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 We derive a new options-pricing formula that applies when disaster risk is the dominant 

force, when the size distribution of disasters is characterized by a power law, and when the 

economy has a representative agent with Epstein-Zin utility with a constant coefficient of 

relative risk aversion.  Specifically, we consider far-out-of-the-money put options on the overall 

stock market, corresponding empirically to the S&P 500 in the United States and analogous 

indices for other countries.  The pricing formula applies when the option is sufficiently far out of 

the money (operationally, a relative exercise price or moneyness of 0.9 or less) and when the 

maturity length is not too long (operationally, up to 6 months). 

 In the prescribed region, the elasticity of the put-options price with respect to maturity is 

close to one.  The elasticity with respect to the exercise price is greater than one, roughly 

constant, and depends on the difference between the power-law tail parameter, denoted α, and 

the coefficient of relative risk aversion, γ.  (This difference has to be positive for various rates of 

return not to blow up.) 

 The options-pricing formula involves a multiplicative term that is proportional to the 

disaster probability, p, measured per year.   This term depends also on three other parameters:  γ, 

α, and the threshold disaster size, z0.  If these three parameters are fixed, the variations over time 

in the multiplicative term reveal the time variations in p.  The estimation of the time series for p 

can then be carried out through standard fixed effects for calendar time.  However, a full analysis 

requires amendments to the options-pricing formula to allow for time-varying p. 

 We show that the theoretical formula conforms with data from 1983 to 2015 on far-out-

of-the-money put options on the U.S. S&P 500 and analogous indices over shorter periods for 

other countries.  Our analysis relies on two types of data—indicative prices on over-the-counter 

(OTC) contracts offered to clients by a large financial firm and market data provided by 
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OptionMetrics, Bloomberg, and Berkeley Options Data Base.  A key advantage of the OTC 

source is its provision of a rich array of contracts by exercise price and maturity.  In particular, 

the relative exercise price goes down to 0.5, and the maturity can be 12 months or more.  A 

downside of these data is that the reported prices do not necessarily correspond to actual trades.  

An advantage of the market data is the correspondence with actual trades, but there are problems 

with stale prices and sizes of bid-ask spreads.  The most serious disadvantage of these data is the 

limited information on far-out-of-the-money options, which rarely trade.  The market data (and 

trades) are also concentrated on short maturities; for example, about half of the OptionMetrics 

contracts have maturity of two months or less.  In any event, we find that the main results are 

similar from the two types of data sources. 

 Extensions of the empirical analysis would allow for second-order terms.  These terms 

involve the possibility of multiple disasters, the presence of a diffusion term, allowances for 

discounting and expected growth, and the potential for default on options contracts.  We think 

that the most important extension, stressed in Seo and Wachter (2015), involves the effects on 

stock-options prices from potentially changing disaster probabilities. 

I. Baseline Disaster Model and Previous Results 

We use a familiar setup based on rare-macroeconomic disasters, as developed in Rietz 

(1988) and Barro (2006, 2009).  The model is set up for convenience in discrete time.  Real 

GDP, Y, is generated from 

 (1)  log(Yt+1) = log(Yt) + g + ut+1 + vt+1, 

where, g≥0 is the deterministic part of growth, ut+1 (the diffusion term) is an i.i.d. normal shock 

with mean 0 and variance σ2, and vt+1 (the jump term) is a disaster shock.  Disasters arise from a 
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Poisson process with probability of occurrence p per period.  When a disaster occurs, GDP falls 

by the fraction b, where 0<b≤1.  The distribution of disaster sizes is time invariant.  (The 

baseline model includes disasters but not bonanzas.)  This jump-diffusion process for GDP is 

analogous to the one posited for stock prices in Merton (1976, equations [1]-[3]).1 

In the underlying Lucas (1978)-tree model, which assumes a closed economy, no 

investment, and no government purchases, consumption, Ct, equals GDP, Yt.  The implied 

expected growth rate of C and Y is given, if the period length is very short, by 

 (2)  g* = g + (1/2)∙ σ2 –p∙Eb, 

where Eb is the mean of b.  In this and subsequent formulas, we use an equal sign, rather than 

approximately equal, when the equality holds as the period length shrinks to zero. 

 The representative agent has Epstein-Zin/Weil utility,2 as in Barro (2009): 

 (3)  [(1 − 𝛾)𝑈𝑡]
(1−𝜃1−𝛾) = 𝐶𝑡1−𝜃 + � 1

1+𝜌
� ∙ [(1 − 𝛾)𝐸𝑡𝑈𝑡+1](1−𝜃1−𝛾), 

where γ>0 is the coefficient of relative risk aversion, θ>0 is the reciprocal of the intertemporal-

elasticity-of-substitution (IES) for consumption, and ρ>0 is the rate of time preference.  As 

shown in Barro (2009) (based on Giovannini and Weil [1989] and Obstfeld [1994]), with i.i.d. 

shocks and a representative agent, the attained utility ends up satisfying the form: 

 (4)  𝑈𝑡 = 𝛷 ∙ 𝐶𝑡
1−𝛾/(1 − 𝛾), 

                                                 
1Related jump-diffusion models appear in Cox and Ross (1976). 
2Epstein and Zin (1989) and Weil (1990). 
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where the constant 𝛷>0 depends on the parameters of the model.  Using equations (3) and (4), 

the first-order condition for optimal consumption over time follows from a perturbation 

argument as 

 (5)  �𝐸𝑡(
𝐶𝑡+1
𝐶𝑡

)1−𝛾�
(𝛾−𝜃𝛾−1)

= � 1
1+𝜌

� ∙ 𝐸𝑡 �(
𝐶𝑡+1
𝐶𝑡

)−𝛾 ∙ 𝑅𝑡+1�, 

where Rt+1 is the gross rate of return on any available asset from time t to time t+1.  When γ=θ—

the familiar setting with time-separable power utility—the term on the left-hand side of 

equation (5) equals one. 

 The process for C and Y in equation (1) implies, if the period length is very short: 

 (6) 𝐸𝑡(
𝐶𝑡+1
𝐶𝑡

)1−𝛾 = 1 + (1 − 𝛾)𝑔 − 𝑝 + 𝑝 ∙ 𝐸(1 − 𝑏)1−𝛾 + (1
2
)(1 − 𝛾)2𝜎2. 

This condition can be used along with equation (5) to price various assets, including a risk-free 

bond and an equity claim on a perpetual flow of consumption (that is, the Lucas tree).  The 

constant risk-free interest rate is, if the period length is short: 

(7)  𝑟𝑓 = 𝜌 + 𝜃𝑔∗ − 𝑝 ∙ �𝐸(1 − 𝑏)−𝛾 − �𝛾−𝜃
𝛾−1

�𝐸(1 − 𝑏)1−𝛾 − 𝜃 ∙ 𝐸𝑏 + �1−𝜃
𝛾−1

�� − (1
2
)𝛾(1 + 𝜃)𝜎2 

Let Pt be the price at the start of period t of an unlevered equity claim on the Lucas tree.  

Let Vt be the dividend-price ratio; that is, the ratio of Pt to consumption, Ct.  In the present model 

with i.i.d. shocks, Vt equals a constant, V.  (This condition implies that the growth rate of Pt 

equals the growth rate of Ct.)  The reciprocal of V equals the constant dividend-price ratio and 

can be determined from equations (5) and (6), if the period length is short, to be: 

(8)      1
𝑉

= 𝜌 − (1 − 𝜃)𝑔∗ + 𝑝 ∙ ��1−𝜃
𝛾−1

�𝐸(1 − 𝑏)1−𝛾 − (1 − 𝜃) ∙ 𝐸𝑏 − �1−𝜃
𝛾−1

�� + (1
2
)𝛾(1 − 𝜃)𝜎2. 
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 The constant expected rate of return on equity, re, is the sum of the dividend yield, 1/V, 

and the expected rate of capital gain on equity, which equals g*, the expected growth rate of the 

dividend (consumption).  Therefore, re is the same as equation (8) except for the elimination of 

the term -g*.3  The constant equity premium is given from equations (8) and (9) by: 

(9)  𝑟𝑒 − 𝑟𝑓 = 𝛾𝜎2 + 𝑝 ∙ [𝐸(1 − 𝑏)−𝛾 − 𝐸(1 − 𝑏)1−𝛾 − 𝐸𝑏]. 

In equation (9), we can think of the rates of return; the variance, σ2, of the diffusion process; and 

the disaster (jump) probability, p, as all measured per year. 

The diffusion term, γσ2, in equation (9) is analogous to the expression for the equity 

premium in Mehra and Prescott (1985) and is negligible compared to the observed average 

equity premium if γ and σ2 take on empirically reasonable values.  For many purposes—

including the pricing of far-out-of-the-money stock options—this term can be ignored.   

The disaster or jump term in equation (9) is proportional to the disaster probability, p.  

The expression in brackets that multiplies p depends on the size distribution of disasters, b, and 

the coefficient of relative risk aversion, γ.  The overall disaster term was calibrated in 

Barro (2006) and Barro and Ursua (2012) by using the long-term history of macroeconomic 

disasters for up to 40 countries to pin down p and the distribution of b.  The resulting term 

accords roughly with an observed average (unlevered) equity premium of 0.04-0.05 per year if γ 

is around 3-4. 

 

 

 

                                                 
3The transversality condition, which ensures that the value of tree equity is positive and finite, is re>g*. 
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II. Pricing Stock Options 

 A.  Setup for pricing options 

We now discuss the pricing of stock options within our model, which fits into the class of 

jump-diffusion models.  Options pricing within this general class goes back to Merton (1976) 

and Cox and Ross (1976).  The use of prices of far-out-of-the-money put options to infer disaster 

probabilities was pioneered by Bates (1991).  This idea has been applied recently by, among 

others, Bollerslev and Todorov (2011); Backus, Chernov, and Martin (2011); Seo and Wachter 

(2015); and Siriwardane (2015). 

We derive a pricing solution for far-out-of-the-money put options under the assumption 

that disaster events (i.e. jumps) are the dominant force to consider.  Key underlying conditions 

for the validity of the solution are that the option be sufficiently far out of the money and that the 

maturity not be too long.  Under these conditions, we derive a simple pricing formula that 

reflects the underlying Poisson nature of disaster events, combined with the assumed power-law 

distribution for the sizes of disasters.  This formula generates testable hypotheses—which we 

subsequently test—on the relation of put-options prices to maturity and exercise price.  The 

formula also allows, if some key parameters can be treated as constants, for a straightforward 

time-fixed-effects procedure to back out a time series for disaster probability. 

Consider a put option on equity in the Lucas tree.  To begin, suppose that the option has a 

maturity of one period and can be exercised only at the end of the period (a European option).  

The exercise price or strike on the put option (that is, the price at which one can sell) is 

 (10)   exercise price = ε∙Pt, 

where we assume 0<ε≤1.  We refer to ε, the ratio of the exercise price to the stock price, as the 

relative exercise price (also described as “moneyness”). 
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The payoff on the put option at the start of period t+1 is zero if Pt+1≥ ε∙Pt.   If Pt+1<ε∙Pt, 

the payoff is εPt-Pt+1.  If ε<1, the put option is initially out of the money.  We focus empirically 

on options that are sufficiently far out of the money (ε sufficiently below one) so that the 

diffusion term, u, in equation (1) has a negligible effect on the chance of getting into the money 

over one period.  The value of the put option then hinges on the disaster term, v, in equation (1).  

More specifically, the value of the put option will depend on the probability, p, of experiencing 

disasters and the distribution of disaster sizes, b.  Further, what will mostly matter is the 

likelihood of experiencing one disaster.  As long as the period (the maturity of the option) is not 

too long, the chance of two or more disasters has a second-order pricing impact that can be 

ignored as a good approximation. 

 Let the price of the put option at the start of period t be Ω∙Pt.  (For convenience, we omit 

a time subscript on Ω.)  We refer to Ω, the ratio of the options price to the stock price, as the 

relative options price.  The gross rate of return, 𝑅𝑡+1𝑜 , on the put option is given by 

 (11)   𝑅𝑡+1𝑜  = 0 if  𝑃𝑡+1
𝑃𝑡

≥ 𝜀 

    𝑅𝑡+1𝑜  =  1
𝛺
∙ �𝜀 − 𝑃𝑡+1

𝑃𝑡
� 𝑖𝑓 𝑃𝑡+1

𝑃𝑡
< 𝜀 . 

 Suppose that we neglect the diffusion term, u, in equation (1) and also neglect the 

possibility of two or more disasters during a period.  In that case, if there is one disaster of size b, 

the put option is in the money at the start of period t+1 if4 

    𝑃𝑡+1
𝑃𝑡

= (1 + 𝑔) ∙ (1 − 𝑏) < 𝜀 . 

                                                 
4This condition would be modified if the underlying stock pays out dividends and if the stock-options contract does 
not adjust for this payout. 
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In most cases, the length of the period (maturity of the put option) will be short enough so that, 

for reasonable growth rates, we can ignore the term g. 

Let π be the probability of the put option getting into the money, conditional on 

experiencing one disaster over the period.  Given g and ε, π depends on the distribution of 

disaster sizes, b.  In Barro and Jin (2011), this size distribution was found empirically to conform 

well to a power-law density for the transformed variable z≡1/(1-b), which can be viewed as the 

ratio of normal to disaster consumption.  The condition 0<b≤1 translates into z>1, with z tending 

to infinity as b tends to 1.  The probability of getting into the money on the put option, 

conditional on having one disaster, is: 

 (12)   𝜋 = 1 − 𝑃𝑟𝑜𝑏. �𝑧 < 1+𝑔
𝜀
� . 

Since p is the probability of having a disaster in a period, the overall probability of getting into 

the money over one period is pπ, where π is given in equation (12).  (Again, we are neglecting 

the chance of two or more disasters.) 

When expressed in terms of z, the gross rate of return on the put option is modified from 

equation (11) to: 

 (13)  𝑅𝑡+1𝑜  =  1
𝛺
∙ �𝜀 − 1+𝑔

𝑧
� 𝑖𝑓 1 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑛𝑑 𝑧 > (1 + 𝑔)/𝜀 , 

   𝑅𝑡+1𝑜  = 0 otherwise. 

To determine Ω, we use the first-order condition from equation (5), with Rt+1 given by 𝑅𝑡+1𝑜  from 

equation (13).  The results depend on the form of the distribution for z, to which we now turn. 
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B. Power-law distribution of disaster sizes 

 Based on the findings for the distribution of observed macroeconomic disaster sizes in 

Barro and Jin (2011), we assume that the density function for z conforms to a power law:5 

 (14)  𝑓(𝑧) = 𝐴𝑧−(1+𝛼),𝑤ℎ𝑒𝑟𝑒 𝐴 > 0,𝛼 > 0,𝑎𝑛𝑑 𝑧 ≥ 𝑧0 > 1 . 

The general notion of this type of power law was applied by Pareto (1897) to the distribution of 

high incomes.  The power-law distribution has since been applied widely in physics, economics, 

computer science, and other fields.  For surveys, see Mitzenmacher (2003) and Gabaix (2009), 

who discusses underlying growth forces that can generate power laws.  Examples of applications 

include sizes of cities (Gabaix and Ioannides [2004]), stock-market activity (Gabaix, et al. [2003, 

2006]), CEO compensation (Gabaix and Landier [2008]), and firm size (Luttmer [2007]).  The 

power-law distribution has been given many names, including heavy-tail distribution, Pareto 

distribution, Zipfian distribution, and fractal distribution. 

The parameter z0>1 in equation (14) is the threshold beyond which the power-law density 

applies.  For example, in Barro and Ursua (2012), the floor disaster size of b0=0.095 corresponds 

to z0=1.105.  We treat z0 as a constant.  The condition that f(z) integrate to one from z0 to infinity 

implies 𝐴 = 𝛼𝑧0𝛼.  Therefore, the power-law density function in equation (14) becomes 

 (15)  𝑓(𝑧) = 𝛼𝑧0𝛼 ∙ 𝑧−(1+𝛼), 𝑧 ≥ 𝑧0 > 1 . 

The key parameter in the power-law distribution is α, which governs the thickness of the right 

tail.  A smaller α implies a thicker tail. 

                                                 
5In Kou (2002, p. 1090), a power-law distribution is ruled out because the expectation of next period’s asset price is 
infinite.  This property applies because Kou allows for favorable jumps (bonanzas) and, more importantly, he 
assumes that the power-law shock enters directly into the log of the stock price.  This problem does not arise in our 
context because we consider disasters and not bonanzas, and, more basically, because our power-law shock 
multiplies the level of GDP (and consumption and the stock price), rather than adding to the log of GDP. 
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The probability of drawing a transformed disaster size above z is given by 

 (16)   1 − 𝐹(𝑧) = ( 𝑧
𝑧0

)−𝛼. 

Thus, the probability of seeing an extremely large transformed disaster size, z (expressed as a 

ratio to the threshold, z0), declines with z in accordance with the tail exponent α>0. 

We can use equation (15) to compute π, the probability of getting into the money on the 

put option, conditional on experiencing one disaster: 

 (17)   𝜋 = 𝑧0𝛼(1 + 𝑔)−𝛼𝜀𝛼 . 

We assumed here ε<(1+g)/z0, meaning that the put option is sufficiently far out of the money so 

that one disaster of threshold size is not enough to get the option into the money.  (Otherwise, we 

would have π=1.)  Equation (17) implies that π rises with ε in accordance with the exponent α.  

The overall effect of α on π is negative (given the condition ε<[1+g]/z0); that is, a thinner tail 

makes getting into the money less likely. 

 One issue about the power-law density is that some moments related to the transformed 

disaster size, z, might be unbounded.  For example, in equation (7), the risk-free rate of return, rf, 

depends negatively on the term 𝐸(1 − 𝑏)−𝛾.  Heuristically (or exactly with time-separable power 

utility), we can think of this term as representing the expected marginal utility of consumption in 

a disaster state relative to that in a normal state.  When z≡1/(1-b) is distributed according to f(z) 

from equation (15), we can compute 

 (18)  𝐸(1 − 𝑏)−𝛾 = 𝐸(𝑧𝛾) = � 𝛼
𝛼−𝛾

� ∙ 𝑧0
𝛾   if α>γ.   

The term in equation (18) is larger when γ is larger (more risk aversion) or α is smaller 

(fatter tail for disasters).  But, if α≤γ, the tail is fat enough, relative to the degree of risk aversion, 
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so that the term blows up.  In this case, rf heads toward minus infinity in equation (7), and the 

equity premium heads toward plus infinity in equation (9).  Of course, in the data, proxies for the 

risk-free rate are not minus infinity, and measures of the equity premium are not plus infinity.  

Therefore, the empirical application of the power-law density in Barro and Jin (2011) confined γ 

to a range that avoided unbounded outcomes, given the value of α that was estimated from the 

observed distribution of disaster sizes.  That is, the estimate of the unknown γ had to satisfy γ<α 

in order for the model to have any chance to accord with observed average rates of return.6  In 

this range, the values of rf, 1/V, and re-rf given in equations (7)-(9) are well defined.  The same 

condition turns out to enter into our analysis of far-out-of-the-money put-options prices.   

Barro and Jin (2011, Table 1) estimated the power-law tail parameter, α, in single power-

law specifications (and also considered double power laws).  The estimation was based on 

macroeconomic disaster events of size 10% or more computed from the long history for many 

countries of per capita personal consumer expenditure (the available proxy for consumption, C) 

and per capita GDP, Y.  The estimated values of α in the single power laws were 6.3, with a 95% 

confidence interval of (5.0, 8.1), for C and 6.9, with a 95% confidence interval of (5.6, 8.5), 

for Y.7  Thus, the observed macroeconomic disaster sizes suggest a range for α of roughly 5-8. 

Some results depend on another term, 𝐸(1 − 𝑏)1−𝛾.  Heuristically, this term corresponds 

to the expectation of the product of the proportionate decline in GDP (and consumption and 

                                                 
6With constant absolute risk aversion and a power-law distribution of disaster sizes, the relevant term has to blow 
up.  The natural complement to constant absolute risk aversion is an exponential distribution of disaster sizes.  In 
this case, the relevant term is bounded if the parameter in the exponential distribution is larger than the coefficient of 
absolute risk aversion.  With an exponential size distribution and constant relative risk aversion, the relevant term is 
always finite. 
7Barro and Jin (2011, Table 1) found that the data could be fit better with a double power law.  In these 
specifications, with a threshold of z0=1.105, the tail parameter, α, was smaller in the part of the distribution with the 
largest disasters than in the part with the smaller disasters.  The cutoff value for the two parts was at a value of z 
around 1.4. 
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stock price) during a disaster and the ratio of disaster to normal marginal utility.  With the 

power-law density for z in equation (15), we can derive 

(19)  E(1 − 𝑏)1−𝛾 = 𝐸(𝑧𝛾−1) = � 𝛼
1+𝛼−𝛾

� ∙ 𝑧0
𝛾−1   if 1+α>γ . 

The condition γ<α, mentioned before, guarantees that the term in equation (19) is well defined.8 

C. Options-pricing formula 

 To get the formula for Ω, the relative options price, we use the first-order condition from 

equations (5) and (6), with the gross rate of return, Rt+1, corresponding to the return 𝑅𝑡+1𝑜  from 

put options in equation (13).  We can rewrite the first-order condition in this context as 

 (20)  1 + 𝜌� = (1 + 𝑔)−𝛾 ∙ 𝐸𝑡(𝑧𝛾𝑅𝑡+1𝑜 ), 

where z≡1/(1-b) is the transformed disaster size and  1 + 𝜌� is an overall discount term, given 

from equations (5) and (6) (when the period length is short and the diffusion term is negligible) 

by 

 (21)  1 + 𝜌� = 1 + 𝜌 − (𝛾 − 𝜃)𝑔 + 𝑝 ∙ �𝛾−𝜃
𝛾−1

� ∙ [𝐸(1 − 𝑏)1−𝛾 − 1] . 

We could substitute out for the term 𝐸(1 − 𝑏)1−𝛾 on the right-hand side of equation (21) from 

equation (19). 

 We can evaluate the right-hand side of equation (20) using the density f(z) from 

equation (15) along with the expression for 𝑅𝑡+1𝑜  from equation (13).  The result involves 

integration over the interval z≥(1+g)/ε where, conditional on having a disaster, the disaster size is 

                                                 
8The mean disaster size equals 1 − � 𝛼

1+𝛼
� ∙ 1

𝑧0
 . 
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large enough to get the put option into the money.  The formula depends also on the probability, 

p, of having a disaster.  Specifically, we have: 

(22)  (1 + 𝜌�)(1 + 𝑔)𝛾 = 𝑝
𝛺
∙ ∫ �𝑧𝛾 ∙ �𝜀 − 1+𝑔

𝑧
� ∙ 𝛼𝑧0𝛼𝑧−(1+𝛼)� 𝑑𝑧∞

(1+𝑔𝜀 )  . 

Evaluating the integral (assuming γ<α and ε<[1+g]/z0) leads to a closed-form formula for the 

relative options price: 

 (23)   𝛺 = 𝛼𝑧0𝛼

(1+𝜌�+𝛼𝑔)
∙ 𝑝𝜀1+𝛼−𝛾

(𝛼−𝛾)(1+𝛼−𝛾)
 . 

D. Maturity of the option 

 The result in equation (23) applies when the maturity of the put option is one “period.”  

We now take account of the maturity of the option.  In continuous time, the parameter p, 

measured per year, is the Poisson hazard rate for the occurrence of a disaster.  Let T, in years, be 

the maturity of the (European) put option.  The density, h, for the number of hits (disasters) over 

T is given by9 

 (24)    ℎ(0) = 𝑒−𝑝𝑇, 

     ℎ(1) = 𝑝𝑇𝑒−𝑝𝑇, 

     … 

     ℎ(𝑥) = (𝑝𝑇)𝑥𝑒−𝑝𝑇

𝑥!
, 𝑥 = 0,1, …  

 If pT is much less than 1, the contribution to the options price from two or more disasters 

will be second-order, relative to that from one disaster.  For given p, this condition requires a 

consideration of maturities, T, that are not “too long.”  In this range, we can proceed as in our 

                                                 
9See Hogg and Craig (1965, p. 88). 
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previous analysis to consider just the probability and size of one disaster.  Then, in equation (23), 

p will be replaced as a good approximation by pT. 

The discount rate, 𝜌�, and growth rate, g, in equation (23) will be replaced 

(approximately) by 𝜌�T and gT, where 𝜌� and g are measured per year.  For given 𝜌� and g, if T is 

not “too long,” we can neglect these discounting and growth terms in equation (23).  (Under 

similar conditions, effects from dividend payouts can also be ignored.)  Basically, the impacts of 

these terms are of the same order as the effect from two or more disasters, which we have 

already neglected. 

When T is short enough to neglect multiple disasters and the discounting and growth 

terms, the formula for the relative options price changes from equation (23) to:10 

(25)   𝛺 = 𝛼𝑧0𝛼∙𝑝𝑇∙𝜀1+𝛼−𝛾

(𝛼−𝛾)(1+𝛼−𝛾)
 . 

Here are some properties of the options-pricing formula in equation (25): 

• The formula for Ω, the ratio of the options price to the stock price, is well-

defined if α>γ, the condition noted before that ensures the finiteness of various 

rates of return. 

                                                 
10The possibility of two disasters turns out to introduce into equation (25) the multiplicative term: 
 

1+pT∙ �−1 + 0.5 ∙ �
𝛼𝑧0𝛼[1+2(𝛼−𝛾)+(𝛼−𝛾)(1+𝛼−𝛾)[log�1𝜀�−2log (𝑧0)]

(𝛼−𝛾)(1+𝛼−𝛾) �� , 

 
 
assuming  1

𝜀
> 𝑧02, so that two disasters just at the threshold size are not sufficient to get the option into the money.   

The full term inside the large brackets has to be positive, so that this multiplicative term is increasing in T.  The 
effects from the discount rate and growth rate add multiplicative terms that look like (1-positive constant∙𝜌�T) and 
(1-positive constant∙gT).  Hence, these multiplicative terms are decreasing in T.  The overall effect of T implied by 
the combination of the three multiplicative terms is unclear.  That is, it is unclear how the full result for Ω would 
deviate from unit elasticity with respect to T. 
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• The exponent on maturity, T, equals 1. 

• The exponent on the relative exercise price, ε, equals 1+α-γ, which is constant 

and greater than 1 because α>γ.  We noted before that α ranged empirically 

between 5 and 8.  The corresponding range for γ (needed to replicate an 

average unlevered equity premium of 0.04-0.05 per year) is between 2.5 and 

5.5, with lower γ associating with lower α.  The implied range for α-γ (taking 

account of the association between γ and α) is between 2.5 and 4.5, implying a 

range for the exponent on ε between 3.5 and 5.5.  

• For given T and ε, Ω depends on the disaster probability, p; the shape of the 

power-law density, as defined by the tail coefficient, α, and the threshold, z0; 

and the coefficient of relative risk aversion, γ.  If we maintain the assumptions 

that α, z0, and γ are fixed, we can think of the whole expression for Ω as 

having a multiplier proportional to p.  That is, a multiplicative fixed effect for 

calendar time would reveal the proportionate variations over time in p.  (An 

important caveat is that our derivation of the options-pricing formula in 

equation [25] ignored the possibility of changing p.) 

We can look at the results in terms of the “risk-neutral probability,” pn, defined as the 

value of p that would generate a specified relative options price, Ω, when γ=0.  The formula for 

the ratio of the risk-neutral to the objective probability, pn/p, implied by equation (25) is: 

 (26)    
𝑝𝑛

𝑝
= 𝛼(1+𝛼)

(𝛼−𝛾)(1+𝛼−𝛾)
∙ 𝜀−𝛾 . 

Note that pn/p depends on the relative exercise price, ε, but not on the maturity, T.  If we assume 

parameter values consistent with the previous discussion—for example, α=7 and γ=3.5—the 
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implied pn/p is 5.1 when ε=0.9, 7.8 when ε=0.8, 12.4 when ε=0.7, 21.3 when ε=0.6, and 40.3 

when ε=0.5.  Hence, the relative risk-neutral probability associated with far-out-of-the-money 

put options is sharply above one. 

 To view it another way, the relative options price, Ω, may seem far too high at low ε, 

when assessed in terms of the (risk-neutral) probability needed to justify this price.  Thus, people 

who are paying these prices to insure against the risk of an enormous disaster may appear to be 

irrational.  In contrast, the people writing these far-out-of-the-money puts may seem to be getting 

free money by insuring against something that is virtually impossible.  Yet the pricing is 

reasonable if people have roughly constant relative risk aversion with γ around 3.5 (assuming a 

tail parameter, α, for disaster size around 7).  The people writing these options will have a 

comfortable income almost all the time, but will suffer tremendously during the largest rare 

disasters (when the marginal utility of consumption is extremely high). 

E. Diffusion term 

Recall that the derivation of the formula for Ω, the relative options price, in equation (25) 

neglected the diffusion term, u, in the process for GDP (and consumption and the stock price) in 

equation (1).  This omission is satisfactory if the put option is sufficiently far out of the money so 

that, given a reasonable variance σ2 in the diffusion term, the chance of getting into the money 

over the maturity T is negligible.  In other words, the tail for the normal process is not fat enough 

to account by itself for, say, 10% or greater declines in stock prices over periods up to, say, a few 

months.  Operationally, our main empirical analysis applies the options-pricing formula in 

equation (25) to options that are at least 10% out of the money (ε≤0.9) and to maturities, T, that 

range up to 6 months. 
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If we consider put options at or close to the money, the diffusion term would have a first-

order impact on the value of the option.  If we neglect the disaster (jump) term—which will be 

satisfactory here—we would be in the standard Black-Scholes world.  In this setting (with i.i.d. 

shocks), a key property of the normal distribution is that the variance of the stock price over 

interval T is proportional to T, so that the standard deviation is proportional to the square root 

of T.  This property led to the result in Brenner and Subrahmanyam (1988) that the value of an 

at-the-money put option would be roughly proportional to the square root of the maturity. 

We, therefore, have two results concerning the impact of maturity, T, on the relative 

options price, Ω.  For put options far out of the money (operationally for ε≤0.9), the exponent on 

T is close to 1.  For put options close to the money (operationally for ε=1), the exponent on T is 

close to one-half.  These predictions turn out to hold empirically for put options on the S&P 500 

and on analogous market indices for eight other countries. 

We could carry out a more general analysis that includes simultaneously diffusion and 

jump (disaster) risks, though the simplicity of equation (25) would be lost.  We can anticipate 

that, in a range for the relative exercise price, ε, between 0.9 and 1.0, the exponent on T in the 

formula for Ω would range between 1.0 and 0.5, with values closer to 0.5 applying when the 

sample was weighted toward options that were close to the money. 

For some purposes, we are mainly interested in isolating time-varying disaster 

probabilities, p, that apply over the short term to large disasters, such as 10% or more declines in 

per capita GDP.  In this context, the main information would likely come from far-out-of-the-

money put options, such as where ε≤0.9.  In this range, the diffusion term would likely have a 

minor impact, and the formula in equation (25) would provide a satisfactory approximation for 
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the relative options price, Ω.  Therefore, the fixed-effects estimates corresponding to this formula 

should be informative about the time-varying p associated with large disasters. 

F. Variations in the disaster probability 

 The asset-pricing formulas were derived under the assumption that the disaster 

probability, p, and other parameters were fixed.11  However, we can get some idea of how 

persistent changes in p affect stock prices and, thereby, relative stock-options prices by 

considering the effect from a once-and-for-all (permanent) change in p on the price-dividend 

ratio, V, given in equation (8).  This equation implies (if we hold fixed g, rather than g*, in 

equation [2]): 

(27)       
1
𝑉
𝜕𝑉
𝜕𝑝

= −�1−𝜃
𝛾−1

� ∙ 𝑉 ∙ [𝐸(1 − 𝑏)1−𝛾 − 1]. 

We assume γ>1, which is needed to have any chance of explaining the average equity premium.  

In this case, as stressed by Bansal and Yaron (2004) and Barro (2009), the sign of the effect of p 

on V in equation (27) depends on whether θ (the reciprocal of the IES) is less than or greater than 

one.12  The “normal result,” whereby more uncertainty reduces stock prices, requires θ<1.  

Bansal and Yaron (2004) assume IES=1/θ=1.5, whereas Barro (2009) focuses on IES=1/θ=2. 

If we assume θ=0.5 and use ranges for the tail parameter, α, and coefficient of relative 

risk aversion, γ, discussed before, we can get an idea of the magnitude of the right-hand side of 

                                                 
11Kelly and Jiang (2014, p. 2842) assume a power-law density for returns on individual securities.  Their power law 
depends on a cross-sectional parameter and also on aggregate parameters that shift over time.  In the latter part of 
their analysis, they assume time dependence in the economy-wide values of the tail parameter, analogous to our α, 
and the threshold, analogous to our z0.  (Their threshold corresponds to the fifth percentile of observed monthly 
returns.) 
12This condition on θ also determines the effect on the stock price from a change in σ or in the power-law tail 
parameter, α, which determines the size distribution of disasters, b. 
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equation (27).13  It turns out that a reasonable range is between 5 and 7; that is, an increase in p 

by 0.01 would generate a proportionate decline in the stock price by between 5% and 7%.  

However, the conclusions are sensitive to the parameter θ.  If θ were close to 1, the effect of a 

change in p on the stock price would be minor. 

A change in p by 0.01 should be viewed in relation to the average p of around 0.04 per 

year, gauged by the macroeconomic disaster data (Barro and Ursua [2008]).  That is, a change in 

p by 0.01 is large in the sense of constituting 25% of the average p.  Moreover, the effects 

inferred from equation (27) correspond to permanent shifts in p.  Nevertheless, it is clear that 

effects from changing p might contribute substantially to pricing of far-out-of-the-money put 

options.  A further consideration is that the volatility of p (that is, the chance of p rising or 

falling) is likely to move around.  Hence, the effects from potentially shifting p on prices of far-

out-of-the-money put-options prices may be substantially higher at some points in time (when 

volatility is greater) than others. 

III. Empirical Analysis 

The model in the previous section delivers some testable predictions.  First, the elasticity 

of the price of far out-of-the-money put options with respect to maturity, T—denoted βT—is 

close to one.  This result applies in the region where diffusion risk is negligible compared to 

disaster risk and when the effects from multiple disasters can be ignored.  Second, in the same 

region, the elasticity of the price of far-out-of-the-money put options with respect to the relative 

exercise price, ε—denoted βε—is greater than one and constant if the coefficient of relative risk 

aversion, 𝛾, and the disaster-size-distribution parameters, 𝛼 and z0, are fixed.  Moreover, the 

estimated elasticity can be compared with that implied by estimated parameter values from the 

                                                 
13This analysis requires an estimate of the price-dividend ratio, V, determined by equation (8).  We assume here, 
based on the analysis in Barro and Ursua (2008), that the rate of time preference, ρ, is 0.04 per year. 
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rare-disasters literature.  Finally, if γ, α, and z0 are fixed, time variations in the full menu of 

prices of far-out-of-the-money put prices reflect fluctuations in disaster probability, pt, which we 

recover with our model.  We test these theoretical predictions empirically by analyzing prices of 

far-out-of-the-money put options on the U.S. S&P 500 and analogous broad indices for other 

countries. 

A. Data and methodology 

Our primary data source is a broker-dealer with a sizable market-making operation in 

global equities.  We utilize over-the-counter (OTC) options prices for nine equity-market indices 

for developed and emerging markets—S&P 500 (U.S.), FTSE (U.K.), DAX (Germany), Euro 

Stoxx 50 (Euro zone), Nikkei (Japan), OMX (Sweden), SMI (Switzerland), Nifty (India), and 

Bovespa (Brazil).  We check the results with OTC data against those with market-based 

information from Option Metrics for the United States and from Bloomberg for the United States 

and other countries.  This check is useful because, as mentioned, the OTC data do not necessarily 

correspond to actual trades. 

Our primary data derive from implied-volatility surfaces generated by the broker-dealer 

for the purpose of analysis, pricing, and marking-to-market.14  These surfaces are constructed 

from transactions prices of options and OTC derivative contracts.15  The dealer interpolates these 

observed values to obtain implied volatilities for strikes ranging from 50% to 150% of spot and 

for a range of maturities from 15 days to 2 years and more.   Even at very low strikes, for which 

the associated options seldom trade, the estimated implied volatilities need to be accurate for the 
                                                 
14A common practice in OTC trading is for executable quotes to be given in terms of implied volatility instead of the 
actual price of an option.  Once the implied volatility is agreed on, the options price is determined from the Black-
Scholes formula based on the readily observable price of the underlying security.  Since the Black-Scholes formula 
provides a one-to-one link between price and volatility, quotes can be given equivalently in terms of implied 
volatility or price. 
15Dealers observe prices through own trades and from indications by inter-dealer brokers.   It is also a common 
practice for dealers to ask clients how their prices compare to other market makers in OTC transactions. 
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correct pricing of OTC derivatives such as variance swaps and structured retail products.  

Therefore, sell-side dealers have strong incentives to maintain the accuracy of their implied-

volatility surfaces. 

As mentioned, the OTC data source is superior to market-based alternatives in the 

breadth of coverage for exercise prices and maturities.  Notably, the market data tend to be 

unreliable or entirely unavailable for options that are far out of the money and for long 

maturities.  For example, OptionMetrics has very limited information on far out-of-the-money 

put options prices due to the lack of market transactions and methodological challenges.  

Specifically, their volatility surface is mainly limited to 20-delta options volatilities at the 

extreme, which correspond to options that are close to the money,16 whereas the OTC data 

contain implied volatilities for 5-delta and even 1-delta options.   

The broad range of strikes in the broker-dealer data is important for our analysis because 

it is the prices of far-out-of-the-money put options that will mainly reflect disaster risk.  In 

practice, we focus on put options with exercise prices of 50%, 60%, 70%, 80%, and 90% of spot; 

that is, we exclude options within 10% of spot. 

For maturities, we focus on a range between 30 days and 6 months; specifically, for 30 

days, 60 days, 90 days, and 6 months.17  Our main analysis excludes options with maturities 

greater than six months because the prices in this range may be influenced significantly by the 

possibility of multiple disaster realizations and also by dividend payouts and discounting.  

                                                 
16A 20-delta option has a price that changes by 0.20% for a 1% change in the underlying security price.  
OptionMetrics Volatility Surface uses interpolation to generate the implied volatility for each security on each day, 
based on a kernel-smoothing algorithm. The lower bound of this volatility surface is 20-delta.  In our use of the 
OptionMetrics data, we expand on the range of option strikes by applying linear interpolation whenever there are 
two or more observations for a single trading date.  This procedure enlarges the volatility surface. 
17We omit 15-day options because we think measurement error is particularly serious in this region in pinning down 
the precise maturity.  Even the VIX index, which measures short-dated implied volatility, does not track options 
with maturity less than 23 days. 
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However, in practice, the results for 1-year maturity accord reasonably well with those for 

shorter maturities. 

Using the data on implied volatilities, we re-construct options prices from the standard 

Black-Scholes formula, assuming a zero discount rate and no dividend payouts.  We should 

emphasize that the use of the Black-Scholes formula to translate implied volatilities into options 

prices does not bind us to the Black-Scholes model of options prices.  The formula is used only 

to convert the available data expressed as implied volatilities into options prices.  Our calculated 

options prices are comparable to directly quoted prices (subject to approximations related to 

discounting and dividend payouts).  

B. Basic model fit 

We estimate the model based on equation (25) with non-linear least-squares regression.  

In this form, we think of the error term as additive with a constant variance.  Log-linearization 

with a constant-variance error term (that is, a shock proportional to price) is problematic because 

it understates the typical error in extremely far-out-of-the-money put prices, which are close to 

zero.  That is, this specification gives undue weight to puts with extremely low exercise prices. 

In the non-linear regression, we allow for multiplicative time fixed effects to capture 

time-varying probabilities of disasters.  The deterministic part of the regression setup is: 

          (28)    𝛺𝑖𝑡 = 𝛷𝑡 ∙ 𝑇𝑖𝑡
𝛽𝑇 ∙ 𝜀𝑖𝑡

𝛽𝜀 , 

where i denotes a security (a put option on a broad market index) and t is time, 𝛺𝑖𝑡 is the ratio of 

options price to stock price, Φt is the time fixed effect, Tit  is the maturity, and εit is the ratio of 

exercise price to stock price.   In the model, the time fixed effect, Φt , corresponds to the term: 

 (29)   𝛷𝑡 =  𝑝𝑡𝛼𝑧0𝛼/[(𝛼 − 𝛾)�1 + 𝛼-𝛾�]. 
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We think of γ (coefficient of relative risk aversion), α (thickness of the disaster tail), and z0 

(threshold size for disasters) as fixed over time.  However, we allow pt to vary over time; that is, 

we view the time-varying fixed effect as reflecting solely changes in disaster probability.  In our 

implementation, we also allow the time series of pt and, hence, Φt, to differ across countries. 

The missing element in the analysis is that variations in pt, if persisting, affect stock 

prices and, therefore, 𝛺𝑖𝑡.  We return later to this consideration.  With respect to the exponents in 

equation (29), the model implies βT=1 and 𝛽𝜖=1 + 𝛼 − 𝛾, which is constant (over time and 

across securities) and greater than one. 

 We sample the data at monthly frequency, selecting only month-end dates, to allow for 

ease of computation with a non-linear solver. The selection of mid-month dates yields similar 

results.  The sample period for the United States in our main analysis is August 1994-June 2015.  

Because of lesser data availability, the samples for the other countries are shorter.  We expand 

the sample period for the U.S. back to 1983 as a robustness check, although we do not emphasize 

this longer-term sample because the data quality before 1994 are considerably poorer.  Table 1 

shows the model estimation using non-linear least-squares regression.  The specification allows 

for different time fixed effects for each country.   

The estimated elasticities with respect to maturity, 𝛽𝑇, are close to one.  For example, the 

estimated coefficient for the United States is 0.978 (s.e.=0.036) and that for all nine countries 

jointly is 0.938 (s.e.=0.038).18  These results indicate that far-out-of-the-money prices of put 

options on broad market indices are roughly proportional to maturity, in accordance with our 

rare-disasters model.  This nearly proportional relationship between options price and maturity 

for far-out-of-the-money put options is a newly documented fact that cannot be explained under 

                                                 
18However, the joint estimates correspond to an unbalanced panel that gives greater weight to later periods (which 
have more data available). 
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the Black-Scholes model.  To our knowledge, other theoretical models of options prices also do 

not predict this behavior. 

The results with respect to maturity can be visualized in Figure 1, Panel A, which plots 

ratios of put prices to spot prices against maturity, assuming an exercise price of 80% of spot.   

The blue curve corresponds to the historical data that underlie Table 1.  The red curve shows 

values generated by the Black-Scholes model, assuming a log-normal distribution of shocks and 

a constant volatility of 30% (chosen to accord with the average observed level of put prices).  

Most importantly, the Black-Scholes model predicts that these far-out-of-the-money put prices 

will have a convex relationship with maturity.  This pattern deviates from the nearly linear 

relationship shown by the historical data.   

In contrast, as discussed in Brenner and Subrahmanyam (1988), prices of at-the-money 

put options in the Black-Scholes model are roughly proportional to the square root of the 

maturity.  This result arises because, with a diffusion process driven by i.i.d. normal shocks, the 

variance of the log of the stock price is proportional to time and, therefore, the standard deviation 

is proportional to the square root of time.  This pattern implies the concave relation between put 

price and maturity as shown by the red curve in Figure 1, Panel B.  In this case, the Black-

Scholes prediction accords with the historical data, shown by the blue curve in Panel B. 

Table 2 provides detailed regression estimates for the nine countries for at-the-money put 

prices.  The estimated coefficient on maturity is 0.518 (s.e.=0.007) for the United States and 

0.495 (0.007) for the nine countries jointly.  Hence, as predicted by Black-Scholes, these 

coefficients are very close to 0.5. 

If one considers exercise prices between 80% and 100% of spot, the Black-Scholes 

prediction for the relation between put price and maturity shifts from convex to concave at 
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around 90% of spot (with the exact shift point depending on the underlying volatility).  The 

predicted relation turns out to be nearly linear for an exercise price around 90% of spot.  In 

contrast, as implied by Table 1 and Figure 1, Panel A, the relation in the data is roughly linear in 

maturity for a broad range of exercise prices below 90%—down to at least 50%.  These results 

accord with the rare-disasters model but not with Black-Scholes. 

To summarize, the fit of the Black-Scholes model is good for at-the-money put options 

but poor for put options with exercise prices below 90% of spot. These patterns arise because the 

diffusion component of shocks dominates pricing of at-the-money put options, whereas disaster 

risk, not captured in Black-Scholes, dominates the pricing of far-out-of-the-money put options.  

As discussed earlier in the modeling section, the roughly proportional relationship between far-

out-of-the-money put prices and maturity arises because, in a Poisson context, the probability of 

a disaster is proportional to maturity.  The resulting formula is only approximate because it 

neglects the potential for multiple disasters within the time frame of an option’s maturity, omits a 

diffusion term entirely, and also ignores discounting and dividend payouts.  However, for options 

that are not “too long,” these approximations will be reasonably accurate. 

Table 1 also shows estimates of the elasticity with respect to the relative exercise price, 

𝛽𝜖.  This coefficient corresponds in the model to 1 + 𝛼 − 𝛾, where α is the tail coefficient and γ 

is the coefficient of relative risk aversion.  The estimates are all positive and greater than one, as 

predicted by the model.  The estimated coefficients are similar across countries, falling in a range 

from 5.16 (s.e.=0.39) for Brazil to 6.06 (0.23) for Switzerland.19  The joint estimate across the 

nine countries is 5.83 (0.24). 

Rare-disasters research with macroeconomic data, such as Barro and Ursua (2008) and 

Barro and Jin (2011), suggested that a γ of 3-4 would accord with observed average (unlevered) 
                                                 
19However, statistical tests reject the hypothesis of equal coefficients at less than the 1% critical level. 
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equity premia.  With this range for γ, the estimated values of βε=1-α-γ from Table 1 imply tail 

coefficients, α, between 7 and 9.  This finding compares with a direct estimate for α based on 

macroeconomic data on consumption in Barro and Jin (2011, Table 1) of 6.3 (s.e.=0.8).  That is, 

the estimates from Table 1 suggest a thinner tail (higher α) than those found from observation of 

the size distribution of macroeconomic disasters (based on GDP or consumption).  As discussed 

later, the thinner tail goes along with an implied average probability of disaster that is higher 

than that inferred from the macroeconomic data. 

C. Estimated disaster probabilities 

We can use the estimated time fixed effects for each country from the regressions in 

Table 1, along with equation (29), to construct time series of (objective) disaster probabilities, pjt, 

where j now denotes the country.  The critical assumption here is that, aside from pjt, the other 

parameters on the right-hand side of equation (29) are constant over time for country j.  In that 

case, the estimated pjt will be proportional to the time fixed effect, Φjt, for country j.   

To get a ballpark idea of the level of pjt, we assume that, in each country, the threshold 

for disaster sizes is fixed at z0 =1.1 (as in Barro and Jin [2011]) and that the coefficient of 

relative risk aversion is γ=3.  We allow the tail coefficient, αj, to differ across countries; that is, 

we allow countries to differ with respect to the size distribution of potential disasters.  We use 

the estimated coefficients from Table 1 for βε (which equals 1+α-γ in the model) to back out the 

implied tail coefficient, αj, for country j.  (These values range from 7.2 to 8.1.)  Figure 2 presents 

the resulting time series of disaster probabilities for each country, and Table 3 provides summary 

statistics for these probabilities.  Note that the levels of the series, but not the time patterns, 

depend on our assumed parameter values.  
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The disaster probabilities shown in Figure 2 have high correlations across the countries, 

with an average pair-wide correlation of 0.88.  This property indicates that a large part of the 

inferred disaster probability can be attributed to the chance of a common (global) disaster.  The 

median disaster probability is high, around 13% per year for the S&P 500.  Similar medians 

apply to the other countries.  These high probabilities are much greater than that—3-4% per 

year—estimated from macroeconomic data on rare disasters (see, for example, Barro and Ursua 

[2008]).  We think that this overstatement of average disaster probability goes along with the 

understatement of tail risk in disaster sizes, as noted before.  That is, the estimated probabilities 

are too high, and the estimated sizes are too low. 

The disaster probabilities in Figure 2 are volatile and right-skewed with spikes during 

crisis periods.  The U.S. disaster probability hit a peak of 70% per year in November 2008.  

Other countries had their highest disaster probabilities in the range of 60% to 70% in October 

and November 2008.  Japan had the highest peak disaster probability—93% in October 2008.  

The overall patterns mirror the options-derived U.S. equity premia in Martin (2015) and the U.S. 

disaster probabilities found by Siriwardane (2015). 

Figure 2 suggests a lower bound on disaster probability around 3% per year.  This value 

is close to the (constant) disaster probability of 3.6-3.7% per year found in macroeconomic data 

by Barro and Ursua (2008). 

A first-order AR(1) coefficient for the U.S. disaster probability in Figure 2 is 0.88 

(applying at a monthly frequency).  This coefficient implies that rare-disaster shocks have an 

average half-life of 5.4 months.  The persistence of disaster probabilities for the other countries 

is similar to that for the United States, with the AR(1) coefficients ranging from 0.81 for Japan to 

0.89 for Sweden. 
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Although we attributed the time pattern shown in Figure 2 to variable disaster probability, 

pjt, the variations in the multiplicative time fixed effects may also reflect changes in the other 

parameters contained in the model’s multiplicative disaster term, 𝑝𝛼𝑍0𝛼/[(𝛼 − 𝛾)(1 + 𝛼 − 𝛾)].20  

For example, outward shifts in the size distribution of disasters, generated by reductions in the 

tail parameter, α, or increases in the threshold disaster size, z0, work like increases in p.  

Similarly, increases in the coefficient of relative risk aversion, γ, would raise the overall 

multiplicative term.  This kind of change in risk preference, possibly due to habit formation, has 

been stressed by Campbell and Cochrane (1999).  Separation of changes in the parameters of the 

disaster distribution from those in risk aversion require simultaneous consideration of asset-

pricing effects (reflected in Figure 2) with information on the actual incidence and size of 

disasters (based, for example, on movements of macroeconomic variables). 

Another issue is that the underlying asset-pricing theory assumed that the multiplicative 

term 𝑝𝛼𝑧0𝛼/[(𝛼 − 𝛾)(1 + 𝛼 − 𝛾)] in equation (25) was constant because each parameter in this 

expression, including p, was constant.  Therefore, there is a disconnect from the theory in using 

the empirically estimated model to gauge the time variations in the multiplicative term and then 

attribute the changes to shifting pjt.  Surprisingly, although the empirical estimates strongly reject 

the hypothesis that the multiplicative term is constant over time for each country (as is clear from 

Figure 2), the estimated coefficients βT and βε in Table 1 conformed well in major respects with 

the underlying theory (which assumed a fixed p). 

The missing element in the asset-pricing theory is that potential changes in pjt have 

effects on options prices that combine with those from potential realizations of disasters.  

Specifically, an increase in pjt —to the extent that it has persistence—typically lowers the spot 

                                                 
20Note that, in this model with i.i.d. shocks, the multiplicative term does not depend on the intertemporal elasticity of 
substitution for consumption, 1/θ, or the rate of time preference, ρ, 
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stock price21 (and, thereby, raises the ratio of exercise to spot price for an existing option).  From 

a pricing perspective, put prices on options on the overall stock market tend to be higher if future 

changes in pjt are more likely, if the distribution of the sizes of these changes has a bigger right 

tail, and if a change in pjt has a larger magnitude of effect on stock prices (possibly because the 

changes are more persistent).22  This effect is likely to be of first-order importance and, 

therefore, should be brought into the analysis. 

We think the reason that the empirical model in Table 1 works well in some respects 

despite the neglect of price effects from potentially changing disaster probabilities is that the 

time pattern of these probabilities (Figure 2) looks like a rare-disaster process.  That is, on rare 

occasions, pjt moves sharply (and temporarily) higher, and the form of the distribution of the 

sizes of these changes may resemble a power law.  However, even if this interpretation is correct, 

the problem is that the inferred pjt are actually combinations of levels of disaster probability with 

effects from potentially changing pjt.  This perspective may explain why the inferred pjt are too 

high on average (compared to the incidence of macroeconomic disasters), whereas the estimated 

disaster tails are too thin (that is, the estimated coefficients αj are too high).  The underestimation 

of disaster sizes is effectively a compensation for the overestimation of disaster probabilities.   

D. Model robustness 

Tables 4-9 explore the robustness of the baseline model from Table 1 under various 

scenarios.  Table 4 presents estimates of different elasticities βε over the four ranges of exercise 

price ratios, ε, used in the baseline model:  0.5 to 0.6, 0.6 to 0.7, 0.7 to 0.8, and 0.8 to 0.9.  The 

                                                 
21In the theory, this sign applies if the intertemporal elasticity of substitution, 1/θ, exceeds one.  See Bansal and 
Yaron (2004) and Barro (2009). 
22Seo and Wachter (2015) argue that time-varying disaster probability is central for the pricing of options.  They also 
argue that a failure to incorporate this changing disaster probability accounts for some puzzling findings in Backus, 
Chernov, and Martin (2011).  Specifically, for a given level of disaster probability, the model underestimates the 
prices of options.  An analogous force operates in our model. 



 31 

estimates fall into a fairly narrow range over the first three intervals; for example, for the United 

States, the estimated coefficients are 5.5 (s.e.=0.1), 5.3 (0.2), and 5.7 (0.2).  However, in the 

highest range, the estimated coefficients tend to be larger, 6.3 (0.2) for the United States.  For all 

countries jointly, the estimated values are 4.7 (0.2), 5.0 (0.2), 5.5 (0.2), and 6.2 (0.2).  Possibly 

the higher βε coefficients in the range for ε between 0.8 and 0.9 arises because the diffusion term 

is non-negligible in this range. 

Table 5 applies the analogous methodology to examine elasticities βT over the three 

ranges of maturity, T, used in the baseline model:  30 to 60 days, 60 to 90 days, and 90 days to 6 

months.  There is a tendency for βT to fall with T, particularly in the highest range.  For example, 

for the United States, the estimates in the three ranges are 1.19 (s.e.=0.05), 1.03 (0.04), and 0.92 

(0.03).  Similarly, for all countries jointly, the results are 1.14 (0.05), 0.99 (0.04), and 0.88 

(0.04).  These effects might relate to possibilities for multiple disasters and to discounting. 

Table 6 carries out a related analysis in which the structure of included maturities goes 

out to one year.  In this case, the single estimated elasticity, βT, for each country is lower than the 

corresponding value in Table 1.  This result reflects the tendency found in Table 5 of βT to fall 

with T.  For example, for the United States, the estimated βT in Table 6 is 0.93 (s.e.=0.03), 

compared with 0.98 (0.04) in Table 1.  Similarly, for all countries jointly, the estimate in Table 6 

is 0.89 (0.03), compared with 0.94 (0.04) in Table 1.  Note that, even with the inclusion of 

maturities as long as one year, the estimated βT coefficients are close to the unit elasticity 

predicted by the baseline model. 

Table 7 takes a different view of maturity elasticities, βT, by allowing for variation with 

respect to exercise price, ε, rather than T.  As noted before, prices of at-the-money put options 

(dominated by diffusion risk) are proportional to the square root of maturity, whereas prices of 
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far-out-of-the-money put options (dominated by disaster risk) are roughly linear in maturity.  

Thus, in a broad sense, the maturity elasticity, βT, is declining in relative exercise price, ε.  

Table 7 shows that this inverse pattern applies throughout the range of ε from 0.5 to 0.9.  For 

example, for the United States, the estimated 𝛽𝑇 is 1.97 (s.e.=0.11) when ε=0.5, 1.65 (0.09) when 

ε=0.6, 1.43 (0.07) when ε=0.7, 1.20 (0.05) when ε=0.8, and 0.91 (0.03) when ε=0.9.  Similarly, 

for all countries jointly, the respective estimates are 1.81 (0.16), 1.62 (0.13), 1.40 (0.09), 1.15 

(0.06), and 0.86 (0.03).  Therefore, the results suggest that the values close to 1.0 for the 

estimated βT in Table 1 are averages of values that are actually declining with ε.  We think it 

important to extend the baseline model to account for this richer pattern of βT.  

Table 8 explores the stability of the baseline results from Table 1 with regard to sample 

period.  Results apply to the pre-financial-crisis period before 2008 (1994-2007 for the United 

States), the crisis period of 2008-2010, and the post-crisis period of 2011-2015.  The estimated 

coefficients βT and βε are similar in the three periods, although the values are somewhat lower in 

the crisis interval of 2008-2010.  For example, for the United States, the estimates of βT are 1.03 

(s.e.=0.04), 0.88 (0.05), and 1.12 (0.08), respectively, for the three periods.  For all countries 

jointly, the corresponding estimates are 0.98 (0.03), 0.85 (0.06), and 1.10 (0.05).  Possibly the 

low estimated βT during the crisis period can be explained by a disaster probability, pjt, that was 

unusually high in the very short term but projected to fall in the near future. 

The estimates of βε for the three samples for the United States are 6.78 (s.e.=0.26), 

5.25 (0.28), and 6.34 (0.36), whereas those for all countries jointly are 6.39 (0.20), 5.06 (0.33), 

and 6.70 (0.29).  Possibly the low values of βε during the crisis interval can be explained by the 

unusually high volatility of stock prices—if we think of this high volatility as accompanied by a 
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perceived fatter tail for bad outcomes (represented by a low tail exponent α and a 

correspondingly low value of βε, which equals 1+α-γ). 

Table 9 shows how the results from Table 1 change with the use of alternative data 

sources.  Panel A uses U.S. data for October 2010-July 2014, over which market data are 

available from OptionMetrics and Bloomberg.  The main finding is that the estimated 

coefficients βT and βε from these two alternative data sources are similar to those for the OTC 

data.  Panel B considers longer samples, although the sample available from Bloomberg is 

shorter than those for the other two sources.  Again, the conclusion is that the main results are 

similar for the different data sources.  Panel C shows results with OTC and Bloomberg data for 

eight countries over the common sample period October 2010-June 2015.  (Data from 

Bloomberg are unavailable for Brazil.)  Most of the results are similar for the OTC and 

Bloomberg sources, except for some puzzling results for the estimated βε coefficients for Japan 

and India. 

A lot of analysis of options pricing, going back to Bates (1991), suggests that the nature 

of this pricing changed in character following the 1987 stock-market crash.  In particular, a 

“smile” in graphs of implied volatility against exercise price is thought to apply only post-1987.  

To assess this idea, we expanded our analysis to the period June 1983 to December 1995, using 

quotes on S&P 500 index options from the Berkeley Options Data Base.23  These data derive 

from CBOE's Market Data Retrieval tapes.  Because of the limited number of quotes on far-out-

of-the-money options in this data base, we form our monthly panel by aggregating quotes from 

the last five trading days of each month. 

                                                 
23 Direct access to this database has been discontinued.  We are thankful to Josh Coval for sharing his version of the 
data. 
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Table 10, Panel A presents the regression estimates for 1983-1995 in the context of our 

baseline model.   The estimate for 𝛽𝑇 is 1.01 (s.e. =0.086) and that for 𝛽𝜖 is 6.79 (0.354).  These 

results are close to those obtained in Table 1 with U.S. OTC data on the S&P 500 for 1994-2015.  

Therefore, the basic structure for pricing of far-out-of-the-money put prices on the S&P 500 

seems similar for 1983-1995 and 1994-2015. 

As before, we back out a time series for disaster probability, pt, based on time fixed 

effects, assuming that parameters other than pt in the multiplicative term for options prices are 

fixed.  We also use levels for these other parameters as specified before.  Figure 3 graphs the 

time series of estimated disaster probability.  Readily apparent is the dramatic jump in pt at the 

time of the October 1987 crash (in which the S&P 500 declined by 20.5% in a single day).  The 

estimated pt reached 259% but fell rapidly thereafter.  The Persian Gulf War of 1990-1991 

caused another rise in disaster probability to a high of 42%. 

Table 10, Panel B shows statistics associated with the time series in Figure 3.  A 

comparison pre-crash (June 1983-Sept 1987) and post-crash (Oct 1988-Dec 1995) shows a long-

run increase in the typical size of the estimated disaster probability, pt.  For example, the pre-

crash mean and median are 0.064 and 0.062, respectively, whereas the post-crash values are 

0.108 and 0.085.  Moreover, the minimum value pre-crash, 0.021, is substantially lower than 

that, 0.037, post-crash.  Thus, the overall pattern is that the October 1987 crash raised the 

average disaster probability and also increased the minimum level to which the disaster 

probability tended to revert.  These changes likely account for the introduction of a smile into the 

graph of implied volatility versus exercise price following the October 1987 stock-market crash. 
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IV. Conclusions 

Options prices contain rich information on market perceptions of rare disaster risks.  We 

develop a new options-pricing formula that applies when disaster risk is the dominant force, the 

size distribution of disasters follows a power law, and the economy has a representative agent 

with Epstein-Zin utility.  The formula is simple but its main implications about maturity and 

exercise price accord with U.S. and other data from 1983 to 2015 on far-out-of-the-money put 

options on overall stock markets.  If the coefficient of relative risk aversion and the size 

distribution of disasters are fixed, the regression estimates of time fixed effects provide 

information on the evolution of disaster probability.  The estimated disaster probability peaks 

during the recent financial crisis of 2008-09 and in the stock-market crash of October 1987.  This 

market-based assessment of disaster risk is a valuable indicator of aggregate economic shocks 

that can be used by practitioners, macroeconomists, and policymakers. 

One important future extension would allow for effects of time-varying disaster 

probability in the options-pricing formula.  Other extensions involve variation in risk aversion 

and the size distribution of disasters.   We plan also to allow for the usual diffusion risk. 
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Figure 1: Comparison of prices with Black-Scholes predicted prices 

This figure compares the mean of observed put prices across maturities with predicted prices 
from the Black-Scholes model.  Black-Scholes prices are generated assuming flat volatility 
across maturities (30% for out-of-the-money options and 19% for at-the-money options).  For 
ease of comparison, the volatilities are chosen so that the prices scale appropriately to historical 
prices.  Panel A graphs relative put prices on the S&P 500 with strike of 80% of spot.  Panel B 
graphs relative put prices with strike of 100% of spot. 

Panel A: Out-of-the-Money Puts 
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Figure 2: Disaster probabilities 

This figure graphs the estimated disaster probabilities associated with the regressions in Table 1.  The annualized disaster probability, 
pjt  for country j, is calculated from the multiplicative time fixed-effect coefficients in equation (29), assuming 𝑧0 = 1.1 and γ=3.  With 
𝛾 pinned down, the estimates of βε=1+αj-γ imply that the tail coefficients, αj, range from 7.16 to 8.06. 
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Figure 3: S&P 500 disaster probabilities: 1983-1995 

This figure presents the disaster probabilities associated with the regressions in Table 10, based on the Berkeley Option Database.  
Annualized disaster probability is calculated from the multiplicative time fixed-effect coefficients in equation (29), assuming 𝑧0 = 1.1 
and γ=3.   
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Table 1:  Baseline regression estimates 

This table presents non-linear least square regression estimates of our main model.  We use put option prices with maturity ranging 
from one month to six months and strike ranging from 50% to 90% of spot price.  We apply time-fixed effects to capture variations in 
disaster probability, which are shown in Figure 2.  Time-clustered standard errors are provided in parentheses.  The p-value associated 
with the hypothesis that 𝛽𝜖 and  𝛽𝑇 are the same for all countries is less than 0.01. 

 

Index spx ftse estx50 dax nky omx swi bovespa nifty all 

 US UK EURO GE JP SWE CH BR IND  

  
Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

𝛽𝑇 0.978 0.987 0.934 0.936 0.871 0.913 0.997 0.829 0.908 0.938 

  (0.036) (0.031) (0.029) (0.030) (0.069) (0.029) (0.033) (0.067) (0.057) (0.038) 

𝛽𝜖 6.049 5.792 5.789 5.586 5.865 5.974 6.061 5.161 5.628 5.828 

  (0.224) (0.167) (0.175) (0.174) (0.478) (0.234) (0.228) (0.392) (0.297) (0.241) 
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Table 2:  Estimation with at-the-money put options only 

This table presents non-linear least square regression estimates of our main model for at-the-money options only. We use put option 
prices with maturity ranging from two weeks to six month and strike equal to spot price.  We apply time-fixed effects to capture 
variations in disaster probability. Time-clustered standard errors are in parentheses. 

 

Index spx ftse estx50 dax nky omx swi bovespa nifty all 

 US UK EURO GE JP SWE CH BR IND  

  
Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94-
Jun15 

𝛽𝑇 0.518 0.511 0.486 0.496 0.469 0.477 0.510 0.470 0.501 0.495 

  (0.007) (0.007) (0.007) (0.008) (0.010) (0.007) (0.008) (0.019) (0.014) (0.007) 

 



 44 

Table 3:  Mean, standard deviation, quantiles of disaster probabilities 

This table presents summary statistics on disaster probabilities associated with the regression results in Table 1.  The disaster 
probabilities are calculated as indicated in the notes to Figure 2. 

 

index # obs median mean sd min 1% 10% 25% 50% 75% 99% max 

spx (US) 251  0.130   0.156   0.106   0.038   0.042   0.059   0.079   0.130   0.202   0.529   0.696  

Ftse (UK) 210  0.133   0.158   0.107   0.027   0.035   0.053   0.076   0.133   0.211   0.474   0.628  

estx50 
(EURO) 

205  0.164   0.187   0.113   0.039   0.045   0.075   0.109   0.164   0.236   0.574   0.649  

dax (GE) 210  0.158   0.182   0.113   0.043   0.053   0.071   0.104   0.158   0.220   0.582   0.617  

nky (JP) 214  0.137   0.163   0.108   0.031   0.035   0.067   0.108   0.137   0.198   0.572   0.933  

omx (SWE) 210  0.187   0.203   0.126   0.029   0.038   0.068   0.102   0.187   0.266   0.639   0.731  

swi (CH) 210  0.114   0.149   0.113   0.025   0.035   0.048   0.072   0.114   0.189   0.566   0.628  

bovespa (BR) 90  0.152   0.185   0.117   0.079   0.085   0.103   0.116   0.152   0.199   0.675   0.724  

nifty (IND) 107  0.175   0.197   0.121   0.042   0.044   0.078   0.122   0.175   0.238   0.594   0.774  
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Table 4:  𝝐-elasticities varying by relative exercise price, ε 

These regressions allow for different elasticities βε over ranges of relative exercise prices, ε.  The specification is: 

𝛺𝑖𝑡 = 𝑐𝑡 ∙ 𝜀1
𝛽𝜀1𝑇𝑖𝑡

𝛽𝑇 ∙ �
𝐷1𝑖𝑡 + 𝐷2𝑖𝑡 �

𝜀2
𝜀1
�
𝛽𝜀2

+ 𝐷3𝑖𝑡 �
𝜀2
𝜀1
�
𝛽𝜀2

�𝜀3
𝜀2
�
𝛽𝜀3

+ 𝐷4𝑖𝑡 �
𝜀2
𝜀1
�
𝛽𝜀2

�𝜀3
𝜀2
�
𝛽𝜀3

�𝜀4
𝜀3
�
𝛽𝜀4

+𝐷5𝑖𝑡(
𝜀2
𝜀1

)𝛽𝜀2(𝜀3
𝜀2

)𝛽𝜀3(𝜀4
𝜀3

)𝛽𝜀4(𝜀5
𝜀4

)𝛽𝜀5
�  , 

where 𝐷1𝑖𝑡 is a dummy variable corresponding to 𝜀1 = 0.5, 𝐷2𝑖𝑡 is a dummy variable corresponding to 𝜀2 = 0.6, etc.   Standard errors, 
shown in parentheses, are calculated by applying multivariate delta-method and clustered by time.  The p-values associated with the 
hypothesis that the 𝛽𝜖’s for different ranges of ε are the same are all less than 0.01. 

 
spx ftse estx50 dax nky omx swx bovespa nifty all 

 US UK EURO GE JP SWE CH BR IND  

  
Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

𝛽𝑇 0.978 0.986 0.934 0.936 0.871 0.913 0.997 0.829 0.908 0.938 
  (0.036) (0.031) (0.029) (0.030) (0.069) (0.029) (0.033) (0.067) (0.057) (0.038) 
𝛽𝜖 (𝜖 =0.5 to 
0.6) 5.543 5.071 4.710 3.744 4.189 4.947 5.081 4.523 4.691 4.663 

 
(0.135) (0.092) (0.147) (0.299) (0.424) (0.206) (0.257) (0.302) (0.292) (0.162) 

𝛽𝜖 (𝜖 =0.6 to 
0.7) 5.293 5.085 5.038 4.768 4.735 5.212 5.214 4.743 5.005 5.021 

 
(0.163) (0.117) (0.164) (0.239) (0.436) (0.241) (0.204) (0.362) (0.281) (0.209) 

𝛽𝜖 (𝜖 =0.7 to 
0.8) 5.653 5.462 5.496 5.362 5.377 5.732 5.657 5.010 5.390 5.502 

 
(0.203) (0.151) (0.169) (0.155) (0.450) (0.241) (0.208) (0.387) (0.283) (0.229) 

𝛽𝜖 (𝜖 =0.8 to 
0.9) 6.348 6.086 6.084 5.919 6.331 6.222 6.388 5.366 5.887 6.147 

 
(0.235) (0.181) (0.175) (0.176) (0.459) (0.220) (0.238) (0.391) (0.295) (0.240) 
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 Table 5:  𝑻-elasticities varying by maturity  

These regressions allow for different elasticities βT over ranges of maturities, T.  The specification is: 

 𝛺𝑖𝑡 = 𝑐𝑡 ∙ 𝜀𝑖𝑡𝛽𝜀𝑇1
𝛽𝑇1 ∙ �𝐷1𝑖𝑡 + 𝐷2𝑖𝑡 �

𝑇2
𝑇1
�
𝛽𝑇2

+ 𝐷3𝑖𝑡 �
𝑇2
𝑇1
�
𝛽𝑇2

�𝑇3
𝑇2
�
𝛽𝑇3

+ 𝐷4𝑖𝑡 �
𝑇2
𝑇1
�
𝛽𝑇2

�𝑇3
𝑇2
�
𝛽𝑇3

�𝑇4
𝑇3
�
𝛽𝑇4

� 

where 𝐷1𝑖𝑡 is a dummy variable corresponding to maturity 𝑇1 = 30 𝑑𝑎𝑦𝑠, 𝐷2𝑖𝑡 is a dummy variable corresponding to 𝑇2 = 60 𝑑𝑎𝑦𝑠, 
etc.   Standard errors, shown in parentheses, are calculated by applying multivariate delta-method and clustered by time.  The p-values 
associated with the hypothesis that the 𝛽𝑇’s for different maturity ranges are the same are all less than 0.01. 

 

 
spx ftse estx50 dax nky omx swx bovespa nifty all 

 US UK EURO GE JP SWE CH BR IND  

  
Aug94 
- Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

𝛽𝜖 6.050 5.793 5.790 5.587 5.866 5.976 6.062 5.162 5.630 5.829 

 
(0.225) (0.168) (0.176) (0.175) (0.478) (0.235) (0.229) (0.393) (0.298) (0.241) 

𝛽𝑇 (30D-
60D) 1.192 1.223 1.148 1.153 1.043 1.129 1.264 0.957 1.058 1.139 

 
(0.051) (0.041) (0.035) (0.040) (0.113) (0.035) (0.050) (0.087) (0.073) (0.054) 

𝛽𝑇 (60D-
90D) 1.034 1.053 0.990 1.002 0.913 0.948 1.065 0.852 0.960 0.991 

 
(0.041) (0.036) (0.033) (0.036) (0.089) (0.036) (0.040) (0.077) (0.063) (0.044) 

𝛽𝑇 (90D-
6M) 0.924 0.927 0.876 0.875 0.820 0.860 0.933 0.792 0.861 0.884 

 
(0.034) (0.030) (0.028) (0.028) (0.057) (0.028) (0.031) (0.061) (0.055) (0.035) 
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Table 6:  Inclusion of puts with longer maturities 

This table corresponds to Table 1 except that the maturity range is from 30 days to 1 year.  The p-value associated with the hypothesis 
that 𝛽𝜖 and  𝛽𝑇 are the same for all countries is less than 0.01. 

 

Inde
x spx ftse estx50 dax nky omx swi bovespa nifty all 

 US UK EURO GE JP SWE CH BR IND  

 

Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

𝛽𝑇 0.933 0.930 0.877 0.879 0.840 0.880 0.933 0.832 0.877 0.892 

  (0.027) (0.024) (0.022) (0.023) (0.045) (0.022) (0.026) (0.049) (0.041) (0.027) 

𝛽𝜖 4.857 4.549 4.585 4.489 4.985 4.666 4.870 4.100 4.460 4.664 

  (0.127) (0.097) (0.097) (0.101) (0.246) (0.115) (0.148) (0.223) (0.139) (0.127) 
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Table 7:  𝑻-elasticities varying by relative exercise price, ε 

These regressions allow for different elasticities βT over ranges of relative exercise prices, ε.  The specification is: 

𝛺𝑖𝑡 = 𝑐𝑡 ∙ 𝜀𝑖𝑡𝛽𝜀 ∙ �𝐷1𝑖𝑡𝑇𝑖𝑡
𝛽𝑇1 + 𝐷2𝑖𝑡𝑇𝑖𝑡

𝛽𝑇2 + 𝐷3𝑖𝑡𝑇𝑖𝑡
𝛽𝑇3 + 𝐷4𝑖𝑡𝑇𝑖𝑡

𝛽𝑇4 + 𝐷5𝑖𝑡𝑇𝑖𝑡
𝛽𝑇5� 

where 𝐷1𝑖𝑡 is a dummy variable corresponding to 𝜀1 = 0.5, 𝐷2𝑖𝑡 is a dummy variable corresponding to 𝜀2 = 0.6, etc.   Standard errors, 
shown in parentheses, are calculated by applying multivariate delta-method and clustered by time.  The p-values associated with the 
hypothesis that the 𝛽𝑇’s for different ranges of ε are the same are all less than 0.01. 

Index spx ftse estx50 dax nky omx swx bovespa nifty all 
 US UK EURO GE JP SWE CH BR IND  

 

Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

𝛽𝜖 4.070 3.617 3.588 3.501 4.242 3.700 3.855 3.288 3.641 3.799 

 
(0.130) (0.095) (0.094) (0.118) (0.185) (0.098) (0.157) (0.208) (0.109) (0.107) 

𝛽𝑇(𝜖 =0.5) 1.972 2.083 1.947 1.708 1.310 1.988 2.033 1.738 1.824 1.807 

 
(0.106) (0.089) (0.119) (0.097) (0.306) (0.172) (0.160) (0.259) (0.263) (0.159) 

𝛽𝑇(𝜖 =0.6) 1.651 1.760 1.701 1.650 1.310 1.712 1.760 1.480 1.599 1.620 

 
(0.093) (0.080) (0.092) (0.082) (0.234) (0.126) (0.103) (0.198) (0.190) (0.126) 

𝛽𝑇(𝜖 =0.7) 1.431 1.494 1.443 1.424 1.221 1.443 1.514 1.234 1.359 1.404 

 
(0.074) (0.065) (0.066) (0.060) (0.168) (0.084) (0.072) (0.144) (0.134) (0.091) 

𝛽𝑇(𝜖 =0.8) 1.195 1.217 1.161 1.151 1.059 1.146 1.241 0.994 1.106 1.153 

 
(0.054) (0.048) (0.045) (0.044) (0.110) (0.050) (0.051) (0.098) (0.088) (0.060) 

𝛽𝑇(𝜖 =0.9) 0.909 0.906 0.853 0.853 0.810 0.835 0.920 0.749 0.832 0.863 

 
(0.034) (0.029) (0.026) (0.028) (0.060) (0.026) (0.031) (0.060) (0.051) (0.034) 
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Table 8:  Alternative Sample Periods 

This table corresponds to Table 1 except for the sample periods.  The p-values associated with the hypothesis that the 𝛽𝑇 and  𝛽𝜖 are 
the same across periods are all less than 0.01. 

 

  
 

spx ftse estx50 dax nky omx swx bovespa nifty all 
  US UK EURO GE JP SWE CH BR IND  

  
Aug94 - 
Jun15 

Jan98 - 
Jun15 

Jun98 - 
Jun15 

Jan98 - 
Jun15 

Sep97 - 
Jun15 

Jan98 - 
Jun15 

Jan98 - 
Jun15 

Jan08 - 
Jun15 

Aug06 - 
Jun15 

Aug94 - 
Jun15 

Pre-Crisis 𝛽𝑇 1.027 0.994 0.928 0.922 1.004 0.917 1.016 -- 1.032 0.978 
    (0.037) (0.034) (0.040) (0.037) (0.029) (0.032) (0.035)  (0.043) (0.030) 
  𝛽𝜖 6.785 5.919 6.121 5.623 7.616 6.359 6.143 -- 7.236 6.391 
    (0.260) (0.162) (0.205) (0.215) (0.294) (0.289) (0.225)  (0.174) (0.201) 
2008-
2010 𝛽𝑇 0.885 0.935 0.904 0.925 0.718 0.857 0.931 0.762 0.812 0.849 
    (0.054) (0.060) (0.050) (0.061) (0.096) (0.059) (0.068) (0.070) (0.061) (0.063) 
  𝛽𝜖 5.248 5.423 5.088 5.189 4.431 5.209 5.526 4.714 5.061 5.063 
    (0.276) (0.319) (0.295) (0.327) (0.436) (0.392) (0.446) (0.370) (0.289) (0.333) 
2011???-
2015 𝛽𝑇 1.125 1.137 1.022 1.035 1.056 1.052 1.123 1.069 1.207 1.101 
    (0.083) (0.073) (0.049) (0.058) (0.038) (0.050) (0.073) (0.039) (0.037) (0.048) 
  𝛽𝜖 6.336 6.478 6.220 6.339 7.023 6.257 7.959 6.966 6.890 6.700 
    (0.359) (0.355) (0.311) (0.382) (0.255) (0.233) (0.486) (0.213) (0.138) (0.286) 
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Table 9:  Comparison of alternative data sources 

This table corresponds to Table 1 but with different data sources.  Panels A and B are for U.S. data.  Panel A uses a common sample 
(October 2010-July 2014) for three data sources: the broker-dealer (OTC) data, OptionMetrics, and Bloomberg.  Column 1 uses the 
broker-dealer source.  Column 2 uses OptionMetrics data, applying a bivariate linear interpolation on the implied volatility surface to 
obtain put prices with the same maturities and strikes as in column 1.   Column 3 uses OptionMetrics data with more granular strikes 
at every 5% moneyness interval.  Column 4 uses Bloomberg data constructed from Bloomberg’s implied volatility surface with the 
same strikes and maturities as the broker-dealer.   Panel C compares the broker-dealer results with those from Bloomberg for all 
countries except Brazil (which lacks Bloomberg data).  The sample is October 2010-June 2015.  Time-clustered standard errors are in 
parentheses. 

 

 

Panel A, U.S. data, October 2010-July 2014 
 (1) (2) (3) (4) 

 Broker-dealer OptionMetrics 
OptionMetrics 

(granular strikes) Bloomberg 
 Oct 2010-July 2014 Oct 2010-July 2014 Oct 2010-July 2014 Oct 2010-July 2014 
 (1) (2) (3) (4) 

𝛽𝑇 1.121 1.086 1.129 1.201 

 
(0.084) (0.083) (0.088) (0.084) 

𝛽𝜖 6.238 6.096 6.002 6.590 

 
(0.342) (0.338) (0.331) (0.311) 

N 920 760 1395 920 
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Panel B, U.S. data, varying samples 
 (1) (2) (3) (4) 

 Broker-dealer OptionMetrics 
OptionMetrics 

(granular strikes) Bloomberg 
 Jan 1996-July 2014 Jan 1996-July 2014 Jan 1996-July 2014 Jan 2005-July 2014 
 (1) (2) (3) (4) 

𝛽𝑇 0.972 0.935 0.971 0.963 

 
(0.036) (0.032) (0.035) (0.056) 

𝛽𝜖 6.016 5.913 5.826 6.292 

 
(0.224) (0.218) (0.214) (0.275) 

N 4460 3139 5753 1472 
 

 

 

Panel C, multiple countries, OTC and Bloomberg data, October 2010-June 2015 

 
SPX (US) FTSE (UK) ESTX (EURO) DAX (GE) NKY (JP) OMX (SWE) SWX (CH) NIFTY (IND) 

  Broker BBG Broker BBG Broker BBG Broker BBG Broker BBG Broker BBG Broker BBG Broker BBG 

𝛽𝑇  1.137 1.207 1.145 1.112 1.028 1.012 1.045 1.020 1.072 1.086 1.067 1.037 1.129 1.081 1.218 1.163 

 
(0.079) (0.077) (0.068) (0.067) (0.046) (0.048) (0.057) (0.061) (0.038) (0.047) (0.051) (0.068) (0.070) (0.074) (0.036) (0.056) 

𝛽𝜖 6.368 6.682 6.517 6.506 6.213 6.117 6.366 6.865 7.021 5.403 6.329 7.205 8.030 8.536 6.910 11.193 

 
(0.338) (0.297) (0.333) (0.340) (0.285) (0.282) (0.366) (0.414) (0.239) (0.557) (0.239) (0.306) (0.476) (0.608) (0.133) (0.464) 

N 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140 
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Table 10:  Regression estimates for early sample period 

This table presents baseline regression estimates of our main model and summary statics on the associated disaster probabilities for the 
period June 1983 to December 1995.  The data are from the Berkeley Option Database.  We form monthly panels of put-options prices 
by aggregating quotes from the last five trading days of each month. Consistent with the methodology used to analyze OptionMetrics 
data, we apply a bivariate linear interpolation on the implied volatility surface to obtain put prices with granular strikes at every 5% 
moneyness interval and maturities ranging from one to six months. The time-fixed effects capture the variations in disaster probability, 
which are shown in Figure 3 and summarized in Panel B.  Time-clustered standard errors are provided in parentheses.   

Panel A:  Coefficient estimates 

  SPX (US) 
  June 1983-Dec 1995 
𝛽𝑇 1.014 

 
(0.086) 

𝛽𝜖 6.790 

 
(0.354) 

    N 502 
 

Panel B:  Disaster probabilities, summary statistics 

 

June 1983- 
Dec 1995 

Pre-crash 
June 1983-Sep 1987 

Oct 1987- 
Sep 1988 

Post crash 
Oct 1988-Dec 1995 

min 0.021 0.021 0.124 0.037 
25% 0.056 0.041 0.208 0.062 

median 0.082 0.062 0.361 0.085 
mean 0.135 0.064 0.597 0.108 
75% 0.116 0.083 0.507 0.116 
max 2.588 0.133 2.588 0.422 

 

 

 


