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1 Introduction

Over the past twenty years, a large body of work has documented that in US data, real vari-

ables like unemployment and output “gaps” have little additional forecasting power for future

inflation relative to current and lagged values of inflation.1 Motivated by this line of research,

I analyze a class of economic models in which inflation expectations respond sluggishly, if

at all, to real economic outcomes. Within the models, a central bank chooses a short-term

nominal interest rate at each date subject to a zero lower bound. I model the various forcing

processes as Markov chains, and focus on Markov equilibria to the resultant dynamic game.

I provide an easily verifiable su�cient condition for the existence and uniqueness of such

equilibria. I construct a simple numerical algorithm, analogous to the linear algebra solution

methods in Mehra-Prescott (1985), that rapidly solves for the unique Markov equilibrium,

while taking full account of the zero lower bound.

I apply the algorithm to a simple numerical example. In the example, in “normal” times,

households assign a low probability to a crisis (that is, a sharp downturn in real economic

outcomes consistent with target inflation). The crisis is (on average) short-lived, but is

followed by a sustained fear period. In the fear period, growth normalizes, but households

remain concerned about the risk of a return to the crisis state. The Markov equilibrium in

this example involves the central bank’s being constrained by the zero lower bound during the

crisis period and the fear period. The economy exhibits a pronounced shortfall in economic

activity during both periods (but not during the normal growth period, when households

view the risk of a crisis as small).

The focus on Markov equilibria eliminates the use of so-called “Odyssean” forward guid-

ance (Justiniano, et. al., 2012). Within the numerical example, forward guidance of plausible

average durations (less than a decade) is ine↵ective. However, I document that relatively

small relaxations of the zero lower bound via negative nominal interest rates can enhance

economic e�ciency in both the crisis and fear periods greatly.

1See Atkeson and Ohanian (2001) and Stock and Watson (2009) for example.
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The class of models that I investigate is highly general. Equilibrium allocations must sat-

isfy two sets of restrictions (but may satisfy many others). The first set is a collection of Euler

equations that restricts the stochastic evolution of the cross-sectional average of the realized

marginal utility of consumption. The second is a collection of restrictions between expected

future inflation and the current gap between the (average) marginal utility of consumption

and its natural level. Both of these sets of restrictions are assumed to be structural, in the

sense that they are required to be invariant to the policy choices of the central bank.

There are also three forcing processes that are invariant to the policy choices of the central

bank. The first is a stochastic trend in the natural level of the average marginal utility of

consumption. The evolution of this stochastic trend gives rise to variation in what is usually

termed the natural or neutral real rate of interest, even though households’ psychic discount

factors do not fluctuate.

The second forcing process is a disturbance to the otherwise fixed relationship between

current real outcomes and inflation expectations. Loosely speaking, this process can be

viewed as a “Phillips curve” shifter. The third forcing process is a shock to ex-post inflation

realizations. All of these shocks are potentially correlated with one another. Hence, inflation

can be highly persistent and exhibit non-trivial conditional heteroskedasticity (so that the

inflation risk premium varies over time).

My approach to modeling the evolution of inflation expectations is related to, but dis-

tinct from, that followed in the vast sticky price literature. The more standard approach is

grounded in the twin assumptions of Calvo pricing (or Rotemberg pricing or menu costs) and

rational expectations. The model of firm pricing decisions generates a connection between

real conditions and inflation outcomes. Rational expectations about those firm pricing de-

cisions then generates a connection between real conditions and inflation expectations. The

models that I study in this paper abstract from the specifics of firm pricing, and so are

considerably more agnostic about the source of the connection between real outcomes and

inflation expectations.
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Unlike Eggertsson and Woodford (2003) or Werning (2012), I do not limit attention to

the behavior of the economy after it hits the zero lower bound. However, these authors

are focusing on the benefits of commitment, which I ignore through my focus on Markov

equilibria. In its focus on Markov equilibria, my paper is related to the work of Adam and

Billi (2007) and Armenter (2015). It is also related to recent work by Hills, Nakata, and

Schmidt (2015) that explores how the zero lower bound has an adverse e↵ect on the economy

even when it is not binding. Michau (2015) examines the costs and benefits of various forms

of fiscal policy during long stays at the zero lower bound.

2 Model

In this section, I present a general class of models in which allocations are required to satisfy

at least two sets of restrictions. The first set of restrictions are a collection of aggregate Euler

equations. The second set of restrictions describes relationships between real outcomes and

inflation expectations.

2.1 Model Generalities

I consider a discrete-time infinite horizon economy in which all agents are infinitely-lived, have

a common utility discount factor �, and have common beliefs. Suppose that any equilibrium

allocation in the economy satisfies the aggregate Euler equations:

mt = �RtEt{mt+1⇧
�1
t+1}, t = 1, ...,1 (1)

where mt denotes the cross-person period t average of the marginal utility of consumption

associated with that allocation. (Equilibrium allocations might, of course, satisfy additional

restrictions.) In (1), Rt denotes the gross nominal interest rate in period t, ⇧t+1 is the

gross inflation rate from period t to period (t + 1), and Et represents the agents’ common

expectation of period (t+1) random variables conditional on information available at date t.
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These aggregate restrictions assume that agents do not face binding short-sales constraints

on their holdings of short-term assets.

I model the evolution of inflation as follows:

⇧�1
t+1 = ⇣(mt/m

nat
t ; ⌫t)

�1
⇠t+1, t � 1 (2)

where {⌫t,mnat
t , ⇠t+1}1t=1 are a triple of exogenous positive stochastic processes. I assume

that:

Et⇠t+1 = 1 for all t

This assumption implies that the agents’ (harmonic) one-period-ahead expectation of (gross)

inflation at date t is given by:

(Et⇧
�1
t+1)

�1 = ⇣(mt/m
nat
t ; ⌫t) (3)

The process ⌫ represents exogenous shocks to inflation expectations. The function ⇣ describes

the influence of current real conditions, as measured by equilibrium marginal utility mt

normalized by the exogenous natural marginal utility process mnat
t , on inflation expectations.

(By exogenous, I mean that the natural marginal utility process is invariant to decisions about

monetary policy by the central bank.) Going forward, I will refer to the stochastic process

bm ⌘ m/m

nat as being the equilibrium marginal utility gap. Along those lines, it is useful to

rewrite (2) as:

⇧�1
t+1 = ⇣(bmt; ⌫t)

�1
⇠t+1, t � 1 (4)

It is helpful to substitute (4) into (1). To that end, I assume that there exists a function

 (.; ⌫) such that, for all ⌫,  is strictly increasing in its first argument and such that:

 (bm⇣(bm; ⌫); ⌫) = bm for all ⌫ and all bm in [0,1)
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Let �nat
t+1 ⌘ m

nat
t+1/m

nat
t denote the gross growth rate of natural marginal utility. Then, we can

use  and � to rewrite (1) as:

bmt =  (Rt�Et(bmt+1⇠t+1�
nat
t+1); ⌫t) (5)

This nonlinear di↵erence equation (5) will be the foundation of the remainder of the

paper. In order to simplify the analysis of the equation, I assume that  is Lipschitz with

modulus B so that:

| (y; ⌫)� (y0; ⌫)|  B|y � y

0| for all (y, y0) in R

2
+and all ⌫

Notice that if ⇣ is constant at ⇣⇤, so that there is no connection between real outcomes and

inflation expectations, then  exists and is Lipschitz with modulus 1/⇣⇤.2

2.2 Markov Models

In this subsection, I specialize the model by imposing a Markov chain structure on the various

forcing processes. I then define and characterize a Markov equilibrium for two distinct central

bank objectives within this model.

2.2.1 Markov Structure

Suppose that agents believe that st follows a Markov chain with transition matrix P and

state space S = {1, 2, .., J}. Agents all observe st at each date t. However, their observations

do not lead agents to change their beliefs that st evolves according to the Markov chain

defined by (P, S).

I suppose that the shocks (⌫,�nat
, ⇠) to inflation expectations, natural marginal utility, and

inflation realizations are all governed by the underlying Markov chain st. More specifically,

2More generally, the strictly increasing function  exists and is Lipschitz with modulus B if
inf⌫infbm�0⇣ 0(bm; ⌫)bm+ ⇣(bm; ⌫) = 1/B.
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I assume that there are sets:

V = {v̄j}Jj=1;⇤ = {�̄nat
ij }Ji,j=1;⌅ = {⇠̄ij}Ji,j=1

such that:

⌫t = ⌫̄st ;�
nat
t = �̄

nat
st�1st ; ⇠t = ⇠̄st�1st

The assumption that Et⇠t+1 = 1 implies that:

JX

j=1

Pij ⇠̄ij = 1 for all i

2.2.2 Games and Equilibrium

In this section, I consider two distinct policy games and study the unique Markov equilibrium

to each. The games share the following common structure. At each date, the central bank

chooses Rt, taking as given the Euler equation restrictions (5) described above and the

Markov chain law of motion for the exogenous variables. I will describe the central bank’s

objective in these games later. For now, it su�ces to say that I focus on Markov equilibria,

in which the marginal utility gap bmt is a function only of st. The aggregate Euler equation

(5) can then be rewritten as a system of J nonlinear equations:

bmi =  (�Ri

JX

j=1

Pij�̄
nat
ij ⇠̄ij bmj; ⌫̄i), i = 1, ..., J (6)

It will be useful to rewrite this system (6) of nonlinear equations as:

bmi =  (RiQi bm; ⌫̄i), i = 1, ..., J (7)

where the J ⇥ J matrix Q is defined by:

Qij = �Pij�̄
nat
ij ⇠̄ij
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The notation Qi refers to the ith row of the matrix Q.

Note that in a Markov equilibrium, the (logged) equilibrium level of marginal utility is

given by the sum (ln(bm) + ln(mnat)) of two processes. The first process is endogenous and

stationary. The second process is exogenous and non-stationary. Hence, logged equilibrium

marginal utility shares a common, exogenous, stochastic trend with logged natural marginal

utility.

In the next two subsections, I describe two dynamic stochastic policy games, and their

Markov equilibria.

2.2.3 Game 1: Targeting A Desired Real Outcome

In Game 1, the central bank seeks to target a desired real outcome that is uniquely identified

with the marginal utility process mdes
. I define bmdes = m

des
/m

nat to be the desired marginal

utility gap (more precisely, the level of marginal utility associated with the desired allocation,

relative to the natural level of marginal utility). I assume that the process bmdes is governed by

the underlying Markov chain st, so that there exists a set Mdes = {m̄des
j }Jj=1 and bmdes

t = m̄

des
st .

This assumption implies that the central bank’s desired level of marginal utility shares a

common, exogenous, stochastic trend with logged natural marginal utility. This assumption

is consistent with the central bank does not seek to o↵set permanent shocks to the level of

natural marginal utility as being desirable.

Then, at date t, the central bank chooses the nominal interest rate Rt so as to minimize

a loss function �1(bmt � bmdes
t ), where �1 has a global minimum when its argument is zero. It

faces the constraint that the gross nominal interest rate Rt is required to be no smaller than

one.

I define a Markov equilibrium of this game to be a vector (bm⇤
i , R

⇤
i )

J
i=1 such that:

For all i = 1, ..., J, R

⇤
i 2 argmin

R
�1( (RQi bm⇤; ⌫̄i)� m̄

des
i )

s.t. R � 1
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and:

bm⇤
i =  (R

⇤
iQi bm⇤) for all i = 1, ..., J

The main restriction in a Markov equilibrium is that, when choosing at date t, the central

bank treats the future evolution of marginal utility gaps as outside of its control.

2.2.4 Game 2: Targeting Expected Inflation

In the second game, the central bank’s loss function �2 is defined over the di↵erence between

the expected inflation rate and a target inflation rate ⇧⇤
. The loss function is at a global

minimum when its argument is zero. In this game, I define a Markov equilibrium to be a

vector (bm⇤
i , R

⇤
i )

J
i=1 such that:

For all i, R

⇤
i 2 argmin

R
�2(⇣( (RQi bm⇤; ⌫̄i)� ⇧⇤)

s.t. R � 1

and:

bm⇤
i =  (R

⇤
iQi bm⇤) for all i = 1, ..., J

3 Results

In this section, I prove three results about Markov equilibria in each of the two games. The

first result is that there is a unique equilibrium. The second result is that, in the unique

equilibrium, there is at least one state in which the zero lower bound does not bind. The

third result provides a condition such that the zero lower bound does in fact bind in a given

state.

All three of these results will hinge on the following assumption. Recall that, in a Markov
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equilibrium, we can write the aggregate Euler equation as:

bm⇤
i =  (R

⇤
iQi bm⇤; ⌫̄i) for all i = 1, ..., J

In order to prove the relevant results, we need an assumption that limits the dependence of

the current marginal utility gap on the future marginal utility gap vector. This assumption

takes the following form. Recall that the function  is Lipschitz with modulus B. Let ||Q||

be the norm of Q associated with the Euclidean norm on R

J
. (This matrix norm is equal to

the square root of the maximal eigenvalue of Q0
Q.) Then, I impose the following restriction

on B and Q.

Assumption 1. B||Q|| < 1

This assumption is the foundation for all of the analysis that follows.3

At the end of the section, I connect the characterizations of equilibria in the two games

to the notions of divine coincidence and the natural rate of interest often used in the New

Keynesian literature.

3.1 Results for Game 1

I begin by establishing uniqueness of Markov equilibrium in Game 1.

Proposition 1. Suppose Assumption 1 is satisfied, and that the central bank’s loss function

�1 is strictly quasi-convex. Then there is a unique Markov equilibrium (bm⇤
, R

⇤) to game 1 in

which the central bank targets its desired allocation. The Markov equilibrium is characterized

3In Kocherlakota (2016), I examine finite-horizon versions of models with near-vertical Phillips curves. I
show that, given a lower bound on the nominal interest rate, these models exhibit a wide class of sunspot
equilibria. These sunspot equilibria feature extreme dependence of current outcomes on long-run outcomes
when the Phillips curve is close to vertical. Assumption 1 rules out the possibility that the Phillips curve is
near-vertical in the class of models under study in this paper.
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as the solution to the equations:

bm⇤
i = max(m̄des

i , (Qi bm⇤; ⌫̄i)), i = 1, ..., J

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i), i = 1, ...J

Proof. I first show that any solution to the central bank’s decision problem when st = i

satisfies the two sets of restrictions. Because �1 is strictly quasi-convex, there is a unique

solution to the central bank’s decision problem for any st = i. There are two possibilities.

First, suppose:

 (Qi bm⇤; ⌫̄i)  m̄

des
i

Then, since  is strictly increasing, we know that the zero lower bound does not bind. As

a result, the central bank can achieve a global minimum by setting bm⇤
i = 1. Alternatively,

suppose:

 (Qi bm⇤; ⌫̄i) > m̄

des
i

Then, the zero lower bound binds, and the central bank’s solution is to set R = 1. Since  is

strictly increasing, it follows that the unique solution to the central bank’s decision problem

when st = i satisfies the system of nonlinear equations in the Proposition.

I next show that there exists a unique vector bm that solves this system of nonlinear

equations. Define a nonlinear operator T from RJ
+ into RJ

+ by

T (bm)i = max(m̄des
i , (Qi bm; ⌫̄i))

The marginal utility gap vector in a Markov equilibrium is a fixed point of T. I complete the

proof of uniqueness by showing that T is a contraction with respect to the Euclidean norm
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in RJ
+. Pick any (bm, bm0) in RJ

+. Then:

[
JX

i=1

|T (bm)i � T (bm0)i|2]1/2

= [
JX

i=1

max(m̄des
i , (Qi bm; ⌫̄i))�max(m̄des

i , (Qi bm0; ⌫̄i))|2]1/2

 [
JX

i=1

| (Qi bm; ⌫̄i)� (Qi bm0; ⌫̄i)|2]1/2

 B[
JX

i=1

|Qi bm�Qi bm0|2]1/2, since  is Lipschitz with modulus B

 B||Q||[
JX

j=1

|bmj � bm0
j|2]1/2, from the definition of the norm of Q

The proposition assumes that B||Q|| < 1. It follows that T is a contraction with respect to

the Euclidean norm, and we can conclude that there is a unique fixed point to T.

Under Assumption 1, we can prove that, in any Markov equilibrium, there exists some

state in which the central bank is able to achieve its desired outcome.

Proposition 2. Suppose Assumption 1 is satisfied and that the central bank’s loss function

�1 is strictly quasi-convex. In the unique Markov equilibrium (bm⇤
, R

⇤) to game 1, there exists

some i such that R

⇤
i > 1.

Proof. Suppose not. Then, it must be true that:

bm⇤
i =  (Qi bm⇤; ⌫̄i) for all i = 1, .., J
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Note that  (0) = 0. Hence,  (Qim; ⌫̄i)  B|Qim|. This implies that:

[
JX

i=1

|bm⇤
i |2]1/2  B[

JX

i=1

|Qi bm⇤|2]1/2

= B||Q||[
JX

i=1

|bm⇤
i |2]1/2

< [
JX

i=1

|bm⇤
i |2]1/2

This is a contradiction.

Proposition 2 rules out the possibility that the economy is stuck forever at the zero lower

bound in a Markov equilibrium. This result stands in contrast with the findings of Benhabib,

Schmitt-Grohe, and Uribe (2001). They study a class of models in which there is a steady-

state equilibrium in which the nominal interest rate is always zero. The di↵erence in results is

attributable to di↵erences in the treatments of inflation expectations. In Benhabib, Schmitt-

Grohe, and Uribe (2001), the zero lower bound binds in the long run because expected

inflation converges to a low level. In contrast, in this paper, Assumption 1 ensures that

expected inflation remains su�ciently high so that the zero lower bound can’t always bind.

The next proposition provides a su�cient condition on exogenous parameters that ensures

that, in a Markov equilibrium, there is a state in which the central bank is at the zero lower

bound.

Proposition 3. Suppose that the loss function �1 is strictly quasi-convex and there exists k

such that:

m̄

des
k <  (Qkm̄

des; ⌫̄k)

Then, in any Markov equilibrium (bm⇤
, R

⇤) of game 1, R

⇤
k = 1.

Proof. Since the loss function �1 is strictly quasi-convex, a Markov equilibrium is character-
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ized as the solution to the equations:

bm⇤
i = max(m̄des

k , (Qi bm⇤; ⌫̄i)), i = 1, ..., J

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i), i = 1, ...J

These equations imply that if the assumption in the proposition is satisfied :

bm⇤
k = max(m̄des

k , (Qk bm⇤; ⌫̄k))

� max(m̄des
k , (Qkm̄

des; ⌫̄k)) because bm⇤
j � m̄

des for all j

> m̄

des
k

and so R

⇤
k must equal one.

As we shall see later, the converse to Proposition 3 may not be true.

3.2 Results about Game 2

In this section, I prove analogous results about Game 2, in which the central bank targets an

expected inflation rate of ⇧⇤. The results are analogous because Game 2, is in some sense,

simply a special case of Game 1 in which the central bank’s desired marginal utility process

is given by ⇣

�1(⇧⇤; ⌫).

I begin by establishing existence and uniqueness of Markov equilibrium.

Proposition 4. Suppose Assumption 1 is satisfied, that the loss function �2 is quasi-convex,

and the function ⇣ (that maps marginal utility into expected inflation) is strictly increasing or

strictly decreasing with respect to marginal utility. Then there is a unique Markov equilibrium

(bm⇤
, R

⇤) to Game 2. The Markov equilibrium is the unique solution to the system of nonlinear
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equations:

bm⇤
i = max(⇣�1(⇧⇤; ⌫̄i), (Qi bm⇤; ⌫̄i)), i = 1, ..., J

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i)

Proof. The function ⇣ can be strictly increasing or strictly decreasing in its first argument.

Suppose first that ⇣ is strictly decreasing. Then, since �2 is strictly quasi-convex, the function

�2(⇣(m; ⌫̄i) � ⇧⇤) is strictly quasi-convex as a function of m. It follows that at any date t,

the central bank’s decision problem has a unique solution. There are two possibilities. The

first is that:

⇣( (Qi bm⇤; ⌫̄i); ⌫̄i) � ⇧⇤

Then, since  is strictly increasing and ⇣ is strictly decreasing, we know that the zero lower

bound does not bind and the central bank can achieve a global minimum by setting R

⇤
i

su�ciently high so that:

⇣( (R⇤
iQi bm⇤; ⌫̄i); ⌫̄i) = ⇧

⇤

and:

m

⇤
i = ⇣

�1(⇧⇤; ⌫̄i)

Alternatively, suppose:

⇣( (Qi bm⇤; ⌫̄i); ⌫̄i) < ⇧
⇤

Then, higher values of Ri than one will increase the central bank’s loss, and the central bank

should set R⇤
i = 1. It follows that any Markov equilibrium (bm⇤

i , R
⇤
i )

J
i=1 is fully characterized

by the nonlinear equations:

bm⇤
i = max(⇣�1(⇧⇤; ⌫̄i), (Qi bm⇤; ⌫̄i))

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i)
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Suppose next that ⇣ is strictly increasing. Again, because �2 is strictly quasi-convex,

there is a unique solution to the central bank’s decision problem. There are two possibilities.

The first is that:

⇣( (Qi bm⇤); ⌫̄i)  ⇧⇤

The central bank can achieve a global minimum by settingR⇤
i su�ciently high that ⇣( (R⇤

iQi bm⇤; ⌫̄i); ⌫̄i) =

⇧⇤ and m

⇤
i = ⇣

�1(⇧⇤; ⌫̄i). Alternatively, suppose:

⇣( (Qi bm⇤; ⌫̄i); ⌫̄i) > ⇧
⇤

Then, higher values of Ri than one will increase the central bank’s loss, and the central bank

should set R⇤
i = 1. It follows that any Markov equilibrium (bm⇤

i , R
⇤
i )

J
i=1 is fully characterized

by the nonlinear equations:

bm⇤
i = max(⇣�1(⇧⇤; ⌫̄i), (Qi bm⇤; ⌫̄i))

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i)

Given the restriction on Q assumed in the proposition, we can use the contraction mapping

logic from the proof of Proposition 1 to establish that there is a unique solution to these

equations.

Note that Proposition 4 is agnostic about whether ⇣ - the function that links the equi-

librium marginal utility gap to inflation expectations - is strictly increasing or decreasing.

Hence, higher inflation expectations can be associated with higher or lower levels of real

economic activity.

The next proposition establishes that, as in game 1, there is no Markov equilibrium in

which the zero lower bound always binds.

Proposition 5. Suppose Assumption 1 is satisfied and suppose too that the central bank’s

loss function �2 is strictly quasi-convex. In the unique Markov equilibrium (bm⇤
, R

⇤), there
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exists some i such that R

⇤
i > 1.

Proof. Same as the proof of Proposition 2.

The next proposition provides a necessary condition on exogenous parameters that ensures

that the central bank is at the zero lower bound in a given state in a Markov equilibrium to

game 2.

Proposition 6. Suppose that the loss function �2 is strictly quasi-convex and the function ⇣

is invertible. Define the vector µ̄ ⌘ (⇣�1(⇧⇤; ⌫̄k))Jk=1,; and suppose there exists some k such

that:

µ̄k <  (Qkµ̄; ⌫̄k)

Then, in any Markov equilibrium (bm⇤
, R

⇤) of game 2, R

⇤
k = 1.

Proof. Since the loss function �2 is strictly quasi-convex, a Markov equilibrium is character-

ized as the solution to the equations:

bm⇤
i = max(µ̄i, (Qi bm⇤; ⌫̄i)), i = 1, ..., J

bm⇤
i =  (R⇤

iQi bm⇤; ⌫̄i), i = 1, ...J

In state k:

bm⇤
k = max(µ̄k, (Qk bm⇤; ⌫̄k))

� max(µ̄k, (Qkµ̄; ⌫̄k)) because bm⇤
j � µ̄j for all j

> µ̄k

and so R

⇤
k must equal one.
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3.3 Divine Coincidence

In simple New Keynesian models, the equilibrium allocation is e�cient when the central bank

achieves its inflation target in all dates and states. This situation has been termed a divine

coincidence. Along those same lines, I say that there is a divine coincidence in this class of

models if:

⇣(m̄des
i ; ⌫̄i) = ⇧

⇤ for all i = 1, ..., J

so that the central bank’s desired allocation is consistent with achieving its inflation objective

(in an expected sense) in every date and state.

The equilibria of the two games are identical if there is a divine coincidence.

Proposition 7. Suppose that ⇣ is invertible and that Assumption 1 is satisfied. Then, the

unique Markov equilibria of game 1 (real outcome targeting) and game 2 (inflation targeting)

are the same in a divine coincidence.

Proof. The equilibrium outcomes are characterized by the same nonlinear equations, because

µ̄i = ⇣

�1(⇧⇤; ⌫̄i) = m̄

des
i for all i = 1, ..., J.

In a divine coincidence, the conditions in Propositions 3 and 6 become the same. We can

connect this common condition to a more familiar one in the literature. Define the (gross)

natural real rate of interest in state k to be:

r

nat
k =

1

�

PJ
j=1 Pkj�̄

nat
kj

Note that the natural real rate of interest depends on the current state k only through

households’ beliefs (Pkj)Jj=1 about future realizations of the natural growth rate of marginal

utility.

The following proposition supposes that ex-post inflation is (conditionally) independent

of natural marginal utility growth, that the central bank’s desired marginal utility process is

in fact the same as the natural marginal utility process, and that there is a divine coincidence.
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It shows that under this assumption, the su�cient conditions in Propositions 3 and 6 are

equivalent to the natural real rate of interest being higher than 1/⇧⇤- that is, equivalent to

the natural nominal rate of interest being larger than 1.

Proposition 8. Suppose that for all i, m̄

des
i = 1 and:

�

JX

j=1

Pij�̄
nat
ij ⇠̄ij = �

JX

j=1

Pij�̄
nat
ij

In a divine coincidence, r

nat
k ⇧⇤

< 1 if and only if m̄

des
k <  (Qkm̄

des; ⌫̄k).

Proof. We can readily show that:

r

nat
k ⇧⇤ =

⇧⇤

�

PJ
j=1 Pkj�̄

nat
kj

=
⇣(m̄des

k ; ⌫̄k)

�

PJ
j=1 Pkj�̄

nat
kj ⇠̄kj

=
 �1(m̄des

k ; ⌫̄k)

Qkm̄
des

which proves the proposition.

Gali (2008) shows that in a simple New Keynesian model characterized by the divine

coincidence, monetary policy can only be optimal if the real interest rate is equal to the

natural real rate of interest in every date and state. However, Gali’s analysis assumes that

there is no lower bound on the nominal interest rate. Of course, when the lower bound

binds, the central bank is forced to set the short-term interest above its natural level (as

in Propositions 3 and 6). The following proposition uses the conditions in Proposition 8

to show that, if there is some risk of the lower bound’s binding in the future, a currently

unconstrained central bank will set the real interest rate below its natural level.

Proposition 9. Suppose that there is a divine coincidence, and that for all i, m̄

des
i = 1.

Suppose too that inflation is conditionally uncorrelated with the natural level of marginal

utility:

�

JX

j=1

Pij�̄
nat
ij ⇠̄ij = �

JX

j=1

Pij�̄
nat
ij
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Consider a Markov equilibrium with states (j,k) such that R

⇤
j > 1, bm⇤

k > 1, and Qjk > 0.

Then:

R

⇤
j < ⇧

⇤
r

nat
j

Proof. The proof of Proposition 8 shows that, under the conditions of Proposition 9, it is

true that for all i:

 (rnati ⇧⇤
Qjm̄

des) = m̄

des
i

If R⇤
j > 1 in a Markov equilibrium, then it must be true that bm⇤

j = 1. In that case, we know

that:

1 =  (R⇤
jQj bm⇤; ⌫̄j)

Since bm⇤
k > 1 and Qjk > 0, we know also that:

Qj bm⇤
> Qjm̄

des

It follows that:

R

⇤
j < r

nat
j ⇧⇤

Suppose that there is a state k such that the natural (gross) nominal interest rate is less

than one. Proposition 9 implies that if the central bank is unconstrained in state j, and there

is a positive probability of transiting from state j to state k in finite time, then the nominal

interest rate in state j is below its natural level.

4 Secular Stagnation: A Numerical Example

In this section, I first describe how to solve numerically for Markov equilibria under As-

sumption 1. I then discuss the properties of a particular numerical example. I argue that
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these properties correspond to what some observers4 have termed “secular stagnation”. More

specifically, in the (unique) Markov equilibrium, the economy spends long stretches at the

zero lower bound with large marginal utility gaps. During these periods, the natural nominal

interest rate is actually positive most of the time.

4.1 Solution Method

In this subsection, I describe how to solve numerically for the set of Markov equilibria in

games 1 and 2 under the assumptions made in Propositions 1 and 4. Recall that we defined

the matrix Q by:

Qij = �Pij�̄
nat
ij ⇠̄ij

and the function  is restricted to be Lipschitz with modulus B. Assume that Assumption

1 is satisfied, so that B||Q|| < 1.

In game 1, consider the operator T1 : RJ
+ ! RJ

+ defined by:

(T1(bm))i = max(m̄des
i , (Qi bm; ⌫̄i)), i = 1, ..., J

The proof of Proposition 1 shows that T1 is a contraction. It follows that we can find the

unique equilibrium to game 1 by iterating on T1 from an arbitrary positive J-dimensional

vector:

bm⇤ = lim
N!1

(T1)
N(bm0)

In game 2, consider the operator T2 : RJ
+ ! RJ

+ defined by:

(T2(bm))i = max(⇣�1(⇧⇤; ⌫̄i), (Qi bm; ⌫̄i))

Under assumption 1, T2 is a contraction. It follows that we can find the unique equilibrium

4See, among others, Summers (2014).
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to game 2 by iterating on T2 from an arbitrary positive J-dimensional vector:

bm⇤ = lim
N!1

T

N
2 (bm0)

In the next section, I apply these solution methods to a particular numerical example to

illustrate how fear of a sharp crisis can lead to secular stagnation.

4.2 A Numerical Example

In this subsection, I describe, and solve, a simple numerical example in which the number of

states J = 3.

4.2.1 Secular Stagnation in Markov Equilibrium

The example features fixed inflation expectations, so that ⇧⇤ = 1.02 and ⇣(bm; i) = 1.02 for

all bm and i. I set � = 0.97 (the settings for ⇣ and � indicate that this is intended to be an

example in which the length of a period is a year). The state space for natural marginal

utility growth is (�̄ij)3j=1 =(0.98, 0.98, 1.23) for all i. This state space indicates that the

realization of natural marginal utility growth in a given period is independent of information

received prior to that period. The state space for inflation realizations is given by (1, 1, 1).

The transition matrix P is:

0.975 0 0.025

0.1 0.7 0.2

0 0.5 0.5

The stationary probability vector associated with P is (0.71, 0.18, 0.11).

In this example, state 1 is relatively safe, because average marginal utility is shrinking

over time, and agents believe that there is a high probability of staying in state 1. However,

state 1 does admit a small probability of exiting to state 3, in which the the growth rate of

average marginal utility is very high. In state 3, the probability of immediately returning to
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the (good) state 1 is zero. However, there is a chance of returning to state 2. In some sense,

state 2 is a good state because marginal utility growth is low (just as low as in state 1). But

state 2 is a delicate one, because there is a relatively high probability of switching back to

state 3.

I focus on Game 1 and assume that m̄

des
j = 1 for j = 1, 2, 3, so that the central bank’s

desired real outcome is to keep equilibrium marginal utility equal to its natural level.5 Given

the central bank’s objective, the vector of natural nominal interest rates is given by:

(
1

PJ
j=1 Qij

)3i=1 = (1.067, 1.021, 0.95)

We know, therefore, that the zero lower bound has to bind in state 3 in a Markov equilibrium.

However, in the unique Markov equilibrium, the marginal utility gap vector is given by:

(1, 1.096, 1.23)

The central bank achieves this outcome by setting the (gross) nominal interest rate vector

equal to:

(1.058, 1, 1)

In this example, the zero lower bound binds in both states 2 and 3. The marginal utility

gap in state 2 is very large, even though the realized decline of natural marginal utility in

state 2 is the same as in state 1. Note that the central bank sets the nominal interest rate

lower than its natural level in both states 1 and 2. The natural interest rate in a given state

is defined as the interest rate that delivers the best outcome in that state, conditional on

the central bank’s achieving the best outcome in all other states. Since the central bank is

unable to achieve the best outcome in state 3 (because the zero lower bound binds), it is

desirable to set the nominal interest rate below its natural level in all other states.
5This assumption means that, in states 1 and 2, the central bank’s desired level of marginal utility is

falling steadily. However, if state 3 occurs, there is permanent upward shock to the natural level of marginal
utility, which is inherited by the central bank’s desired level of marginal utility.
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One useful way to summarize the properties of the Markov equilibrium is through average

transition times. Suppose that the economy starts in state 1. Then, on average, it enters

state 3 in forty years. State 3 is a crisis state, in which the marginal utility of consumption in

the central bank’s desired allocation is rising rapidly. The central bank responds by lowering

the gross nominal interest rate to one. The economy exits state 3, on average, in 2 years.

However, even after the economy returns to state 2, the central bank keeps the nominal

interest rate at the zero lower bound. It stays at the zero lower bound until the economy

returns to state 1 - which only takes place, on average, sixteen years after the initial entry

into state 3.

4.2.2 An Enhanced Set of Policy Instruments

Central banks have used a variety of policy tools at the zero lower bound, including quan-

titative easing, forward guidance, and negative interest rates. In this subsection, I discuss

each of these briefly. The first is the simplest: in this simple framework, quantitative easing

would have no e↵ect (just as in Eggertsson and Woodford (2003)). In order to change this

result, we would need to enhance the model to incorporate e↵ects of quantitative easing on

the central bank’s objective, on the evolution of inflation expectations, or on the natural level

of marginal utility.

There is some room for e↵ective forward guidance in the example. I have used the

concept of Markov equilibrium to model the outcomes of central bank choices over time.

This concept eliminates the ability of the central bank to commit when at the zero lower

bound to future choices. In particular, the central bank could improve outcomes in states 2

or 3 by committing to deliver higher inflation and lower marginal utility than are achieved

in the Markov equilibrium upon re-entry into state 1. However, recall that the central bank

stays in state 3 for, on average, two years, and then stays in state 2 for, on average, fourteen

years. In this example, e↵ective forward guidance requires very long periods of commitment

- lasting well over a decade on average. (Of course, as is true in any context, e↵ective forward
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guidance actually requires the commitment to be of arbitrary duration.)

In contrast, negative nominal interest rates are extremely powerful within this model.

Suppose that the lower bound on nominal interest rates is -0.5%, rather than zero. Then, we

can use the proof in Proposition 1 (or 4) to show that the the unique Markov equilibrium in

either game 1 or 2 is characterized as the fixed point to the nonlinear operator:

bm⇤
i = max(1, 0.995

�

⇧⇤

3X

j=1

Pij�̄
des
j ⇠̄j bm⇤

j), i = 1, 2, 3 (8)

The factor 0.995 reflects the reduction in the lower bound on gross nominal interest rates.

The solution to (8) is given by:

(1, 1, 1.11)

The zero lower bound only binds in state 3. The marginal utility gap in state 3 is now only

11%, not 23%. The central bank achieves this outcome by setting the gross nominal interest

rates in the three states equal to:

(1.063, 0.995, 0.995)

Hence, the central bank makes use of its new tool by lowering the gross nominal interest rate

to 0.995 in both states6 2 and 3. The better outcomes in states 2 and 3 mean that it is that

it is desirable for the central bank to set the nominal interest rate equal to a higher level in

state 1.

Why does a seemingly small fifty basis point reduction in the lower bound have such a big

impact on real outcomes in this example? The intuition is that the fifty basis point reduction

is expected to last, on average, for a long period of time. Thus, in state 2, the fifty basis

point reduction is expected to last, on average, for fourteen years. The reduction in the lower

bound is much less e↵ective if the central bank perceives it as an “emergency” measure that

6More precisely, the gross nominal interest rate is 0.99501 in state 2. The lower bound is not binding in
that state.
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would be applied only in state 3. Such a transitory reduction in the lower bound results in

a Markov equilibrium marginal utility gap vector of the form:

(1, 1.057, 1.18)

This represents a noticeably smaller improvement over the original Markov equilibrium.

5 Conclusions

The term “nominal rigidities” in macroeconomics is generally used to refer to frictions in

the adjustment of prices and wages. However, from the point of view of monetary policy,

these frictions are really just one way to motivate why anticipated inflation seems to adjust

only slowly in response to macroeconomic shocks and policy adjustments. In this paper, I

proceed more directly and simply assume that one-period-ahead inflation expectations adjust

sluggishly, if at all, to real economic conditions. This assumption is consistent with a wide

range of recent empirical work. I focus on the properties of Markov equilibria in a dynamic

stochastic game in which exogenous variables evolve according to a Markov chain and a

central bank chooses a short-term nominal interest rate subject to a zero lower bound. I

allow for two distinct objectives for the central bank: targeting a desired level of economic

activity or a desired level of inflation.

In this context, I make two substantive contributions. First, I develop a numerical solution

algorithm to solve for the unique Markov equilibrium. The solution procedure is simple but

still takes full account of the presence of the lower bound on the short-term nominal interest

rate. Given its simplicity, the algorithm could readily be used by first-year Ph. D. or advanced

undergraduate students. Instructors in these kinds of courses could use the framework in this

paper and the associated solution procedure, as a way to help their students understand the

basic consequences of the zero lower bound.

Second, I use a numerical example to show that, after a crisis event in which economic
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activity declines rapidly, the central bank may be constrained by the zero lower bound be-

cause the economy has entered a “fear” period in which households assign a relatively high

probability to another crisis taking place. In the example, the after any crisis, the economy

typically endures long stays at the zero lower bound that are associated with large e�ciency

losses. The extended duration of these “fear” periods imply that there are large gains to

relaxing the zero lower bound by being able to lower the short-term nominal interest rate

below zero by relatively small amounts (as little as 50 basis points). The bulk of these gains

are only achievable if the central bank is willing to use negative nominal interest rates during

periods in which households are afraid of a crisis (and not just during crises themselves).
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