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In what circumstances is a minimax solution reasonable? I suggest that it is

reasonable if and only if the least favorable initial distribution is reasonable

according to your body of beliefs. Good (1952)

1 Introduction

Acknowledging that a model is an approximation concedes that one of a myriad of statisti-

cally similar alternative models might be correct. This paper proposes a new way to imagine

how a decision maker forms that set of alternative models and then provides an application

to equilibrium asset pricing.1 We extend work by Hansen and Sargent (2001) and Hansen

et al. (2006) that described a decision maker who expresses distrust of a single baseline

probability model having a finite number of parameters by surrounding it with an infinite

dimensional family of difficult-to-learn-about alternative models. The decision maker rep-

resents these alternative models by multiplying baseline probabilities with likelihood ratios

whose entropies relative to the baseline model are less than a bound that makes alternative

models stay statistically close to the baseline model. He wants to evaluate outcomes under

these alternative models.2

This paper differs from Hansen et al. (2006) by refining how a decision maker forms a

set of models surrounding a baseline model. A new object appears here: a quadratic func-

tion of a Markov state that describes alternative parametric models that we use to “tilt”

discrepancy measures so that statistical neighborhoods include these alternative parametric

models. The decision maker wants valuations that are robust to these models in addition

to unspecified models expressed as before by multiplying the baseline model by likelihood

ratios. The quadratic function can be constructed to include alternatives with either fixed

or time varying parameters, and also less structured models inside a convex set Z of martin-

gales that we use to pose a robust decision problem. We offer a quantitative example that

illustrates how the set Z more concisely expresses concerns about particular parametric

alternatives than does a set Z˚ used by Hansen et al. (2006).

1Tractable ways to specify priors and compute posteriors facilitated a revolution in applied Bayesian
statistics. We require an analogous practical science if the max-min expected utility decision theory ele-
gantly axiomatized by Gilboa and Schmeidler (1989), Maccheroni et al. (2006a,b), and Strzalecki (2011) is
to enlist a community of applied researchers. Viewing a set of models as a decision maker’s way of coping
with approximation issues is a perspective that complements theoretical work about axioms.

2Applications of what Hansen and Sargent (2001) and Maccheroni et al. (2006a,b) call multiplier pref-
erences to macroeconomic policy design and dynamic incentive problems include Karantounias (2013) and
Bhandari (2014).
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We apply our approach to an investor who represents “the market” and whose specifi-

cation uncertainty affects prices of exposures to underlying economic shocks. We describe

how our tilted discrepancy method for constructing the set of probability models Z affects

uncertainty components of these shock exposures. Our continuous-time specification sim-

plifies asset pricing. A key object is an endogenously determined vector of worst-case drift

distortions to a baseline model.3 The negative of the drift distortion vector equals the vec-

tor of market prices of model uncertainty that compensate investors for facing ambiguity

about probabilities that describe random fluctuations.

A new mechanism amplifies and makes uncertainty prices fluctuate. We introduce no

new risks associated with stochastic volatility.4 Instead, we amplify the prices of exposures

to the “original” shocks. Fluctuations in those prices reflect investors’ struggles to confront

doubts about the baseline model. We study how uncertainty prices vary across investment

horizons.

Section 2 specifies an investor’s baseline probability model and martingale perturbations

to it. Section 3 describes statistical measures of discrepancies between martingales and uses

one such measure to construct and characterize a convex set of probability measures. This

set contains neighborhoods around both a baseline probability model and members of a

family of parametric alternatives to the baseline model. We express the set of probabilities

in terms of a set Z of martingales. This martingale representation proves to be a tractable

way for us to formulate robust decision problems in sections 5 and 8.

Section 4 uses Chernoff entropy to construct a set of martingales qZ associated with

discriminating between competing specifications of probabilities. Section 5 formulates a

robust planning problem that generates a worst-case model that we use in conjunction

with the Chernoff entropy set qZ to calibrate key parameters of the convex set Z. By ex-

tending estimates from Hansen and Sargent (2010) and Hansen et al. (2008), respectively,

section 6 calculates key objects for two quantitative versions of a baseline model together

with convex sets of alternative models that concern a robust investor and a robust plan-

ner. Section 7 uses one of our quantitative models to compare the convex set Z with two

other sets featured in Anderson et al. (2003) and Hansen and Sargent (2010), the set qZ
based on Chernoff entropy, and a set Z˚ based on relative entropy. Section 8 constructs a

3That object also played a central role in the analysis of Hansen and Sargent (2010).
4By way of contrast, models in which a representative investor’s consumption process has innovations

with stochastic volatility introduce new risk exposures in the form of the shocks to volatilities. Their
presence induces time variation in equilibrium compensations for exposures to shocks that include both
the stochastic volatility shocks as well as the “original” shocks whose volatilities now move.
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recursive representation of a competitive equilibrium of an economy with a representative

investor.5 Then it links the worst-case model that emerges from a robust planning prob-

lem to equilibrium compensations that the representative investor earns for bearing model

uncertainty. Section 9 describes a term structure of market prices of uncertainty. Our equi-

librium features an exponential quadratic stochastic discount factor whose mathematical

form closely resembles one that Ang and Piazzesi (2003) used in a no-arbitrage statistical

model of asset prices and macroeconomic variables. Section 10 explains why our approach

differs in conceptually and practically important ways from one advocated by Epstein and

Schneider (2003). Section 11 offers concluding remarks. Six technical appendices include

formulas that we used to create quantitative examples.

2 Models and perturbations

This section describes nonnegative martingales that perturb a probability model. Section 3

then describes how we use a family of parametric alternative to the baseline model to form

a convex set of martingales that in later sections we use to pose robust decision problems.

2.1 Mathematical framework

For concreteness, we use a specific benchmark model here and then in section 3 a specific

family of parametric alternatives. A consumer cares about a stochastic process C
.
“ tCt :

t ě 8u that he describes by the baseline model6

d logCt “ p.01q
´

µ̂` β̂Xt

¯

dt` p.01qα ¨ dWt

dXt “ φ̂dt´ κ̂Xtdt` σ ¨ dWt, (1)

where W is a multivariate Brownian motion, X is a scalar process initialized at a random

variable X0, and µ̂ ` β̂Xt `
.01
2
|α|2 is the time t growth rate of C expressed as a percent.

The sextet pµ̂, φ̂, β̂, κ̂, α, σq characterizes the baseline model.7

Because he does not trust the baseline model, the consumer also cares about C under

probability models obtained by multiplying probabilities associated with the baseline model

5The representative investor stands in for “the market”.
6We let X denote a stochastic process, Xt the process at time t, and x a realized value of the process.
7In earlier papers, we sometimes referred to what we now call the baseline model as the decision maker’s

approximating model or benchmark model.
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(1) by likelihood ratios. Following Hansen et al. (2006), we represent a likelihood ratio by

a positive martingale ZH with respect to the baseline model that satisfies8

dZH
t “ ZH

t Ht ¨ dWt (2)

or

d logZH
t “ Ht ¨ dWt ´

1

2
|Ht|

2dt, (3)

where H is progressively measurable with respect to the filtration F “ tFt : t ě 0u

associated with the Brownian motion W . We allow
şt

0
|Hu|

2du to be infinite with positive

probability and adopt the convention that ZH
t is zero when this happens. In the event that

ż t

0

|Hu|
2du ă 8 (4)

with probability one, the stochastic integral
şt

0
Hu ¨dWu is an appropriate probability limit.

Imposing the initial condition ZH
0 “ 1, we express the solution of a stochastic differential

equation (2) as the stochastic exponential:

ZH
t “ exp

ˆ
ż t

0

Hu ¨ dWu ´
1

2

ż t

0

|Hu|
2du

˙

. (5)

The stochastic exponential is a local martingale, but not necessarily a martingale.9

Definition 2.1. Z denotes the set of all martingales ZH constructed as a stochastic

exponential via representation (5) with some progressively measurable H relative to to

F “ tFt : t ě 0u and satisfying (4).

Starting from the probability distribution associated with the baseline model (1), H

represents another probability distribution conditioned on F0. To construct this alternative

probability measure, take any Ft-measurable random variable Yt and multiply it by ZH
t

before computing expectations conditioned on X0. Associated with H are probabilities

defined by

EH
rBt|F0s “ E

“

ZH
t Bt|F0

‰

8James (1992), Chen and Epstein (2002), and Hansen et al. (2006) used this representation.
9While there are sufficient conditions for the stochastic exponential to be a martingale such as Kaza-

maki’s or Novikov’s, they are not convenient here. Instead we will verify that an extremum does indeed
result in a martingale.
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for any t ě 0 and any bounded Ft-measurable random variable Bt. Thus, the positive ran-

dom variable ZH
t acts as a Radon-Nikodym derivative for the date t conditional expectation

operator EH r ¨ |X0s. The martingale property of the process ZH ensures that conditional

expectations operators for different dates satisfy a Law of Iterated Expectations. Moreover,

under the ZH probability measure,
şt

0
|Hu|

2du is finite with probability one for each T .

Although W is a standard Brownian motion under the baseline model, under the alter-

native H model it has increments

dWt “ Htdt` dW
H
t , (6)

where WH is a now standard Brownian motion. Moreover, under the ZH probability mea-

sure,
şt

0
|Hu|

2du is finite with probability one for each t. While (3) expresses the evolution

of logZH in terms of increment dW , the evolution in terms of dWH is:

d logZH
t “ Ht ¨ dW

H
t `

1

2
|Ht|

2dt. (7)

In light of (7), we can write model (1) as:

d logCt “ p.01q
´

µ̂` β̂Xt

¯

dt` p.01qα ¨Htdt` p.01qα ¨ dWH
t

dXt “ φ̂dt´ κ̂Xtdt` σ ¨Htdt` σ ¨ dW
H
t ,

which implies that C has a (local) growth rate µ̂ ` β̂Xt ` α ¨ Ht `
.01
2
|α|2 under the H

model.10

3 Quantifying probability distortions

We retreat cautiously from rational expectations by assuming that because agents bear

model uncertainty they want to evaluate outcomes under alternative models that are diffi-

cult to distinguish on the basis of a finite history of data.11 We formulate families of models

by using measures of statistical discrepancy around a baseline model. By characterizing

alternatives to a baseline model in terms of likelihood ratio processes sufficiently close to

unity, we include a vast set of models with nonlinearities, time-varying parameters, history

10The growth rate includes a multiplication by 100 that offsets one of the .01’s.
11Rational expectations assumes that something (an infinite history of data?) has eliminated decision

makers’ model uncertainty.
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dependence, and other difficult-to-learn features.

3.1 Measures of discrepancy

We construct discounted versions of statistical discrepancy measures. Consider a martingale

ZH in Z and a twice differentiable convex function fpzq defined for z ě 0 and satisfying

fp1q “ 0 and f2p1q “ 1. By Jensen’s Inequality

E
“

f
`

ZH
t

˘

|F0

‰

ě 0, (8)

which holds with equality when ZH
t is one with probability one conditioned on F0. Exam-

ples of f include a family suggested by Cressie and Read (1984):

fpzq “
1

rp1` rq

`

zr`1 ´ 1
˘

(9)

for alternative choices of r.

Except when r “ ´1
2
, these discrepancy measures are not metrics. Nevertheless, they

can be used to define neighborhoods of a given model. The class of discrepancies defined by

(9) contains interesting special cases. When r “ ´1, the discrepancy defined by (9) is the

negative of the expected log-likelihood. When r “ ´1
2
, we get the Hellinger discrepancy.

The discrepancy E
“

f
`

ZH
t

˘‰

for the r “ 0 case,

fpzq “ z log z,

is called relative entropy and is of especial interest to us. This discrepancy is an expected

log likelihood ratio with respect to the z-perturbed model.

Using the Cressie and Read specification (9), the process
 

fpZH
t q

(

defined in (5) and

(9) evolves as an Ito process with drift (also called a local mean)

µt “
`

ZH
t

˘1`r 1

2
|Ht|

2.

Write the conditional mean of fpZH
t q in terms of the history of local means

E
“

fpZH
t q|X0

‰

“ E

ˆ
ż t

0

µudu|X0

˙

.
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For the time being, we will simply impose this equality and perform some calculations.12

Later we will refer to a more rigorous justification in the context of an important special

case in which r “ 0.

To construct a discrepancy measure for decision problems, we discount f and integrate

across time:

∆pZH
|xq “δ

ż 8

0

expp´δtqE
”

f
`

ZH
t

˘

ˇ

ˇ

ˇ
X0 “ x

ı

dt

“

ż 8

0

expp´δtqE pµt|X0 “ xq dt

“
1

2

ż 8

0

expp´δtqE
”

`

ZH
t

˘1`r
|Ht|

2
ˇ

ˇ

ˇ
X0 “ x

¯

dt

ě0, (10)

where the second equality follows from integration by parts. Formula (10) quantifies how

a martingale ZH distorts baseline model probabilities. We call the r “ 0 formulation

discounted relative entropy after Hansen and Sargent (2001). Hansen et al. (2006) provide

a formal justification for (10) when r “ 0.13 The r “ 0 case is the most tractable one to

use in decision problems. Later we will compare sets of models associated with several

measures of statistical discrepancy.

3.2 Tilting the discrepancy measure

The statistical discrepancy measure defined in (10) allows a decision maker to include a

large class of statistically similar models, but it is not the most convenient way to include

particular parametric models. To do that it is better to tilt the discrepancy measure in the

following way. Let

f̂pz, ζq “ fpzq ´ ζz. (11)

Evidently, f̂ is strictly convex in z. Construct a process

Ξt “
1

2

ż t

0

ξpXuqdu, (12)

12There exist a variety of sufficient conditions that justify this equality.
13See Claims 6.1and 6.2.
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where

ξpxq
.
“ ξ0 ` 2ξ1x` ξ2x

2
ě 0. (13)

In section 3.3, we exhibit ξpxq functions that represent specific alternative models.

As an initial step to form a tractable set of models for discounted dynamic control

problems, we set r “ 0 and δ to the same rate that discounts instantaneous utilities. This

yields:

p∆pZH
|xq “

1

2

ż 8

0

expp´δtqE
”

`

ZH
t

˘ “

|Ht|
2
´ ξpXtq

‰

ˇ

ˇ

ˇ
X0 “ x

¯

dt.

The (random) function p∆ is convex in the martingale ZH , implying that

pZpxq “
!

ZH
P Z : p∆pZH

|xq ď 0
)

(14)

is a convex set of martingales that is not empty because it contains Z0 “ 1. We are

interested in the non degenerate case in which ξpxq satisfies

Condition 3.1.
1

2

ż 8

0

expp´δtqE
”

ξpXtq

ˇ

ˇ

ˇ
X0 “ x

ı

dt ą 0.

One way to satisfy condition 3.1 is to set ξpxq ą 0 for all x. There are other ways too. In

some of our applications, we set ξp0q “ 0 but still satisfy condition 3.1.

So far, we have used a convex function to build a convex set of martingales, but have

not constructed an associated tilted discrepancy. We could construct a discrepancy by

minimizing p∆pZH |xq by choice of H. Call the minimized objective ∆˚pxq. Since H “ 0 is

a feasible choice, ∆˚pxq satisfies

∆˚
pxq ď ´

1

2

ż 8

0

expp´δtqE
”

ξpXtq

ˇ

ˇ

ˇ
X0 “ x

ı

dt.

The resulting discrepancy is :

r∆pZH
|xq

.
“ p∆pZh

|xq ´∆˚
pxq.

Tilting means that this discrepancy is zero at the minimizing choice of H that attains

∆˚pxq, not at H “ 0. The convex set is the object that matters in our analysis, not the

discrepancy or the threshold used to construct the set. That means that to carry out the

analysis that follows, it is not necessary for us to mininize p∆pZH |xq.
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3.3 Alternative parametric models

We can include specific alternative models within the set pZpxq defined in (14) by choosing

ξ ě 0 appropriately. Notice that p∆p1|xq “ 0. If

|Ht|
2
ď ξpXtq, (15)

then
p∆pZH

|xq ď 0, (16)

so that the corresponding ZH P pZpxq.
We now construct ξ by specifying parametric alternatives to our baseline model. Con-

sider alternatives to baseline model (1) of the following form:

d logCt “ .01 pµ` βXtq dt` .01α ¨ dWH
t

dXt “ φdt´ κXtdt` σ ¨ dW
H
t , (17)

where WH is a Brownian motion and (6) continues to describe the relationship between the

processes W and WH . Here pµ̂, φ̂, β̂, κ̂q are parameters of the baseline model (1), pµ, φ, β, κq

are parameters of model (17), and pα, σq are parameters common to both models. Not all

specifications included in the set of models that concern the decision maker will be of this

form. However, a worst-case model that plays an important role in shaping uncertainty

prices will be.

Suppose that we want drift distortions H for W to represent models in the parametric

class defined by (17). We can express model (17) in terms of our section 2.1 structure by

setting

Ht “ ηpXtq ” η0 ` η1Xt

and using (1), (6), and (17) to deduce the following restrictions on η0 and η1 as functions

of pµ, φ, β, κq:

«

α1

σ1

ff

η0 “

«

µ´ µ̂

φ´ φ̂

ff

«

α1

σ1

ff

η1 “

«

β ´ β̂

κ̂´ κ

ff

. (18)

By imposing restrictions (18), we can find pairs pη0, η1q that represent members of a class
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of models having parametric form (17).

We further restrict a family of parametric models by using the nonnegative quadratic

function ξpxq defined in (13) to express a collection of alternatives to a baseline model. For

example, to induce ξ to include a prespecified κ̃, form

ξpxq
.
“ ξ0 ` 2ξ1x` ξ2x

2
“

1

|σ|2
pκ̃´ κ̂q2 x2.

With this choice of ξ, κ “ κ̃ and κ “ 2κ̂ ´ κ̃ become alternative parameter configurations

defining models included in a neighborhood of the baseline model. More generally, we can

set pµ̃, φ̃, β̃, κ̃q and then compute η̃1 and η̃1 by solving a counterpart to (18). Then

ξpxq “ |η̃0 ` η̃1x|
2.

Definition 3.2. Zo is a set of martingales ZH constructed by (i) selecting a pair pη0, η1q

that satisfies (18) for some pµ, φ, β, κq, (ii) pinning down an associated Ht “ η0 ` η1Xt,

(iii) constructing an implied martingale ZH via (2), and (iv) restricting |Ht|
2 ď ξpXtq.

By in effect setting ξ to a constant, Hansen and Sargent (2001) and Hansen et al. (2006)

included only parametric alternatives that alter µ̂ and φ̂.

Next we shall construct a larger convex set of martingales that contains Zo as well as

models that depart from the parametric structure (17). Applying Bayes’ rule to mixture

models provides one motivation for being interested in a larger set.

3.4 Convexity and Bayes rule

Convexity of a set of martingales allows us to use Bayes rule to update probabilities and

motivates our interest in weighted averages of martingales. We now apply Bayes’ rule to

two models characterized by H1 and H2 for which ZH1
and ZH2

are in pZpxq; for example,

H1 and H2 might both be affine functions of X and correspond to two time invariant

parameter models. Let π1
0 be a prior probability on model H1 and π2

0 “ 1 ´ π1
0 be a prior

on model H2. A martingale

M “ π1
0M

H1

` π2
0M

H2

corresponds to a mixture of the H1 and H2 models. Like MH1
and MH2

, the mathematical

expectation of M conditioned on date zero information equals unity. The law of motion
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for M is

dMt “π
1
0dM

H1
t ` π2

0dM
H2
t

“π1
0M

H1
t H1

t ¨ dWt ` π
2
0M

H2
t H2

t ¨ dWt

“Mtpπ
1
tH

1
t ` π

2
tH

2
t q ¨ dWt

where πjt is the date t posterior

πjt “
πj0M

Hj

t

Mt

.

The drift distortion

Ht “ π1
tH

1
t ` π

2
tH

2
t

associated with the mixture model is typically not an affine function of X even when both

H1 and H2 are.

To construct a larger convex set of martingales that contains Zo as well as models that

depart from the parametric structure (17) we define:

Definition 3.3.
rZ “

 

ZH
P Z : |Ht|

2
ď ξpXtq

(

(19)

for all t with probability one.

While martingales ZH in Zo represent models with time-invariant parameters, martingales

ZH in rZ represent models whose parameters vary over time. We want also to include

models that statistically are arbitrarily close to models implied by martingales in rZ, nany

of which don’t satisfy an instant-by-instant constraint like the inequality on the right side

of (3.3). For this reason, we construct a larger family of martingales by replacing the

instant-by-instant inequality in the definition (19) of rZ with restrictions cast in terms of

intertemporal probability-weighted averages of |Ht|
2 that allow the intertemporal trade-offs

associated with likelihood-ratio statistical model discrimination criteria.14

14The ambiguity averse decision maker of Chen and Epstein (2002) considers a set of models characterized
by martingales that are generated by h processes that satisfy instant-by-instant constraints on h like (19).
Anderson et al. (1998) also explored consequences of this type of constraint without the state dependence
in ξ.
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3.5 Relative entropy neighborhoods

Building on Petersen et al. (2000), we constructed the set pZpxq to include relative entropy

neighborhoods of alternative parametric models as well as of a baseline model. This differ-

entiates our approach from work by James (1992), Hansen and Sargent (2001), and Hansen

et al. (2006), who constructed a set of models as a relative entropy neighborhood of a

baseline model only.

To construct relative entropy with respect to the probability model affiliated with a

martingale ZĤ , we use a likelihood ratio logZH
t ´ logZ

pH
t with respect to the Z

pH
t model

rather than a likelihood ratio logZH
t with respect to the original baseline model to arrive

at

∆
´

ZH ;Z
pH
|x
¯

“δ

ż 8

0

expp´δtqE
”

ZH
t

´

logZH
t ´ logZ

pH
t

¯
ˇ

ˇ

ˇ
X0 “ x

ı

dt

“
1

2

ż 8

0

expp´δtqE
”

ZH
t | Ht ´ pHt |

2
ˇ

ˇ

ˇ
X0 “ x

ı

dt.

We have recycled the notation ∆ to include two martingales as arguments. Implicitly the

second argument Z
pH was set to one in our previous analysis.

Given this measure, we form relative entropy neighborhoods about a martingale ZH :

tZH : ∆
´

ZH ;Z
pH
|x
¯

ă εu

for alternative ε ą 0. Small neighborhoods contain martingales that imply probability

measures that are statistically close to the measure implied by Z
pH . The set pZpxq includes

small neighborhoods of the martingales in Zo constructed from parametric alternatives.

Proposition 3.4. Suppose that
pHt “ η̂0 ` η̂1Xt.

where
p∆
´

Z
pH
|x
¯

ă 0.

There exists an ε ą 0 such that the set pZpxq defined in (14) contains the relative entropy

neighborhood tZH P Z : ∆pZH ;Z
pH |xq ă εu.

We prove this result in Appendix A. Our inclusion of relative entropy neighborhoods of

parameter models shapes our Section 10 analysis of a proposal by Epstein and Schneider
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(2003) to expand sets of models enough to make them satisfy a property that they call

rectangularity.

3.6 Averaging over an initial state distribution

So far we have conditioned on the initial state x, as was often done in previous research. In

this paper, we will have cause to average of the this state using a probability distribution

Q over initial states:

∆pZH
q ”

ż

p∆pZH
|xqQpdxq. (20)

The probability distribution Q can be a point mass at some initial state or it can be a

stationary probability distribution of X under the baseline model. Later we suggest yet

other ways to choose Q.

We construct a convex set Z of martingales ZH :

Definition 3.5.

Z “
 

ZH
P Z : ∆pZH

q ď 0
(

. (21)

Choosing ξpxq appropriately makes Z include martingales that are associated with paramet-

ric probability models like those studied in this section as well as many other specifications

that are not included in a parametric family and that may not be Markovian.

In section 8, we pose a robust decision problem in which Z serves as a set of positive

martingales multiplying baseline model probabilities. Evidently, both the baseline model

(1) and the alternative models captured by the quadratic function ξpxq play important

roles in constructing the set Z. The quadratic function ξpxq also shapes another convex

set pZ that we use to calibrate plausible sets of models in section 4.

The following set inclusions summarize our constructions so far:

set Zo Ă rZ Ă Z
contains parametric time-varying relative-entropy

alternatives parameters neighborhoods

4 Chernoff entropy

The set Z defined in (21) is tractable to use in decision problems, but an alternative set
qZ emerges from studying how, by disguising probability distortions of a baseline model,

Brownian motions make it challenging to distinguish models statistically. To construct

14



qZ we use Chernoff (1952) entropy, which differs from discounted relative entropy. While

Chernoff entropy’s connection to a statistical decision problem makes it interesting, it is

less tractable than relative entropy for formulating robust decision problems.

In the spirit of Anderson et al. (2003), we use Chernoff (1952) entropy to measure

a distortion Z to a baseline model. Think of a pairwise model selection problem that

statistically compares the baseline model (1) with a model generated by the martingale

ZH . The logarithm of the martingale evolves according to

d logZH
t “ ´

1

2
|Ht|

2dt`Ht ¨ dWt.

Consider a statistical model selection rule based on a data history of length t that takes the

form logZH
t ě log τ , where ZH

t is the likelihood ratio associated with the alternative model

for a sample size t. Consider a model selection rule that incorrectly chooses the alternative

model when the baseline model governs the data. We bound the probably of this outcome

by using an argument from large deviations theory that starts from

1tlogZH
t ěτu

“ 1t´sτ`s logZH
t ě0u

“ 1texpp´sτqpZH
t q

sě1u ď expp´sτqpZH
t q

s.

This inequality holds for 0 ď s ď 1. The expectation of the term on the left side equals

the probability of mistakenly selecting the alternative model when the data are a sample

of size t generated by the baseline model. We bound this mistake probability for large t by

following Donsker and Varadhan (1976) and Newman and Stuck (1979) and studying

lim sup
tÑ8

1

t
logE

“

expp´sτq
`

ZH
t

˘s
|X0 “ x

‰

“ lim sup
tÑ8

1

t
logE

“`

ZH
t

˘s
|X0 “ x

‰

for alternative choices of r. The threshold τ does not affect this limit. Furthermore, the

limit is often independent of the initial state X0 “ x. To get the best bound, we compute

inf
0ďsď1

lim sup
tÑ8

1

t
logE

“`

ZH
t

˘s
|X0 “ x

‰

,

a limit that is typically negative because mistake probabilities decay with sample size.

Chernoff entropy is then

χpZH , xq “ ´ inf
0ďsď1

lim sup
tÑ8

1

t
logE

“`

ZH
t

˘s
|X0 “ x

‰

. (22)
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Appendix B describes how to compute Chernoff entropy for competing parametric models.

These calculations produce no dependence on the initial state x. This is to be expected

for models with sufficient stationarity because discounting plays no role in constructing

Chernoff entropy.

Setting χpZH , xq “ 0 would mean including only alternative models that cannot be

distinguished on the basis of histories of infinite length. In effect, that is what is done

in papers on self-confirming equilibria that extend the rational expectations equilibrium

concept to allow probability models to be wrong off equilibrium paths, i.e., for events that do

not occur infinitely often.15 Because we want to include alternative parametric probability

models associated with the martingales in Z`, we entertain positive values of χpZH , xq.

Our decision theory differs from that typically used for self confirming equilibria because

our decision makers formally acknowledge model uncertainty and adjust their decisions

accordingly.

To help interpret χpZH , xq, consider the following argument. If the decay rate of mistake

probabilities were constant, then mistake probabilities for two sample sizes Ti, i “ 1, 2,

would be

mistake probabilityi “
1

2
exp p´Tiρ̄q

for ρ̄ “ χpZH , xq. We define a ‘half-life’ as an increase in sample size T2 ´ T1 ą 0 that

multiplies the mistake probability by a factor of one half:

1

2
“

mistake probability2

mistake probability1

“
exp p´T2ρ̄q

exp p´T1ρ̄q
.

So the half-life is approximately

T2 ´ T1 “
log 2

ρ̄
. (23)

The preceding back-of-the-envelope calculation justifies the detection error bound com-

puted by Anderson et al. (2003). The bound on the decay rate should be interpreted

cautiously because it is constant but the actual decay rate is not. Furthermore, the pair-

wise comparison oversimplifies the challenge truly facing a robust decision maker, which is

statistically to discriminate among multiple models.

We can make a symmetrical calculation that reverses the roles of the two models and

instead conditions on the perturbed model implied by martingale ZH . It is straightforward

to show that the limiting rate remains the same. Thus, when we select a model by com-

15See Sargent (1999) and Fudenberg and Levine (2009).

16



paring a log likelihood ratio to a constant threshold, the two types of mistakes share the

same asymptotic decay rate.

Chernoff (1952) entropy is related to the Cressie and Read (1984) discrepancy measures

discussed in section 3. Notice that

1

ps´ 1qs

`

E
“`

ZH
t

˘s
|X0 “ x

‰

´ 1
˘

is the special case r “ 1` s of the Cressie and Read family of discrepancies. When Chernoff

entropy is strictly positive, E
“`

ZH
t

˘s
|X0 “ x

‰

tends to zero for some 0 ă s ă 1 as t tends

to infinity. Thus, the corresponding Cressie and Read discrepancy converges to a positive

number 1
sp1´sq

at an exponential rate as t gets large. The Chernoff entropy measure looks

across these rates to obtain the best bound on mistake probabilities.

Our second convex set is a ball formed using Chernoff entropy (22).

Definition 4.1.
qZ “

 

ZH
P Z : χpZH ;xq ď qρ

(

. (24)

We attain a specified half-life by adjusting the radius qρ of the ball.

5 Robust planning problem

To illustrate our formulation of sets of models, we deliberately consider a simple setup. We

posit an exogenous consumption process and deduce the implied shadow prices of risk and

uncertainty. Richer models would include production, capital accumulation, and distinct

classes of decision makers with differential access to financial markets. Before adding such

complications, we want to understand uncertainty in our simple environment. To con-

struct uncertainty prices, we compute worst-case probabilities associated with martingales

in the set Z. To do this, we solve a continuous-time optimization problem that leads to a

Hamilton-Jacobi-Bellman equation.

In subsections 5.1 and 5.2, we formulate a robust planning problem for an economy with

a representative consumer having an instantaneous utility function that is logarithmic in

consumption. Associated with the worst-case probability from the robust planning problem

is a greatest lower bound on expected discounted utility over the family Z of alternative

probability distributions. In subsection 5.3, we represent the worst-case probability with

a drift distortion to the multivariate Brownian motion in the baseline model (1). We use
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that drift distortion to guide the calibration of parameters that determine the size of the

set Z. In section 8, we show how that same worst-case drift distortion appears in a recur-

sive representation of competitive equilibrium prices for an economy with a representative

investor that participates in decentralized security markets. We deduce uncertainty prices

and connect them to the worst-case drift distortion from our robust planning problem.

5.1 Parametric alternatives

Consider the baseline consumption process for C specified in equation (1). Guess a value

function υpx, θ, γq ` log c where c is a realized value of the consumption process. We use

the family of martingales in the set Z to represent alternative probabilities. We define the

function ξ to be

ξpx, γq “

#

γξ̂pxq or

γ ` ξ̂pxq,

where ξ̂pxq is a pre-specified quadratic function and γ is temporarily an arbitrary parameter.

Whether we choose an additive or a multiplicative scaling will depend on the application

at hand. Eventually, we will calibrate γ to produce a model detection probability half-life

defined in terms of Chernoff entropy. By bringing in other sources of information to help

with calibration, we could allow both additive and multiplicative adjustments.

Let H be a (progressively measurable) control process that influences the evolution of

ZH :

dXt “ φ̂dt´ κ̂Xtdt` σ ¨Htdt` σ ¨ dWt

dZH
t “ ZH

t Ht ¨ dWt.

The planner chooses H to minimize

ż 8

0

expp´δtqE
”

`

ZH
t

˘

logCt

ˇ

ˇ

ˇ
X0 “ x

ı

Qpdxq

subject to

∆pZH
q ď 0. (25)

Let θ be a multiplier on constraint (25). In subsection 5.2, for a given pθ, γq we construct

a recursive representation of a worst-case drift distortion. The distribution Q of the initial

state plays no role in this initial calculation.
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5.2 Recursive representation of worst-case drift distortion

We posit that the value function that solves the preceding control problem takes the form

zυpx, θ, γq. Given pγ, θq, we compute H by solving Hamilton-Jacobi-Bellman (HJB) equa-

tion

0 “ min
h
´ δυpx, θ, γq ` p.01qpµ̂` β̂xq ` υ1px, θqpφ̂´ κ̂xq `

1

2
|σ|2υ2px, θ, γq

` p.01qα ¨ h` υ1px, θ, γqσ ¨ h`
θ

2
|h|2 ´

θ

2
ξpx, γq. (26)

Alternatively, we can view this HJB equation as associated with a weak solution to an

optimization problem in which a drift distortion to a Brownian motion is the control process

that holds under the probability distribution implied by ZH . In this case, we would push

the martingale into the background and instead make distributional statements about the

implied Brownian motion.

The solution υ of HJB equation (26) is derived in Appendix C and is quadratic in x:

υ px, θ, γq “ ´
1

2

“

υ2pθ, γqx
2
` 2υ1pθ, γqx` υ0pθ, γq

‰

,

which implies that the minimizing h is affine in x:

h˚ “ η˚px, θ, γq “ ´
1

θ
r.01α ´ συ2pθ, γqx´ συ1pθ, γqs . (27)

5.3 Determining θ and γ

To set θ, we must decide how to model the initial state. Papers by Petersen et al. (2000)

and Hansen et al. (2006) effectively conditioned on an initial state by setting Q to be a

mass point at a single value of x. Here we suggest an alternative approach.

Under the baseline model, X has a stationary distribution pQ having density q̂ with

mean φ̂{κ̂ and variance |σ|2{p2κ̂q. Let g be a density that we use to alter pQ. Formally,

we take a Borel measurable function g ą 0 satisfying
ş

gpxq pQpdxq “ 1. Let G denote the

collection of all such functions gpxq.

Consider any g P G. Introduce a nonnegative parameter ς that we temporarily take as

fixed, given pθ, γq. To make a conservative adjustment of the probability measure over the
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initial state, compute g by solving

min
gPG

ż

υ px, θ, γq gpxq pQpdxq ` θ

„
ż

log gpxqgpxq pQpdxq ´ ς



. (28)

The minimizing g is an exponentially tilted density

g̃px, θ, γq9 exp

„

´
1

θ
υ px, θ, γq



(29)

that is evidently normal with precision

ωpθ, γq “
2κ̂

|σ|2
´

1

θ
υ2pθ, γq

and mean

νpθ, γq “
1

ω

«

2φ̂

|σ|2
`

1

θ
υ1pθ, γq

ff

.

To compute θ, we substitute g̃ into (28) to obtain the maximand in the following

problem:

max
θą0

´θ log

„
ż

exp

ˆ

´
1

θ
υpx, θ, γq

˙

pQpdxq



´ θς. (30)

This maximization problem is concave in θ given ς. We use this problem to impose the

restriction
ż

p∆pZH
|xqgpxq pQpdxq `

„
ż

log gpxqgpxq pQpdxq ´ ς



ď 0.

Since the second term was not used in our construction of the set Z, instead of specifying

ς a priori, we choose it to satisfy

ż

g̃rx, θ, γs log g̃px, θ, γq pQpdxq “ ς. (31)

Taken together, (30) and (31) determine θ and ς for a given value of γ.16 This procedure

gives us a value of θ˚pγq as a function of γ.

16An alternative approach would have been to impose separately the constraint
ş

log gpxqgpxq pQpdxq´ς ď
0 for an exogenously specified ς. Here we avoid an additional “free parameter.”
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5.4 Key steps in calibrating Z

By refining a suggestion of Anderson et al. (2003), we use a half-life for a model detection

statistic to determine γ. Compute h˚ rx, θ˚pγq, γs and evaluate the associated Chernoff

entropy. Then adjust γ to match a target half-life as given by (23).17 Call the resulting γ,

γ˚ and let

g˚pxq “ g̃ rx, θ˚pγ˚q, γ˚s .

6 Quantitative examples

We present two quantitative examples in which an Xt process contributes a predictable

component of consumption growth.18 We explore examples in which evidence for long-

term predictability of consumption growth is intrinsically fragile, making ut plausible that

investors would want to explore alternative models. Chernoff entropy guides the magnitudes

of the doubts that we impute to investors.

Our first example is patterned after Bansal and Yaron (2004), but like Hansen and

Sargent (2010), we use data only on aggregate consumption. We use updated data to

estimate parameters of the baseline model (1). We assume that Xt is hidden to us as

econometricians, but that it is observed by both the planner and the representative investor.

Our second example blends Bansal and Yaron (2004) with Hansen et al. (2008). We

estimate a VAR that builds in cointegrating relationships. Along with consumption, our

VAR includes personal dividend income, a variable that we regard as a broad measure of

business income. We use the VAR estimates to construct another quantitative version of our

baseline model (1). We build this simplified model to approximate responses to permanent

shocks. In contrast to Bansal and Yaron (2004), we introduce no stochastic volatility in

order to focus on fluctuations in the endogenously determined uncertainty prices induced

by the representative investor’s model uncertainty.

17We expect but haven’t proved that the half-life is monotone in γ.
18While we appreciate the value of a more comprehensive empirical investigation with multiple macroe-

conomic time series, here our aim is to illustrate a mechanism within the context of relatively simple time
series models of predictable consumption growth.
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6.1 A long-term risk model

For our first set of calculations, we use our baseline model (1) evaluated at the following

updates of maximum likelihood estimates computed by Hansen and Sargent (2010):19

µ̂ “ .499 β̂ “ 1

φ̂ “ 0 κ̂ “ .169

α “

«

.424

0

ff

σ “

«

0

.195

ff

(32)

We study Chernoff entropy balls associated with half-lives of 60 quarters, 80 quarters,

and 120 quarters. For comparison, we include a model with no concern for robustness,

which is equivalent to a half-life equal to infinity. We let ξpx, γq “ γx2 in contrast to

Hansen and Sargent (2001) or Hansen et al. (2006), who in effect set ξpx, γq “ γ. When ξ

does not depend on x, the worst-case drift distortions and the implied uncertainty prices

are both constant.

Table 1 reports worst-case models that emerge from the robust planner’s HJB equation

(26). The worst-case models reduce µ and impart a negative mean φ
κ

to X . We report the

composite outcome for the growth rate of consumption µ` βφ
κ

; β turns out to be unity in all

cases. The quantity µ` βφ
κ
´ µ̂ traces out the implied long-term consequences of an adverse

shift in the drift vector of the Brownian motion at a given date. Because an adverse shift

can occur at any moment, the implied worst-case parameters reflect what would happen if

an adverse drift shift occurred at every future moment.

As we reduce the half-life, the worst-case model makes the constant parameter adjust-

ment smaller. When ξpx, γq “ γx2, the worst-case model also increases the persistence of

the growth-rate process. Although the minimizing agent could choose to increase persis-

tence further, he instead chooses to allocate some of the entropy distortion to the constant

terms.

19The estimates are for per capita using consumption of nondurables and services for aggregate U.S.
quarterly data over the period 1948 Q2 to 2015 Q2.
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Table 1: Worst-case parameter values for ξpx, γq “ γx2 associated with HJB equation (26).
The last column reports κ, which is the smallest allowable value of κ.
Half-Life µ φ β κ κ µ´ µ̂` βφ

κ

8 .499 0 1 .169 .169 0
120 .477 -.0347 1 .134 .066 -.281
80 .475 -.0407 1 .122 .052 -.357
60 .475 -.0452 1 .112 .042 -.428

Figure 1 displays interdecile ranges of the distribution for consumption growth over

alternative horizons. We depict deciles for both the baseline model and the worst-case

model associated with a half-life of 80 according to formulas in Appendix E.2. The regions

between the deciles describe risk in the consumption distribution. Variations across the

baseline and worst-case models reflect uncertainty driven by skepticism about the baseline

model. The upper decile of the worst-case model overlaps the lower decile of the baseline

model.
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Figure 1: Expected values and interdecile ranges of logCt scaled by 100 for the baseline

model and for a half-life of 90 when ξpx, γq “ γx2. The shaded black and red areas show

the .1 and .9 interdecile ranges under the baseline model and the worst-case model for a

half-life of 80. The black line is the mean growth for the baseline model, and the red circle

line is the mean growth for the worst-case model.

For the VAR construction, we follow Hansen et al. (2008) and use additional macroe-

conomic time series to infer information about long-term consumption growth. We report

a calibration of our baseline model (1) constructed from a trivariate VAR for log consump-

tion, log business income, and log personal dividend income. Business income is measured

as proprietor’s income plus corporate profits per capita. Dividends are personal dividend

income per capita. We fit a vector autoregression (VAR) to the consumption growth rate,

the difference between logs of business income and consumption, and the difference between

logs of personal dividend income and consumption.20 By including proprietors’ income in

addition to corporate profits, we use a broader measure of business income than Hansen

et al. (2008) who used only corporate profits. Moreoever, Hansen et al. (2008) did not

20The time series are quarterly data from 1948 Q1 to 2015 Q1. where our consumption measure is
nondurables plus services consumption per capita. The business income data are from NIPA Table 1.12
and the dividend income from NIPA Table 7.10.
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include personal dividends in their VAR analysis.

The VAR estimates imply:

µ̂ “ .386 β̂ “ 1

φ̂ “ 0 κ̂ “ .019

α “

«

.488

0

ff

σ “

«

.013

.028

ff

(33)

There are two important differences between this specification and the preceding one that

uses consumptoin alone. First, now there is cross correlation between shocks. Second, since

the baseline κ is much smaller, there is more persistence, leaving less room for a worst-

case model to move away from the baseline before encountering a so-called breakdown

probability model at which the objective is minus infinity. Even prior to attaining the

breakdown point, we find that κ becomes negative. To avoid these outcomes, we proceed

as follows. First we compute

ξ2 “ min
r
η1 ¨ η1

where the minimization is subject to

«

α1

σ1

ff

η1 “

«

r

κ̂´ κ

ff

.

In this way we allow the continuous-time autoregressive coefficient to be as low as κ without

taking a stand on the magnitude of β. We then choose half-lives by picking γ so that

ξpxq “ γ ` pκ̂´ κq2x2.

This construction makes κ a feasible choice.

In table 2, we fix κ “ .005 then set γ according to three half-lives. The minimizing

decision maker sets κ̂ ą κ ą κ and thereby increases the persistence of state variable

relative to the baseline model, but less than he could. The minimization also appends

adverse constant shifts to the Brownian increments. These adverse shifts in the Brownian
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Table 2: Worst-case parameter values for ξpxq “ γ ` pκ̂ ´ κq2x2 associated with HJB
equation (26)

.

Half-Life µ φ β κ κ µ´ µ̂` βφ
κ

8 .386 0 1 .019 .019 0
120 .334 -.0055 1.038 .013 .005 -.482
80 .322 -.0068 1.038 .013 .005 -.593
60 .312 -.0078 1.038 .013 .005 -.686

Table 3: Worst-case parameter values for ξpxq “ γ ` pκ̂ ´ κq2x2 associated with HJB
equation (26).

Half-Life µ φ β κ κ µ´ µ̂` βφ
κ

8 .386 0 1 .019 .019 0
80 .316 -.0072 1.024 .015 .0075 -.550
80 .322 -.0068 1.038 .013 .0050 -.593
80 .332 -.0061 1.058 .010 .0025 -.682

increments have long-lasting effects on the growth rate of consumption determined by the

worst-case persistence parameter κ. An associated increase in the slope coefficient β in

the consumption evolution equation magnifies these effects. Reducing the half-life of the

probability decay enhances all of these effects. Since κ is smaller under the worst-case model

than under the approximating model, the long-term consequence of a mean distortion to the

shock vector is further amplified. Unlike the approximating model, the worst-case model

implies that µ` βφ
κ

is negative, a consequence of allowing the mean of the shock vector to

be misspecified and permitting this misspecification to recur in all future time periods.

In table 3 we explore the consequences of changing κ. We fix and the half-life to be

eighty quarters and consider three κ’s: .0075. .0050, and .0025. The worst-case κ becomes

smaller as we decrease κ, but it exceeds κ. The slope β also increases. To maintain the

same half-life, the implied worst-case values for µ and φ become larger.

Figure 2 is a counterpart to figure 1 for our second model model calibration. Once

again, especially near term, the grey and red shaded areas depicting interquartile ranges

for the baseline and worst-case model share much coverage.

26



Figure 2: Expected values and interdecile ranges of logCt scaled by 100 for the baseline

model and for a half-life of 80 and κ “ .005 when ξ̃ “ γ`pκ̂´κq2x2. The shaded black and

red areas show the .1 and .9 interdecile ranges under the baseline model and the worst-case

model for a half-life of 80. The black line is the mean growth for the baseline model, and

the red circle line is the mean growth for the worst-case model.

7 Comparing sets of models

The set Z of martingales from definition 3.5 describes our robust representative investor’s

concerns about misspecification of his baseline model (1). In this section, we compare Z
to an associated Chernoff entropy ball qZ and also to another set Z˚, the smallest entropy

ball of the type used by Hansen and Sargent (2001) and Hansen et al. (2006) that contains

Z. We illustrate these comparisons using parameter values that emerged from our first

method for calibrating the baseline model (1). A comparison of these sets provides a

practical answer to the question: instead of using the set Z, why not simply expand the

entropy ball Z˚ used by Hansen and Sargent (2001) and Hansen et al. (2006) enough to

include the alternative parametric models that concern our decision maker? The answer is

that doing that would lead to an entropy ball that is too big when measured by Chernoff-
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entropy. We also show that for our example a Chernoff entropy ball closely approximates

the set Z that we use to pose our robust planning problem.

7.1 A set Z˚ that contains Z

In contrast to what we do in this paper, Anderson et al. (2003) and Hansen and Sargent

(2010) formulated robust control problems in terms of discounted entropy balls surrounding

baseline model like (1). To help understand the differences between those robust control

problems and the ones posed in this paper, we construct a new set Z˚ defined as the

smallest entropy ball that contains Z. An entropy ball surrounding a baseline model is a

family of ZHs that satisfy21

Z˚ .
“

"

ZH :

ż
„
ż 8

0

expp´δtqE
`

ZH
t logZH

t |X0 “ x
˘



g˚pxq pQpdxq ď
1

2δ
ξ˚
*

(34)

for the smallest constant ξ˚ ą 0 such that

Z Ă Z˚.

By constructing an entropy ball Z˚ that contains Z, we discover how large relative entropy

can be for martingales in the set Z. By comparing Z and Z˚ with a Chernoff entropy

ball that we use to calibrate Z, as we shall do in figure 4 below, we can appreciate some

of the consequences of formulating robust control problems as we do in this paper rather

than as we did in Hansen et al. (2006) and Hansen and Sargent (2001). We describe how

to compute ξ˚ in Appendix D using recursive methods.

7.2 Alternative sets

We compare intersections of Zo defined in (3.2) with each of the three sets Z˚, Z, and
qZ. While it is tractable to use the sets Z˚ and Z to formulate robust decision problems,

these sets are not directly linked to statistical discrimination problems. The set qZ is closely

linked to “statistical discrimination,” but for forming robust decision problems it is not as

tractable as the other two. It would be comforting if Z˚ were to approximate pZ closely,

at least in regions near the worst-case model that emerges from the robust planner’s HJB

equation (26).

21We use the term ball loosely because typically a ball in mathematics is defined using a metric.
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Using parameter values associated with the calibration strategy described in subsection

6.1, we report the projection
´

qZ X Zo
¯

of the Chernoff ball on Zo for three half-lives in fig-

ure 3. We represent these projections using the three parameters pµ, κ, φq that characterize

Zo. For comparison, we also report
`

Z X Zo
˘

. The sets are distinct, but the big differ-

ences occur for larger values of κ at which the Chernoff ball contains points not included

in Z˚. But large values of κ are not ones that the robust planner most fears. The two

sets
`

Z X Zo
˘

and
´

qZ X Zo
¯

are closer for longer specifications of the Chernoff entropy

half-life.

In figure 4, we compare the entropy ball pZ˚ X Zoq projection to both pZ X Zoq and

p qZ X Zoq when ξ̂pxq “ x2. The graphs on the left side show how large an entropy ball

Z˚ would have to be to contain the set Z used in the robust planning problem affiliated

with HJB equation (26). The figures on the right side compare the Chernoff balls qZ to the

smallest entropy balls Z˚ that contain Z. These figures convey the message that the worst-

case model associated with the entropy ball Z˚ that contains Z differs from the worst-case

model affiliated with Z and that it also lies outside the Chernoff ball qZ that we use to

calibrate Z. The half lives associated with the worst-case models for the sets Z˚ in figure

4 are 71, 43, and 30, roughly half of values for their Z counterparts. Figure 4 and these

reduced half lives thus confirm the claim made in section 1 that the set Z more concisely

expresses concerns about particular parametric alternatives than would the bigger set Z˚

used in the robust control problem posed by Hansen et al. (2006).

8 Robust portfolio choice and pricing

In this section, we describe equilibrium prices that make a representative consumer willing

to bear risks presented by the environment described by baseline model (1) in light of his

concerns about model misspecification as expressed with the set Z˚. We construct equilib-

rium prices by appropriately extracting shadow prices from the robust planning problem of

subsection 5.1. We decompose equilibrium risk prices into distinct compensations for bear-

ing risk and for bearing model uncertainty. We also describe an equilibrium term structure

of compensations for bearing model uncertainty. We begin by posing the representative

investor’s portfolio choice problem.
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Figure 3: Projections of Z and the Chernoff entropy ball qZ onto three-parameter axis.
From top to bottom: target half-lives 120, 80, and 60, respectively. Left column: ξ̂pxq “ x2.

Right column: ξ̂pxq “ 1. pZ X Zoq shown in blue mesh. p qZ X Zoq shown in yellow. The
red points solve the robust planner’s problems.
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Figure 4: Sets Z˚, Z, and pZ when ξ̂ “ x2. From top to bottom: half-lives 120, 80, and 60,
respectively. pZ˚ X Zoq shown in blue, pZ X Zoq shown in black mesh. p pZ X Zoq shown
in yellow. The black diamond shows the baseline model. The red points solve the robust
planner’s problems. The magenta squares solve the robust planner’s problems under Z.
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8.1 Robust investor portfolio problem

A representative investor faces a continuous-time Merton portfolio problem in which indi-

vidual wealth K evolves as

dKt “ ´Ctdt` p.01qKtιpXtqdt`KtAt ¨ dWt ` p.01qKtπpXtq ¨ Atdt, (35)

where At “ a is a vector of chosen risk exposures, ιpxq is the instantaneous risk free rate

expressed as a percent, and πpxq is the vector of risk prices evaluated at state Xt “ x.

Initial wealth is K0. The investor has discounted logarithmic preferences and distrusts his

probability model.

Key inputs to a representative investor’s robust portfolio problem are the baseline model

(1), the wealth evolution equation (35), the vector of risk prices πpxq, and the quadratic

function ξ in (13) that defines the alternative explicit models that concern the representative

investor. As in the robust planners problem analyzed in section 5.1, let θ be a penalty

parameter or a Lagrange multiplier on the constraint (25). For the recursive competitive

equilibrium, we take pθ, γq as given. We calibrated these parameters as described in section

5.

Under a guess that the value function takes the form υ̃px, θ, γq ` log k ` log δ, the HJB

equation for the robust portfolio allocation problem is

0 “ max
a,c

min
h
´δυ̃px, θ, γq ´ δ log k ´ δ log δ ` δ log c´

c

k
` p.01qιpxq

` p.01qπpxq ¨ a` a ¨ h´
|a|2

2
`

´

φ̂´ κ̂x
¯

υ̃1px, θ, γq ` h ¨ συ̃1px, θ, γq

`
|σ|2

2
υ̃2px, θ, γq ` θ

„

|h|2

2
´

1

2
ξ̃px, γq



. (36)

First-order conditions for consumption are

δ

c˚
“

1

k
,

which implies that c˚ “ δk, an implication that flows partly from the representative in-

vestor’s unitary elasticity of intertemporal substitution. First-order conditions for a and h

are

p.01qπpxq ` h˚ ´ a˚ “ 0 (37a)
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a` θh˚ ` υ̃1px, θ, γqσ “ 0. (37b)

We can appeal to arguments like those in Hansen and Sargent (2008, ch. 7) to justify

stacking first-order conditions as a way to collect equilibrium conditions for the two-person

zero-sum game.22

8.2 Competitive equilibrium prices

We show here that the drift distortion h˚ that emerges from the robust planner’s problem of

subsection 5.1 determines prices that a competitive equilibrium awards to people who bear

model uncertainty. To compute a vector πpxq of competitive equilibrium risk prices, we

find a robust planner’s marginal valuations of exposures to the W shocks. We decompose

that price vector into separate compensations for bearing risk and for accepting model

uncertainty.

Noting from the robust plannering problem that the shock exposure vectors for logK

and logC must coincide implies

a˚ “ p.01qα.

From (37b),

h˚ “ η˚px, θ, γq

where η˚ is the worst-case drift from the robust planning problem provided that we show

that ῡ “ υ, where υ is the value function for the robust planning problem. Thus, from

(37a), π “ π˚, where

π˚pxq “ α ´ 100η˚px, θ, γq “ α ´ 100h˚. (38)

Similarly, in the problem for a representative investor within a competitive equilibrium,

the drifts for logK and logC must coincide:

´δ ` p.01qιpxq ` p.01qrp.01qα ´ η˚px, θ, γqs ¨ α ´
.0001

2
α ¨ α “ p.01qpµ̂` β̂xq,

22If we were to use a timing protocol that allows the maximizing player to take account of the impact
of its decisions on the minimizing agent, we would obtain the same equilibrium decision rules described in
the text.
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so that ι “ ι˚, where

ι˚pxq “ 100δ ` pµ̂` β̂xq ` α ¨ η˚px, θ, γq ´
.01

2
α ¨ α. (39)

We use these formulas for equilibrium prices to construct a solution to the HJB equation

of a representative investor in a competitive equilibrium by letting ῡ “ υ.

8.3 Reinterpreting worst-case portfolio problem

Hansen et al. (2006) described an ordinary (i.e., non-robust) portfolio selection problem

for a representative investor who has a completely trusted model for the exogenous state

dynamics and whose decision rule attains the value function ψ associated with the HJB

equation (36) for a robust representative investor portfolio problem. This investor’s com-

pletely trusted model of course differs from the baseline model (1) and is associated with

what Hansen et al. (2006) called an ex post problem because it comes from exchanging

orders of maximization and minimization in the two-person zero-sum game that gives rise

to the robust portfolio choice rule. This ex post portfolio problem is a special case of a

Merton problem with a state evolution that is distorted relative to the baseline model. The

distorted evolution imputes to the process W a drift η˚pXq so that

dWt “ η˚pXtqdt` dW
˚
t

“ pη˚0 ` η
˚
1Xtq dt` dW

˚
t ,

where W ˚ is a multivariate standard Brownian motion under the h˚ probability distribu-

tion. Thus,

d logCt “ .01pµ̂` ψ̂Xtqdt` p.01qα ¨ η˚pXtqdt` p.01qα ¨ dW ˚
t

dXt “ φ̂dt´ κ̂Xtdt` σ ¨ η
˚
pXtqdt` σ ¨ dW

˚
t .

A value function υ̃ ` log k satisfies the HJB equation

0 “ max
a,c

´ δυ̃pxq ´ δ log k ` δ log c´
c

k
` p.01qιpxq ` p.01qπpxq ¨ a` a ¨ pη0 ` η

˚
1xq ´

|a|2

2

r´κ̂x` η˚0 ` η
˚
1xs υ̃

1
pxq `

|σ|2

2
υ̃2pxq.
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First-order conditions are

δ

c˚
´

1

k
“ 0

p.01qπpxq ` η˚0 ` η
˚
1x´ a

˚
“ 0,

which lead to decision rules c˚ “ δk and

a˚ “ p.01qπpxq ` η˚0 ` η
˚
1x.

Because the respective exposures and drifts for logK and logC should coincide in equilib-

rium, it follows that

´δ ` p.01qιpxq ` .01α ¨ h˚pxq ` .0001α ¨ α ´
.0001

2
π ¨ α “ p.01q

”

µ̂` β̂x` α ¨ h˚pxq
ı

.

Thus, the ordinary decision rules that solve the ex post portfolio problem imply the same

equilibrium prices as the robust portfolio problem, so that π “ π˚ and ι “ ι˚, as given by

(38) and (39), respectively.

9 Term structure of uncertainty prices

In a continuous-time formulation, a pertinent notion of a shock that occurs during a “next

instant” is an incremental change that carries with it incremental effects on all future

outcomes, which for us include cash flows, stochastic discounts, and asset prices. This

section applies a type of nonlinear impulse response function defined by Borovička et al.

(2011) and Borovička et al. (2014) to describe how competitive equilibrium uncertainty

prices vary over investment horizons. Borovička et al.’s (2014) counterpart of an impulse

response function is a state- and horizon-dependent elasticity of an outcome at date t`j to

a shock at date t, a collection of objects they call “shock elasticities.” The joint nonlinear

dynamics of stochastic discount factor processes, payout processes, and asset prices make

these elasticities depend both on the horizon and the Markov state, which in our application

is a growth state. In this section, we compute these elasticities and use them to construct

what we regard as a dynamic value decomposition. We present quantitative examples in

subsections 9.3 and 9.4.
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9.1 Local uncertainty prices

The equilibrium stochastic discount factor process for our robust representative investor

economy is

d logSt “ ´δdt´ .01
´

µ̂` β̂Xt

¯

dt´ .01α ¨ dWt `H
˚
t ¨ dWt ´

1

2
|H˚

t |
2dt. (40)

The log stochastic discount factor has a linear local mean and a quadratic local variance.

Such exponential-quadratic specification have been used extensively in empirical asset pric-

ing applications. A leading example is the work of Ang and Piazzesi (2003) who estimated

a term structure model with an exponential quadratic stochastic discount factor process

driven by macroeconomic state variables.

Components of the vector π˚pXtq given by (38) equal minus the local exposures to

the Brownian shocks. These are usually interpreted as local “risk prices,” but we shall

reinterpret them. Motivated by the decomposition

minus stochastic discount factor exposure “ .01α ´H˚
t ,

risk price uncertainty price

we prefer to think of .01α as risk prices induced by the curvature of log utility and ´H˚
t

as “uncertainty” prices induced by a representative investor’s doubts about the baseline

model. Here H˚
t “ η˚0 ` η

˚
1Xt, as described in equation (27). When η˚1 “ 0, H˚

t is constant;

but when η˚1 differs from zero, the uncertainty prices ´H˚
t “ ´h˚pXtq are time varying

and depend linearly on the growth state Xt. When h˚ depends positively on x, uncertainty

prices are higher in bad times than in good times. Countercyclical uncertainty prices emerge

endogenously from a baseline model that excludes stochastic volatility in the underlying

consumption risk as an exogenous input. Such fluctuations emerge endogenously from a

baseline model that excludes stochastic volatility in the underlying consumption risk as

an exogenous input. Stochastic volatility models introduce new risks to be priced while

also inducing fluctuations in the prices of the “original” risks. The mechanism in this

paper simultaneously enhances and induces fluctuations in the uncertainty prices, but it

introduces no new sources of risk. Instead, the mechanism features investors’ responses to

their uncertainty about those risks.
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9.2 Uncertainty prices over alternative investment horizons

In the context of our quantitative models, we now report the price-shock elasticities that

Borovička et al. (2014) showed are horizon-dependent uncertainty prices of risk exposures.

Shock price elasticities describe the dependence of logarithms of expected returns on an

investment horizon. The logarithm of the expected return from a consumption payoff at

date t consists of two terms:

logE

˜

Ct
C0

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

¸

´ logE

«

St

ˆ

Ct
C0

˙

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

ff

. (41)

The first term is the expected payoff and the second is the cost of purchasing that pay-

off. Malliavin derivatives tell how a shock in the next instance affects consumption and

stochastic discount factor processes. There is one Malliavin derivative for each Brownian

increment. Following Borovička et al. (2014), we call the Malliavin derivatives of expected

returns across horizons with respect to a shock in the next instant the price elasticity func-

tion, and the Malliavin derivatives of expected payoffs across horizons with respect to a

shock in the next instant a payoff exposure elasticity. For our model, we give quasi-analytical

formulas for these two elasticities in Appendix E.1.

9.3 Shock price elasticities for quantitative example 1

Red lines and areas in figure 5 displays shock elasticities evaluated at the median and

the two deciles of the stationary distribution for X when ξ̂pxq “ x2; blue circles show

shock elasticities when ξ̂ “ 1. As for the red lines associated with ξ̂ “ x2, interdecile

ranges between .1 and .9 are shaded. The uncertainty price elasticities for the second

shock but not the first depend on the initial state x. The price elasticity trajectories are

larger for second shock, the one to the consumption growth rate, than for the first shock,

which directly hits the level of log consumption. Both price elasticity trajectories are nearly

constant across horizons. Increasing the concern for robustness, i.e., lowering the associated

Chernoff half-lives, makes the elasticities larger and increases their variation across horizons

for the growth rate shock.

For comparison, figure 5 also includes the Hansen and Sargent (2001)–Hansen et al.

(2006) formulation of concerns about robustness that sets ξ̂ “ 1. Here even the price

elasticities for the growth shock are constant and are larger than the corresponding median

elasticities when ξ̂ “ x2. Evidently, an interesting trade-off between variability and levels
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Figure 5: Shock-price elasticity to a shock toX for three target half-lives when and ξpx, γq “
γx2 using the first set of parameter estimates. From top to bottom: half-lives 120, 80, and
60, respectively. The left column gives the elasticities for the first shock (which hits the
growth rate of consumption) and the right column for the second shock (which hits the
level of log consumption). The shaded regions show the .1 to .9 interdecile ranges of the
shock-price elasticities under the stationary distribution for X. The blue circles are the
elasticities when ξpx, γq “ γ.
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Figure 6: Components of uncertainty prices ´H˚
t “ ´η

˚
1 ´ η

˚
2
qXt; qXt is filtered estimate of

Xt. The uncertainty prices are the contributions to the instantaneous elasticities. The red
dashed line is the drift distortion for the first shock and the blue solid line is for second
one. Results are based on the first set of parameter estimates and a half-life of 80 quarters.

of uncertainty prices is traced out by altering how much state dependence we include in

ξ̂. The ξ̂ “ x2 specification activates the new mechanism for uncertainty price fluctuations

proposed in this paper, while the ξ̂ “ 1 specification shuts it down.

Figure 6 depicts our estimates as econometricians of the local uncertainty prices asso-

ciated with the two shocks. These estimates were obtained by first using the Kalman filter

to estimate qXt “ ErXt| logCt ´ logCt´1, . . . , logC1 ´ logC0s under the baseline model

evaluated at the parameters associated with our first quantitative example.23 We then

constructed a bivariate time series of uncertainty prices as t´h˚t : t “ 1, 2, ...Nu where

H˚
t “ η˚1 ` η˚2

qXt. The uncertainty price for the first shock, which affects consumption

directly, is time invariant; but secular fluctuations are evident in the second shock, which

23We initialized the Kalman filter using the mean and variance of X in the stationary distribution implied
by the baseline model.
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hits the consumption growth rate. The uncertainty shock affiliated with the second shock

makes uncertainty prices increase during times of diminished consumption growth.

We have structured our quantitative examples to investigate a particular mechanism

for generating fluctuations in uncertainty prices from statistically plausible amounts of

uncertainty. We inferred the baseline parameters for these examples solely from time series

of macroeconomic quantities, thus completely ignoring asset prices during calibration. As

a consequence, we not expect to track closely the high frequency movements in financial

markets. By limiting our empirical inputs, we consciously set aside concerns that Hansen

(2007) and Chen et al. (2015) expressed about using asset market data to calibrate macro-

finance models that assign a special role to investors’ beliefs about the future asset prices.24

An alternative approach would have been to calibrate partly to capture variations over

time in cross-sectional distributions of asset returns, an approach that would impose cross-

equation restrictions between time series of macroeconomic quantities and a vector of asset

returns. We recognize that exploring cross-equations restrictions promises a fuller analysis

of connections between financial markets and aggregate quantities. We would want to add

features to our model including exogenous stochastic contributions to the volatilities of

shocks to macroeconomic quantities and financial markets.

9.4 Shock price elasticities for quantitative example 2

In figure 7 we display the shock elasticities evaluated at the median and the two quartiles

of the stationary distribution for X. We shade in interquartile ranges. Now uncertainty

price elasticities for both shocks depend on the initial state x. Recall that for this param-

eterization the first shock has a direct impact on consumption and on the consumption

growth rate. For the second quantitative example, there is state dependence in elasticities

for the first shock and these elasticities are notably larger than those for the second shock.

Allowing a greater range of κ with lower values of κ enhances the state dependence in the

elasticities.

24Hansen (2007) and Chen et al. (2015) describe situations in which it is the behavior of rates of return
on assets that, through the cross-equation restrictions, lead an econometrician to make confident inferences
about the behavior of macroeconomic quantities like consumption that are much more confident than can
be made from the quantity data alone. That opens questions about how the investors who are supposedly
putting those cross-equation restrictions into returns came to know those quantity processes before they
observed returns.
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Figure 7: Shock-price elasticity to a shock to X for the target half-life 80 and the three

target κ’s when ξ̃px, γq “ γ`pκ´ κ̂q2 x2 using the second set of parameter estimates. From

top to bottom, κ “ .0075, .005, .0025 respectively. The first column gives the elasticities

for the first shock and similarly for the second column. The shaded regions show the .1 to

.9 interdecile ranges of the shock-price elasticities under the stationary distribution for X.

The blue circles are the elasticities when ξpx, γq “ γ.
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Figure 8 depicts secular movements in estimated local uncertainty prices for our second

calibrated example. Again, these are constructed as H˚
t “ η˚1`η

˚
2
qXt where qXt is the filtered

estimate of Xt. Since the shocks are correlated under the baseline model for this calibration,

both estimated local uncertainty prices now fluctuate over time. The fluctuations are

proportional because they are constructed as an affine function of the estimates of the

single state variable Xt.

Figure 8: Estimates of local uncertainty prices under the second calibration. Uncertainty

prices are the contributions to the instantaneous elasticities. The red dashed line is for the

first shock and the blue solid line is for second one. Results are based on the second set of

parameter estimates a half-life 80 quarters, and κ “ .005.

10 Rectangularity

Chen and Epstein (2002) advocated what they called rectangular sets of probabilities in

the context of continuous-time specifications with ambiguity aversion. Epstein and Schnei-

der (2003) formulated decision theoretic axioms that justified rectangular sets of models.
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Proposition 3.4 shows that the set Z that we have used to pose robust decision prob-

lems contains relative entropy neighborhoods centered on alternative parametric models

described with a function ξpxq. If we had instead imposed only the restrictions

Ht ¨Ht ď ξpXtq (42)

on drift distortions Ht, then our set of alternative probabilities would have been rectangular.

In this section, we revisit the point made by Hansen et al. (2006) that any set like ours that

includes relative entropy neighborhoods violates Epstein and Schneider’s rectangularity

property.

We did not follow Epstein and Schneider’s recommendation to expand our set to become

rectangular because we share a point of view expressed by Good (1952) in the quotation

with which we began this paper. Good’s perspective guides how we construct convex sets

of models.25 As in Anderson et al. (2003), in section 4 we use statistical model selection

criteria to evaluate the plausibility of least favorable models. Epstein and Schneider (2003)

criticize robust control theory for violating a notion of dynamic consistency and propose a

remedy that expands the set of models beyond those typically employed in robust control

problems. They propose adding enough models to attain a rectangular set of models (or

priors over models). They construct this larger set of models to represent preferences that

satisfy axioms that they like. They state that

there is an important conceptual distinction between the set of probability laws

that the decision maker views as possible, such as Prob, and the set of priors

P that is part of the representation of preference.

We now show that Epstein and Schneider’s set expansion proposal results in an implemen-

tation of max-min utility theory that is not subjectively reasonable even when we apply it

to an original set of models that is reasonable in Good’s sense.

Epstein and Schneider’s procedure for achieving rectangularity focuses attention on

restrictions that a set like Z imposes on implied local state transitions. In our setting, these

transitions are completely specified by local drift distortions. Rectangularity conditions

(42) impose restrictions on drift distortions that are disconnected over time as in Chen and

Epstein (2002) and in section 4.2 of Anderson et al. (1998). The set Z necessarily contains

martingales of the following type. For a fixed date τ , consider a random vector Hτ that is

25See Berger (1994) and Chamberlain (2000) for related discussions.
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observable at that date and that satisfies

E
`

|Hτ |
2
| X0 “ x

˘

ă 8. (43)

Form a stochastic process

Hu
t “

$

’

&

’

%

0 0 ď t ă τ

Hτ τ ď t ă τ ` u

0 t ě τ ` u.

(44)

The martingale ZHu
associated with Hu equals one both before time τ and after time τ`u.

Compute relative entropy:

∆pZHu

|xq “

ˆ

1

2

˙
ż τ`u

τ

expp´δtqE
”

ZHu

t |Hτ |
2dt

ˇ

ˇ

ˇ
X0 “ x

ı

dt

“

„

1´ expp´δuq

2δ



expp´δτqE
`

|Hτ |
2
| X0 “ x

˘

.

Evidently, relative entropy ∆pZHu
|xq can be made arbitrarily small by shrinking u to zero.

This means that any rectangular set that contains Z must allow for a drift distortion h̄τ

at date τ . We summarize this argument in the following proposition:

Proposition 10.1. Any rectangular set of probabilities that contains the probabilities in-

duced by martingales in a conditional relative entropy neighborhood

tZH
P Z : ∆

`

ZHu

|x
˘

ă εu

for some ε ą 0 must also contain the probabilities induced by martingales in Z.

This proposition targets neighborhoods of baseline model, but it is straightforward to

extend it to relative entropy neighborhoods of other centering points.

Confining ourselves to any such rectangular set of martingales allows us too much free-

dom in setting both the date τ and the random vector h̄τ . Restriction (43) implies instant-

by-instant drift distortions that are just too flexible: they need satisfy only measurability

and second-moment restrictions. In particular, all martingales in the set Z identified in

definition 2.1 are included in the rectangular set. That set is too big to use as part of a

meaningful robust decision problem.

Despite the fact that we decline to use the rectangular embedding that Epstein and

Schneider (2003) advocate in order to satisfy their notion of dynamic consistency, it re-
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mains true that the dynamic decision problems that we formulate give rise to optimization

problems associated with two-person zero-sum games solvable via dynamic programming.

11 Concluding remarks

This paper formulates and applies a tractable model of the effects on equilibrium prices

of exposures to macroeconomic uncertainties. Our analysis uses models’ consequences for

discounted expected utilities to quantify traders’ concerns about model misspecification.

We characterize the effects of concerns about misspecification of a baseline stochastic pro-

cess for individual consumption as shadow prices for a planner’s problem that supports

competitive equilibrium prices.

To illustrate our approach, we have focused on the growth rate uncertainty featured

in the “long-run risk” literature initiated by Bansal and Yaron (2004). Other applications

seem natural. For example, the tools developed here could shed light on a recent public

debate between two groups of macroeconomists, one prophesizing secular stagnation be-

cause of technology growth slowdowns, the other dismissing those pessimistic forecasts.

The tools that we describe can be used, first, to quantify how challenging it is to infer

persistent changes in growth rates, and, second, to guide macroeconomic policy design in

light of available empirical evidence.

Specifically, we have produced a quadratic model (40) of the log stochastic discount fac-

tor whose uncertainty prices reflect a robust planner’s worst-case drift distortions H˚
t . We

have argued that these drift distortions should be interpreted as prices of model uncertainty.

The dependency of these uncertainty prices H˚
t on the growth state x, and thus whether

they are pro cyclical or countercyclical, is shaped partly by a function ξ̂pxq that describes

parametric alternatives to a baseline model. In this way, the theory of countercyclical risk

premia in this paper is all about how our robust investor responds to the presence of the

alternative parametric models among a huge set of unspecified alternative models that also

concern him. We have demonstrated that this is a simple way of generating countercyclical

risk premia.

It is worthwhile comparing this paper’s way of inducing countercyclical risk premia with

three other macro/finance models that also get them. Campbell and Cochrane (1999) pro-

ceed in the standard rational expectations single-known-probability-model tradition and so

exclude any fears of model misspecification from the mind of their representative investor.

They construct a history-dependent utility function in which the history of consumption
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expresses an externality. This history dependence makes the investor’s local risk aversion

depend in a countercyclical way on the economy’s growth state. Ang and Piazzesi (2003)

use an exponential quadratic stochastic discount factor in a no-arbitrage statistical model

and explore links between the term structure of interest rates and other macroeconomic

variables. Their approach allows movements in risk prices to be consistent with historical

evidence without specifying an explicit general equilibrium model. A third approach intro-

duces stochastic volatility into the macroeconomy by positing that the volatilities of shocks

driving consumption growth are themselves stochastic processes. A stochastic volatility

model induces time variation in risk prices via exogenous movements in the conditional

volatilities impinging on macroeconomic variables.

In Hansen and Sargent (2010), countercyclical risk prices are driven by a representative

investor’s robust model averaging. The investor carries along two difficult-to-distinguish

models of consumption growth, one asserting i.i.d. log consumption growth, the other

asserting that the growth in log consumption is a process with a slowly moving conditional

mean.26 The investor uses observations on consumption growth to update a Bayesian prior

over these two models, starting from an initial prior probability of .5. The prior wanders

over a post WWII sample period, but ends where it started. Each period, the Hansen

and Sargent representative investor expresses his specification distrust by pessimistically

exponentially twisting a posterior over the two baseline models. That leads the investor

to interpret good news as temporary and bad news as persistent, causing him to put

countercyclical uncertainty components into equilibrium “risk” prices.

In this paper, we propose a different way to make risk prices vary. We exclude learning

and instead consider alternative models with parameters whose future variations cannot

be inferred from historical data. These time-varying parameter models differ from the

decision maker’s baseline model, a fixed parameter model whose parameters can be well

estimated from historical data. The alternative models include ones that allow parameters

persistently to deviate from those of the baseline model in statistically subtle and time-

varying ways. In addition to this particular class of alternative models, the decision maker

also includes other statistical specifications in the set of models that concern him. The

26Bansal and Yaron (2004) and Hansen and Sargent (2010) both start from the observation that two such
models are difficult to distinguish empirically, but they draw different conclusions from that observation.
Bansal and Yaron use the observation to justify a representative consumer who with complete confidence
embraces one of the models (the long-run risk model with persistent log consumption growth), while Hansen
and Sargent use the observation to justify a representative consumer who initially puts prior probability
.5 on both models and who continues to carry along both models when evaluating prospective outcomes.
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robust planner’s worst-case model responds to these forms of model ambiguity partly by

having more persistence than the baseline models. Our approach acquires tractability

because the worst-case model turns out to be a time-invariant model in which projections

for long-term growth are more cautious and stochastic growth is more persistent than in

the baseline model. Worst-case shock distributions shift adversely and imply additional

persistence that gives rise to enduring effects on uncertainty prices. Adverse shifts in the

shock distribution that drive up the absolute magnitudes of uncertainty prices were also

present in some of our earlier work (for example, see Hansen et al. (1999) and Anderson

et al. (2003)). In this paper, we induce state dependence in uncertainty prices in a different

way, namely, by specifying a set of alternative models to capture concerns about the baseline

model’s specification of persistence in consumption growth.

Relative to rational expectations models, models of robustness and ambiguity aversion

bring new parameters. In this paper, we extend work by Anderson et al. (2003) that cali-

brated those additional parameters by exploiting connections between models of statistical

model discrimination and our way of formulating robustness. We build on mathematical

formulations of Newman and Stuck (1979), Petersen et al. (2000), and Hansen et al. (2006).

We pose an ex ante robustness problem that pins down a robustness penalty parameter θ

by linking it to an asymptotic measure of statistical discrimination between models. This

asymptotic measure allows us to quantify a half-life for reducing the mistakes in selecting

between competing models based on historical evidence. A large statistical discrimination

rate implies a short half-life for reducing discrimination mistake probabilities. Anderson

et al. (2003) and Hansen (2007) had studied the connection between conditional discrimi-

nation rates and uncertainty prices that clear security markets. By following Newman and

Stuck (1979) and studying asymptotic discrimination rates, we link statistical discrimina-

tion half-lives to calibrated equilibrium uncertainty prices.
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Appendices

A Relative entropy neighborhoods

In this appendix we establish Proposition 3.4. We start by constructing the following

decomposition of p∆ to support our study of relative entropy neighborhoods:

p∆
`

ZH
|x
˘

“ ∆
´

ZH ;Z
pH
|x
¯

` δ

ż 8

0

expp´δtqE
´

ZH
t logZ

pH
t

ˇ

ˇ

ˇ
X0 “ x

¯

dt

´
1

2

ż 8

0

expp´δtqE
”

ZH
t ξpXtq

ˇ

ˇ

ˇ
X0 “ x

ı

dt (45)

A direct calculation gives us:

δ

ż 8

0

expp´δtqE
´

ZH
t logZ

pH
t

ˇ

ˇ

ˇ
X0 “ x

¯

dt

“

ż 8

0

expp´δtqE

„

ZH
t

ˆ

Ht ¨ pHt ´
1

2
pHt ¨ pHt

˙

ˇ

ˇ

ˇ
X0 “ x



dt.

Substituting this result into the right-hand side of (45)

p∆
`

ZH
|x
˘

“ ∆
´

ZH ;Z
pH
|x
¯

`

ż 8

0

expp´δtqE
”

ZH
t

´

Ht ¨ pHt

¯
ˇ

ˇ

ˇ
X0 “ x

ı

dt

´
1

2

ż 8

0

expp´δtqE
´

ZH
t

”

pHt ¨ pHt ` ξpXtq

ı
ˇ

ˇ

ˇ
X0 “ x

¯

dt (46)

By restricting the size of the relative entropy neighborhoods of Z
pH , we restrict the

first term on the right-hand side to be small. We now consider the remaining terms. We

consider a Z
pH corresponding to one of our parametric alternatives:

pHt “ η̂pXtq “ η̂0 ` η̂1Xt.

In this case we study an optimization problem:

max
H
´

1

2

ż 8

0

expp´δtqE
´

ZH
t

“

ξpXtq ` |η̂pXtq|
2
´ 2Ht ¨ η̂pXtq

‰

ˇ

ˇ

ˇ
X0 “ x

¯

dt. (47)

subject to

∆
´

ZH ;Z
pH
|x
¯

ď ε (48)

48



We solve this problem in steps. We first solve a family of optimization problems with

objectives indexed by a Lagrange multiplier θ ě 0 on constraint (48), namely,

max
H
´

1

2

ż 8

0

expp´δtqE
´

ZH
t

“

ξpXtq ` |η̂pXtq|
2
´ 2Ht ¨ η̂pXtq ` θ|Ht ´ η̂pXtq|

2
‰

ˇ

ˇ

ˇ
X0 “ x

¯

dt.

(49)

where H is a (pregressively measurable) control process that influences the evolution of

ZH :

dXt “ φ̂dt´ κ̂Xtdt` σ ¨Htdt` σ ¨ dWt

dZH
t “ ZH

t Ht ¨ dWt.

This problem is amenable to recursive methods for continuous-time optimization. We

posit a value function of the form zυpxq The HJB equation for this problem is :

0 “ max
h
´ δυpx, θq ´

1

2
ξ̃pxq ´

1

2
|η̂pxq|2 ` υ1px, θq

”

φ̂´ κ̂x` σ ¨ h
ı

`
1

2
|σ|2υ2px, θq

´
θ

2
|h´ η̂pxq|2 ` h ¨ η̂pxq. (50)

where η̂pxq “ η̂0 ` η̂1x. Alternatively, we can view this HJB equation as producing a weak

solution to an optimization problem in which a drift distortion to a Brownian motion is

the control process that holds under the probability distribution implied by ZH . In this

case we suppress reference to the martingale and impose distributional properties on the

implied Brownian motion.

Prior to solving the HJB equation, apply the change variables: d “ h ´ η̂. Then the

the new HJB equation is:

0 “ max
d
´ δυ̃px, θq ´

1

2
ξpxq `

1

2
η̂pxq ¨ η̂pxq

` υ̃1px, θqrφ̂´ κ̂x` σ ¨ η̂pxq ` σ ¨ ds `
1

2
|σ|2υ̃2px, θq

´
θ

2
d ¨ d` η̂pxq ¨ d.

We conjecture the following solution of this HJB equation:

υ̃ px, θq “ ´
1

2

“

υ̃2pθqx
2
` 2υ̃1pθqx` υ̃0pθq

‰
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which implies a decision rule

d˚px, θq “
1

θ
r´συ̃2pθqx´ συ̃1pθq ` η̂1x` η̂0qs .

Consider first terms in x2: Arυ̃2pθqs
2 `Bυ̃2pθq ` C “ 0 where27

A “ ´
1

2θ
|σ|2 `

1

θ
|σ|2 “

1

2θ
|σ|2

B “ κ̂`
δ

2
´ σ ¨ η̂1 ´

1

θ
σ ¨ η̂1

C “ ´
1

2
ξ2 `

1

2
η̂1 ¨ η̂1 `

1

2θ
η̂1 ¨ η̂1

We solve this quadratic equation for υ̃2pθq

υ̃2pθq “
´B `

?
B2 ´ 4AC

2A

which is guaranteed to have a solution for θ sufficiently large. Letting θ tend to 8, we find

that

υ̃2p8q “
ξ2 ´ η̂1 ¨ η̂1

2κ̂` δ ´ 2σ ¨ η̂1
.

Compute υ̃1 by equating the coefficients on x in the HJB equation:

ṽ1pθq “
ṽ2pθq

”

θφ̂` p1` θqpσ ¨ η̂0q
ı

´ p1` θqpη̂0 ¨ η̂1q ` θξ1

θpδ ` κ̂q ` |σ|2ṽ2 ´ p1` θqpσ ¨ η̂1q

The limiting value is:

ṽ1p8q “
ṽ2p8q

”

φ̂` pσ ¨ η̂0q
ı

´ pη̂0 ¨ η̂1q ` ξ1

pδ ` κ̂q ´ pσ ¨ η̂1q

Finally, compute υ̃0 by solving by equating coefficients on the constant terms in the HJB

equation:

ṽ0pθq “
´|σ|2 pṽ1pθq

2 ´ θṽ2pθqs ´ p1` θq|η0|
2 ` 2ṽ1pθq

”

θφ̂` p1` θqpσ ¨ η̂0q
ı

` θξ0

δθ

27We have recycled some notation including C. In this formula C is denotes a real number and not the
consumption process.
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The limiting value is:

ṽ0p8q “
|σ|2ṽ2pθq ´ |η0|

2 ` 2ṽ1p8q
”

φ̂` σ ¨ η̂0

ı

` ξ0

δ

For each x, the function υ̃ px, ¨q of θ is decreasing and strictly convex. Moreover, the

limiting function of x as θ tends to 8 is

υ̃px,8q “
1

2

ż 8

0

expp´δtqE
´

Z
pH
r´ξpXtq ` η̂pXtq ¨ η̂pXtqs

ˇ

ˇ

ˇ
X0 “ x

¯

dt

“ p∆
´

Z
pH
|x
¯

which is the objective evaluated at the h “ η̂pxq.

The next step in solving optimization problem (47)-(48) is to set θ to satisfy constraint

(48) at equality. The function υ̃ is convex in θ with a finite limit as θ tends to 8. We solve

min
θą0

υ̃ px, θq ` εθ. (51)

Decreasing ε increases the minimizing θ. As ε approaches zero, the minimizing θ necessarily

tends to8, driving the minimized value in (51) arbitrarily close to υ̃ px,8q. The conclusion

of Proposition 3.4 follows provided that υ̃ px,8q ă 0.

B Operationalizing Chernoff entropy

In this appendix we show how to compute Chernoff entropies for parametric models of the

form (17). Because the H’s associated with them take the form

Ht “ ηpXtq,

these alternative models are Markovian. This allows us to compute Chernoff entropy by

using an eigenvalue approach of Donsker and Varadhan (1976) and Newman and Stuck

(1979). We start by computing the drift of
`

ZH
t

˘s
gpXtq for 0 ď s ď 1 at t “ 0:

rGpsqgspxq .“
p´s` s2q

2
|ηpxq|2gpxq ` sgpxq1σ ¨ ηpxq

´ g1pxqκx`
g2pxq

2
|σ|2,
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where rGpsqgspxq is the drift given that X0 “ x. Next we solve the eigenvalue problem

rGpsqsepx, sq “ ´ρpsqepx, sq,

whose eigenfunction epx, sq is the exponential of a quadratic function of x. We compute

Chernoff entropy numerically by solving:

χpZH , xq “ max
sPr0,1s

ρpsq.

To deduce a corresponding equation for log e, notice that

plog eq1pxq “
e1pxq

epxq

and

plog eq2pxq “
e2pxq

epxq
´

„

e1pxq

epxq

2

.

For a positive g

rGpsqgspxq
gpxq

.
“
p´s` s2q

2
|ηpxq|2 ` splog gq1pxqσ ¨ ηpxq ´ plog gq1pxqκx

`
log g2pxq

2
|σ|2 `

rlog g1pxqs2

2
|σ|2. (52)

Using formula (52), define

“

Gpsq log g
‰

pxq “
rGpsqgspxq

gpxq
.

Then we can solve
“

Gpsq log e
‰

px, sq “ ´ρpsq

for log e to compute the positive eigenfunction e.

These calculations allow us numerically to compute the largest and smallest Chernoff

entropies attained by members of the set Zo. In our analysis we consider alternative models

of the form:

d logCt “ p.01q pµ` βXtq dt` p.01qα ¨ dĂWt

dXt “ φdt´ κXtdt` σ ¨ dĂWt.

52



1. Input values of κ, µ, and φ. Construct the implied hpxq “ η1x` η0 by solving;

«

µ´ µ̂

φ´ φ̂

ff

“

«

α1

σ1

ff

η0

«

β ´ β̂

κ̂´ κ

ff

“

«

α1

σ1

ff

η1

for η1 and η0.

2. For a given s, construct ζ0, ζ1, ζ2, κ̌, β̌, φ̌, and µ̌ from:

p´s` s2q|hpxq|2 “ p´s` s2q|η0 ` η1x|
2
“ ´

`

ζ0 ` 2ζ1x` ζ2x
2
˘

κ̌ “ p1´ sqκ̂` sκ

β̌ “ p1´ sqβ̂ ` sβ

φ̌ “ p1´ sqφ̂` sφ

µ̌ “ p1´ sqµ̂` sµ

3. Solve

´ρpsq “ ´
1

2

`

ζ0 ` 2ζ1x` ζ2x
2
˘

` pφ̌´ xκ̌qplog eq1pxq

`
plog eq2pxq

2
|σ|2 `

rplog eq1pxqs2

2
|σ|2

where log epx, sq “ λ1x`
1
2
λ2x

2. Thus,

λ2 “
κ̌´

b

pκ̌q2 ` ζ2|σ|2

|σ|2
.

Given λ2, λ1 solves

´ζ1 ´ κ̌λ1 ` λ1λ2|σ|
2
` φ̌λ2 “ 0

or

λ1 “
ζ1 ´ φ̌λ2
λ2|σ|2 ´ κ̌

“ ´
ζ1 ´ φ̌λ2

b

pκ̌q2 ` ζ2|σ|2
.
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Finally,

ρpsq “
1

2
ζ0 ´

1

2
|σ|2λ2 ´

1

2
|σ|2 pλ1q

2
´ φ̌λ1.

4. Repeat for alternative s’s and maximize ρpsq as a function of s.

C Robust value function

In this appendix we provide formulas for the robust planners problem. Specifically, we

solve for υ given θ.

Consider the HJB equation:

0 “ min
h
´ δυpxq ` p.01qpµ̂` β̂xq ` υ1pxqpφ̂´ κ̂xq `

1

2
|σ|2υ2px, θq

` p.01qα ¨ h` υ1px, θqσ ¨ h`
θ

2
|h|2 ´

θ

2

`

ξ2x
2
` 2ξ1x` ξ0

˘

Recall that the value function is quadratic

υ px, θq “ ´
1

2

“

υ2pθqx
2
` 2υ1pθqx` υ0pθq

‰

which implies

η˚px, θq “ ´
1

θ
r.01α ´ συ2pθqx´ συ1pθqs .

We can solve for υ2, υ1, and υ0 by matching the coefficients for x2, x and the constant

terms, respectively. Solving first for υ2 collection the x2 terms. This results in the quadratic

equation of the form Arυ2pθqs
2 `Bυ2pθq ` C “ 0 where

A “
1

2θ
|σ|2 ´

1

θ
|σ|2 “ ´

1

2θ
|σ|2

B “ κ̂`
δ

2

C “ ´
θ

2
ξ2.

Then

υ2pθq “
´B `

?
B2 ´ 4AC

2A
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“ θ

»

–

δ ` 2κ̂´
b

pδ ` 2κ̂q2 ´ 4 |σ|2 ξ2

2 |σ|2

fi

fl

υ1pθq “2

»

–

´.01β̂ ´ .01
θ
pα ¨ σq υ2pθq ` φ̂υ2pθq ` θξ1

δ `
b

pδ ` 2κ̂q2 ´ 4 |σ|2 ξ2

fi

fl

υ0pθq “
1

δ

„

´.02µ̂` 2φ̂υ1pθq ` |σ|
2 υ2pθq `

1

θ
|.01α ´ συ1pθq|

2
` θξ0



D Construction of an entropy ball

In section 7 we construct an entropy ball Z˚ that contains Z. In forming the entropy ball,

we consider ZH ’s that satisfy

∆pZH
q ď 0.

At the boundary of this set

1

2

ż
„
ż 8

0

expp´δtqE
´

ZH
t |Ht|

2
ˇ

ˇ

ˇ
X0 “ x

¯

dt



Qpdxq

“
1

2

ż
„
ż 8

0

expp´δtqE
´

ZH
t ξpXtq

ˇ

ˇ

ˇ
X0 “ x

¯

dt



Qpdxq.

Given this equality, we lead to compute the maximal relative entropy over the the set Z

by first solving:

min
H
´

1

2

ż 8

0

expp´δtqE
´

ZH
t

“

ξpXtq ´ θ
“

|Ht|
2
´ ξpXtq

‰‰

ˇ

ˇ

ˇ
X0 “ x

¯

dt. (53)

where H is a (progressively measurable) control process that influences the evolution of

ZH :

dXt “ φ̂dt´ κ̂Xtdt` σ ¨Htdt` σ ¨ dWt

dZH
t “ ZH

t Ht ¨ dWt.

We pose this as minimization problem to exploit is mathematical similarity to the robust

planning problem.
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Consider the HJB equation:

0 “ min
h
´ δυpxq ` υ1pxqpφ̂´ κ̂xq `

1

2
|σ|2υ2px, θq

` υ1px, θqσ ¨ h`
θ

2
|h|2 ´

θ ` 1

2

`

ξ2x
2
` 2ξ1x` ξ0

˘

Guess the value function is quadratic:

υ px, θq “ ´
1

2

“

υ2pθqx
2
` 2υ1pθqx` υ0pθq

‰

which implies

h˚ “
1

θ
rσυ2pθqx` συ1pθqs .

We can solve for υ2, υ1, and υ0 by matching the coefficients for x2, x and the constant

terms, respectively. Solving first for υ2 collection the x2 terms. This results in the quadratic

equation of the form Arυ2pθqs
2 `Bυ2pθq ` C “ 0 where

A “
1

2θ
|σ|2 ´

1

θ
|σ|2 “ ´

1

2θ
|σ|2

B “ κ̂`
δ

2

C “ ´
pθ ` 1q

2
ξ2

Then

υ2pθq “
´B `

?
B2 ´ 4AC

2A

“ θ

»

–

δ ` 2κ̂´
b

pδ ` 2κ̂q2 ´ 4
`

θ`1
θ

˘

|σ|2 ξ2

2 |σ|2

fi

fl

We equate coefficients on terms involving x and find that

υ1pθq “ 2

»

–

φ̂υ2pθq ` pθ ` 1qξ1

δ `
b

pδ ` 2κ̂q2 ´ 4 |σ|2 ξ2
pθ`1q
θ

fi

fl .
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Finally, by equating the constant contributions:

υ0pθq “
1

δ

„

2φ̂υ1pθq ` pθ ` 1qξ0 ` υ2pθq|σ|
2
`

1

θ
υ1pθq

2
|σ|2



.

We solve for θ by solving

max
θ

ż

υpx, θqQpdxq.

The negative of this solution scaled by 2δ is the constant ξ˚ used in place of ξ when forming

the relative entropy ball of interest.
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E Supplemental Appendix

E.1 Computing shock elasticities

We compute shock price elasticities in four steps:

1. Stochastic impulse response for logS. We solve the recursion:

d logS1
t “ ´.01β̂X1

t dt`H
1
t ¨ dWt ´H

˚
t ¨H

1
t dt

dX1
t “ ´κ̂X

1
t dt

dXt “ ´κ̂Xt ` σ ¨ dWt

H˚
t “ η˚0 ` η

˚
1Xt

H1
t “ η˚1X

1
t

where X1
0 “ σ ¨ u and logS1

0 “ ´.01α ¨ u ` h˚pxq ¨ u. The quadratic terms in the

evolution equation of logS make logS1
t stochastic.

2. Deterministic impulse response for logC. We solve the recursion:

d logC1
t “ .01β̂X1

t dt

dX1
t “ ´κ̂X

1
t dt,

where logC1
0 “ p.01qα ¨ u and X1

0 “ σ ¨ u. Thus,

logC1
t “

.01β̂

κ̂
r1´ exp p´κ̂tqsσ ¨ u` p.01qα ¨ u

3. Compute
E pMt logS1

t |X0 “ xq

E pMt|X0 “ xq

where Mt “ St

´

Ct

C0

¯

. Note that

d logMt “ ´δdt`H
˚
t ¨ dWt ´

1

2
|H˚

t |
2dt.
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Let dWt have drift Ht and compute expectations conditioned on X0 “ x recursively:

d logS1
t “ ´.01β̂X1

t dt`H
1
t ¨ pHtdt` dĂWtq ´H

˚
t ¨H

1
t dt

“ ´.01β̂X1
t dt`H

1
t ¨ d

ĂWt

dX1
t “ ´κ̂X

1
t dt

H˚
t “ η˚0 ` η

˚
1Xt

H1
t “ η˚1X

1
t ,

where X1
0 “ σ ¨ u and logS1

0 “ ´p.01qα ¨ u` h˚pxq ¨ u. Thus,

E pMt logS1
t |X0 “ xq

E pMt|X0 “ xq
“ ´

.01β̂

κ̂
r1´ exp p´κ̂tqsσ ¨ u´ .01α ¨ u` h˚pxq ¨ u.

4. Construct elasticities:

(a) Shock-exposure elasticity for consumption:

E
´

Ct

C0
logC1

t |X0 “ x
¯

E
´

Ct

C0
|X0 “ x

¯ “
.01β̂

κ̂
r1´ expp´κ̂tqsσ ¨ u` .01α ¨ u,

which is also the continuous time impulse response for logC.

(b) Shock-price elasticity

E
´

Ct

C0
logC1

t |X0 “ x
¯

E
´

Ct

C0
|X0 “ x

¯ ´
E rMt plogS1

t ` logC1
t q |X0 “ xs

E pMt|X0 “ xq
“ ´

E pMt logS1
t |X0 “ xq

E pMt|X0 “ xq

“
.01β̂

κ̂
r1´ expp´κ̂tqsσ ¨ u` .01α ¨ u´ h˚pxq ¨ u.

E.2 Consumption distributions

Starting at date zero, the expected growth rate at t is:

”

1 0
ı

exp

˜«

0 β

0 ´κ

ff

t

¸«

µ

φ

ff

“ µ`
βφ

κ
´
βφ

κ
expp´κtq.
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Integrating this growth rate over an interval r0, ts gives a worst-case trend for log consump-

tion:
ˆ

µ`
βφ

κ

˙

t`
βφ

κ2
expp´κtq ´

βφ

κ2
(54)

Notice that the initial growth trend growth rate is µ and that the eventual growth rate is

µ` φ
κ
. In this calculation, we impose the distorted model starting at date zero and consider

its implications going forward. The shift in the constant term for the evolution of X has

no immediate impact on the growth of logC. Its eventual impact is determined in part by

the persistence parameter κ.

Next we consider the distributional impacts. The new information about logCt´ logC0

(scaled by 100) is:

β

ż t

0

ż u

0

expr´κpu´ rqsσ ¨ dWrdu`

ż t

0

α ¨ dWu

“β

ż t

0

ż t

r

expr´κpu´ rqsduσ ¨ dWr `

ż t

0

α ¨ dWu

“β
1

κ

ż t

0

exppκrq rexpp´κrq ´ expp´κtqsσ ¨ dWr

`

ż t

0

α ¨ dWu

“
β

κ

ż t

0

p1´ expr´κpt´ rqsqσ ¨ dWr `

ż t

0

α ¨ dWu

The variance is .0001 times the following object

β2

κ2

ż t

0

r1´ 2 expr´κpt´ rqs ` expr´2κpt´ rqs|σ|2dr ` |α|2t

` 2
α ¨ β

κ

ż t

0

p1´ expr´κpt´ rqsq dr

“
β2

κ2
|σ|2t` |α|2t´

2β2

κ3
r1´ expp´tκqs|σ|2 `

β2

2κ3
r1´ expp´2κtqs|σ|2

` 2
βpα ¨ σq

κ2
rκt´ 1` expp´tκqs
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