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There is a growing body of literature that suggests that individuals are overconfident of
their abilities to perform a given task.1  Sometimes, this takes the form of those who are in an
occupation or activity believing that they can perform the required tasks at a level of
performance that exceeds reality.  For example, it has been suggested that some, including
CEOs, have more faith in their firm or in those that they acquire than is warranted.2 
Additionally, some have interpreted this as evidence of irrationality, reflecting a psychological
defect that afflicts at least some significant subgroups of the population.3

An alternative view presented here here is that there is  a statistical explanation for
overconfidence observed in some real world settings.  The idea is simple.  Individuals estimate
their effectiveness when they enter a profession or engage in a specific activity.  Those who
choose to enter are not a random draw of the population.  In particular, they tend to be the most
able at that activity, but they are also the ones who have received a better-than-average signal of
their expected performance. The estimate used on which they base their behavior is the best
unbiased estimate of their performance, but the average estimation error among the group that
enters an activity or occupation will be positive, leading to an overstatement of their actual
performance.4 Even individuals who know this fully can do no better by altering their decision
rule.

The advantage of the statistical view of over-confidence is that it provides a formal
definition of overconfidence and consequently provides implications that are testable and absent
from irrational views of overconfidence.  One, emphasized in the empirical analysis below, is
that when estimates of performance are noisier, there will be more average overconfidence than
when the estimates are more precise.  This shows up in occupational switching that should more
prevalent in occupations where ability is more difficult to predict. Additionally, over a worker’s
career, the rational theory implies that overconfidence becomes less of a factor because the
estimates of ability contain more signal and less noise as the number of observations rise.

Although the statistical argument cannot account for all observations of overconfidence
like those in laboratory environments where individuals are constrained to participate in
theexperiment and cannot opt out, the environment considered here may be the most
consequential for economic life.  Choosing an occupation and obtaining the skills for it affect
lifetime wealth as much as any decision that the typical individual makes.  Therefore,

1There is a large literature in both psychology and economics.  Early examples in the
economics literature include Camerer and Lovallo (1999) and Thaler (2000).

2See, for example, Kent Daniel, David Hirshleifer and Avanidhar Subrahmanyam (1998), 
Malmendier and Tate (2005, 2008), 

3The literature focuses attention on difference in overconfidence by gender.  See, for
example, Barber and Odean (2001), Gneezy, Niederle, and Rustichini (2003), and Croson and
Gneezy (2009). 

4See Lazear (2004) for a related argument in a different context. Perhaps closer, and
containing a number of similar theoretical results, is Van Den Steen (2004).
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understanding the decision process behind occupational choice is worthwhile. 
Other implications of the model are:

1. The likelihood of entering the wrong occupation and the cost of doing so are inversely
related.  When measurement error is small, large mistakes are less likely to be made.

2. As noise in productivity estimation increases, the proportion choosing each occupation
moves toward equality. This distorts wages relative to the perfect information world.  

3. Measurement error and overconfidence aside, workers still move to occupations in which
they have a comparative advantage as is the case in standard matching models.  

4. As time in career lengthens, the productivity-estimation error becomes more likely to
reflect signal (differences in productivity across occupations that are not picked up in
obsevables) than noise.  As a result, the importance of the error in predicting
occupational switching should increase with tenure.

All of the predictions are found to hold using the Current Population Survey (CPS) or the
Panel Study of Income Dynamics (PSID). 

1. Model

Initially, consider a one-period structure with two occupations, A and B.  An individual
must make a choice between the two and that choice is informed by an estimate of the
individual’s ability in each occupation  as 

(1)      and       q qA A A   q qB B B  

where qA and qB are the worker’s true ability in occupations A and B and εA and εB reflect
estimation error, assumed have expectation zero and to be independent of each other and of true
productivity, qA and qB.

Thus,   and are unbiased estimates of the true ability.q A
qB

Similarly, an estimate of the difference between ability in A and ability in B is given by 

(2)  = δ + ν q qA B

where δ is defined as qA - qB  and ν is defined as εA - εB . Also define the resulting density
functions for  δ and ν as  h(δ) and f(ν), respectively. The assumptions above imply that δ and ν
have expectation equal to zero and are independent of one another.

Given only this information, the choice of occupation must be made on the basis of (1) so
an individual chooses occupation A whenever
        q qA B
or, using (2), whenever
     - δ < ν .

An error in occupational choice is made if the individual chooses occupation A when he
should choose B, which is to say that  and  δ<0, or conversely, if the individual chooses q qA B
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occupation B when he should choose A, which is to say that  and  δ>0. To mistakenly q qB A
choose A, it must be true that δ<0 and that ν>-δ . 

Two properties follow immediately from this structure. 

Lemma 1: The cost of a mistake moves with |δ|.  
Proof: Immediate.  The loss of choosing  A over B is definitionally qB - qA, which is

defined as -δ.  Since δ < 0, a small loss requires that δ be close to zero, which means that its
absolute value is also small. |||

Proposition 1: The probability of making an error and the cost of the error are inversely related.
Proof: Consider the case of entering A incorrectly, which occurs when δ<0 and

.  Since the setup is completely symmetric, the proof for the opposite error of choosing q qA B
B when A should have been chosen is analogous. 

Given Lemma 1, it is sufficient to show that the probability of making an error,
conditional on δ<0 increases in δ. To see that, note 

Pr( | δ < 0 ) =  q qA B
Pr(   )

Pr( )

q qA B  





0

0
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since both F(-δ)and h(δ) are positive.     |||

Figure 1 describes the situation.  At point 1, the individual mistakenly chooses
occupation A because . The mistake is a bad one.  The large negative δ signifies that the q qA B
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value of choosing B is much greater than that of choosing A.  At the same time, making a

mistake of this magnitude is unlikely.  In order to obtain a high value of  when δ is q qA B
highly negative, it is necessary that the measurement error component, ν, be very large
(positive), which happens with low probability.  Point 2 has the opposite characteristic.  The
mistake is not a bad one because qA is close to qB (δ is close to zero), but the likelihood of
making an error of this sort is large because the measurement error needed to make such a
mistake, ν, is small.

1.1  Overconfidence
Overconfidence is the most important result of the analysis and follows directly from the

structure laid out above.  Overconfidence takes the form of over-estimating one’s ability relative
to true ability. If overconfidence is simply defined as having an estimate of ability that exceeds
true ability, that phenomenon definitionally translates to drawing a positive measurement error.  

Let us begin by showing that those who choose occupation A are statistically
overconfident of their ability in A and statistically under-confident of their ability in B.
Conversely, those who choose B are statistically overconfident of their ability in B and
statistically under-confident of their ability in A

Definition 1: An individual is statistically overconfidence of ability when the expectation of his
estimate of performance in an activity exceeds the true expectation of performance.

The formal definition of overconfidence is that, on average, among those who choose A,
the unbiased estimate of ability in A exceeds true ability in A, or that 
(3) E( > | > 0) > qA

q A  q qA B
which is equivalent to 

(4) E(εA | > 0)  > 0 .  q qA B
Analogously, for those who choose B, overconfidence means that      

(5) E(εB | > 0) > 0 . q qB A
Choosing occupation A means that > 0, which in turn  q qA B

implies
εA> εB - δ .  

Proposition 2: On average, those who are found in an occupation are statistically overconfident
of their ability in that occupation.

Proof: By definition 1, overconfidence then requires that E( > | > 0) > qA orq A  q qA B
equivalently, that

E(εA |εA >εB - δ) >0 .
This conditional expectation must be positive because the unconditional expectation of εA equals
zero. |||

Individuals who choose occupation A may do so for one of two reasons.  They may
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actually be better at A than they are at B, i.e., δ>0.  Alternatively, they may be worse at A than
they are at B, but in estimating their ability in the two occupations, measurement error favors A
sufficiently to lead them to conclude that they are actually better at A.  Those who choose A
include, disproportionately, those who got positive measurement error of performance in A,
which means that > qA .  This is the definition of overconfidence.  An individual’s unbiasedq A

estimate of true ability to perform in occupation A is too high among those who choose A.
The condition

> 0  q qA B
also implies that 

 εB  < εA + δ 
so 

E(εB |  > 0) = E(εB | εB < εA + δ) < 0  q qA B
again, because the unconditional expectation of εB equals zero.  

This is statistical under-confidence.  Those who choose occupation A are under-confident
of their ability in occupation B.  The same logic holds.  Those who choose A may truly be poor at
occupation B. Alternatively, they may be better at B than they are at A, but in estimating their
ability in the two occupations, measurement error favored A sufficiently to lead them to conclude
that they were actually better at A. Among those who choose A those who disproportionately
who got negative measurement error of performance in B, which means that < qB .  qB

Obviously, there is nothing specific that formally distinguishes occupation A from B. 
Consequently, A and B can be reversed to yield the result that those who choose B are
overconfident of their ability in B and under-confident of their ability in A.5

1.2 Overconfidence and Occupational Choice
Is there anything an individual can do with the knowledge that those in occupation A are

overconfident of their ability in A?  The analysis seems akin to the winner’s curse literature
where knowledgeable bidders shade their bids to take into account that if they win the auction,
they will have, on average, overbid.6  The answer is no.  Even though individuals choosing
occupations know that the average individual in occupation A overestimates his ability in A, two
facts remain.  

The unbiased estimate of the difference between ability in A and B for any given
individual remains -  .  Workers who receive a positive signal of A relative to Bq A qB

understand that part of that signal reflects measurement error and that they are unlikely to do as

5This result is found earlier in Van den Steen (2004).  He emphasizes the role of choice in
affecting the amount of overoptimism.  Overoptimism results only because agents can choose
between options so those who choose an particular option tend to have a high estimate of its
value.

6The literature on winner’s curse traces back to Wilson (1977) , but see also the earlier
paper by Brown (1974), which examines bias in assessing the value of an investment project and
uses a statistical argument similar to the one emphasized here.
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well in A as the estimate will tell them.  But moving to B is not superior.  It is also true that those
who obtain estimates that suggest they are better in B are also likely to be somewhat
disappointed.  Still,  E(qA  - qB | >0) is positive, albeit not as large as E(  | > q qA B  q qA B  q qA B

0 ) because the latter also includes the positive expected measurement error among those who
select A. The formal analysis that precedes this sections shows that, but an example is
instructive.  

Suppose that qA and qB are independent and drawn from a normal distribution with mean
equal to one-hundred and standard deviation equal to ten.  The errors, εA and εB are independent
and also drawn from normal distributions with mean zero and standard deviation equal to ten.  

The worker chooses the occupation in which he has the highest estimated output on the
basis of the sign of - .  A simulation of 10 million draws yields the results shown in tableq A qB

1.  Note that the actual qA among those who choose A is lower than the estimated  by the sizeq A

of the average error conditional on choosing A. Among those who choose A, the estimated
expected output is higher than the realization. But there is no way to use this information to
improve the choice.  Specifically, setting  = - x for any non-zero value of x results inq A q A

lower expected output.7  The worker understands that the average output among those who
choose A is lower than would be expected based on  alone, but there is  nothing that can beq A

done to improve the choice.  In the example shown in table 1, penalizing by 3.99, which is theq A

expected value of the error, results in fewer choices of occupation A, but also an expected output
of 103.91 in stead of 103.99.  Any non-zero penalty reduces expected output below the
maximum of 103.99.

7This is true irrespective of the distributions of qA and qB .  They can be correlated,
asymmetric, or both.  It is always true that expected output is maximized by choosing occupation
A whenever the unbiased estimate of qA exceeds the unbiased estimate of qB.
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Table 1

Variable Mean

qA 100.00

qB 100.00

q A
100.00

qB
100.00

| >q A q A
qB

107.98

| >qB q A
qB

92.03

εA | >q A
qB

3.99

qA | >q A
qB

103.99

1.3 Measurement Error and the Probability of Occupational Error
The overall goal, in addition to formulating a statistical view of overconfidence, is to

provide implications, especially those that differentiate the statistical theory from others. Perhaps
the most direct implication of the statistical overconfidence approach that does not follow from
other approaches is that overconfidence varies with the signal-to-noise ratio.  Intuitively, there
should be no overconfidence in occupations where there is no measurement error and
overconfidence should be prevalent in occupations in which there is a great deal of measurement
error.  It follows that the amount of overconfidence and under-confidence increases in the
variance of the error.  

Generally, however, the interest is on actions that are taken by workers, given
measurement error, and how those actions depend on the error distribution.  For example, it is
useful to derive the probability of switching out of an occupation because of overconfidence and
how that probability varies with observable factors. 

To start, note that in (4), the conditional expectation of εA depends on the underlying
distribution of εA.  Here it is shown that the probability of a worker in occupation A being
overconfident of ability in A is higher with more disperse distributions of the error εA for any
given distributions of εB and δ. 

Let the distribution of εA be given by fi(εA ).  Consider two density functions,  f1(εA) and
f2(εA) as shown in figure 2.  Specifically, the two distributions are assumed to have a single
crossing point at x=x* for the region where εA < 0, and the more disperse distribution, F1(x), is
defined as the distribution that has the higher density value, f1(x)>f2(x) , for x<x*.  Finally, let
the distributions both have the property that F1 (0) = F2 (0). The densities need not be symmetric. 
They are required neither to have any particular shape nor to come from the same family of
distributions. 
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Definition 2: Given two distributions, F1 (x) and F2 (x) with F1 (0) = F2 (0) and a single crossing
point at x* in the region where x<0, F1 is defined to have greater spread than F2 if f1(x) > f2(x) for
x<x*.

Definition 3: The probability of overconfidence among those who choose occupation A is 
.     Pr( |   ) A A Bq q 0

The probability of over confidence can be written as  
 (6) ,Pr( | )   A A B  0

 which equals 

(7)  Pr(εA>0  1  εA>εB - δ) / Pr( εA >εB - δ)

The expression in (6) can be broken up into two parts as 

 (8) = Pr(εA>0 |  εB - δ >0 1  εA>εB - δ) Pr(εB - δ > 0 )Pr( | )   A A B  0
+ Pr(εA>0 |  εB - δ<0 1  εA>εB - δ) Pr(εB - δ<0 )

If εB - δ > 0, then the first term of (8) is independent of the distribution of εA because the
conditional probability in (6) equals 1 in that case, always.  If εA is greater than a positive
number, it is greater than zero, i.e, the numerator and denominator of (7) have the same value.  

Proposition 3: The probability of overconfidence increases in the spread of the distribution of
the estimation error, ε.  
Proof: 

First note the following:

(9) a. Pr(εA >0 ) = 1 - Fi (0)
b. Pr( εA >εB - δ ) = 1 - Fi( εB - δ ) 

Consider the two distribution functions, F1 and F2 defined above.  Because εA, εB and δ
are independent, Pr(εB - δ > 0 ) is not affected by the distribution of εA.  Additionally, because 
Pr(εA>0 |  εB - δ >0 1  εA>εB - δ) = 1, the likelihood of overconfidence, Pr(εA>0 | εA > εB - δ )
depends only on how the second term in (8) is affected by the distribution of εA.  

Write the conditional probability overconfidence among those who choose A as 
Pri( εA>0 | εA > εB - δ )       i = 1, 2

where the subscript i denotes whether εA is distributed as F1(εA) or F2(εA).  Then a sufficient
condition for Pr1(εA>0 | εA > εB - δ) to exceed Pr2(εA>0 | εA > εB - δ) is that 
(10) Pr1(εA>0 | εA > εB - δ ) -  Pr2(εA>0 | εA > εB - δ) > 0       œ   εB - δ < 0 .

Equations (7) and (9a,b) imply that 
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(11) Pr1(εA>0 | εA > εB - δ ) -  Pr2(εA>0 | εA > εB - δ) = 
1 0

1

1 0

1
1

1

2

2


 




 
F

F

F

FB B

( )

( )

( )

( )   
Because, F1 (0) = F2 (0) , the sign of (11) depends only on the denominator.  If 
F1(εB - δ) > F2(εB - δ), 

then the sign of (11) is positive .
For εB - δ < x* as defined above and shown in figure 2, it is clear that 

F1(εB - δ ) > F2(εB - δ ) because f1(x) > f2(x) for x<x*. 
For x*< εB - δ <0, 

Fi(εB - δ ) = F f x dxi i
B

( ) ( )0
0


 

But since F1 (0) = F2 (0) and  f1(x) < f2(x) for x*<x<0, F1(εB - δ ) >F2(εB - δ ) . Taken together, this
implies that 

F1(εB - δ) > F2(εB - δ)   œ  εB - δ < 0, 
which completes the proof that Pr1(εA>0 | εA > εB - δ ) -  Pr2(εA>0 | εA > εB - δ) > 0. ||| 

This provides an important empirical implication.  Specifically, the likelihood of
overconfidence is higher in occupations that have higher spread. As will be shown below in
section 6, coupled with a reasonable model of learning about ability, this result also implies that
the probability of switching out of an occupation rises in the variance in measurement error. 

1.4 Other Views of Overconfidence 
Statistical overconfidence is defined as having estimates of productivity in the various

occupations that are unbiased, that is, 
E q qA A(  ) 

and
E q qB B(  ) 

This is equivalent to saying that the expectations of the errors, εA and εB, are zero.  Although this
results in overconfidence in each occupation among those who go into the occupation, among the
entire population, estimates of productivity are unbiased.

A natural way to think about irrational overconfidence is that the expectations of the
errors are positive, that is, people overestimate their productivity levels or formally, that

E(εi) = ω
where ω>0 is the overconfidence parameter and is stable over time. This formalization of
irrational overconfidence has come to be known as the “Lake Wobegon effect,” an early example
of which is in automobile driving, where the majority of drivers view themselves as superior to
the median.8 

8See  Svenson, Ola (February 1981). "Are We All Less Risky and More Skillful Than
Our Fellow Drivers?". Acta Psychologica 47 (2): 143–148. doi:10.1016/0001-6918(81)90005-6
and 
Iain A. McCormick; Frank H. Walkey; Dianne E. Green (June 1986). "Comparative Perceptions
of Driver Ability: A Confirmation and Expansion". Accident Analysis & Prevention 18 (3):
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The automobile driving example, and others, seems to reflect stability of ω.    Most
drivers have been driving for a significant amount of time, yet the Lake Wobegon effect persists,
even among experienced drivers.

In a multi-period context, an alternative view of irrationality might better be defined as
using the “wrong” learning model. Rather than having ω>0, agents may update in a non-
Bayesian way. This is defined more formally in section 1.6, below.

The desire is to determine empirically whether and in which situations the concept of
statistical overconfidence better explains the data than does that of irrational overconfidence. If

 could be distinguished from qA, then there would be a test of irrational overconfidence.q A

Indeed, that is exactly what laboratory experiments sometimes do, by obtaining ex ante
predictions of productivity and then observing the actual productivity. This is more difficult to
do in the real world, but there are some examples.  Hoffman and Burks (2015) has shown that
truckers tend continually to overestimate their work productivity. Also, discussed earlier is a
financial literature that examines overconfidence in investment behavior and firm decision
making.

Actual observations of choice over occupations may not be helpful.  Specifically, if the
overestimate of ability were the same in both occupations, then the choice of occupation would
not be affected because the - would difference out the common overconfidence component,q A

qB

ω.   In some ways, that is encouraging because it means that as long as overconfidence, even of
the irrational type, is neutral across activities, choices are unaffected and behavior remains
invariant to it.  Not only would a worker choose the right occupation, but even overconfidence
about something like automobile driving ability might be harmless.  A driver who assumes that
he is better than average may be appropriately cautious because he assumes that other drivers are
worse than average and must compensate for their poor driving. 

We may not be so lucky, however.  It is possible that some activities are less susceptible
to overconfidence than others. For example, if people estimated the value of their productivity in
boring, everyday activities accurately, but overestimated their likely success in novel, exciting
opportunities, they would short change the mundane, while trying and failing in too many flashy
activities.

Is there any natural way to select one occupation or type of person as more susceptible to
overconfidence than another? The literature that is based on lab experiments does that.  As
discussed earlier, there are a number of studies that conclude that men are more likely to be
overconfident than are women. Even here, however, it is necessary to specify which activities
are at play and how the relevant expectation is defined. Suppose, for example, that as a result of
discrimination, men are generally more successful than women.  When a new activity is
encountered, even unbiased estimation would lead men to estimate their productivity to be
higher than would women, even if in that specific activity it turns out, ex post that women do as
well as men. Of course, this view could not hold if, say, men habitually overestimate their
performance and women habitually underestimate their performance. 

1.5 Occupational Distribution and Equilibrium Wages

205–208. doi:10.1016/0001-4575(86)90004-7.
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The theory of statistical overconfidence implies that mistakes are made.  Some
individuals who are better suited to B enter A and some who are better suited to A enter B .  What
does this imply about the number of individuals in occupation A relative to B and how does this
affect the equilibrium wages? 

First, it is shown that mismatches may occur in equilibrium and that too many may be in
one occupation over another, even with symmetric measurement error.  (Recall that irrational
overconfidence is defined as asymmetric measurement error.)

Let there be N individuals.  A worker should choose A over B when qA > qB

 or, equivalently, when δ>0.  Therefore, the socially efficient number of workers in A and B are
N[1-H(0)] and N H(0), respectively.9  Since the worker estimates productivity in each field
imperfectly and chooses A when and only when

 q qA B
or equivalently, when and only when
(12) δ > -ν, 
the actual number of individuals in occupation A is 

or

 Actual Number in A N H f d  




 [ ( )] ( )1   

which, in general does not equal N[1-H(0)].  As a consequence, the number of workers in the
occupations does not necessarily equal the socially appropriate number.

To get a sense of how this varies with the situation, consider the following example. 
Suppose that 1-H(0) = .9 so that most of the working population should be in occupation A.
Suppose that f(ν) is a symmetric density function with mean zero and variance σ2

ν .  As σ2
ν goes

to infinity, whether condition (12) holds or not depends only on ν.  Further, because the
distribution of ν is symmetric, the probability that (12) holds goes to ½ .  Conversely, as σ2

ν goes
to zero, whether condition (12) holds or not depends only on δ so the actual number in A equals
the socially optimal number in A.

This example illustrates two points.  First, the proportions in the occupations need not,
and in general will not, equal the socially optimal proportions.  Second, the deviation from social
optimality depends on the variance in the δ distribution compared with the variance in the ν
distribution. As measurement error becomes more important, the likelihood of having correct

N h f d d( ) ( )   










9Having the correct the number of workers in each occupation does not guarantee
efficiency because the wrong workers could be in each occupation, even if their numbers offset
appropriately.
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proportions in the occupations declines.10

If the supply of labor to the various occupations differs from that which would hold under
efficiency, then it is also true that wages will differ from those that would result in a perfect
information competitive equilibrium.  The higher is σ2

ν , the more likely is there oversupply in
the occupation that should have few than half of the population.  As a result, wages are
depressed relative to the perfect information competitive equilibrium in the occupation that
should have fewer than ½ of the workers.

An empirical implications follows.  Suppose that there are K groups in the population
and that each group accounts for share αk of the workforce. For example, k might index three
education groups: college or more, high school, and less-than-high school.  Define αjk as the
share of industry j comprised of group k, where j=A,B. Also denote δik and νik as the differences
in productivity and in measurement error, respectively, for individual i in group k. Then 

Proposition 4: For any variance in δik and for any symmetric distribution of νik, as the variance in
νik  goes to infinity, the proportion of group k that choose occupation A goes to ½. 

Proof: For an individual i in group k to choose industry A over B, it must be true that                    

    q qA Bik ik


or that 
   δik>-νik 
For any finite variance in δik, as the variance in νik goes to infinity, the difference between

and depends only on the noise term, νik. Because the noise is distributedq Aik
qBik

symmetrically, νik is positive half the time, resulting in the choice of occupation A over B half of
the time. |||

The market equilibrium is affected by the variance in ν.  In the extreme case above,
where
σ2

ν approaches infinity for one group, half of that entire group enters occupation A and half
enters B, even if the appropriate proportions, based on δ, are far from one-half.  As before, this
means oversupply to one industry and under-supply to the other, which results in too much labor
and too low a wage in one industry and the reverse in the other.11 The general implication is that

10Of course, it could be coincidentally that the proportions that are generated mimic the
socially optimal ones.  For example, suppose that 1-H(0) = .5 and that ν is distributed
symmetrically around zero.  As the variance in ν goes to infinity, it is certain that the actual
proportion in A is the socially optimal proportion.  However, the individuals who are in A are not
the correct ones to be in A because measurement error means that individuals are assigned to
occupations based on randomness rather than on δab , the latter being necessary for efficiency.

11A variant on this is to assume that the worker has some prior information on δ and does
Bayesian updating after obtaining information on .  This will change the “one-half”q A

implication quantitatively but not qualitatively.  In the extreme case, where the prior is
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the noisier is the estimate of productivity in an industry for a particular group, the closer the
proportion of that industry comprised of the group will be to complete random choice. To test
this empirically, it is necessary to be able to measure something that relates to the group-specific
signal-to-noise ratio and then to observe how the group weights in the industries reflect that
noise.

1.6 Multi-period Structure 
It is desirable to have an empirically verifiable measure of overconfidence that goes

beyond asking people about their confidence or observing their behavior in an experimental
setting.  Some researchers have tried to assess overconfidence by examining behavior, for
example, by looking at the investment behavior of CEOs who buy assets in their own firms.12 
The view here is that overconfidence is a statistical phenomenon, reflecting a choice that is
optimal given ex ante information, but one that should also be remedied over time as more
information becomes available.  The larger the amount of statistical over-confidence, the more
corrective action that should be taken.  

One implication seems intuitive and is shown formally in this section. Proposition 3
stated that the probability of overconfidence increases in the spread of the estimation error
distribution. A worker can learn with work experience that his occupational choice was a
mistake. For example, if an individual chooses occupation A, then he learns about his ability in
occupation A and updates his estimate of δ over time. This implies that switches out of an
occupation, conditional on having chosen it in the first place, should depend on the amount of
measurement error that existed initially and how quickly that measurement error disappears with
experience.

To derive this implication formally, it is necessary to extend the model beyond one
period.  To focus on the importance of noise and learning, the model is stripped down to its bare

degenerate and the variance in ν is positive, there would be no tendency at all toward 1/2 for
higher variance groups.  Specifically, if a worker was certain of the value of δ , that would be the

value assumed, irrespective of the estimate that is obtained from the .  At the other extreme, ifq A

the prior were completely diffuse and the worker had no ex ante information on δ, only the

observations on would be relevant. In general, some weight would be attached to the priorq j

and to the observed value in coming up with a posterior and although the weight on the observed
value would fall with increased variance in ν, there is no general statement that can be made
about the nature of updating without specific assumptions about the prior.

12In addition to finance literature already cited, see Brunnermeier and Parker (2005) on
overconfidence in portfolio choice. The finance context is somewhat different from the analysis
of occupational choice because the purchase of stock is like bidding on a common value asset
and has the winner’s curse property that others’ information should be used in drawing
inferences about the value of stock.  In the case of occupational choice, the individual’s ability is
person-specific and idiosyncratic.  As a result, others’ behavior shed no light on the worker’s
personal decision. 
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essentials. Assume that a worker gets a signal on at the beginning of period 0, on which q qA B
he bases his choice between the two occupations.  To make things simple, assume that εB = 0 and
that the only measurement error that exists comes from mis-estimating ability in occupation A. 
Stated differently, ν is simply εA.13 Assume further that the worker learns perfectly his true 
δ after working in an occupation for one period.14  

The  probability of switching from occupation A to occupation B after period zero is
simply the probability that the individual chose occupation A by mistake, given that he chose A.  
This conditional probability can be written

Pr(switch from A to B after period zero) = Pr (ν >-δ  1  δ< 0) / Pr ( )  q qA B

There are two reasons that a worker could have chosen occupation A in period zero. Either he
belongs there, which requires δ>0, or he does not belong there, but measurement error was
sufficient to induce him to choose A mistakenly.  It is the latter that induces a switch.  Thus, the
expression above for a switch becomes 

Pr(switch from A to B after period zero) = 
Pr (ν > -δ   1  δ < 0  ) /  Pr (ν > -δ )

which can be written as 

Pr(switch from A to B after period zero) = 
Pr (ν >-δ   1  δ<0  ) /   [ Pr (ν >-δ 1 δ<0) + Pr(ν>-δ 1 δ>0 ) ]

Since ν is now identical to εA, the Fi notation used above for εA now can be used to reflect the
distribution functions for ν.  Thus, F1 is the distribution of the two with the higher spread, which
means that the importance of measurement error should be greater with F1 than with F2 as shown
in figure 2.  Then,

Proposition 5: For any given distribution of δ, the probability of switching out of occupation A
and into occupation B increases with the spread in the distribution of ν. 

Proof: Given that the density function on ν associated with distribution i is fi(ν), 

13This bears some resemblance to the two-armed-bandit structure originally formulated
by Herman Robbins, “Some Aspects of the Sequential Design of Experiments,” Bulletin of the
Amer. Math. Soc. 58, (1952), 527-35.  When the worker knows that he is not good at A, it pays
for him to take a chance on another occupation.

14An alternative assumption that does not qualitatively change results is that he learns
only his output in the occupation in which he works during period zero.
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Consider how the value of this expression changes as spread in the error increases.  When
δ < 0 so that -δ > 0, F2 (-δ) > F1 (-δ). Conversely, when δ>0 so that -δ<0, F1(-δ) > F2(-δ).  The
combination of the two implies that the numerator rises relative to the denominator when moving
from F2 to F1 because the first term of the denominator equals the numerator and the second is
larger for i=1 than for i=2.  Thus, the probability of a switch from A to B is higher with F1 than it
is with F2 . |||

The intuition of this result is made clear by considering two extremes.  Suppose there was
no measurement error at all at the beginning of period zero.  Then all who choose A    do so
because δ>0.  There are no mistakes.  At the other extreme, let the variance in measurement error
go to infinity.  Then (as discussed in 1.5, above), half would choose A  and those who chose A
would be choosing completely on the basis of noise.  The true δ would have no impact on the
initial choice because the signal-to-noise ratio is zero.  After one period of experience in A, the
true δ would be learned and H(0) of those currently in A (the proportion who should actually be
in B) would switch out of A.  

Note the empirical implication is not merely that the more noise there is at the outset, the
more switches.  Imbedded in this structure is that noise in occupation A is reduced relative to
noise in B as the worker acquires experience in the occupation. Still, other things equal,
occupations in which wages spread more with experience should also be evidenced by more
occupational switching.  

The rate at which learning about δ and ν occurs also affects the switch probability. To see
this, consider two occupations that are equally noisy, meaning that the variance in εi is the same
in both occupations. If experience reduces the variance more quickly in one occupation than in
the other, then switches should occur to a greater extent in that occupation with the greater
reduction in variance. Occupations in which there is no learning about productivity do not
experience switching even if the initial variance in noise is large. One way to estimate the rate of
learning is to examine the pattern of wage variation with experience.  When estimates of
productivity are poor, everyone is paid the same amount.  As learning about productivity occurs,
wages move toward productivity and spread out. Consequently, more switching should occur in
occupations that have a larger increase in wage variation with experience because those are the
ones in which learning about productivity is likely to be largest.  Of course, other factors could
confound this prediction. For example, one occupation may experience higher wage variation
with experience simply because experience is more important in that occupation, coupled with
the fact that workers learn at different rates.  But this explanation can be examined by holding
constant the slope of the experience-earnings profile.  

15



2. Empirical Implications
In this section, the implications of the theory are used to discuss results that have already

been produced by the previous literature.
The primary goal is to distinguish statistical overconfidence from irrational

overconfidence, as defined in section 1.4.  The results of sections 1.3 and 1.6 yield some
implications. Here, those implications are tested using data on occupational switching from the
CPS January 2012 , from the CPS March 2012, and from the PSID.

2.1 More noise implies more occupational switching
The most compelling empirical predictions result from propositions 3 and 5, which relate

the likelihood of switching occupations to the distribution of the noise terms.  Proposition 3
states that the probability of overconfidence increases in the spread of the distribution of
estimation error.  Proposition 5 extends that to a dynamic context and says the probability of
switching out of an occupation and into another increases in the spread of the estimation errors,
given the distribution of true comparative advantage, δ.  

It is necessary to find an empirical analogue of estimation error. First, write

(13) vqji = xji β + εji 

for individual i in occupation j, where xji are the values of the observables for that individual and
β are the coefficients that apply to those explanatory variables for occupation j.  

In competition, workers are paid their observed output so the worker’s wage, wji, is equal
to vqji.  Then, an estimate of εji is simply

(14) wij - xjiβ 

The empirical implication is that switches out of occupation j should be more common
for any given distribution of δ when occupation j has a higher spread in ε, measured by the
standard deviation of the residual in the wage equation. 

2.2 Individuals should switch out of occupations in which they have comparative
disadvantage

The time-varying analogue of (13) is 

(15) vqjit = zjit Γ + αi + θji + ξjit 

where vqit is the worker’s estimated output at time t, zjit are observables at time t and include
occupation dummies, αi  is person-specific ability component that is not captured by the
observables, and θji is the match effect of person i in occupation j, i.e., the person-specific
comparative advantage component.  Finally, ξjit is the error that may reflect measurement, luck or
other factors. 

The primary prediction is that workers should tend to switch out of an occupation when
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they are less well-suited to it.  Some of this is predictable and built into the observables.  For
example, the part-time and summer jobs that are most appropriate for college students are not the
ones that form the basis of most careers and this should be related to age, experience, and
education levels that vary as the individual progresses through school. 

Much of the occupational switching occurs over time as workers learn their comparative
advantages.  In the two occupation case, that was reflected in δ.  In the multi-occupation case,
there is an θji that refers to individual i’s ability in occupation j, taking out the average effect of
being in occupation j and the general ability effect for individual i.  

An individual who has a high output, reflected in a high wage, in period t, might have
that wage because he has favorable characteristics (high zΓ), because he is more able than others
(high α), because he in a well-paying occupation (high coefficient on his occupation dummy), or
because he is well-suited to that particular occupation (high θji).  To the extent that each of these
components can be identified, they may affect the likelihood of switching occupations.  A
standard proportional hazard approach with the appropriate variables included can shed light on
this issue.15

This also relates to the implications of proposition 1, which states that the cost of the
error and the probability of an error occurring are inversely related.When the cost of the error is
high, i.e., when |δ| is large, the individual is unlikely to choose the wrong occupation because it
is rare that ν>-δ.  Because those who have strong comparative advantages in the occupation will
likely have chosen correctly initially, these individuals are more likely to stay in that occupation. 

The error,  ξjit, in (15) can be broken up further to yield empirical implications.  Note that
the terms that comprise the estimate of productivity contain person, occupation, and person-
occupation effects, but they do not contain a firm-worker match effect.  That is incorporated into
ξjit.  Even if ξjit could be separated perfectly from zjitΓ,  αj, and θji, the retrieved ξjit would still
contain a component that relates to true productivity, namely the firm-worker match effect,
rather than estimation or measurement error. As the worker remains longer on the job, it is
standard logic that the firm-worker match component gets estimated more precisely and the
measurement error component becomes less important.  This implies that ξjit increasing measures

15Among the earliest work on occupational investment and its importance in earnings
determination is Shaw (1984), which finds that occupation-based models are much better at
explaining earnings variation than are those based simply on work experience.  Shaw (1987)
builds a structural model to estimate the transferability of skills across occupations and estimates
it using the National Longitudinal Survey of Young Men. Farber (1999) provides an excellent
survey of the early literature on job mobility, especially that which focuses on the role of specific
human capital (which could be occupation specific).  Farber divides those studies into those
based on worker heterogeneity and specific human capital, those based on worker tenure, which
may proxy these factors, and those that examine the earnings experience of displaced workers.
Somewhat related is Neal (1995), which examines the effect of industry (as opposed to
occupational) switching. Neal shows that the cost of switching industries is related to work
experience and tenure.  These studies point more directly to the cost of losing occupation or
industry skills when a worker is displaced involuntarily rather than the benefit of moving to a
more appropriate occupation voluntarily when a worker learns about his or her comparative
advantage.
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match effects that relate to productivity rather than just noise.  Variations in ξjit for new workers
are unlikely to result in different separation behavior because these variations reflect pure noise.
But for senior workers, cross-occupation variation in ξjit is more likely to reflect firm-worker
match effects being more important in some occupations than in others.  They should result in
action.  Specifically, occupational variation in ξjit should be more predictive of turnover behavior
for more senior workers than for junior workers.  

3. Data Description 
Three different datasets are used because no one dataset includes all the relevant

information.  For the primary test that examines the relation between occupational switching and
the amount of noise in the occupation-specific estimate of productivity, two CPS months are
used.  The wage data are from the 2012 March CPS, which gives detailed data on the hourly
wage rate and on a person’s demographic characteristics.  The March CPS is used to estimate the
occupation-specific variation in ε, which is the key independent variable used to predict
occupational switching. There are about 132, 877 working individuals in the wage data, a
number that is reduced to 115,039 to obtain complete information on all individuals. The wage
function in equation (14) is estimated using these data.

Unfortunately, the March data do not provide detail on job switching.  To determine
occupational switching, it is necessary to use the January data.  Although January data lack
detailed wage information, they do contain better detail on the prior job history. The
occupational breakdowns are the same in both months so that the variation in ε obtained from the
March wave  can be used to predict the amount of occupation-specific noise that was present in
the January respondent’s previous-year occupation.  Matching the occupation that the January
2012 respondent held the previous year with the estimated occupation-specific variance in ε
obtained from the March 2012 data provides a way to predict which individuals would have been
more likely to switch occupations in the year prior to January 2012. 

More specifically, the January 2012 CPS data contain 39,992 observations on individuals
whose current job and job one year earlier are reported.  It is possible in these data to determine
whether an individual was employed in the same job, and specifically, in the same occupation
last year as he or she is today. The inter-year occupational stability is the variable of key interest
and that can be determined on an individual or occupational basis. Since one can compute
whether a worker switched occupations during the year prior to January 2012, the switch rate can
be computed for each of 22 occupations in the data and those rates can be related to the spread in
the ε distribution that is obtainable from the March, 2012 CPS data. Since the variation in the
key variable, ε, occurs at the occupational level, the appropriate unit of analysis is the
occupation.  As a result, the 39,992 observations are used to compute the occupational averages
for switching rates and the independent variables for the 22 occupations.  The final data then
contains 22 observations where each observation reflects the mean values for that occupation. 
Table 2, Panels A, B, and C provide summary statistics for the CPS data sets.

Wage data on the prior year’s job is not accurately reported in the CPS data and the
worker’s prior wage for those who leave their jobs and switch occupation is key for the purposes
of testing the importance of comparative advantage, δ, in occupational switching. The estimation
of (15) requires a serious panel dataset. The Panel Study of Income Dynamics (PSID) is used for
this purpose.  This is a well-known data set and for the purposes here, a maximum of 37,891
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observations over all years on 7743 individuals are valid.  The statistics on the relevant variables
are summarized in table 2, Panel D.  

4. Results

4.1 Occupational Switching Increases in the Spread of the Error Distribution
Recall the primary implication is that the amount of switching out of an occupation and

into another because of statistical overconfidence rises in the spread of the distribution of
measurement error.  In the context of the model, the larger the spread in ε, given the distribution
of δ, the more occupational switching.  The distribution of ε varies by occupation so the model
described by equation (14) is estimated using the March, 2012 CPS data.  This is done in two
ways.  First, the same equation is assumed to hold across all occupations.  Equation (14) is
estimated as written where the vector of β is assumed to be the same across all occupations. The
variables that are included to explain wages are the typical ones: age, education, and gender.
This is estimated on slightly over 115,000 observations where the dependent variable is the
hourly wage rate (stated or imputed by CPS). The results of this first stage are typical.  The
coefficients on age, education and male are positive and the r-squared for the entire regression is
.23. An alternative version allows the β vector to be occupation-specific, which results in a
different set of estimated ε. Allowing full interaction by occupation boosts the r-squared to .31.  

Given the estimated ε for each worker in the sample, the standard deviation of the ε is
computed within each occupation.  That is the key variable of interest, the hypothesis being that
the larger the standard deviation in ε, the larger is the occupational turnover rate. As stated
above, the within-occupation standard deviation of ε is estimated in two ways.  The first assumes
the same wage equation holds for the full sample.  The second allows different coefficients on
each explanatory variable for every occupation. 

4.1.1 Occupational Switching is Related to Residual Variation in Wages
The main results are contained in table 3.  Note first that the dependent variable is the

proportion who change occupations during the year.  The unit of analysis is the occupation so
there are 22 observations in all and each variable described in panel B of table 3 relates to the
average within-occupation value that the variable takes on across the 22 occupations.  For
example, the average age is 39.4.  This is the within-occupation mean age, averaged
(unweighted) across the 22 occupations.  

Figure 3 shows the kernel density of the dependent variable.  It is well-behaved and lies
within the interior of the interval, taking on a modal value of about .11, meaning that about 11%
of the sample changed occupations during the previous year. This number seems consistent with
other data.  In particular, the JOLTS (Job Openings and Labor Turnover Survey) suggest about
50 million hires and separations during 2012 when employment was about 140 million workers,
which implies a total turnover rate of over 1/3.  But only a fraction of those (about 1/3 again, if
the CPS number is accurate) change occupations. 

The theory predicts that occupational switching should be greater in occupations in which
the spread in ε is high. The spread in ε is measured by the occupation-specific standard deviation
of the residual from the wage regression. But the theoretical prediction assumes a given
distribution of δ.  The distribution of δ may vary with observable factors, like age, education and
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gender.  The fact that the wage regression includes these factors does not eliminate the across-
occupation variations in the distribution of δ.  Worse, the distribution of δ may be correlated with
the distribution of ε across occupations.  For example, as mentioned earlier, occupations in
which human capital is more important may also be occupations with higher variation in wages,
inter-person productivity variations and productivity estimation error.  Specifically, the variation
in the residual in the wage regression picks up errors in productivity estimation error as well as
inter-person variations in true productivity.  Formally, the residual defined in (14) contains not
only measurement error, but another person-specific effect. The δ component relates to
occupation fixed effects for a given individual i, which requires observing that individual in
multiple jobs in all occupations. Later, mobility reflecting comparative advantage reflected in δ
is analyzed using panel data, but in this section, using the occupational data, δ cannot be
separated from measurement or estimation error, which is what ε is supposed to reflect.
However, many variables that might be expected to affected comparative advantage across
occupations (like education) are observable. Table 3 allows specifications where those variables
are included and allowed to affect occupational switching. These take out some, although not all,
of the cross-individual differences in comparative advantage. 

Table 3, and columns 3 and 6 especially, provides strong support for the prediction that
occupational switching is positively related to the spread in the ε distribution and that
comparative advantage in the occupations, reflected in the distribution of δ, varies with
education and age. The difference between the columns 3 and 6 is that the wage regression used
to estimate the residuals that form the basis for calculating the standard deviation of ε conforms
to two different forms.  In column 3, the coefficients in the wage equation that generates the
estimated ε are assumed to be the same across occupations.  In column 6, the coefficients are
allowed to vary across occupations, meaning that 22x4 or 88 separate coefficients are estimated
in the wage regression. The sample of 115,039 observations is used to estimate both forms. 

As is apparent, the standard deviation of epsilon is strongly correlated with the likelihood
that a worker shifts occupations. Theory implies that statistical overconfidence in initial
occupational choice is more pronounced in high standard-deviation-of-epsilon occupations.  The
larger is the residual in the wage regression, the more important is ε and the larger is the
variation in epsilon, the larger is the likelihood of switching out of the occupation. This is what
is found in table 3. All specifications that control for observable factors that affect comparative
advantage support this prediction. 

Note that the results are quite strong and statistically significant, somewhat surprising
given only 22 observations.  Of course, each observation carries significant weight because it
reflects average values across all individuals within that occupation and the initial sample from
which these 22 observations are created contain over 39,000 individuals. The magnitude is also
impressive. The standard deviation in the wage residual itself has a standard deviation across
occupations of 3.5, so a one standard deviation change in the value of that variable is associated
with a .013 increase in average occupational switch,16 which is over 10% of the overall
probability of an occupational switch. 

Column 8 reports results based on a first-stage wage regression that deletes outliers. 

16This is based on the estimates in column 6, but the coefficients differ little across
specifications with all variables included.
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Some individuals in the initial sample of about 115,000 observations had hourly wage rates that
appear extreme.  It is impossible to know whether these observations are accurate and provide
information or whether they just reflect errors, coding or other.  To check for robustness, the
wage residuals were re-estimated using an sample that deleted outliers, defined as those with
hourly wage rates deviated from the occupation mean wage by more than three occupation-
specific standard deviations of the wage.  This eliminated 1258 observations.  The wage
regression was re-estimated both constraining coefficients to be the same across occupations and
allowing the coefficients of the wage regression to differ for each occupation.  The results are
similar so table 3 column 8 reports the full-interaction version. 

Once again, the results in table 3, column 8 support the theoretical prediction. 
Occupations that have more variance in their wage residuals also have higher average rates of
occupational switching.  The coefficient on the standard deviation of ε is almost twice as large
when outliers are excluded. 

Age and education have the expected effects on occupational switching, again reflecting
comparative advantage.  As an individual ages, more of the person’s skills become occupation
specific.  It is very unlikely that an airline pilot who has been flying for twenty-five years is
going to discover that his comparative advantage lies elsewhere.  The skills developed over that
period make it highly unlikely that he would be worth more in another occupation.  Similarly,
the more education a person has, the more occupation specific it is likely to be.  First grade is
completely general, whereas a Ph.D. in chemical engineering is quite specific to working in that
field. The higher the level of education, the greater the expected value of δ for those in their
initial placement.

4.1.2 Placebo
It is possible that other factors associated with variance in occupational wages could

explain the fact that higher estimation-error occupations experience more switches.  The most
directly implied by the theory is comparative advantage.  If there are costs of switching
occupations, then the larger is the spread in the δ distribution, the more likely it is that a worker
who finds himself in the wrong occupation will be willing to switch.  This is examined directly
below using the PSID data.  

It is possible, however, to shed light on the specific implication that it is estimation error,
in addition to or perhaps more than other factors, that account for differences in occupational
switching.  Variation in the wage can be broken up into the explained and unexplained part.  The
entire theory of statistical overconfidence is based on the unoservables, which is why the focus
has been on the standard deviation of the the wage residuals.  Although the observables such as
age and education may themselves affect occupational switching (as just discussed), there is no
reason why predicted variation in wages should affect occupational switching because the
predicted variation should be known in advance and incorporated into the initial selection of
occupations.  

Occupations with high variation in the predicted component of wages are not necessarily
ones in which overconfidence should be more prevalent.  It is only the unobserved components
that the theory predicts relate to overconfidence and therefore to the likelihood of switching out
of an occupation. As a result, predicted variation acts as a placebo in this analysis.  Only
unexplained variation in wages, not predicted variation, should be correlated with occupational

21



switching.
The results of the analysis are contained in table A1.  No matter which of the versions of

wage estimation is performed (outliers included: coefficients constrained to be the same and 
coefficients allowed to differ by occupation; outliers excluded: coefficients constrained to be the
same and  coefficients allowed to differ by occupation), the occupation-specific standard
deviation of the fitted values never enters significantly in the occupational switching regressions. 
The t-ratios range from a low of -.01 to a high of 1.5, depending on the specification.
Additionally, with a couple of exceptions, age, education and male are insignificant as well in
these specifications. Note also that in column 5 of table A1, both the fitted and residual values
from the wage equation are independent variables.  The residual remains significant and the
fitted values remain insignificant.  Furthermore, the R-squared jumps for .38 (in column 2) to
.59, suggesting the importance of the residuals in explaining occupational switching. It is the
unobserved part of productivity, not the predictable part that is correlated with occupational
switching.  This is supportive of the statistical view of overconfidence.  

 

4.2 Occupational Switching Declines in Comparative Advantage in Initial Occupation
The PSID is used to examine whether occupational switching follows the predictions of

section 4.2, above. First, it is necessary to obtain estimates of θji as defined in (15) for each
individual because this is the variable that reflects person i’s comparative advantage in
occupation j.  To isolate θji from αi, it is necessary to observe the individual in multiple
occupations.  The occupation dummies pick up the average effect of occupation on output, here
assumed to be reflected in the observed wage.  It is also possible to take out the person effect, αi,
because a given individual is observed working in multiple periods. Deviating observations from
the person mean eliminates the αi and also all time-invariant observables.  The θji are identified
by observing a given individual in multiple occupations throughout his or her career.  Since the
PSID follows respondents over prolonged time periods, a large fraction of the sample has
switched occupations, which allows identification of the θji.  The interpretation of the effect of θji

in a proportional hazard model is that when an individual is in a high θji occupation, he is less
likely to switch out of it than when in a low θji occupation.  

Consider , for example, two individuals, one of whom has been employed in two
occupations, the other has been employed in three occupations over their careers. The theory
would predict this pattern under the following circumstances.  Both individuals’ first occupations
are not ones for which they are well-suited.  The first individual is a good match with his second
occupation, meaning that he has a high value of θ. Because of that, he stays in that job and it
becomes an absorbing state. The second individual has had three jobs.  She is poorly suited to
the first, meaning a low θ,  poorly suited to the second, meaning a low θ again, but well-suited to
the third.  She switches out of the first two jobs and never switches out of the third job. 

The estimation occurs in two steps.  First, a panel wage regression is estimated.  It
includes occupational dummies, year dummies and person effects.  Occupation-person effects,
i.e., the match effect that is the θji,   is calculated as the average residual for a specific person
within each occupation that the individual has held during the entire panel. It is the measure of
comparative advantage. After person, occupation and match effects are taken out, the residual
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contains only the ξjit as defined in (15).  
Theory predicts that the higher the θji, the lower the likelihood that a worker will switch

out of that occupation.  This is comparative advantage. The results of estimating a proportionate
hazard model are contained in table 4. Included in each model is tenure (in weeks).  It is well-
known that the hazard rate should decline with time on the job, as implied by both human capital
and matching theory, which is what is incorporated in the discussion of learning in section 1.6.

The occupation mixed effect shows up as predicted in both specifications.  Individuals
with higher estimated values of θ are less likely to switch out of that occupation.  The effects are
stronger when observable factors age, sex, race and education are held constant.  

As already discussed, a primary implication of the analysis is that occupations with
higher wage residual variation should be those where overconfidence is greatest and where
occupational switching is most pronounced.  This shows up in the PSID analysis as it did in the
CPS.  The larger is the occupation-specific standard deviation of the residual, ξ, the more likely
is occupational switching. The coefficient in column 2 on the standard deviation of ξ supports
this view.

Furthermore, the more subtle point that relates to cross-occupational difference in the
within-occupation variance of ξjit can also be tested.  Recall that the logic is that for young
workers, variation in ξjit has a lower signal-to-noise ratio than for more senior workers.  As time
progresses in a career, wage variation, even that in the residual, is less likely to reflect noise.  It
is quite possible when a worker is new that he is misjudged by management.  But as time in the
job passes, the wage is more likely to reflect true productivity.  As a result, occupation-specific
variations in ξ should be more likely to reflect comparative advantage in senior workers than in
junior workers.  This implies that the importance of the occupation-specific standard deviation of
ξ in inducing an occupational switch should grow with tenure holding the pure tenure effect
constant.  Once again, this is borne out by the positive, albeit very small, effect of the interaction
between the standard deviation of ξ and tenure on turnover probability. Occupations with high
variation in ξjit see more switching and shorter employment durations, particularly when that
variation is for senior workers. 

The age factor is also consistent with a comparative advantage interpretation.  Older
workers are less likely to switch occupations, which again makes sense.  After a worker has been
in the workforce for many years, it is expected that she would be better suited to the occupation
in which she resides than to others.  Males, non-whites, and the less educated are more likely to
change occupations rapidly.

5. Another Application
The statistical explanation of overconfidence suggests that people who purchase items

may not use them as much as would be expected, given that they purchased the good in the first
place.  A personal example comes to mind.  Each spring, I must decide whether to purchase a
season pass at my most skied mountain for the following year.  I must estimate my work
schedule, the winter snow and my desire to go skiing eight months in advance. Some years I buy
the pass and some years, I do not.  Part of the reason for buying it is convenience. A pass avoids
ticket window queues, etc. But even taking convenience into account, there are years when I
regret having bought the pass because I use it too infrequently.
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Of course, there is little problem with having decision-makers err some of the time. Any
model with imperfect forecasting would yield this result.  Different here, though, is among the
subset of individuals who actually buy the good, regret is more common than not, which appears
like bias in the purchasing decision.  The model above can be reinterpreted to yield that result.

To make things simple, suppose that there are no common-value components, so in the
case of the ski pass, weather, which is common, is not an issue and it is only unforseen travel
schedules that differ across potential buyers.  Then an individual’s best estimate of future use can
be characterized by the form used in (1) or

q qA A A  

with a different interpretation than was provided earlier.  Here, think of as the estimated valueqA

of the product, in the example, the season ski pass to the individual in question when making the
decision on whether or not to buy.  The cost of the product can be thought of as qB.  Then, the
individual should buy the product if > qB .  qA

This is a special case of the condition that determined the choice of occupation A over B.
Here, εB is zero, but none of the results relies on a non-zero value for εB.  Thus, by Proposition 2,
those who purchase the good are, on average, overconfident of its value.  In the case of the ski
pass, those who buy the pass overestimate its value relative to cost. Too many who buy the
season pass overestimate (on average) the value of the season pass relative to its cost. This has
exactly the winner’s curse flavor, but the result here relies on the idiosyncratic value of the good
to the individual rather than the common value. Just as was the case of occupational choice, there
is nothing that the individual can do to improve the decision rule.  The difference between q A

and qB is the best unbiased estimate of the net value of the good.  
As mentioned earlier, not all of the results on overconfidence can be explained away in

this manner.  The statistical theory cannot explain laboratory experiment results where
individuals estimate their performance and the average for the entire sample is an overestimate
of true performance. But it is consistent with ex ante choices that turn out ex post to have been
bad ones, even for the average individual in the group.

6. Conclusion
It is not surprising that decision-makers do not always make correct decisions.  In a world

filled with uncertainty, it is necessary to act on the information that is available at the time a
decision is made and sometimes that information turns out to be incorrect.  More surprising is
that individuals who make decisions rationally using the appropriate rules of statistical decision-
making may, on average, be incorrect, generally overestimating the value of a particular
decision. 

The analysis here relates primarily to occupational choice.  Individuals who choose to go
into a particular occupation are, on average, overconfident of their ability in that occupation,
with the typical individual having productivity in the occupation that exceeds initial estimates. 
This is consistent with a purely statistical phenomenon.  Conditioning on those who choose to
enter an occupation selects on individuals who have a true comparative advantage in the
occupation and on individuals who have positive measurement error, meaning that they
overestimate their abilities.  There is nothing that the decision-maker can do to remedy this
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problem because there is no common information that can be used to undo the error. The ex ante
unbiased estimate is the one used.

A number of implications are derived and tested using the CPS and PSID data.  It is
found that occupations that have higher potential measurement error, as proxied by the
occupation-specific standard deviation of the residual in the wage equation, exit those
occupations more frequently.  This is exactly what the theory predicts.  Overconfidence tends to
occur in occupations where estimation error is high.  Workers who incorrectly enter the wrong
occupation, remedy the situation by moving to another after they learn that they have made
mistakes.

It is also found that workers move in response to their true comparative advantages.  The
PSID panel data permit estimation of occupation-specific match effects.  Those with negative
match values are more likely to exit the occupation.  

These results and others suggest that occupational choice can be explained well by 
statistical theory, despite observations that appear to contradict unbiased decision-making.
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Figure 3
Kernel Density of Proportion
Who Switch Occupation

Variable: Proportion who change occupation during the last year
Unit of analysis: Occupation 
22 occupational observations
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Table 2
Descriptive Statistics

Panel A: 
 Wage Data March 2012 use to estimate wage equation residuals

  Variable Mean
 Standard 
Deviation Additional Notes

Average Age 43.23 12.82 Ages 17 – 85 

Average Education 40.90 2.53 codes used 
(31=less than first grade,
...45=professional school)

Male .571 .494

White .83 1.24  

Usual Weekly Hours Worked 42.73 7.64 Full-time workers only (35 or
more hours)

Weekly Earnings 9214.16 5047.68

Hourly Wage 22.83 14.73

Number of Observations=115,039

31



Panel B:
Raw Occupation Based Data from January, 2012 

  Variable Mean
Standard
Deviation Additional Notes

Average Age 43.84 12.47 Ages 17 – 85

Average education 40.97 2.51 \codes used (31=less than first
grade, ...45=professional
school)

Race=White .84

Male .56 .24

Average Hourly Wage 17.29 4.04

Tenure in Current Job 943.8 895.59 Tenure in Weeks

Different Work .109 .312

Number of Observations=39,992
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Panel C:
Occupation Data created from January, 2012   22 observations

Variable Mean Standard
Deviation

Additional Notes

Average Age 43.40 1.96 Ages 17 – 85

Average education 41.01 1.77  codes used (31=less than first
grade, ...45=professional
school)

Male .58 .25

Average Different Work .11 .02

Average Wage 24.30 8.10

Number of Observations=22
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Panel D: Panel Study of Income Dynamics

Variable Mean
Standard
Deviation Additional Notes

Age 41.54 10.92 Ages 25-65

Male .75 .43

White .66 .47

Education 13.20 2.62 Education in years ( 1 = 1 year,
2 = 2 years, etc) 

Hourly Wage 14.99 17.35

Weekly Hours 51.99 47.53

Tenure .93 1.56 Tenure in Years

Major Occupation Switch .26 .44

Detail Occupation Switch .36 .48

Number of Observations=37,891 on 7743 separate individuals
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Table 3
Occupational Switching and Importance of Errors

Variable 1
One wage
equation

2
One wage
equation

3
One wage
equation

4
One wage
equation

5
Occ.

specific
wage eq

6
Occ.

specific
wage eq.

7
Occ.

specific
wage eq.

8
Outliers
removed

Occ.
specific
wage eq

Average Age -.0033
  (-1.66)

-.0056
(-3.15)

-.0059
(-2.96)

-.0056
(-3.22)

-.0057
(-2.86)

-.0054
(-3.02)

Average
Education

-.0032
  (-1.07) 

-.0073
(-2.85)

-.0060
(-2.21)

-.0081
(-3.06)

-.0067
(-2.27)

-.0167
(-3.32)

Proportion
Male

.0108
(0.69)

-.014
(-0.94)

-.0187
(-1.11)

-.0156
(-1.04)

-.0185
(-1.07)

-.0354
(-1.75)

Standard
Deviation of
Wage
Residual (one
equation)

000069
(0.58)

.0038
(3.20)

.0041
(2.58)

Standard
Deviation of
Wage
Residual
(separate
equation for
each
occupation)

.0049
(0.45)

.0037
(3.30)

.0036
(2.46)

.0068
(3.01)

R-squared .31 .02 .57 .48 .01 .58 .47 .55

Weight Obs per
occup. 

Obs per
occup. 

Obs per
occup. 

None Obs per
occup.

Obs per
occup. 

None Obs per
occup.

Number of observations = 22.  t-ratios in parentheses
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Table 4
Proportionate Hazard Model

Failure / Occupational Switch

Variable 1 2

θji   (the person-occupation mixed
effect)

.988
(-4.94)

.975
(-6.93)

Standard deviation of ξji(t-1)   (the
contemporaneous classic error after
person, occupation and mixed effects
are removed)

1.03
(6.10)

tenure (in weeks) .999
(-4.29)

.998
(-3.08)

(Standard deviation of ξji(t-1) ) (tenure) 1.0002
(2.51)

age .949 
(-15.5)

male 1.27
(4.09)

white .833
(-3.52)

education .957
(-4.22)

χ2
42.6 350.1

z values are in parentheses.  14,130 observations, with standard errors from clustering at the
person level.

36



Appendix

Table A1
Placebo Using Fitted Values

Variable 1
One set of

coefficients

2
Occupation-
specific 
coefficients

3
One set of

coefficients
Outliers
removed

4
Occupation-

specific
coefficients

Outliers
removed

5

Occupation-
specific

coefficients

Average Age -.0033

(-1.57)

-0.0045

(-2.10)

-.0032

(-1.52)

-.0049

(-2.22)
-.0058

(-3.16)

Average Education -.0032

(-1.09)

-.0083

(-1.79)

-.0034

(-1.13)

-.0095

(-1.92)
-.0095

(-2.44)

Proportion Male .0108

(0.67)

-.00041

(-0.02)

.0107

(0.66)

-.0054

(-0.29)
-.0178

(-1.12)

Standard Deviation
of Fitted Values

-.000069

(-0.01)

.0044

(1.35)

-.0011

(-0.18)

.0052

(1.50)
.0015

(.050)
Standard Deviation
of Wage Residual
(separate equation
for each occupation)

.0035

(2.85)

R-squared .31 .38 .31 .39 .59

Weight Obs per
occupation

Obs per
occupation

Obs per
occupation

Obs per
occupation

Obs per
occupation

Number of observations = 22.  t‐ratios in parentheses. 
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