfolios. A fourth model 

class, where asset prices are determined by individual preferences and beliefs but where 

investors have incomplete information (and hence hold under diversified portfolios), has 

received less attention. This paradigm has its genesis in the early work of Levy (1978) 

and Mayshar (1979, 1981).  It forms the basis of the asset pricing model proposed by 

Robert Merton in his 1986 presidential address to the American Finance Association. The 

                                                        
1 See, for example, Sharpe (1964), Lintner (1965), Mossin (1966), Black (1972), Rubinstein (1976), Lucas 
(1978), Breeden (1979), and Ross (1976). The list of empirical studies that reject these models is long and 
catalogued in numerous review papers. 
2 Harvey et al. (2015) catalogue 316 anomalies proposed as potential factors in asset-pricing models and 
they note that there are others that do not make their list. 
3 The APT was introduced by Ross(1976) and extended by Huberman (1982), Chamberlain (1983), 
Chamberlain and Rothschild (1983), Connor (1984), Reisman (1988) and Gilles and LeRoy (1991), amongst 
others. 
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central insight of Merton’s model is that when investors hold under diversified portfolios, 

idiosyncratic risk should be priced, leading to a positive premium for bearing idiosyncratic 

risk. This is in sharp contrast to the implications of the CAPM and the CCAPM, which 

are predicated on frictionless markets with no role for idiosyncratic risk. 

In this paper, we modify Merton’s model. Our point of departure is the empirical 

observation that average idiosyncratic volatility varies considerably over time.  This is 

illustrated in Figure 1, which shows average idiosyncratic volatility from July 1931 to 

December 2014.  The figure shows that the variation in average idiosyncratic volatility 

over the entire time series is large.  Even within decades, average idiosyncratic volatility 

can vary significantly.4  Our economic intuition is that since the marginal benefit from 

diversification is likely to be higher in states of the world characterized by high average 

idiosyncratic volatility, the idiosyncratic risk premium should be lower in such periods 

(and vice versa). This is perhaps most obvious in periods like the financial crisis of 2008 

when diversification was especially valuable. The implication is that time series variation 

in average idiosyncratic volatility should lead to a state-dependent risk premium.  In 

contrast to Merton’s original model where the risk premium is positive and constant, in 

our modification, the risk premium varies inversely with the degree of diversification, 

which in turn, varies with average idiosyncratic volatility. This leads to an asset pricing 

                                                        
4 Campbell, Lettau, Malkiel and Xu (2001) argue that average idiosyncratic volatility has increased over 
time, although that conclusion is controversial since much of the attributed increase occurred in the 1990s.  
For our purpose, what matters is not an increase in average idiosyncratic volatility but time series variation 
over an investor's investment horizon.   



 

 
 
 

3 

model where the time series variation in the idiosyncratic risk premium is linked to 

average idiosyncratic volatility. We illustrate this in Figure 2, highlighting the difference 

between Merton’s (1987) formulation and our modification.   

Our aim in the empirical section is to test the implications of the model developed 

in this paper; an additional outcome is that our results shed light on the (mostly empirical) 

idiosyncratic volatility literature. All prior investigations of the Merton model, whether 

re-examining the theory, or its empirical content, ignore time series variation in average 

idiosyncratic volatility.  For instance, Wu et al. (1996) allow for heterogeneous 

expectations and short-sale restrictions, which generate offsetting effects, but remain 

unconditional.  Empirical investigations are far more voluminous.  Most prominent and 

puzzling is Ang et al. (2006, 2009) who find that contrary to Merton’s (1987) prediction, 

there is a negative relation between expected returns and lagged idiosyncratic volatility.  

Fu (2009) questions this result, claiming that it is expected, rather than lagged, 

idiosyncratic volatility that should matter.  He finds a positive relation between 

contemporaneous returns and expected idiosyncratic volatility.  Guo, Kassa and Ferguson 

(2014) point out that Fu’s (2009) findings are driven by a look-ahead bias in his tests, 

and that there is in fact no statistically discernible relation between average returns and 

expected idiosyncratic volatility.   



 

 
 
 

4 

All of these tests, as well as numerous others that seek to understand this 

connection, are unconditional.5  Our formal model says that the premium should be 

positive and for the model to be meaningful, that pricing should be conditional.  If the 

relevant state variable in conditional pricing was persistent, or deviated by small amounts 

in the time series, the economic impact of conditional versus unconditional pricing would 

be empirically unimportant.  Indeed, this is precisely the point that Lewellen and Nagel 

(2006) make with respect to tests of the conditional CAPM – that CAPM betas move so 

slowly that conditional tests are not very different from unconditional tests.  That is 

clearly not the case for idiosyncratic volatility; Figure 1 shows that average idiosyncratic 

volatility varies substantially over time.  Since most existing empirical evidence is based 

on unconditional tests, it cannot be used to draw inferences about our conditional version 

of Merton’s model. 

The most direct way to determine if the model has any traction in the data is to 

ask whether in the cross-section, the risk premium on idiosyncratic risk is positive and 

depends on average idiosyncratic volatility.  We do so by estimating Fama-MacBeth 

regressions of monthly returns on contemporaneous expected idiosyncratic volatility, 

scaled by expected average idiosyncratic volatility.  Scaling by expected average 

idiosyncratic volatility is important from both a theoretical and empirical standpoint.  

                                                        
5 The results in Ang et al. (2006) spawned a large literature attempting to explain this idiosyncratic risk 
“puzzle”.  A partial list of papers includes Bali and Cakici (2008), Chen and Petkova (2012), Duarte et al. 
(2014), Han and Lesmond (2011), Herskovic et al. (2015), Hou and Lo (2016), and Spiegal and Wang (2006).  
Idiosyncratic risk is also often invoked as an impediment to arbitrage.  See Pontiff (2006) for a detailed 
discussion. 
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Conceptually, the scaling variable is not ad hoc and follows directly from our theory – it 

lies at the very heart of the model which says that the marginal benefit of diversification 

is high when expected average idiosyncratic volatility is high.  The fact that the model 

identifies the relevant state variable is a significant advantage, particularly in light of 

Cochrane’s (2001) assertion that the conditional CAPM is technically not testable because 

the econometrician cannot know the “right” state variable.  Empirically, the scaling allows 

us to test the conditional model in a unified framework without resorting to subsample 

tests with limited power.   

In US data from 1931 to 2014, controlling for conditional market betas, the slope 

on expected idiosyncratic volatility scaled by expected average idiosyncratic volatility is 

positive. This is in stark contrast to the unconditional idiosyncratic volatility literature 

which finds a negative slope or no relation between idiosyncratic volatility and expected 

returns. We also estimate similar regressions in markets outside the US.  Since the tests 

require an adequate cross-section and a time series of returns, we restrict our attention to 

Canada, France, Japan and the UK.  In these markets too, the slopes on scaled expected 

idiosyncratic volatility are positive and statistically significant. Overall, the data appear 

to be consistent with a conditional version of Merton (1987) in which the positive premium 

for idiosyncratic risk varies over time with average idiosyncratic risk.   

A natural question that arises is whether the slopes on scaled expected idiosyncratic 

volatility are sensitive to the inclusion of size, momentum, and other empirically 

motivated variables.  Our purpose is to evaluate the theoretical model developed in this 
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paper.  The null hypothesis against which our (and Merton’s) model should be judged is 

the CAPM, not an empirically motivated factor model.  This is because the CAPM 

becomes a special case of our model when information costs go to zero.  One could 

potentially generate any number of variables from the so-called factor zoo that drive out 

a theoretically motivated construction.  Our position is that there is something to be 

learned from the conditional model, even if one can find factors that dominate it 

empirically.  Our results suggest that perhaps it is premature to reject the ideas in Merton 

(1987). 

The paper is organized as follows: in section 2, we present the model, both in 

summary and detail form. Section 3 describes our sample, measurement approach, and 

results.  Section 4 concludes. 

 

2. The Model  

We provide a summary of the model and its intuition below, followed by a formal 

derivation. In the formal derivation, we describe Merton’s (1987) original formulation as 

well as our critical modifications. 

2.1 Model Summary 

Merton (1987) presents a model where investors are under-diversified, the market 

portfolio is not mean – variance efficient, the CAPM does not hold and idiosyncratic risk 

is priced in equilibrium. In this paper we extend the Merton model by making two 

modifications: 
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1. We assume that the fraction of all investors who know about a security is 

proportional to its market value, relative to the value of the market 

portfolio. An intuitively appealing implication of this is that the 

idiosyncratic risk premium varies inversely with the average number of 

securities in an investor’s portfolio. 

2. In addition to the conditions in Merton (1987), we require that, in 

equilibrium, there is no incentive for investors to further diversify. We 

achieve this by imposing the condition that the marginal increase in utility 

due to increased diversification is offset by the marginal disutility due to 

the (implicit) costs, I, of information acquisition. As a result, the degree of 

diversification varies inversely with the costs of diversification and directly 

with average idiosyncratic volatility. 

 The rest of our model follows Merton (1987): investors are risk averse, have 

identical preferences, are price-takers, have the same initial wealth, are mean variance 

optimizers, and have conditional homogenous beliefs.  Investors are less than fully 

diversified as they only invest in a security if they ‘know’ about that security in the sense 

that they know the mean and variance of its return distribution. This leads to an asset-

pricing model with clear, testable implications.   

The equilibrium expected return on security i in this model is: 

               (1) R
i
= R

f
+b

i
b δ+

σ
i
2δ

Q*
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where  is the coefficient of risk aversion,  is the risk free rate,  is the idiosyncratic 

volatility of security i,  is its beta,  is the average number of stocks held by an 

investor in equilibrium, and  is the average beta of the investor’s portfolio.  As in Merton 

(1987), there is a positive premium for idiosyncratic volatility.  The key deviation from 

his model is that the parameter , representing portfolio diversification, is determined in 

equilibrium as follows: 

                (2) 

 is determined by risk aversion, average idiosyncratic volatility ( ) and the cost of 

information acquisition ( ), which accords with our intuition.  Combining equations (1) 

and (2), we can express (1) as: 

         (3) 

where       

 

is the state dependent idiosyncratic risk premium.  Equation (3) highlights the role of 

both average idiosyncratic volatility ( ) and the costs of information (I) in portfolio 

diversification. In the limiting case, with perfect information (I = 0), investors are fully 

diversified and the idiosyncratic risk premium  disappears.  When I is not zero, changes 
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in average idiosyncratic volatility influence the disutility of under-diversification and 

therefore the idiosyncratic risk premium.6  

2.2 The Formal Model 

The economy has  firms, . The return  from investing in firm  has a 

factor structure: 

    (4) 

where  is a common factor with , ,  is the factor loading of 

security i,  is a firm-specific random variable with 

   (5) 

,  is the idiosyncratic volatility of security , and  is the value weighted 

average idiosyncratic volatility across the  securities.  denotes the value weighted 

expected return of the  securities. 

 In addition to the  securities issued by firms, the economy has two “inside” 

securities with zero net supply: 

 

(a)  a  ‘factor mimicking’ security with return,   

(b)  a riskless security with return  

                                                        
6 Bekaert, Hodrick and Zhang (2012), Brown and Kapadia (2007) and others offer explanations for the 
source of time series variation in average idiosyncratic volatility, but for our purpose, it is exogenous and 
outside the model. 
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The economy has  investors, . Investors are risk averse, with identical 

mean-variance preferences: 

       (6) 

 denotes the portfolio return, and  is the coefficient of risk aversion. Investors are 

price takers and assumed to have identical initial wealth , which we normalize to 1. 

An investor only includes security i in his portfolio if he is “informed” in the sense 

that he knows . Information is costly and as a consequence investor  selects 

only a subset of the  available securities to include in his portfolio.7 We assume that 

the securities he selects,   are much smaller than N ( ) and that the probability 

of selecting a firm is proportional to its value relative to the market portfolio.  is the 

set of integers that index the  firms selected by investor k.8  

In addition to firm-specific knowledge, each investor’s information set contains 

common knowledge: . 

Equilibrium in capital markets is characterized as follows: 

(a) Given the set of securities selected, each investor chooses an optimal portfolio. 

(b) Markets clear. 

The optimal portfolio holdings, for any investor  is determined as follows: 

                                                        
7 These subsets will in general differ across the K investors. 
8 They are a subset of the first N natural numbers. 
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  From (4) and (6), an investor’s portfolio return can be specified as:   

     (7) 

where: 

      (8) 

      (9) 

 and  denote the fraction of investor ’s wealth allocated to security  and 

.  The expected portfolio return and variance are:  

    (10) 

     (11) 

where:  

,     (12) 

The investor’s optimal portfolio choice is the solution to the following problem:   

     (13) 

     Subject to   
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      (14) 
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     (15) 

From (8), (14), and (15), the investor’s optimal portfolio solution is:   

      (16) 

      (17) 

      (18) 

     (19) 

We aggregate to determine equilibrium expected returns. From (16), all investors 

choose the same . Let . Thus, from (16), we have: 

      (20) 

From (17), the aggregate demand for security  is: 

     (21) 
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In equilibrium the demand for these securities is zero: . As a consequence 

     (24) 

where  is the fraction of investors’ total wealth allocated to security . Using (24), we 

can rewrite (20) as: 

      (25) 

 If  denotes the equilibrium value of firm , then 

       (26) 
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, and hence: 

    (27) 
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suggests that the fraction of all investors who know about a security is proportional to 

the weight of the security in the market portfolio.9  This implies that  is proportional 

to  

       (29) 

Using (17), (27), and (29), 

     (30) 

Since 

    (31) 

using (30) we get 

  (32) 
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the holdings of security  and the risk-free asset sum to zero across all investors. 
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     (33) 

                                                        
9 We are implicitly assuming the law of large numbers, as investors .  The law of large numbers 
implies an equality between the actual fraction of investors who know about a security and the probability 
of knowing it.   
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where  is the average number of securities in a portfolio.  

From (18), (19), (24), (30), (33), we have: 

       (34) 

      (35) 

     (36) 
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    (38) 

     (39) 

Thus, the utility of investor  is:   

   (40) 

With access to an additional security , where  is an element of , the 

investor’s new optimal portfolio allocation is the solution to the maximization problem: 

    (41) 
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where  is the set of integers . Since  (the investor only knows a small 

fraction of all securities)  can be approximated as: 

     (45) 

Using (45), the unconditional expected portfolio return and variance can be written as: 

    (46)

     (47) 

and the expected utility of investor  becomes:  

  (48) 

Comparing (40) with (48), we see that the expected increase in utility  is: 

     (49) 

Note that as a result of the approximation in (45)  is same for all investors 

and we have 
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For investors to have no incentive to learn about an additional security  must 

be no greater than the disutility of the cost of information acquisition I: 10  

       (50) 

From (49) and (50) we have: 

       (51) 

where  is the average number of stocks held by investor k in equilibrium.  

Hence: 

       (52) 

 

Using (37) and (52), the expected return on asset i can be written as: 

             
        (53) 

After substituting for , we can rewrite equation 53 as 

       (54) 

where       

is the state dependent idiosyncratic risk premium. This corresponds to equation (3) in the 

model summary above. 

                                                        
10 In this framework U (I) = a constant x I. We have normalized the constant to be 1 as it does not affect 
the subsequent analysis. 
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3. Empirical tests 

3.1 Testing Strategy 

To test the model, we transform the beta coefficients in equation (53) to their 

counterparts with respect to the market, resulting in the following equation: 

                     (55) 

where  and . 

We make the approximation that  where  is the fraction of investors 

who do not hold asset i.11 This results in the following equation that we test: 

        (56) 

Our interest is in the risk premium in the last term of equation 55.  The most 

straightforward way to test the model is to recognize that .  Substituting 

this expression into the last term of equation 55 we get 

                                                        
11Alternatively we could assume that  to get to equation 56.  This is similar to the 

approximation in equation 9 in Dybvig and Ross (1985). Quantitatively the approximation is innocuous, 
the fraction of the market portfolio invested in asset i, , is of the order of or less. Using typical values 

for the other parameters, ( ) we see that while is of the order , the 

neglected term is of order  . For the indicated parameters the approximation involves using 0.04 

instead of the exact value 0.0384.  
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        (57) 

where      

Equations 56 and 57 say that controlling for conditional betas, the average slope of 

regressions of stock returns on the ratio of expected idiosyncratic volatility to the (square 

root of) expected average idiosyncratic volatility should be positive.  More precisely, the 

regression coefficient is identified as .  

3.2 Sample Construction 

Our sample of US stocks is derived from the CRSP-Compustat universe with CRSP 

share codes 10 or 11 that restrict the universe to common stocks, and with exchange codes 

1, 2 and 3 corresponding to NYSE, Amex and Nasdaq listed securities.  We eliminate 

stocks with a share price below $1 at the beginning of the month.  The tests are based on 

a sample period from 1931 to 2014 because we need at least 5 years of data to calculate 

expected idiosyncratic volatility.   

For the international sample, we obtain a time series of market information from 

Datastream.  We start with an unconstrained universe of all firms in the following 

developed markets between 1990 and 2014: Canada, France, Japan, and the United 

Kingdom.  We restrict our attention to these countries because the tests require an 

adequate cross-section of securities as well as a reasonable time series. The universe of 

stocks includes live as well as dead stocks. We apply the sequence of filters described in 

Goyal and Wahal (2015), retaining only equity issues from the primary exchange of the 
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country, and ensuring that we only sample local (not cross-listed) stocks.  US dollar 

returns are computed by converting local currency returns using the conversion function 

built into Datastream, which uses spot rates.  Market values are similarly converted to 

US dollar equivalents. 

3.3 Measurement 

For each security-month, we estimate daily time series market model regressions 

of excess stock returns on the excess market return.  We use the market to generate 

residuals because the CAPM serves as the natural theoretical counterpart to Merton’s 

(1987) model and our modification.  The idiosyncratic component  from these 

regressions is assumed to be normally distributed.  The model says that that conditional 

expected returns should be positively related to expected (not lagged) idiosyncratic 

volatility.  We model expected idiosyncratic volatility for stock i in month t using the 

EGARCH process used by Guo, Kassa and Ferguson (2014) as follows. 

      (58) 

In estimating the above, we ensure that the sample used stops in month t-1 so that 

there is no look-ahead bias in the estimates.  As in Guo, Kassa, and Ferguson (2014), we 

require at least 60 monthly observations to estimate month t idiosyncratic volatility.  We 

consider nine EGARCH specifications, corresponding to values of p and q from {1,2,3} 

and choose the one that converges with the lowest Akaike Information Criterion (AIC).  
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Estimates of expected idiosyncratic volatility are trimmed at the 95th percentile to prevent 

outliers from influencing the tests.   

We calculate the empirical counterpart of the market-wide average expected 

idiosyncratic volatility ( ) using a two-step process as follows.  

       (59) 

where the subscripts s and l refer to small and large stocks respectively, the weights 

and are market capitalization weights within small and large stocks, and the expected 

idiosyncratic volatility estimates ( ) are derived from equation 58 above.  We use the 

NYSE median market capitalization in the prior month to designate each security into 

small and large stock groups.  This process of value-weighting expected idiosyncratic 

volatility for small and large stocks separately, and then taking a simple average of the 

two, ensures a balance between small and large stocks. As a robustness check, we also 

compute average expected idiosyncratic volatility using market-wide equal- and value-

weights as below.   

        (60) 

           (61) 

where wi is a market capitalization weight across all stocks.  We caution, however, that 

equal-weighted average idiosyncratic volatility is heavily influenced by the large number 
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of more volatile small stocks. In the value-weighted average, a small number of large less 

volatile stocks dominate the calculation. 

3.4 Results 

Panel A of Table 1 contains average slopes and t-statistics from monthly Fama-

MacBeth regressions of returns on conditional market betas measured over the prior 3 

months using daily returns (Lewellen and Nagel (2006)), and expected idiosyncratic 

volatility scaled by the square root of average expected idiosyncratic volatility ( ).  

The slopes are multiplied by 100 for expositional convenience. Conditional betas are 

statistically indistinguishable from zero.  This is inconsistent with the model as specified 

in equation 55.  It is, however, consistent with existing evidence that the conditional 

CAPM does not perform much better than the unconditional CAPM.  More importantly, 

from our perspective, the slopes on expected idiosyncratic volatility scaled by average 

expected idiosyncratic volatility are positive.  In equal-weighted regressions, the slope is 

0.91 with a t-statistic of 2.04.  In value-weighted regressions, which are less subject to the 

presence of outliers and to the large number of stocks in the sample, the slope on expected 

volatility rises to 2.22 with a t-statistic of 4.00.12   

                                                        
12 Since the slopes are equal to , it is tempting to make assumptions about either the cost of information 
(I) or risk reversion (δ), and infer the other.  We resist this temptation because the cost of information and 
risk aversion jointly determine the slope. 
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Panels B and C show estimates when average expected idiosyncratic volatility is 

measured using equal- or value-weighted averages ( and  respectively).  These 

approaches do not appear to make a difference to inferences.  The coefficients on 

conditional betas do not move and the slopes on scaled expected idiosyncratic volatility 

are quite similar. 

It is also interesting to examine the variation in the regression slopes over time.  

Individual coefficients from monthly Fama-MacBeth regressions are quite noisy so we 

compute 10-year rolling averages.  These, along with a 10-year rolling average of average 

expected idiosyncratic volatility, are plotted in Figure 3. Visual inspection, which is only 

suggestive, is indicative of an inverse relation between the risk premium and average 

idiosyncratic volatility. 

Prima facie, these results suggest that the data are consistent with a conditional 

version of Merton’s model.  Models are parsimonious descriptions of the behavior of homo 

economicus and are agnostic to countries.  It is therefore useful to test them in other 

countries as a crude out of sample test.  Since power is an important consideration, we 

can only do so in markets that have a sufficiently large cross-section of securities and a 

long enough time series.  Four countries for which we have data meet that criteria: 

Canada, France, Japan, and the UK.  Table 2 contains similar regressions for these 

countries.  As in the US data, the slopes on conditional betas are statistically insignificant.  

In value-weighted regressions, the slopes on scaled expected idiosyncratic volatility are 

reliably positive in Canada, Japan and the UK, with t-statistics above 2.00.  In France, 
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the slope is positive but with a t-statistic of only 1.67.  In equal-weighted regressions, the 

slopes on scaled idiosyncratic volatility are positive for Canada and France with t-

statistics of 2.29 and 1.65 respectively.  In Japan and the UK, the slopes are insignificantly 

different from zero, suggesting that the relation is weaker in small stocks.13 

While unconditional tests of Merton (1987) provide little empirical support for his 

model, our regressions suggest that a conditional version of Merton’s model has a footprint 

in the data.  One could complain that these regressions ignore the existing evidence on 

size, value, profitability, investment, accruals, and other such variables that have 

explanatory power for returns.  This omission is willful.  Empirically motivated variables 

may have explanatory power but do not constitute tests of asset pricing models and are 

subject to the factor zoo problem. We avoid the inclusion of ad hoc variables to maintain 

the integrity of the test of the theory in section 2.  We include conditional betas because 

the CAPM generates that natural equilibrium counter to the under-diversification that is 

at the heart of both Merton’s original model and our modification.     

4. Conclusion 

The key insight in Merton’s (1987) model of asset pricing under incomplete 

diversification is that there should be a positive premium for bearing idiosyncratic risk.  

We propose a simple, yet important modification to his model – the premium for bearing 

                                                        
13 It is tempting to ask whether the returns on portfolios sorted by scaled idiosyncratic volatility are 
monotonic across the sorting variable. This is not feasible.  Since average idiosyncratic volatility does not 
vary across securities, the scaling variable generates no dispersion; the sorts are effectively just sorts on 
(unscaled) idiosyncratic volatility, which are uninformative about the empirical content of the model. 
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idiosyncratic risk should vary with average idiosyncratic risk.  When average idiosyncratic 

risk is high, the marginal benefit from diversification is also high, implying a lower risk 

premium (and vice versa).  This simple intuition delivers a conditional asset pricing model 

in the spirit of Merton (1987), where the relevant state variable, average idiosyncratic 

risk, is identified by the theory.   

We test the model in the spirit of classical tests of the CAPM (Fama and MacBeth 

(1973)): regressions of returns on expected idiosyncratic volatility scaled by average 

expected idiosyncratic risk.  The coefficient on this scaled variable is positive in the US 

between 1931 and 2014.  This variable also has a positive slope Canada, France, Japan 

and the UK between 1990 and 2014.  These results are in stark contrast to the negative 

relation between lagged idiosyncratic volatility and expected returns documented by Ang 

et al. (2006) and explored by numerous others.  The key difference is that the theory 

demands conditional tests because the state variable (average idiosyncratic risk) is 

economically meaningful and readily identifiable.  Both the model and results suggest that 

a rejection of the ideas in Merton (1987) might be hasty. 
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Figure 1.  We compute the value-weighted average idiosyncratic volatility for small and 
large capitalization stocks, and then calculate a simple average of the two to obtain 
average idiosyncratic volatility for each month.  We use NYSE median breaks to separate 
small and large cap stocks.  Each month is classified as a low or high average idiosyncratic 
risk month if the month’s average idiosyncratic volatility is above or below the trailing 
10 year average. 
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Figure 2: The x-axis shows average idiosyncratic volatility.  The y-axis shows the premium 
associated with idiosyncratic volatility. 
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Figure 3: The figure reports 10-year rolling average slopes from the equal-weighted Fama-
MacBeth regressions in Table 1, along with 10-year rolling average expected idiosyncratic 
volatility over the same period.   
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Table 1 
 
Fama-MacBeth regressions of returns on conditional CAPM beta and scaled expected 
idiosyncratic volatility for US markets, 1931-2014 
   
The table reports average slope estimates and t-statistics from monthly Fama and 
MacBeth (1973) regressions on stock returns on conditional market betas and expected 
idiosyncratic volatility scaled by average expected idiosyncratic volatility.  The sample 
is from July 1931 through 2014.  Conditional market betas are measured over the prior 
three months using daily returns.  Expected idiosyncratic volatility is measured over 
the prior 60 months using an EGARCH(1,3) model but employing the lowest Akaike 
Information Criterion (AIC) to generate estimates.  All coefficients are multiplied by 
100.  T-statistics are based on Newey-West standard errors with 4 lags. 
   
   
 Equal-weighted Regressions Value-weighted Regressions 
   
Panel A   

  0.02 
(0.02) 

-0.10 
(-1.10) 

  
0.91 

(2.04) 
2.22 

(4.00) 

Panel B   
  0.02 

(0.02) 
-0.10 

(-1.10) 

  
1.00 

(1.96) 
2.67 

(4.19) 

Panel C   
  0.02 

(0.02) 
-0.10 

(-1.10) 

  
0.70 

(1.93) 
1.68 

(3.84) 
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Table 2 
 
Fama-MacBeth regressions of returns on conditional CAPM beta and scaled expected 
idiosyncratic volatility for international markets, 1990-2014 
 
The table reports average slope estimates and t-statistics from monthly value-weighted 
Fama and MacBeth (1973) regressions on stock returns on conditional market betas 
and expected idiosyncratic volatility scaled by average expected idiosyncratic volatility 
for four international markets.  The sample period is from July 1990 through 2014.  
Conditional market betas are measured over the prior three months using daily returns.  
Expected idiosyncratic volatility is measured over the prior 60 months using an 
EGARCH(1,3) model but employing the lowest Akaike Information Criterion (AIC) to 
generate estimates.  All coefficients are multiplied by 100.  T-statistics are based on 
Newey-West standard errors with 4 lags. 
     
     
 Canada France Japan UK 
    
Value-Weighted Regressions    

  0.20 
(0.28) 

-0.31 
(0.59) 

0.31 
(1.58) 

0.32 
(1.01) 

   
4.28 

(2.18) 
3.77 

(1.67) 
2.61 

(2.13) 
5.33 

(2.92) 

 
    

Equal-Weighted Regressions    
 

 

-0.18 
(1.35) 

-0.18 
(1.02) 

0.11 
(0.60) 

0.12 
(0.93) 

 

.33 
(2.29) 

1.10 
(1.65) 

0.85 
(0.94) 

-0.15 
(-0.22) 
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