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and obese classes. These results suggest that overweight and obese individuals are especially sensitive
to relevant information.
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1 Introduction

Obesity is a prevalent public health problem. From the perspective of the individual, there

are some effective medical treatments and lifestyle change interventions have been shown to

work in some sub-populations but not generally. Therefore, solutions to the health problem

remain elusive. A secular increase in total calorie consumption over time is the more likely

explanation for the increase in obesity rather than a decrease in calories expended (Bleich et

al., 2008; Cutler et al., 2003). Decreases in prices of calorie-dense foods relative to prices of

less-dense, more nutritious foods (Christian and Rashad, 2009) are one plausible explanation

for the increase in calorie consumption. Consumption of food prepared away from home has

also increased dramatically over time. The share of daily calories consumed coming from

restaurants and fast food establishments has increased from 6% to 20% between 1977-78

and 2007-08 (Lin and Guthrie, 2012). Such food often is typically calorie-dense along with

being of poor nutritional value (Anderson and Matsa, 2011; Currie et al., 2010). Therefore,

such consumption is often cited as a cause of increased body weight in the US.

Consumers often do not know the caloric and nutrient value of foods (see Section 6.1 in

Cawley (2015) for a review of the literature). Not only do consumers generally underesti-

mate the number of calories, but also evidence suggests that the downward bias is positively

related to the actual number of calories in the item (Robert Wood Johnson Foundation,

2009). While the provision of nutrition information on packaged foods has been mandated

by the federal government since the passing of the Nutrition Labeling and Education Act of

1990, restaurants were exempted from this requirement. As a response, some cities, counties

and states have passed laws beginning in 2008 that mandate posting of nutrition informa-

tion (typically calorie counts but also, in some cases, nutrient information) on menus and

menu boards. New York City implemented mandatory calorie labeling in July 2008 and

other states, counties and cities in the Northeastern and Western regions of the US have

followed suit.

In this paper, we examine the effect of calorie labeling on body mass. While the imperfect

information arguments made above and in references therein suggest that consumers should

respond to calorie information posted on menus in restaurants, whether and by how much

consumers actually respond remains an empirical question. We use the 2003 to 2012 waves

of the Behavioral Risk Factor Surveillance System (BRFSS) and a difference-in-difference

empirical strategy exploiting variation in implementation of calorie labeling laws across
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counties in the United States over time in our analysis. We estimate models separately for

men and women, and for each gender, focus on heterogeneous treatment effects which we

elicit using finite mixture models. As Cawley (2015, section 7.7) explains, discovering and

explaining heterogeneity of effects is an important research frontier.

Empirical evidence on the effects of calorie labeling is mixed (Robert Wood Johnson

Foundation, 2009). A number of studies have examined behavior at the point of purchase.

Bassett et al. (2008) examined purchasing behavior at Subway restaurants that volun-

tarily posted calorie information and found that individuals who noticed the information

purchased fewer calories than those who did not. Wisdom et al. (2010) used a similar

study design and found that disclosing calorie information at a fast food chain restaurant

led to consumers ordering fewer sandwiches with fewer calories. Elbel et al. (2009) used

a difference-in-difference design comparing treated and untreated chain restaurants before

and after implementation of the New York City Law and found that calorie labeling had

no impact on consumption. Dumanovksy et al. (2011) employed a similar study design

and reached a similar conclusion overall. Bollinger et al. (2011) used transactions data

from Starbucks and found that calorie labeling did result in fewer calories consumed per

transaction. They also found that calorie labeling had larger effects for women and a priori

high-calorie purchasers. Restrepo (2014) examines effects of mandated calorie labeling in

a number of New York counties between 2004 and 2012. Restrepo uses a difference-in-

difference design and data from the BRFSS to examine the effects of calorie labeling on the

body mass index (BMI). He finds robust evidence of significant decreases in BMI due to

calorie labeling. He estimates quantile regressions to show that the effects of calorie labeling

are generally larger in the upper quantiles of the BMI distribution.

Our study expands the sample from New York to a substantial portion of the US.

While Restrepo (2014) compares a few counties in New York with calorie labeling to those

without, we compare a number of counties, cities and states in the US with calorie label-

ing laws implemented to neighboring geographies without calorie labeling. We conduct a

detailed examination of heterogeneous treatment effects using finite mixture models. We

expect heterogeneous treatment effects because calorie labeling and posting requirements

vary across jurisdictions, because only a fraction of the population may observe calorie la-

bels; and because individuals may substitute calories across restaurant and non-restaurant

meals. Dumanovsky et al. (2011) found heterogeneity across genders and Restrepo (2014)
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along the distribution of BMI. Our analysis encompasses both those possibilities and allows

for more.

We estimate finite mixture models (Mclachlan and Peel, 2000; Deb and Trivedi, 1997) to

explore the possibility of such heterogeneity, to estimate heterogeneous effects of migration

and to characterize the sources of such unobserved heterogeneity. Finite Mixture Models

have received increasing attention in the statistics literature mainly because of the number

of areas in which such distributions are encountered (see McLachlan andPeel, 2000; Lindsay,

1995). Econometric applications of finite mixture models include the seminal work of Heck-

man and Singer (1984) to labor economics, Wedel et al.(1993) to marketing data, El-Gamal

and Grether(1995) to data from experiments in decision-making under uncertainty, Deb and

Trivedi(1997) to the economics of health care. More recent applications include Ayyagari,

et al. (2013) and Deb, et al. (2011) in studies of BMI and alcohol consumption, Bruhin, et

al. (2010) to experimental data and Caudill et al (2009) and Günther and Launov (2012)

to issues in economic development.

In difference-in-difference regression analysis, identification of causal effects relies heavily

on the assumption of identical pre-program trends. Consequently, it can be useful to weight

/ reweight the sample such that the covariate distribution of the control group becomes more

similar to the covariate distribution in the treatment group (Abadie and Imbens, 2011).

In addition, following the principles of synthetic control groups proposed by Abadie and

Gardeazabal (2003) and Abadie, et al. (2010), one can reweight the sample based on pre-

trend values of the outcome itself to have identical (not just parallel) pre-treatment trends

in BMI. In this paper, we use a novel technique called entropy balancing (Hainmueller,

2011) to estimate weights to perfectly balance covariates and pre-treatment BMI trends.

We find that the average treatment effect is not significantly different from zero for the

sample of women but it is negative and statistically significant for the sample of men. These

average treatment effects mask substantial heterogeneity in the effects for women and men.

The finite mixture models uncover three classes of BMI for women and men: the first is a

subpopulation with normal weight, a second subpopulation that is overweight on average

and a third one that is morbidly obese on average. There is a statistically significant effect

for women in the overweight class while the treatment effects are not significant in the other

BMI classes. For men, the effect is statistically significant in each of the three classes but

increases substantially in magnitude across normal weight, overweight and obese classes.
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The remainder of the paper is organized as follows. Section 2 introduces our empirical

strategy and the econometric model and section 3 presents the data. Section 4 discusses

the empirical results and provides some interpretations. We wrap up with conclusions in

section 5.

2 Empirical strategy and econometric model

2.1 Difference-in-difference specification

Consider a design in which there is a binary treatment indicator Gi (with Gi = 1 denoting

the treatment group), a binary time indicator Ti (with Ti = 1 denoting the intervention

period) and Xi denoting a set of control covariates. Then, using the potential outcomes

framework, the treatment effect in a difference-in-difference model (Athey and Imbens,

2006) can be written as

τ = E[y1
1|Ti = 1, Gi = 1, Xi]− E[yi

0|Ti = 1, Gi = 1, Xi], (1)

where yi
1 and yi

0 denote the potential outcomes with and without treatment respectively.

As usual, in the potential outcomes framework, the observed outcome Y is given by

yi = 1[Ti = 1, Gi = 1]× yi1 + (1− 1[Ti = 1, Gi = 1])× yi0 (2)

= Ti ×Gi × yi1 + (1− Ti ×Gi)× yi0 (3)

where 1 denotes the indicator function.

In the context of a linear regression model with group and time indicators along with a

group-time interaction,

yi = β1Ti + β2Gi + β3TiGi +Xiθ + εi. (4)

the two expected potential outcomes can be written as

E[yi
0|Ti = 1, Gi = 1, Xi] = β1 + β2 +Xiθ (5)

and

E[yi
1|Ti, Gi, Xi] = β1Ti + β2Gi + β3TiGi +Xiθ (6)

so that the treatment effect τ = β3 is the coefficient on the interaction term in the regression

specification. We estimate this basic specification using weighted least squares, where the
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weights incorporate both survey weights and covariate balance adjustments as described in

detail below.

The outcome of interest in our analysis is BMI. Individuals who live in counties with

calorie labeling laws implemented are assigned to the treated group while those in counties

without implemented calorie labeling laws are assigned to the comparison group. Control

covariates include demographic and socioeconomic characteristics and indicators for states

and years. Inference is based on standard errors adjusted for clustering at the county level.

2.2 Entropy balance weights

In difference-in-difference regression analysis, identification of causal effects relies heavily on

the assumption that pre-program trends of the outcome are identical. In order to achieve

balance between treated and control observations, it can be useful to weight / reweight the

sample such that the covariate distribution of the control group becomes more similar to

the covariate distribution in the treatment group (Abadie and Imbens, 2011). In addition,

we include the mean value of the outcome (BMI) for each pre-treatment year of data by

county and gender in the set of “covariates” used in the entropy balancing algorithm. Thus,

following the principles of synthetic control groups proposed by Abadie and Gardeazabal

(2003) and Abadie, et al. (2010), not only are the treated and control samples balanced on

covariates, they are also balanced on the values of the county-level average outcome in each

year of the pre-treatment period.

We use a novel method for generating weights to create balance: entropy balancing. En-

tropy balancing, a method developed by Hainmueller (2011), produces a set of observation-

level weights that directly balances covariate distributions across treated and control groups.

Inverse propensity score weighting is the popular method for this purpose (Ho, Imai, King,

and Stuart, 2007) but the entropy balance method has a number of practical advantages.

First, it eliminates the need to back and forth between propensity score specification, esti-

mation and balance checking. Second, propensity score weights can lead to worse balance

on some covariate dimensions while improving balance on others (Iacus, King, and Porro,

2012). Third, while the weights are adjusted as far as is needed to accommodate the balance

constraints, at the same time they are kept as close as possible to the base weights to retain

information in the reweighted data, so extreme weights are much less likely.

In the propensity score weighting method, every treated unit gets a weight di = 1 and
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every control unit gets a weight equal to di = p̂(xi)
1−p̂(xi)

where p̂(xi) is the estimated propensity

score. In the entropy balancing method, each treated unit gets either a weight wi = 1 or

wi = si, where si is the sampling weight associated with the treated observations, and

every control unit gets a weight that satisfies a set of a priori specified balance constraints.

Specifically, wi for the control units are chosen by the solution to

min
wi

H(w) =
∑
i|D=0

wi log(wi/si) (7)

subject to ∑
i|D=0

wicri(xi) = kr with r ∈ 1, ..., R

∑
i|D=0

wi = 1

wi ≥ 0 for all i such that D = 0

where cri(Xi) = mr describes a set of R balance constraints imposed on the covariate

moments of the reweighted control group. Each balance constraint equates the weighted

mean of the covariate in the treated sample to the weighted mean of the covariate in the

control sample. In the case of indicator variables, which comprise most of the covariates in

the study, equality of means is equivalent to equality of distributions. We conduct entropy

balance for each gender and year of data separately, so covariate balance is obtained within

each gender-year subsample.

We apply the entropy balance algorithm iteratively. In the first application of the

algorithm, we set the weights for the treated group to their sampling weights and have one

balance constraint for each covariate used in the regression analysis. We use the resulting

balance weights to calculate county-level means of BMI by gender and pre-treatment years.

The second application of the entropy balance algorithm adds county-mean BMI (in addition

to the regression covariates) into the set of balance constraints. This generates a new set of

balance-weights, which we use to recalculate county-level mean BMI for the pre-treatment

years. The third application of the entropy balance algorithm uses, once again, balance

constraints for covariates and county-level mean BMI. The revised balance weights have a

correlation of 0.99 with the weights from the prior iteration so we consider the process to

have converged to a stable set of balance weights.
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2.3 Finite mixture model

Most empirical models for estimating treatment effects assume that the effect is constant

across the population, or can be interpreted as estimating average effects. Yet there are

many reasons for expecting that treatment effects are not constant, or that the average of

effects masks substantive and policy relevant heterogeneity. In most large experiments or

quasi-experimental designs, there are many opportunities for the actual treatment to be het-

erogeneous across individual characteristics, household characteristics, sites or geographies,

for the intensity of treatment to vary, and for compliance to and effects of treatment to

vary by individual or group characteristics. Heterogeneity in each of these dimensions lead

to heterogeneity of treatment effects. In this analysis, we expect heterogeneous treatment

effects because, for example, calorie labeling and posting requirements vary across juris-

dictions, because only a fraction of the population may observe calorie labels; and because

individuals may substitute calories across restaurant and non-restaurant meals.

Heterogeneity of treatment effects is typically explored via the use of interaction terms in

regression analyses or by stratifying the sample by indicators of the source of heterogeneity.

For example, stratified analyses by race or gender are commonplace. However, there are

data and statistical limits to the amount of stratification that can be done given a sample,

and such analyses increase the risk of false findings. Furthermore, often heterogeneity exists

along the distribution of the outcome itself, by complex configurations of observed charac-

teristics, or on unobserved characteristics. Quantile regressions are an appealing technique

to explore heterogeneity along the outcome distribution but does not provide insight into

the other dimensions of heterogeneity. Finite mixture models can identify heterogeneous

treatment effects, if they exist, and characterize that heterogeneity along dimensions of the

outcome distribution, observed characteristics and unobserved characteristics.

The density function for a C-component finite mixture (Deb and Trivedi, 1997; Deb, et

al., 2011; McLachlan and Peel, 2000), is

f(y|x; θ1, θ2, ..., θC ;π1, π2, ..., πC) =

C∑
j=1

πjfj(y|x; θj) (8)

where 0 < πj < 1, and
∑C

j=1 πj = 1 and fj denotes an appropriate density given the char-

acteristics of the error terms. As we will describe below, normally (Gaussian) distributed

components appear to be appropriate in the context of the outcome of interest. We estimate

7



the parameters of this model using maximum likelihood. Inference is based on standard

errors adjusted for clustering at the county level.

Examination of the parameter estimates provides information on whether there is sub-

stantial heterogeneity across the distribution of the outcome and the treatment effects for

each subpopulation. Although the parameter estimates, per se, do not characterize the

component distributions, one can use Bayes Theorem in a process to classify individual

observations into the components identified by the model estimates. More precisely, post

estimation, we use Bayes Theorm to calculate the posterior probability that observation yi

belongs to component c (the prior probability is assumed to be a constant):

Pr[yi ∈ classc|xi, yi;θ] =
πcfc(yi|xi, θc)∑C
j=1 πjfj(yi|xi, θj)

, c = 1, 2, ..C. (9)

Next, we assign an observation i into class j such that j = arg maxc Pr[yi ∈ class c|xi, yi;θ].

Then we treat the classification as known and stratify the sample by latent class in subse-

quent descriptive analysis of the relationship between observed covariates and class mem-

bership. This provides a characterization of the observations in each class.

3 Data and descriptive statistics

We use data from the 2003–2012 Behavioral Risk Factor Surveillance System (BRFSS).1 The

BRFSS is an annual, nationally representative survey of adults aged 18 and over conducted

by the Centers for Disease Control and Prevention in collaboration with state health depart-

ments. The survey contains information on self-reported height and weight and extensive

demographic and health-related information. Preliminary analyses suggested substantial

heterogeneity by gender so we proceed by stratifying our analysis by gender throughout.

We also restrict our sample to individuals 21 to 75 years old. We eliminate individuals

over 75 years old because, in older adults, decreases in fat-free mass, increases in fat mass

and loss of height alter the trajectory of BMI substantially (Villareal, et al. 2005). BRFSS

reports some implausibly small and large BMI values. To remove these outliers or possibly

erroneous values of BMI, we drop observations with the highest and lowest half percent of

BMI values separately for women and men. BRFSS also has a small number of extremely

low and high sampling weights, which become especially troublesome after entropy balance

1Unfortunately, for 2013 and going forward, the public-use BRFSS files do not contain county identifiers.
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reweighting. Thus we drop observations with the smallest and largest quarter percent of

sampling weights.

We use the Area Resource File (ARF) to classify each county of residence in each year by

population and income. We drop all rural counties and small urban areas with populations

less than 20,000. The remaining counties are classified as being urban (population greater

than 20,000), small metropolitan areas (population less than 250,000), metropolitan areas

(population between 250,000 and 1,000,000) and large metropolitan areas with populations

greater than 1,000,000. We also control for household median income in each county. In

addition, we use the County Business Patterns (CBP) data to measure the size of the

limited service restaurant (LSR) sector – the primary target of the calorie labeling laws. To

be specific, we measure the size of the limited restaurant sector by the number of employees

in such establishments per 1,000 population in each county.

We obtained and cross-referenced county-specific information on legislation and imple-

mentation of calorie labeling laws from the National Conference of State Legislatures, the

Center for Science in the Public Interest and MenuCalc, a web-based online nutrition anal-

ysis platform for the food industry endorsed by the National Restaurant Association. Table

1 shows the counties and states that enforced calorie-labeling laws at some point during

the study period. Figures 1 and 2 show that geographies with calorie-labeling laws are

concentrated in the Northeastern and Western regions of the US. Therefore, we restrict our

analysis to states in those regions for both treatment and comparison observations. Thus,

in addition to displaying treated counties, figures 1 and 2 also show the comparison states

and counties in our study. The key variable in the analysis is an indicator labeled “County

has law enforced” that takes a value of one if a county has implemented mandatory calorie

labeling in the month and year of interview and zero otherwise. We pool the data from

Northeast and Western US counties and estimate the model.

Table 2 displays summary statistics for the samples of women and men separately and

stratified according to whether the observation is assigned to a county that has a calorie-

labeling law at any point during the sample period or not. Among women, there are 382,581

observations in counties without a law and 197,982 observations in counties with the law.

Among men, the corresponding samples sizes are 263,603 and 135,153 respectively.

The summary statistics in table 2 show that the average BMI in treated and comparison

counties are not substantially different for samples of women and men. In addition, treated
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and comparison observations have similar average age and rates of blacks, college graduates,

middle income earners and pregnancy among women. On the other hand, treated observa-

tions are considerably more likely to be other minority, Hispanic and have low incomes and

less likely to be married and have high incomes.

Although our regression analyses take these characteristics into account, it is prefer-

able to minimize reliance on the parametric form of the regression analysis by balancing

on covariates and mean BMI in pre-program years. This allows us to interpret the regres-

sion estimates as being doubly robust. As described above, we adjust the BRFSS sampling

weights using entropy minimization to obtain new sampling weights for comparison ob-

servations while retaining the original sampling weights for the treated observations. We

estimate the entropy-balance weights separately for each gender and each year of data.

Sample means using the entropy-balance weights are shown in table 3. Now the samples

are “perfectly” balanced. For example, 9.1 percent of Hispanic women lived in comparison

counties while 25.9 lived in treated counties in the “unadjusted” analysis shown in table 2.

After entropy-balancing, both treated and comparison counties have 25.9 percent Hispanic

observations. The mean number of LSR employees is higher in treated counties than control

counties when sampling weights are used in the calculations. Once entropy balance weights

are used, treated and control counties have identical LSR densities. All other characteristics

are similarly balanced.

4 Results

Figure 3 shows the trends in average BMI for treatment and control groups stratified by

gender. The graphs in the left panels display means weighted by the BRFSS sampling

weights. The graphs in the right panels display means weighted by entropy-balance weights.

For the sample of women, the sampling-weighted means are close but show some divergence

before calorie-labeling laws went into effect. For men, the sampling-weighted means are

appear roughly parallel but somewhat apart in the pre-law period, obscuring possible gains

of the calorie labeling laws. The use of entropy-balance weights brings the pre-treatment

trends together and enhances the differences in post-treatment outcomes. In both cases, a

widening of the BMI gap after 2008 is apparent. 2

2Readers will observe that, for the sample of men, the trends converge sharply in 2012. It remains to be
seen if this is a real feature, an artifact of some remaining outliers, or due to changes in values of predictive
covariates.
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Results of the difference-in-difference entropy-balance weighted regressions for the sam-

ples of women and men are shown in Table 4. The effect of the calorie-labeling laws is not

statistically significant for the sample of women. However, there is a significant decrease

in BMI of about 0.31 among men that can be attributed to the calorie-labeling laws. This

translates to about 1.1 percent of the average male BMI. Other coefficients in the regres-

sions are generally significant and have expected signs. For example, BMI increases at a

decreasing rate with age, blacks and Hispanics have higher BMI but other minorities have

lower BMI. Education and income are both associated with lower BMI. Among county-level

characteristics, while county-level income has the expected negative effect on BMI for both

men and women, the density of LSR restaurants is not associated with BMI.

4.1 Finite mixture models

We estimate 2, 3, and 4 component finite mixture models and find that 3-component models

have the best fit for the samples of men and women. Thus we proceed by focussing on 3-

component models.

Table 5 and figure 4 show some basic characteristics of the three component densities

for the full samples of women and men. For the sample of women, the model identifies a

distribution centered on normal weight (mean BMI equals 22) with associated probability of

0.32, a distribution centered on overweight (mean BMI equals 27) with a probability of 0.48

and a relatively dispersed distribution centered on obese weight (mean BMI equals 34) with

a probability of 0.21. The distributional characteristics of the mixture classes for the sample

of men are broadly similar to those of women but have some substantive differences. The

model identifies a distribution centered just under the clinical cutoff for overweight (BMI of

25) with associated probability of 0.42, a distribution centered on overweight (mean BMI

equals 28) with a probability of 0.43 and a relatively dispersed distribution centered on

obese weight (mean BMI equals 34) with a probability of 0.16.

Table 6 reports the difference-in-difference regression coefficients for each latent class.

The results show that the reduction in BMI due to the calorie-labeling law is statistically

significant only in the second component, which corresponds to a class of women whose BMI

is centered on 27. The marginal effect of the law is 0.25, which corresponds to about 0.9

percent of the average BMI for this class of observations. The effects of the calorie-labeling

laws are very different for men (see table 6). Calorie-labeling laws have an effect on each of

11



the three classes. Men who belong to the borderline overweight class with a mean BMI of 25

and who are exposed to calorie-labeling laws decrease their BMI by a small, but statistically

significant 0.14 units. This corresponds to just under 0.6 percent of the mean BMI for that

class. Men in the overweight class, corresponding to the component distribution with a

mean of 28 and a occurrence probability of 0.43 decrease their BMI by 0.40 when exposed

to calorie-labeling laws. This effect corresponds to 1.4 percent of their average BMI. Men

in the obese class decrease their BMI when exposed to calorie-labeling laws by a large and

statistically significant 0.70 units – or 2 percent of the average BMI in the class.

For both women and men, there is an effect of calorie-labeling laws on a high weight

subpopulation, but men in the morbidly obese subpopulation also experience substantial

loss in BMI. These results are broadly consistent with Restrepo (2014) who finds a bigger

effect at the higher quantiles of BMI and Bollinger et al. (2011) who find a much higher

effect among individuals who already consume above average calories at Starbucks. The

estimates of the finite mixture models, however, uncover a subtle yet important difference,

which is that calorie-labeling has an affect on a substantial fraction of women who are

overweight but appears to have no effect on a smaller but significant fraction of women who

are, on average, obese. For men, it appears that the effect of calorie-labeling laws persists

through the entire distribution but with the effect being larger (in absolute and percentage

terms) in the overweight and obese classes.

4.2 Alternative specifications of the finite mixture models

Self-reported weight and BMI is fraught with measurement error. Cawley (2004) and

Burkhauser and Cawley (2008) show that the measurement error is non-classical because,

while individuals generally tend to underreport their weight, overweight individuals tend to

underreport their weight more. Consequently, in our first check of our main results, we fol-

low Cawley (2004) and predict measured BMI in our BRFSS sample using coefficients from

a validation regression equation estimated using data from NHANES. To be precise, we use

data from the 2005-2006, 2007-2008, and 2009-2010 rounds of the NHANES to estimate a

regression of measured BMI on a quadratic function of reported BMI fully interacted with

a quadratic in age and indicators for gender, black and other race and Hispanic ethnicity.

We estimate a 3-class finite mixture model using the predicted, measured BMI and report

key estimates in the top panel of table 7. The results for both samples of women and
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men are qualitatively unchanged. The point estimates for overweight and obese classes are

somewhat larger, however.

Our second check of the specification of the model concerns the use of entropy balance

weights. We have already shown that the use of these weights balances the treated and

control samples perfectly in terms of observed covariates. When we estimate the finite

mixture model using BRFSS sampling weights instead, the results, shown in the second

panel of table 7, are very similar for the sample of women. For the sample of men, the effect

for the lowest BMI class (borderline overweight) is no longer statistically significant, the

effect for the overweight class is a bit smaller and the effect for the obese class substantially

smaller than those obtained in the main specification.

BRFSS is a survey that has been conducted, until recently, exclusively via home (land

line) telephone interviews. From 2011 onwards, the BRFSS sampling frame changed to allow

for respondents on cellular phones, with just under 11 percent of interviews conducted on

cellular phones in 2011 and 17 percent such interviews in 2012. In a check of the estimates

to these, potentially different, individuals, we drop them from the sample and reestimate

the finite mixture model. The results, shown in the third panel, are qualitatively identical

and quantitatively very similar to our main results.

We generalize our difference-in-difference specification to include state-specific time

trends. We have estimated finite mixture models with linear and quadratic time-trend

specifications and report the results of the quadratic state-specific time trends specification

in the fourth panel of table 7. Qualitatively, the results are very similar to the main specifi-

cation. The point estimates for the overweight and obese latent classes are larger, especially

for the sample of men. The results of the model specified with linear trends has the same

characteristics.

In our final check of specification, we include the county mean BMI in 2003 as an

additional regressor in the model. This is an atypical difference-in-difference specification

but has the flavor of a panel-data regression with an initial condition (Wooldridge, 2005).

The estimates, shown in the bottom panel, are qualitatively and quantitatively virtually

identical to those obtained in our main specification.
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4.3 Characterizing the latent classes

Estimates of the parameters of the finite mixture models reveal that the effects of calorie-

labeling laws are heterogeneous and substantially affect overweight women and men, and,

in addition, obese men. Nevertheless, calorie-labeling laws appear to have no effect on

substantial portions of the population of women and only a small effect on a substantial

portion of men. In order to determine whether there are observable characteristics (other

than BMI) that might distinguish the classes of individuals, we classify the female and male

samples separately using the posterior probabilities of class membership (equation 9). We

use this posterior classification to summarize the observed characteristics, using the entropy

balance weights, of the samples by latent class. Differences in the standardized distributions

of the characteristics are displayed in radar plots for the samples of women and men.

Radar plots of means of standardized covariates are shown in figure 5. For the samples

of women and men, those in the latent class centered around overweight are likely to be

older, high school graduates only, and Hispanic. Note that this is the class of observations

with the consistently significant effect across samples and specifications. Women and men

in the normal weight class, for whom there are generally statistically insignificant and/or

small effects, are likely to be high income and college graduates, live in high income counties

and more likely to be married. Finally, while there are no differences in the size of county

that women live in on the basis of the BMI classes, men who belong to the obese class are

more likely to live in small urban counties while men in the normal weight class are more

likely to live in large metropolitan areas. There are virtually no differences in the states of

residence of individuals in each of the three latent classes (not shown in the figures).

5 Conclusion

The results in this study indicate that mandatory calorie labeling laws implemented over

the past few years in a number of states and counties appear to be having substantial effects

in terms of decreased BMI following implementation of such laws. Estimates from finite

mixture models show that the effect is largely concentrated among a class of women with

BMI distributions centered on overweight. The effects for men are statistically significant

for each of the three classes and large for men in the overweight and obese classes.

There are two likely explanations for why the largest effects of the calorie labeling laws
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are found for overweight women and overweight and obese men. First, if one assumes

that the information asymmetry is constant across the population, calorie labeling laws

may have largest impacts for the overweight and obese because they are most sensitive

to the information. Calorie labeling laws have very small impacts among individuals who

are normal weight because they have no reason to change their behavior on the basis of

the new information. Second, it is possible that, while individuals in the overweight and

obese classes are unaware of the caloric content of restaurant meals, individuals in the

normal weight class are more aware of the caloric content. These results run counter to

the argument that individuals who consume the most calories (more likely to be overweight

or obese) are least likely to change their consumption behavior. In addition, if such high

consumption individuals are, in fact, information sensitive, they may well also be price

sensitive and sensitive to behavioral prompts.

Our analysis of the observed correlates of class membership shows that women and men

in the overweight class are likely to be older, high school graduates only, and Hispanic. We

speculate that such individuals might be either most uninformed or most likely to react

to new information. Women and men in the normal weight class, for whom there are

generally statistically insignificant and/or small effects, are likely to be high income and

college graduates, live in high income counties and more likely to be married. Perhaps this

justifies the emphasis of most calorie labeling laws on meals in limited service restaurants.

Information provision at higher-priced, full service restaurants, frequented by individuals of

higher socioeconomic status, may not have substantial new information content for those

individuals.
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Table 1: Sample geography by calorie-labeling law status and dates

Date State County
8/2008 New York Queens
8/2008 New York Kings
8/2008 New York Richmond
8/2008 New York Bronx
8/2008 New York New York City
6/2009 New York Westchester
11/2009 New York Ulster
7/2009 California Statewide
1/2009 Washington King
8/2009 Oregon Multnomah
4/2010 New York Albany
10/2010 New York Schenectady
11/2010 New York Suffolk
2/2010 Pennsylvania Philadelphia
5/2010 Maine Statewide
11/2010 Massachusetts Statewide
1/2011 Oregon Statewide
The following states with no calorie-labeling laws
through 2012 are included in our control group:
Connecticut, Delaware, New Hampshire, Maryland,
New Jersey, Rhode Island, Vermont,
Arizona, Idaho, Nevada.
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Table 2: Sample means by gender and calorie-labeling law status

Women Men
No law Law No law Law

Body mass index 26.870 26.735 27.974 27.610
County has law enforced 0.102 0.374 0.105 0.383
Age / 10 4.620 4.544 4.585 4.524
Age (/10) squared 2.432 2.477 2.389 2.380
Black race 0.088 0.087 0.077 0.070
Other minority 0.060 0.104 0.068 0.115
Hispanic ethnicity 0.091 0.259 0.091 0.235
Married 0.613 0.564 0.655 0.615
Less than High School 0.070 0.133 0.076 0.128
High school graduate 0.271 0.213 0.276 0.217
Some college 0.287 0.269 0.252 0.248
Income < $15,000 0.069 0.137 0.051 0.096
Income $15,000 - $25,000 0.123 0.131 0.105 0.122
Income $25,000 - $35,000 0.093 0.091 0.088 0.088
Income $35,000 - $50,000 0.134 0.117 0.135 0.120
Income $50,000 - $75,000 0.161 0.143 0.169 0.148
Income unknown 0.117 0.082 0.089 0.061
Pregnant 0.017 0.019
Metro county pop. 250K-1M 0.235 0.173 0.240 0.177
Metro county pop. < 250K 0.085 0.045 0.087 0.047
Urban county pop. > 20K 0.067 0.021 0.067 0.022
County median HH income ($10K) 5.706 5.609 5.714 5.679
County LSR employees per 1000 pop. 9.269 9.651 9.271 9.687
Arizona 0.106 0.000 0.106 0.000
California 0.000 0.583 0.000 0.569
Idaho 0.019 0.000 0.021 0.000
Nevada 0.044 0.000 0.048 0.000
Oregon 0.000 0.062 0.000 0.069
Washington 0.086 0.030 0.089 0.037
Connecticut 0.067 0.000 0.068 0.000
Delaware 0.017 0.000 0.017 0.000
Maine 0.000 0.016 0.000 0.017
Maryland 0.109 0.000 0.104 0.000
New Hampshire 0.023 0.000 0.023 0.000
New Jersey 0.163 0.000 0.164 0.000
New York 0.146 0.173 0.137 0.165
Pennsylvania 0.194 0.023 0.197 0.021
Rhode Island 0.021 0.000 0.021 0.000
Vermont 0.006 0.000 0.006 0.000
N 382,581 197,982 263,603 135,153

Means calculated using sampling weights.
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Table 3: Balanced sample means by gender and calorie-labeling law status

Women Men
No law Law No law Law

Body mass index 26.950 26.735 27.770 27.610
County has law enforced 0.091 0.374 0.066 0.383
Age / 10 4.544 4.544 4.524 4.524
Age (/10) squared 2.477 2.477 2.380 2.380
Black race 0.087 0.087 0.070 0.070
Other minority 0.104 0.104 0.115 0.115
Hispanic ethnicity 0.259 0.259 0.235 0.235
Married 0.564 0.564 0.615 0.615
Less than High School 0.133 0.133 0.128 0.128
High school graduate 0.213 0.213 0.217 0.217
Some college 0.269 0.269 0.248 0.248
Income < $15,000 0.137 0.137 0.096 0.096
Income $15,000 - $25,000 0.131 0.131 0.122 0.122
Income $25,000 - $35,000 0.091 0.091 0.088 0.088
Income $35,000 - $50,000 0.117 0.117 0.120 0.120
Income $50,000 - $75,000 0.143 0.143 0.148 0.148
Income unknown 0.082 0.082 0.061 0.061
Pregnant 0.019 0.019
Metro county pop. 250K-1M 0.173 0.173 0.177 0.177
Metro county pop. < 250K 0.045 0.045 0.047 0.047
Urban county pop. > 20K 0.021 0.021 0.022 0.022
County median HH income ($10K) 5.609 5.609 5.679 5.679
County LSR employees per 1000 pop. 9.651 9.651 9.687 9.687
Arizona 0.184 0.000 0.156 0.000
California 0.000 0.583 0.000 0.569
Idaho 0.019 0.000 0.019 0.000
Nevada 0.079 0.000 0.099 0.000
Oregon 0.000 0.062 0.000 0.069
Washington 0.054 0.030 0.029 0.037
Connecticut 0.060 0.000 0.055 0.000
Delaware 0.022 0.000 0.004 0.000
Maine 0.000 0.016 0.000 0.017
Maryland 0.085 0.000 0.187 0.000
New Hampshire 0.007 0.000 0.008 0.000
New Jersey 0.150 0.000 0.144 0.000
New York 0.094 0.173 0.105 0.165
Pennsylvania 0.206 0.023 0.156 0.021
Rhode Island 0.039 0.000 0.038 0.000
Vermont 0.002 0.000 0.002 0.000
N 382,581 197,982 263,603 135,153

Means calculated using entropy-balance weights
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Table 4: Difference-in-difference regressions of BMI by gender

Women Men
County has law enforced -0.129 -0.309***

(0.079) (0.064)
County has law -0.474*** -0.393**

(0.152) (0.170)
Age / 10 0.225*** 0.047***

(0.019) (0.018)
Age (/10) squared -0.234*** -0.211***

(0.011) (0.008)
Black race 2.463*** 0.455***

(0.085) (0.112)
Other minority -0.699*** -1.173***

(0.155) (0.095)
Hispanic ethnicity 0.831*** 0.405***

(0.105) (0.091)
Married -0.388*** 0.361***

(0.056) (0.054)
Less than High School 2.251*** 0.960***

(0.102) (0.078)
High school graduate 1.521*** 1.093***

(0.067) (0.062)
Some college 1.282*** 1.086***

(0.058) (0.062)
Income < $15,000 1.528*** -0.114

(0.123) (0.117)
Income $15,000 - $25,000 1.267*** -0.256**

(0.080) (0.102)
Income $25,000 - $35,000 1.032*** -0.157**

(0.080) (0.077)
Income $35,000 - $50,000 0.992*** -0.048

(0.095) (0.060)
Income $50,000 - $75,000 0.806*** 0.136***

(0.049) (0.051)
Income unknown -0.004 -0.354***

(0.077) (0.068)
Pregnant 1.169***

(0.151)
Metro county pop. 250K-1M 0.211** 0.218***

(0.095) (0.080)
Metro county pop. < 250K -0.010 0.045

(0.143) (0.111)
Urban county pop. > 20K 0.065 -0.293

(0.150) (0.181)
County median HH income ($10K) -0.188*** -0.097***

(0.031) (0.032)
County LSR employees per 1000 pop. -0.003 -0.034

(0.022) (0.024)

* p < 0.1; ** p < 0.05; *** p < 0.01
Coefficients on state and year indicators not shown
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Table 5: Component characteristics of the finite mixture model

Women Men
Class-1 Class-2 Class-3 Class-1 Class-2 Class-3

µ 22.316 26.772 33.929 24.742 28.269 33.979

σ 2.115 3.226 5.887 2.429 3.070 5.013
(0.059) (0.041) (0.037) (0.065) (0.078) (0.060)

π 0.320 0.475 0.205 0.417 0.427 0.156
(0.022) (0.012) (0.012) (0.050) (0.033) (0.020)
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Table 6: Coefficients from the finite mixture model

Women Men
Class-1 Class-2 Class-3 Class-1 Class-2 Class-3

County has law enforced 0.017 -0.251*** -0.329 -0.135** -0.399*** -0.695***
(0.069) (0.078) (0.264) (0.065) (0.152) (0.221)

County has law -0.172** -0.495*** -0.630** -0.082 -0.636** -0.293
(0.084) (0.170) (0.295) (0.128) (0.277) (0.358)

Age / 10 0.248*** 0.335*** -0.131*** 0.145*** 0.030 -0.177**
(0.022) (0.029) (0.044) (0.025) (0.033) (0.070)

Age (/10) squared -0.072*** -0.205*** -0.445*** -0.143*** -0.225*** -0.265***
(0.012) (0.023) (0.038) (0.015) (0.018) (0.033)

Black race 1.326*** 2.552*** 2.981*** 0.201** 0.745*** 0.702**
(0.117) (0.118) (0.258) (0.089) (0.134) (0.276)

Other minority -0.426*** -0.493** -1.486*** -0.807*** -1.290*** -2.072***
(0.061) (0.211) (0.328) (0.104) (0.144) (0.255)

Hispanic ethnicity 0.963*** 0.924*** 0.113 0.856*** 0.371* -0.880***
(0.082) (0.132) (0.223) (0.076) (0.212) (0.215)

Married 0.155*** -0.281*** -1.543*** 0.580*** 0.363*** -0.354**
(0.038) (0.053) (0.144) (0.061) (0.111) (0.156)

Less than High School 0.778*** 2.593*** 2.954*** 0.041 1.611*** 1.626***
(0.162) (0.107) (0.261) (0.108) (0.165) (0.288)

High school graduate 0.418*** 1.768*** 2.356*** 0.207 1.686*** 1.643***
(0.062) (0.081) (0.171) (0.135) (0.101) (0.183)

Some college 0.200*** 1.465*** 2.155*** 0.247** 1.542*** 1.849***
(0.061) (0.075) (0.186) (0.100) (0.158) (0.170)

Income < $15,000 -0.062 1.438*** 3.239*** -1.252*** 0.089 2.053***
(0.079) (0.182) (0.307) (0.153) (0.304) (0.315)

Income $15,000 - $25,000 -0.002 1.294*** 2.459*** -0.926*** -0.075 1.054***
(0.064) (0.166) (0.208) (0.100) (0.165) (0.293)

Income $25,000 - $35,000 0.050 1.055*** 2.204*** -0.491*** -0.148 0.634***
(0.081) (0.152) (0.276) (0.110) (0.115) (0.243)

Income $35,000 - $50,000 0.135** 1.092*** 1.752*** -0.412*** 0.027 0.651***
(0.054) (0.174) (0.203) (0.078) (0.113) (0.176)

Income $50,000 - $75,000 0.077 0.896*** 1.582*** -0.194*** 0.353*** 0.405**
(0.064) (0.092) (0.164) (0.070) (0.124) (0.186)

Income unknown -0.253*** -0.019 0.344 -0.460*** -0.385*** 0.099
(0.058) (0.099) (0.238) (0.078) (0.125) (0.267)

Pregnant 0.580*** 1.613*** 0.781*
(0.098) (0.230) (0.420)

Metro county pop. 250K-1M 0.090** 0.340*** 0.114 0.028 0.398*** 0.227
(0.044) (0.122) (0.257) (0.063) (0.130) (0.211)

Metro county pop. < 250K -0.066 -0.046 0.170 -0.058 -0.052 0.643*
(0.077) (0.166) (0.300) (0.089) (0.136) (0.334)

Urban county pop. > 20K -0.093 0.220 0.106 -0.469* 0.005 -0.204
(0.075) (0.186) (0.338) (0.269) (0.461) (0.456)

County median HH income ($10K) -0.045*** -0.194*** -0.248*** -0.029 -0.127*** -0.186***
(0.017) (0.039) (0.077) (0.027) (0.046) (0.064)

County LSR employees per 1000 pop. -0.020 -0.026 0.030 -0.027* -0.038 -0.066
(0.013) (0.022) (0.047) (0.015) (0.032) (0.052)

* p < 0.1; ** p < 0.05; *** p < 0.01
Coefficients on state and year indicators not shown
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Table 7: Coefficients from alternative specifications

Women Men
Class-1 Class-2 Class-3 Class-1 Class-2 Class-3

Model of predicted, measured BMI
County has law enforced 0.019 -0.270*** -0.285 -0.124** -0.424*** -0.780***

(0.074) (0.082) (0.222) (0.060) (0.146) (0.240)
π 0.296 0.477 0.227 0.447 0.414 0.140

(0.024) (0.012) (0.014) (0.029) (0.021) (0.011)
µ 22.971 27.521 34.466 25.229 28.846 34.834

Model uses unadjusted BRFSS sampling weights
County has law enforced -0.026 -0.185*** -0.132 -0.049 -0.307*** -0.335**

(0.055) (0.067) (0.146) (0.049) (0.103) (0.168)
π 0.337 0.460 0.203 0.415 0.433 0.152

(0.008) (0.005) (0.005) (0.019) (0.013) (0.008)
µ 22.417 26.910 33.939 24.788 28.350 34.219

Sample drops cell phone interview observations
County has law enforced 0.021 -0.220*** -0.333 -0.150** -0.413** -0.663**

(0.070) (0.081) (0.299) (0.066) (0.163) (0.266)
π 0.320 0.476 0.204 0.415 0.430 0.155

(0.024) (0.013) (0.012) (0.044) (0.030) (0.016)
µ 22.310 26.760 33.925 24.723 28.256 33.966

Model includes State-specific quadratic time trends
County has law enforced -0.041 -0.278*** -0.497 -0.067 -0.629** -1.198***

(0.095) (0.104) (0.431) (0.104) (0.250) (0.334)
π 0.321 0.475 0.204 0.433 0.416 0.152

(0.022) (0.012) (0.012) (0.051) (0.034) (0.020)
µ 22.322 26.781 33.946 24.800 28.364 34.071

Model includes county mean BMI in 2003
County has law enforced 0.021 -0.245*** -0.307 -0.124* -0.363** -0.655***

(0.068) (0.078) (0.265) (0.068) (0.149) (0.218)
π 0.321 0.475 0.204 0.406 0.432 0.162

(0.022) (0.012) (0.012) (0.054) (0.038) (0.021)
µ 22.325 26.787 33.934 24.697 28.193 33.830

* p < 0.1; ** p < 0.05; *** p < 0.01
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Figure 1: Eastern US geography of calorie-labeling laws
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Figure 2: Western US geography of calorie-labeling laws
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Figure 3: Average BMI trends by gender
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Figure 4: Characteristics of the BMI distribution by latent class
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Figure 5: Mean covariate characteristics by latent class
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