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ABSTRACT

The last two decades have witnessed a dramatic increase in the use of patent citation data in social
science research. Facilitated by digitization of the patent data and increasing computing power, a community
of practice has grown up that has developed methods for using these data to: measure attributes of
innovations such as impact and originality; to trace flows of knowledge across individuals, institutions
and regions; and to map innovation networks. The objective of this paper is threefold. First, it takes
stock of these main uses. Second, it discusses four pitfalls associated with patent citation data, related
to office, time and technology, examiner, and strategic effects. Third, it highlights gaps in our understanding
and offers directions for future research.
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 “Knowledge flows […] are invisible; they leave no paper trail by which 

they may be measured and tracked, and there is nothing to prevent the 

theorist from assuming anything about them that she likes.” 

Paul Krugman (1991) 

 

1. Introduction 

Eugene Garfield is one of the pioneers of the study of citation data. In his 1955 article, 

Garfield proposes to build a citation index for scientific articles in order to make it 

possible for “the conscientious scholar to be aware of criticisms of earlier papers.” He 

further explains, “even if there were no other use for a citation index than that of 

minimizing the citation of poor data, the index would be well worth the effort required 

to compile it” (p. 108). It turns out that citation indices have been used in a variety of 

ways and for a variety of purposes. Two of the most notable uses are to assess the 

attributes of the idea embedded in a scientific article and to track its diffusion through 

time, space and technology domains. In fact, Garfield (1955) foresaw these two uses as 

he described the citation index as an “association-of-ideas index” (p. 108) and as he 

explained that the citation index may “help the historian to measure the influence of the 

article—that is, its ‘impact factor’” (p. 111). 

While the analogy with the broader field of bibliometrics may seem obvious, 

patent citations differ from scientific citations in substantial ways. Citations in patents 

are the results of a highly mediated process that involves multiple parties: the inventor, 

the patent attorney and the patent examiner (Meyer 2000). These parties have different 

incentives for citing publications and may do so at different times and in different 

sections of the patent document (Cotropia, Lemley and Sampat 2013). Much of the 

empirical research relies on US citations, but there are important differences across 

jurisdictions in citation rules and practice.1 This creates interesting opportunities for 

research on non-US data, but also suggests a degree of caution in thinking about the 

global implications of results based solely on US data.  

                                                        

1 The present survey also discusses evidence on citations at the European Patent Office whenever 
available. 
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The widespread use of patent citations in social science research can be traced to 

the availability of patent statistics in digitally readable form in the late 1970s.2 Zvi 

Griliches (1979), in his important manifesto for research on R&D and productivity 

growth, suggested that the frequency with which patents from different industries cite 

each other could be used as a measure of the technological proximity of industries. An 

early strand of research on patent citations was the work of Francis Narin and his 

associates at CHI Research, Inc. (Carpenter, Narin and Woolf 1981; Carpenter and Narin 

1983; Narin and Noma, 1985; Narin, Noma and Perry 1987). An influential early 

demonstration of the potential utility of patent citation data in economic research was 

the PhD research of Griliches’ student Manuel Trajtenberg (Trajtenberg 1990a; 1990b). 

The use of patent citation data has grown dramatically over the last two decades, as 

illustrated in Appendix A. 

What makes citations potentially useful is that they convey information about 

the cumulative nature of the research process, as well as information about the 

consequences. While some inventors and research organizations pursue patents for 

motives of prestige or internal tracking of research success, most patent applications 

are made with the goal of securing commercial advantage, or at least preserving options 

for pursuit of commercial advantage. Another virtue of patent data for social science 

research is that patents reside in a non-market-based technological classification 

system, allowing one to place patents, inventors and organizations in technology space 

in a way that is not derived from sales or other economic data that one may be trying to 

relate to invention.3 Furthermore, the classification scheme is hierarchical so that 

technology categories can be very fine or relatively broad as desired. This feature, and 

others, has been combined with patent citation data to provide powerful indicators. 

This paper provides an overview of the major uses of such data and the issues 

that arise in such research. Other authors have previously discussed the use of patent 

                                                        

2 The earliest reference that we found is Clark (1976). It presents statistics on the obsolescence of USPTO 
patents using citation data. Garfield (1966) discusses the use of patent citation searches to say something 
about the significance of a patent, but it does not present any systematic analyses or statistics. Kuznets 
(1962) did not specifically discuss citations, but did emphasize that patent documents are a rich and deep 
source of information on the inventive process, and urged that this richness be exploited in addition to 
researchers’ simply counting patents. 
3 Jacob Schmookler pointed out that in a patent subclass “Dispensing of semi-solid materials,” he found a 
patent for a manure spreader and another for a toothpaste tube (Schmookler, 1966). 
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statistics in social science research (e.g., Griliches 1990; Lerner and Seru 2015), and Gay 

and Le Bas (2005) provide a brief overview of the use of patent citations to measure 

invention value and knowledge flows. However, we are not aware of a broad survey on 

the use of patent citation data.4 In order to identify the papers to include in this survey, 

we started from a limited number of references that we were aware of and 

complemented those using a keyword-based search on Google Scholar. We then 

expanded this core of references by looking at cited and citing references. Ultimately, 

we kept the most influential articles, either in terms of the number of citations received 

or in terms of relevance of the findings. The majority of papers are published in 

economics, management, and information science journals. 

Conceptually, we classify research using patent citations into two broad groups. 

One research line uses a variety of citation-based statistics to characterize the 

inventions, in terms of the magnitude and nature of their impact, as well as the nature 

and magnitude of the departure that they represent relative to the existing pool of 

knowledge. This work is discussed in the next section. The other research line focuses 

on the citations themselves, using them as proxies for knowledge linkages across 

inventors in order to explore the nature of knowledge flows and the factors that affect 

those flows. This research is discussed first with regard to relatively simple metrics of 

knowledge flow in Section 3, and then with respect to attempts to map interactions in a 

more complex network framework in Section 4. We then provide some brief comments 

on practical difficulties and pitfalls in using citations data in Section 5. Section 6 

concludes with opportunities for future research. 

2. Citations as an indicator of invention attributes 

There is no agreed-upon model of inventions and the inventive process, which leads to 

some ambiguity in how citation metrics are interpreted. Nonetheless it is possible to 

identify two broad aspects of the process that underlie citation-based inferences. First, 

we can think of all possible technologies as mapping onto a high-dimensional 

technology space, such that a given invention can be located in that space, and a patent 

represents the right to exclude others from marketing products that impinge upon a 

                                                        

4 Jaffe and Trajtenberg (2002) reprints twelve of the key papers on patent citations by them and their co-
authors. 
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specified region (or regions) of that space. Second, the invention process is cumulative, 

that is, inventions build on those that came before and, in turn, facilitate those that come 

after. In this ‘geometric’ interpretation, the patent claims delineate the metes and 

bounds of the region of technology space over which exclusivity is being granted, while 

the citations indicate previously marked off areas that are in some sense built upon by 

or connected to the invention being granted. 

Thus the citations that appear in a patent (its ‘backward’ citations) inform us 

about the technological antecedents of the patented invention. A patent that contains 

many citations corresponds to an invention with many antecedents; a patent whose 

citations are to technologically diverse previous patents has diverse antecedents; a 

patent whose citations are to old patents corresponds to an invention with old 

antecedents, and so forth. Conversely, the citations received by a patent from 

subsequent patents (‘forward’ citations) inform us about the technological descendants 

of the patented invention. A patent that is never cited was a technological dead end. A 

patent with many or technologically diverse forward citations corresponds to an 

invention that was followed by many or technological diverse descendants. 

 Note that the discussion so far is entirely definitional. We have said nothing 

about the possibility of causal connections between these different attributes of 

inventions, or between any of these attributes and the private or social value of the 

invention. Ultimately, we are interested in whether, e.g., patents with relatively few 

technological antecedents are more or less likely to spawn multiple lines of research or 

whether patents that generate many or diverse technological descendants correspond 

to inventions that generate large social benefits. It is in large part to be able to say 

something about these questions that citation metrics have been developed. In a very 

broad sense, citation analysis is predicated on an expectation that the extent and nature 

of an invention’s antecedents tells us something about the novelty or ‘radicalness’ of the 

invention, and the extent and nature of its descendants tell us something about both its 

technological impact and its economic value. But different authors propose or use 

different characterizations of citation information to elucidate these ideas. 

In practice, writers are not always clear on the underlying concept that a given 

metric is intended to measure, and given metrics are used in different contexts as 

proxies or indicators for different concepts. In some cases, researchers postulate a 
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relationship between a given citation metric and an underlying concept, and then test 

hypotheses about the concept taking that relationship as a given. In other cases 

researchers attempt explicitly to validate the extent to which a given metric reflects a 

particular underlying conceptual attribute of inventions. We will consider these 

different approaches below in the context of specific papers, but for expositional 

purposes it is useful to consider five broad categories of approaches: 

1. Counts of forward citations as an indicator of subsequent technological impact; 

2. Counts of backward citations as an indicator of the extent of reliance on 

previous technology; 

3. Characterization of both backward and forward citations in terms of 

technological diversity and technological distance; 

4. Examination of references to non-patent literature as an indicator of science 

linkage; and 

5. Use of citations as an indicator for private and social value. 

We consider each category in turn. 

2.1 Forward citations and technological impact 

Using the number of forward citations as a measure of technological impact of a 

patented invention can be motivated by direct analogy to the larger and pre-existing 

bibliometric literature starting with Garfield (1955). Nonetheless, Trajtenberg, 

Henderson and Jaffe (1997) undertook to demonstrate the validity of this (and other) 

metrics by comparing the citation rate to university patents and corporate patents, 

based on a maintained assumption that university patents are more ‘basic’ and hence 

have, on average, greater technological impact. To incorporate the cumulative nature of 

invention into the metric, they proposed that the importance of an invention be 

characterized by the number of forward citations received, plus a fractional weight 

multiplied by the number of citations received by those citing patents. That is, 

important patents are those that are cited a lot, and are cited by patents that are 

themselves relatively highly cited.5 The authors showed that importance by this 

                                                        

5 The authors report ‘forward importance’ as the number of citations received plus .5 times the number of 
citations received by the citing patents, and undertook sensitivity analysis varying this weight between 
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definition is, indeed, higher for university patents than for corporate patents, using a 

sample of patents assigned to US corporations, matched by patent class and grant date 

to patents assigned to US universities. In addition, they discuss qualitatively the highest-

importance patents in their sample, and argue that the citing patents can be seen as 

technological descendants, and these highly ‘important’ patents are, indeed, subjectively 

very important in their respective fields. 

More recently, taking advantage of improvements in computing power, scholars 

have taken into account the whole stream of citations. For example, Lukach and Lukach 

(2007) have proposed computing importance by the PageRank score of patents. This 

method is directly inspired from Google’s ‘random surfer’ model and takes into account 

the fact that different citations weigh differently depending on the importance of the 

citing documents (Brin and Page 1998). However, the authors are not able to validate 

their ranking using external measures such that the conditions under which the 

PageRank method is more appropriate than a straightforward citation count are 

unclear. This approach is a natural extension of earlier work, and begins to move this 

line of analysis towards the ‘innovation network’ formulation discussed later in the text. 

Albert, Avery, Narin, and McAllister (1991) provide a validation study of the use 

of forward citations as an indicator of impact. They reported a strong correlation 

between the citation intensities of 77 Kodak silver halide patents and expert evaluations 

of technical impact and importance of the patents. Narin (1995) showed that patents 

that have attained the legal status of pioneering patents in the United States, as well as 

other prominent patents appearing in such patent office publications as 'Hall of Fame' 

patents, are very highly cited. Czarnitzki, Hussinger and Schneider (2011) relate a group 

of ‘wacky’ patents to control groups and test the extent to which commonly used 

metrics are able to identify wacky patents from patents in the control group. Wacky 

patents are selected by an employee of the World Intellectual Property Organization 

“for their futile nature, as they do not involve a high-inventive step or only marginally 

satisfy the ‘non obviousness’ criterion” (p. 131). They find that the number of forward 

citations is a good predictor of importance. However, other measures such as originality 

                                                                                                                                                                            

.25 and .75. Extending this throughout the citation tree involves a geometrically declining weight, e.g., if 
patent E cites patent D which cites patent C which cites patent B which cites patent A, we might consider 
patent B to contribute 1 to the importance of A, patent C .5, patent D .25 and patent E .125. 
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and generality (discussed below) were higher for wacky patents. Another interesting 

confirmation of patent citations as indicative of technological impact is Benson and 

Magee (2015). They identify 28 ‘technological domains’ (e.g., ‘Solar Photovoltaics’ or 

‘Genome Sequencing’) in which it is possible to identify a specific metric of the 

technological state of the domain (e.g., watts/$ for Solar Photovoltaics’). They take the 

exponential rate of improvement of these metrics across domains and across time as the 

dependent variable in regressions on various citation metrics of patents in the 

technology domain. They find that forward citations are positively related, and the 

average age of backward citations negatively related, to the rate of improvement of the 

technology over the subsequent ten-year period. 

2.2 Backward citations and reliance on previous technology 

While it seems clear that important inventions generate more forward citations, the 

opposite may hold for backward citations. That is, more trivial inventions are more 

extensively rooted in what has come before, while more basic inventions are less 

incremental in nature and thus have fewer identifiable antecedents (Trajtenberg, 

Henderson and Jaffe 1997). Another way to think of this is that a patent will, to some 

extent, tend to cite other patents all the way back along the inventive trajectory upon 

which it lies. Patents that are near the beginning of a trajectory are in this sense more 

basic, and may be expected to make fewer backward citations because they have less 

historical background. 

Empirical evidence is rather inconclusive. Trajtenberg, Henderson and Jaffe 

(1997) find that university patents (presumably more important than the average 

patent) do make fewer citations and cite patents that are themselves less highly cited. 

However, von Wartburg, Teichert and Rost (2005) provide a different view. They 

correlate a measure of backward citations with expert ratings on the technological value 

added (in the form of technical scoring tables) of 107 patents related to four strokes 

internal combustion engines. Their backward citations measure counts first and second-

generations citations received. They obtain a statistically significant correlation 

coefficient of 0.38, implying that patents with higher technological value added build on 

more references. Liu, Hseuh, Lawrence, Meliksetian, Perlich and Veen (2011) propose a 

more in-depth analysis of backward references and patent value. They correlate the 
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number of backward references with the probability that a patent will stand up in court 

and find a statistically strong positive association. Overall, it is unclear whether the 

number of backward citations captures patent importance. 

2.3 Technological distance and diversity 

As noted above, one of the basic virtues of patent data is that they provide a non-

market-based technological classification system for inventions. Looking at the way in 

which citations span the technology space defined by the classification scheme is a 

natural way to characterize the technological complexion of both an invention’s roots 

and its impacts. Broadly speaking, there are two major aspects to be considered, 

whether looking forward or backward. One is pure distance: how technologically 

different are the patents connected by a citation link, e.g., does a drug patent cite other 

patents for compounds in the same chemical class, or patents on other chemicals, or 

mechanical or electronic patents? The other is breadth or diversity: independent of 

whether that drug patent generally cites other patents that are close to or far from itself, 

are they all bunched together in technology space, or are they dispersed far from each 

other?  

Trajtenberg, Henderson and Jaffe (1997) implement a measure of technological 

distance using a three-level representation of the USPTO patent classification system. 

The lowest level used is the three-digit original patent class (e.g., Electric lamp and 

discharge devices); the next level is the set of two-digit categories (e.g., Electrical 

Lighting); the highest level is six very broad fields (e.g., Electrical and Electronic). The 

authors axiomatically set two patents in the same patent class at distance 0; two that 

are in different classes but the same category at distance .33; two that are in different 

categories but the same broad field as distance .66; and two that are not even in the 

same field as distance 1. They then calculate the average distance over both forward 

and backward citations for each patent in the university and corporate samples. As 

expected, they found that the forward citations received by university patents came, on 

average, from farther away in technology space, although the difference was small and 

not always statistically significant. For backward citations, there was no consistent 

pattern, i.e. university patents did not systematically cite earlier patents that were, on 

average, technologically more distant by this metric. 
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To measure technological dispersion or diversity, Trajtenberg, Henderson and 

Jaffe (1997) proposed 1 minus the Herfindahl-Hirschman Index (HHI) of concentration 

of the citations across patent classes, i.e. 1 minus the sum of squared shares of citations 

in each class. This metric is equal to zero if all citations are in the same class, and it 

approaches unity as the citations are spread thinly across all classes. The authors 

dubbed this metric of diversity ‘generality’ when applied to forward citations, and 

‘originality’ when applied to backward citations.6,7 They conjectured that both measures 

should be larger for more basic inventions, and therefore expected to be larger for 

university patents than for corporate patents. This hypothesis was borne out in the data 

for generality measure, but not for originality. 

A concept related to generality is that of ‘General Purpose Technology’ or GPT. 

GPTs are conceived as technologies that subsequently connect to many different 

application or development technologies to allow multiple lines of technology 

innovation and diffusion. Frequently mentioned examples are the electric motor in the 

late 19th and early 20th centuries, and digital information technology in the late 20th 

century. Hall and Trajtenberg (2006) use data from a selected sample of 780 most 

highly cited patents that were granted by the USPTO in the years 1967–1999 to 

construct generality, number of citations, and patent class growth, for both cited and 

citing patents, intended to identify GPTs in their early stages. The paper finds that 

highly cited patents differ in almost all respects from the population of all patents (they 

take longer to be issued; have twice as many claims; are more likely to have a US origin; 

are more likely to be assigned to a US corporation; are more likely to have multiple 

assignees; have on average higher citation lags; have a higher generality; are in patent 

classes that are growing faster than average). The paper concludes that the identified 

measures, although promising, give contradictory messages when taken separately and 

                                                        

6 For a small number of citations, it is clear that this measure is heavily influenced by the number of 
citations, e.g., a patent receiving only two citations cannot possibly have generality greater than .5. 
Whether or not this is a problem is largely a matter of interpretation; in some sense it is meaningful to say 
that a patent receiving only two citations cannot have a very diverse impact. A different interpretation is 
that every invention has a latent or unobserved generality that is randomly realized in the citations it 
happens to receive. Under this formulation, the distribution of citations across patent classes is 
multinomial, and the observed generality or originality is a biased estimator of the true parameter. 
Bronwyn Hall has derived a formula to correct for this bias (Hall, Jaffe and Trajtenberg, 2001); it produces 
a significant correction for patents with just a few citations. 
7 Ziedonis (2004) has built on this idea to construct a measure of the fragmentation of ownership rights to 
a firm’s complementary patents. Backward citations are stratified by assignee instead of technology class. 
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that it is not obvious how to combine those measures to choose a sample of GPT 

patents.8 The fundamental difficulty is that we don’t have measures of how general-

purpose a technology is other than broad conceptions of GPT technologies. Thus, while 

it seems plausible that general-purposeness would be reflected in citation patterns, it is 

hard to pin such patterns down or test their validity.9  

Youtie, Iacopetta and Graham (2008) found that nanotechnology patents from 

1990–1993 were more general than computer patents and much more general than 

drug patents, and interpret this result as evidence that nanotechnology is an emerging 

GPT. Moser and Nicholas (2004), however, found that electricity patents from the 1920s 

were less general and less highly cited than chemical and mechanical patents from the 

same period, suggesting that the relationship between the characteristics that make a 

technology a GPT and other characteristics of inventions is complex.  

Another concept related to technological distance and diversity is that of a 

‘radical’ or ‘breakthrough’ invention. Ahuja and Lampert (2001) propose that radical 

inventions are simply the top 1 per cent of patents ranked on citations received in a 

given year. Dahlin and Behrens (2005) adopt a more sophisticated approach. They 

conceive a ‘radical’ invention within a given technology domain (tennis rackets, in their 

application) to be one that recombines previous technology elements in a new and 

different way, but which is then imitated and so spawns subsequent patents that 

combine technology elements in a manner substantially similar to the radical invention. 

They construct a measure of the ‘overlap’ in the respective sets of patents cited by two 

different patents, and show that the radical inventions (over-sized and wide-body 

rackets, in their application) had little overlap with previous or contemporary patents, 

but significant overlap with patents that came after. 

                                                        

8 Hall and Trajtenberg (2006) explain that the generality measures suffer from the fact that they treat 
citations from patents in patent classes different from the cited patents in the same way, although some 
patent classes are very different and some are closely related. They suggest that the future research could 
construct a weighted generality measure, with weights inversely related to the overall probability that 
one class cites another class. To the best of our knowledge no one has implemented such an approach. 
9 Hall and Trajtenberg (2006) also show that a disproportionate share of the patents in the extreme upper 
tail of the distribution for generality and total forward citations in the period 1967–1999 are IT patents, 
suggesting that these metrics may be indicative of a GPT. 
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2.4 Linkage to science 

As discussed, patents contain references to non-patent documents, the overwhelming 

majority of which are scientific papers. On this basis, the number of non-patent 

backward citations made by a patent, or the fraction of backward citations that these 

non-patent citations represent, has been explored as a metric of the closeness of linkage 

between an invention and scientific research.10 

Collins and Wyatt (1988) looked at citations to scientific papers from 366 

genetics patents granted from 1980 to 1985, in order to trace linkages from basic 

research to genetics technology. The United States had the highest number of papers 

cited in patents, followed by the United Kingdom, Japan, Germany and France. These 

figures were compared to the total output of genetics papers for those countries, 

showing some differences, which were interpreted as indicating that the United 

Kingdom produced more papers that were useful in developing patented technology 

than Germany, France or Japan. The number of citations from patents received per 

paper was highest for the United Kingdom, followed by the United States and Germany. 

Callaert, Van Looy, Verbeek, Debackere, and Thijs (2006) characterizes non-

patent references in a sample of patents at the USPTO and the European Patent Office 

(EPO) from 1991–2001. Non-patent references are found in 34 per cent of USPTO 

patents and 38 per cent of EPO patents, comprising about 17 per cent of all references 

(patent and non-patent combined). For both the USPTO and EPO, more than half of non-

patent references are journal references. Of the remaining non-patent references, many 

can be considered scientific in the broader sense (as they consist of conference 

proceedings, books, databases or other non-journal scientific publications), or 

technology related. The paper reports that at the USPTO at least 42 per cent of non-

journal non-patent references can be considered scientific in broader sense, and 40 per 

cent relate to technological information. For the EPO sample these figures are 77 per 

cent and 20 per cent, respectively. 

                                                        

10 Lemley and Sampat (2012, footnote 12) find that the vast majority of references to non-patent prior art 
at the USPTO come from applicants, not examiners, potentially making these a relevant measure of 
science dependence. 
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Tijssen (2002) provides a note of caution on the use of non-patent references. He 

found no relationship between the number of non-patent references and the inventor-

reported dependence on science in a small (< 100) sample of Dutch patents from 1998–

99. Li, Chambers, Ding, Zhang, and Meng (2014) qualify this finding. They argue that 

non-self citations to scientific papers are a noisy measure of science linkage but that 

applicant self-citations to scientific papers are indeed informative of science linkage. 

Roach and Cohen (2013) matched patent citations to survey reports from R&D lab 

managers in the United States, with particular focus on the extent to which patent 

citations capture knowledge flows to commercial R&D from publicly funded research. 

They find that patent citations reflect codified knowledge. However, citations miss the 

reliance on private and contract-based science, as well as basic research. (The 

discussion in the section on citations as a measure of knowledge flows considers further 

whether non-patent references are an indicator of science dependence.)  

2.5 Economic value 

As noted above, the (public or private) economic value of an invention is a distinct 

concept from its technological impact. Citations are, first and foremost, an indicator of 

technological impact. But it turns out that forward citation intensity is, in fact, 

correlated with economic value. There are, however, several different concepts of 

economic value. First, we can in principle think of the (gross) social value of an 

invention, i.e. the total producers’ and consumers’ surplus associated with its use. In 

some cases this gross social value may be much greater than the net value, for which we 

would subtract off the lost rents that may be suffered by previous technologies made 

wholly or partially obsolete. The gross social value is greater than the private value, i.e. 

the value to the owner of a patented invention; the net social value may be either 

greater or less than the private value, depending on the magnitude of the ‘rent stealing’ 

effect. For any of these concepts, we can distinguish the value of the invention and the 

value of the patented invention, which differ by the value of the legal protection afforded 

by the patent grant. In practice, these different value concepts may or may not be 

distinguishable, and proxies for value are often used whose mapping onto these 

different value concepts may be ambiguous. 
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An early strand of research on citations and economic value was the work of 

Francis Narin and his associates seeking to develop indicators based on patent data of 

companies’ competitiveness or technological strength. Carpenter, Narin and Woolf 

(1981) showed that inventions identified in The Industrial Research Institute IR100 

awards are much more highly cited than a random sample of matched patents. Narin, 

Noma, and Perry (1987) found that the average citation frequency of a company’s 

patent portfolio was associated with increases in firms’ profits and sales among 

publicly-traded pharmaceutical companies.  

Trajtenberg (1990b) calculated the social welfare gains associated with 

successive generations of Computed Tomography (CT) scanners by estimating hedonic 

demand functions for the attributes. He then showed that the number of citation-

weighted patents associated with each generation was statistically predictive of the 

magnitude of welfare gains, while the raw or unweighted count of patents was not 

correlated with surplus (sample of about 500 patents). This suggests that the gross 

social value of these inventions is associated with the citation intensity of the associated 

patents. Interestingly, the unweighted patent counts were correlated with the level of 

R&D expenditure. He interpreted these findings as suggesting that the number of 

patents is associated with the magnitude of research effort, but not indicative of 

research success. Counting citation-weighted patents then combines the scale of effort 

with a measure of such success and yields a measure of effective research output. 

Moser, Ohmstedt and Rhode (2014) identified specific improvements in hybrid 

corn and gathered data on the magnitude of the yield improvement they allowed. They 

interpret this as measuring the ‘inventive step’ associated with the patent, but as the 

measurement is in the use domain rather than strictly in the technology domain it 

seems more closely related to social value than to inventive step, per se. They found that 

there is, indeed, a strong correlation between yield improvements and citation 

intensities. Interestingly, they find that there are a small number of early patents that 

are routinely cited in almost all patents in the field. Excluding these citations enhances 

the correlation between yield and citation frequency. 

Hall, Jaffe and Trajtenberg (2005) consider the relationship between citation 

intensity and the private value of patents by relating citation-weighted patents to the 
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market value of the firm. They confirm that citation weighting greatly improves the 

information content of patent counts in terms of predicting market value. In addition, 

they find that citations from future patents assigned to the same firm as the original 

patentee have a larger associated market value than citations from others.11 They also 

find that a disproportionate share of the value associated with patents is associated 

with a very small number of highly cited patents. Finally, they find that forward 

citations are associated with increases in market value at the time a patent is initially 

granted, suggesting that to a significant extent market participants can anticipate the 

eventual value of inventions at this early stage, and those expectations are (on average) 

then confirmed by subsequent citations. 

Lanjouw and Schankerman (2001) provide indirect evidence of the relationship 

between citations and value, by assuming that patents that are litigated are, on average, 

more valuable than those that are not, and comparing the citation patterns of litigated 

patents with a control sample of non-litigated patents. They find that the probability of 

litigation rises with the number of claims and the number of forward citations per claim, 

while declining with the number of backward citations per claim. Allison, Lemley, 

Moore, and Trunkey (2003) undertake a similar approach. Consistent with expectations, 

they find that litigated patents are more highly cited. Interestingly, they find that 

litigated patents also have more backward citations.  

Harhoff, Scherer and Vopel (2003) obtained estimates from patent holders of the 

private value of 772 patents with a 1977 German priority date, and that were 

maintained to full term. They then examined how that reported value correlated with 

publicly observable indicia of patent value, including patent citations (and also the 

number of four-digit IPC codes and family size). They found that both the number of 

forward citations and the number of backward references to the patent literature are 

significantly correlated with patent value (see also Harhoff, Narin, Scherer & Vopel 

1999). Interestingly, they also found that the number of citations made to non-patent 

literature was predictive of value, particularly in drug and chemical patents. They note 

that the predictive value of backward citations (both patent and non-patent) is quite 

                                                        

11 Since Trajtenberg (1990b) showed that total citations are correlated with social returns, the finding 
that self-citations have a stronger effect on market value than other citations suggests that self-citation is 
associated with the extent of appropriation of the social returns by the original patenting firm. 
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useful, as this information is available at time of patent grant, while forward citations 

must be awaited.12 It is unclear theoretically why backward citations are predictive of 

value. For non-patent references, it is plausible that in some fields inventions linked to 

science are less incremental and hence more valuable. For backward patent citations, it 

may reflect some tendency for bigger, more complex patents to make more backward 

citations and also be more valuable on average. In addition, the positive correlation 

between the number of backward citations and value may simply arise from the fact 

that applicants have stronger incentives to search for prior art for more important 

patents (Sampat 2010). 

Gambardella, Harhoff and Verspagen (2008) undertook a similar survey of 

inventors listed in patent applications at the EPO. They found that the number of 

forward citations is by far the best predictor of reported value, but that the fraction of 

the variance in reported value explained by any or all of the metrics was relatively low, 

consistent with a view of citation-weighted patents as an indicator of value, but one 

with substantial noise. 

Nicholas (2008) looked at patents granted to US corporations between 1910 and 

1939, and identified the citations to those historical patents from the period 1976–

1999. He found that about 15 per cent of the patents from the 1910s received at least 

one citation from the recent patents, rising to almost 30 per cent for those from the 

1930s. He then goes on to show that citation-weighted patents constructed in this way 

are correlated with firm market value. Thus, patents that are still cited after 40 to 60 

years are more valuable than those that are not. What we cannot know from this 

exercise (since early citations have not been captured) is the extent to which valuable 

patents are simply more highly cited at all lag durations, or whether there is greater 

persistence in the sense that the rate of obsolescence is lower. 

Bessen (2008) related the value of patents, as indicated by both renewal 

information and firm financial data, to a number of patent characteristics, including 

forward citations received. He estimated that each additional citation is associated, on 

average, with an increase in value of about 1 per cent. Nonetheless, the relationship is 

                                                        

12 Similarly, international family size is a measure predictive of value that is knowable soon after patent 
application. 
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very noisy, so that even among very highly cited patents, a significant fraction appears 

to be of little value; 37 per cent of the patents in the top decile in citation intensity from 

1991 were not renewed. 

Recent work by Abrams, Akcigit and Popadak (2015) also suggest an overall 

positive correlation between forward citations and patent value, but with an inverted-

U-shaped relationship in which value falls at high citation rates. This finding is 

provocative, but it is unclear how robust it is, given the highly selected nature of the 

sample and the fact that the value of individual patents was estimated as the value of 

patent portfolios divided by the number of patents in the portfolio. 

The next section moves away from work focused on citations as indicators of 

invention characteristics, and discusses the use of citation data to capture geographic 

and temporal dimensions of the innovation process. 

3. Citations as an indicator of knowledge flows 

3.1 Geographic dimension of knowledge flows 

Jaffe, Henderson and Trajtenberg (1993) took on the challenge identified by Krugman 

(1991) on the invisibility of knowledge flows. They suggested that patent citations could 

be used as a kind of ‘paper trail’ that could allow knowledge flows to be measured and 

tracked. They took a sample of patents from universities, large firms and other firms, 

and identified all of their citations. They then found, for every citing patent, a 

corresponding ‘control’ patent, issued at the same time and in the same primary US 

patent class as the citing patent, and compared the frequency with which citing patents 

were geographically proximate to the cited patents with the frequency with which the 

control patents were proximate. Looking at metropolitan statistical areas, states and 

countries, and eliminating citations that are ‘self-citations’ from the same firm, they 

showed that citations are indeed more likely to be proximate. For example, at the level 

of metropolitan areas, 7–9 per cent of citations (depending on the nature of the cited 

patents) were from the same area, while only 1–4 per cent of the control patents were, 

and the differences were highly significant statistically. 

Thompson and Fox-Kean (2005) criticize the Jaffe, Henderson and Trajtenberg 

methodology. They argue that selecting control patents based on the primary patent 

class of the citing patents is too rudimentary to capture the heterogeneity of technology. 
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Patents in the same main patent class may be in different subclasses with inherently 

different technologies, and patents are assigned to multiple classes, again introducing 

heterogeneity not captured by the main patent classification. In response, Henderson, 

Jaffe and Trajtenberg (2005) agree that it is possible that finer technological controls 

might be appropriate, but they point out that slicing things too finely minimizes the 

possibility for identifying knowledge flows across subclasses. Ultimately, the question 

comes down to the robustness of the localization effect under different identifying 

assumptions. 

A number of other authors have similarly used citation data to measure 

knowledge flows. Almeida and Kogut (1997) compare the patent citations of small and 

large semiconductor firms, and find that the citations made by small firms are more 

geographically localized. Hicks, Breitzman, Olivastro, and Hamilton (2001) show that US 

companies’ citations to university patents exhibit geographic localization, particularly 

to patents of nearby public universities. Almeida and Kogut (1999) examine citation 

patterns among semiconductor firms in the United States, including data on both the 

firms and the inventors. They show that a significant fraction of the geographic 

localization of the citations can be traced to specific engineers who move among firms, 

but are more likely to move to another nearby firm than to one that is farther away. 

Sonn and Storper (2008) show that, despite improvements in communications 

technologies, geographical localization has been increasing over time. 

Thompson (2006) compares the extent of localization in citations listed by the 

inventor to those added by the examiner. He finds localization at both the metropolitan 

area and state levels in both the examiner and inventor citations. Inventor citations are 

found to be about 20 per cent more likely to match the country of origin of the citing 

patent than are examiner citations. In a similar vein, Alcácer and Gittelman (2006) 

estimate the probability that a citation is generated by an examiner or an inventor, 

conditional on a set of variables that are frequently employed in the knowledge 

spillover literature. They find that examiner citations introduce bias for some variables 

only (e.g., self-citations). They find no evidence that the degree of geographic proximity 

between citing and cited patents differs for inventor and examiner citations.  
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A subtler pitfall in the use of citations to track knowledge flows relates to the 

intervention of law firms in the drafting of the patent document. Wagner, Hoisl and 

Thoma (2014) show that patents by firms who rely on external agents are more likely to 

cite documents that are part of the law firm’s knowledge repository. They take this 

result as evidence that law firms help overcome localization. However, a blunter 

interpretation is that external agents include citations that the firms were not aware of, 

further increasing the noise in patent citation data. 

Maurseth and Verspagen (2002) used data on citations among European patents 

to construct a region-by-region citations frequency matrix. They then looked at 

numerous variables to explain these frequencies. Geographical distance has a negative 

and substantial impact on knowledge flows. Controlling for distance, knowledge flows 

are greater between regions located within one country than between regions located in 

separate countries. The country effect remains even if regions share the same language, 

though sharing a language increases the amount of knowledge flows between two 

regions by up to 28 per cent. The study also suggests that knowledge flows are industry 

specific, and regions’ technological specialization is an important determinant of their 

technological interaction. 

3.2 Temporal dimension of knowledge flows 

Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1999) developed a structured 

model of knowledge diffusion across space and time. They postulate that two competing 

forces dominate the citation process. Over time, knowledge gradually diffuses, so that 

the number of people potentially citing a given patent increases exponentially with 

time. But the relevance or usefulness of a bit of knowledge becomes obsolete, leading to 

a countervailing exponential depreciation in the likelihood of citations. The parameters 

of these two exponential functions can be estimated econometrically. If allowed to vary 

across different technologies, different kinds of research organizations, and different 

geographic locations, they then capture the rates of diffusion in different areas across 

organizations and across space. Jaffe and Trajtenberg show, for example, that the 

geographic localization of citations diminishes as time passes, and also that 

obsolescence (as captured by declining citation rates) is more rapid in electronic 

technologies than in chemical and mechanical technologies. 
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Bacchiocchi and Montobbio (2009) used this double-exponential function to look 

at knowledge flows from universities and public research organizations compared to 

flows from corporate patents in six countries: France, Germany, Italy, Japan, the United 

Kingdom and the United States. They found that technology embodied in patents from 

universities and public research organizations diffuses more rapidly than that of firms. 

The diffusion rates are relatively homogenous across technological fields, but vary 

across countries: rapid in the United States and Germany, less so in France and Japan. 

Mehta, Rysman and Simcoe (2010) have criticized this diffusion model on the 

ground that the age of a citation is computed as the citation year minus the application 

year, leading to an identification problem. Because citations received by a patent are 

rare before it is issued, the authors propose to use the lag between application year and 

grant year as a source of exogenous variation. They find that the citation peak occurs 

earlier than suggested by the double-exponential function. However, their method does 

not alter differences in the mean citation ages across industries. They conclude that the 

double-exponential function provides a good approximation to the non-parametric age 

distribution. 

3.3 Validation studies 

Jaffe, Trajtenberg and Fogarty (2000) report a survey of inventors to test the extent to 

which citations in those inventors’ patents correspond to the inventors’ perceptions of 

how their inventions depended on earlier knowledge, and how the rate of citation 

relates to inventors’ own perceptions of impact or importance. They find that citations 

are a valid but noisy indicator of knowledge flows: the likelihood of reported knowledge 

impact is significantly higher (both quantitatively and statistically) when a citation link 

exists, but a significant fraction of citations (perhaps as high as one half) do not 

correspond to any reported knowledge link. 

Duguet and MacGarvie (2005) tested the validity of patent citations as a measure 

of knowledge flows using data from French firms on their patents and citations, 

combined with survey responses regarding sources of knowledge. The total number of 

backward citations was correlated with survey answers about R&D and innovation, but 

this correlation is weakened by controlling for the number of patents held by the citing 

firm. Backward citation rates of French firms can reflect their R&D activities (if the 
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technology is obtained from firms located in the EU), or purchases of equipment goods 

(if the source is located outside the EU). In general it can be understood that backward 

citations are correlated with learning through R&D collaboration, licensing of foreign 

technology, mergers and acquisitions and equipment purchases. 

In their analysis, Roach and Cohen (2013, discussed above) found evidence of 

both ‘errors of omission’ (reported knowledge flows with no corresponding citations) 

and ‘errors of commission’ (observed citations with no corresponding reported 

knowledge flows). They conclude that despite these sources of measurement error, 

patent citations are likely to reflect meaningful aspects of knowledge flows from public 

research. Interestingly, they found that references in patents to non-patent publications 

(primarily scientific literature) are a better indicator of knowledge flow than are 

citations in commercial patents to the patents of universities and other public labs (cf. 

Tijssen 2002). 

The next section discusses a third category of citation data research, in which the 

focus shifts to using citation links to understand and characterize networks. 

4. Citations as links in knowledge or innovation networks 

A natural way of representing citation data is in the form of a network. Researchers 

have used concepts from network theory to grasp the way the innovation system is 

structured and the way knowledge is formed. A first group of studies seek to map key 

components of the innovation system (patents, individuals, institutions and regions). A 

second group of studies use the network of citations to map technological trajectories. 

We review these two applications in turn. 

4.1 Mapping patents, individuals, institutions, and regions 

Huang, Chiang, and Chen (2003) rely on patent citation data to map Taiwan’s electronic 

industry. The researchers identify USPTO patents belonging to 58 relevant Taiwanese 

companies as well as the citations made by these patents. They identify the strength of 

the relationship between companies by looking at the strength of bibliographic 

coupling. Bibliographic coupling is a method proposed by Kessler (1963) that involves 

identifying related documents through common cited references. The researchers then 

applied cluster analysis on the data produced to identify major sectors of the Taiwanese 

electronic industry. Although bibliographic coupling provides rich insights on the 
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relatedness of patent documents, more recent studies make better use of network 

analysis theory and tools. 

Chen and Hicks (2004) study the citation ‘degree’ distribution of 16 million 

citations made to the 3 million USPTO patents granted in the period from 1963 to 1999. 

The degree of a ‘node’ (patent) is simply the number of ‘connections’ (citations) 

received by the node. They estimate that the distribution follows a power law with an 

exponent of 2.89, which is very similar to the parameter obtained for scientific papers 

by Dorogovstev and Mendes (2002).13 The fact that the degree distribution of the patent 

citation network follows a power-law is indicative of so-called scale-free networks, 

which can be seen as networks characterized by large hubs through which knowledge 

flows. 

Li, Chen, Huang, and Roco (2007) use a patent citation network to study the 

knowledge transfer process between entities. In particular they study the efficiency 

with which knowledge transfers within the network compared to a random network. 

Their measure of efficiency is the average path length between any pair of patents in the 

network. They focus on USPTO nanotechnology patents in the period from 1976 to 

2004. They find that knowledge transfer across assignees in the citation network is 

more efficient than knowledge transfer that would occur in a random network. 

Knowledge flow across (assignee) countries is as efficient as a random network. 

However knowledge flow across technology fields is less efficient than knowledge flow 

that would occur in a random network. In other words, technological distance is a 

greater barrier to knowledge flows than geographic distance. 

Hung and Wang (2010) examine the characteristics of the citation network 

formed by RFID patents. They find that the network can be characterized as a ‘small-

world’ network, i.e. a network in which most nodes can be reached from every other by 

a small number of steps. They also find that the network has a power-law connectivity 

distribution and exhibits preferential connectivity behavior. That is, a few key patents 

have a very large number of connections and the majority of patents have few 

connections. The authors conclude that only a limited number of patents play a key role 

                                                        

13 Cf. Huang, Huang, Chang, Chen, and Lin (2014) who provide evidence that the distribution of patent 
citations is more concentrated than the distribution of citations in scientific articles. 



 22

in diffusing RFID technology. This approach provides a more system-based way of 

thinking about knowledge flows than simply counting citations: key patents are not only 

highly cited patents, but also connect and integrate different technological 

trajectories. 14  More detailed analyses of technological trajectories using citation 

network are described in the next section. 

4.2 Mapping of technological trajectories 

Scholars have recently used citation networks to identify technological trajectories that 

led to the advent of major technological breakthroughs. The main trajectory, or search 

path, is the sequence of links and nodes that is central to the development of a 

technology. It represents the main flow of ideas in the development of a technology. The 

method was pioneered by Hummon and Doreian (1989) on a citation network of 

scientific papers describing the development of DNA theory. This approach shifts the 

focus from the nodes of the network (looking at individual patents) to the connections 

that these nodes form. It allows identifying key patents through their structural 

connectivity in the network. Technologically important patents should belong to the 

main paths of the citation network and/or locate at particularly critical junctions within 

those paths. 

Mina, Ramlogan, Tampubolon, and Metcalfe (2007), Verspagen (2007), and 

Fontana, Nuvolari and Verspagen (2009) applied the method to patent citation 

networks. Mina et al. (2007) use it to understand how medical knowledge emerges, 

grows and evolves. They argue that the approach provides a dynamic view of 

innovation that recognizes the long-term, path-dependent and complex nature of 

technology. Their case study is based on treatment for coronary artery disease and 

covers 5136 USPTO patent documents granted between 1976 and 2003. The authors 

seek to identify the main path and ‘islands’ of the network. Islands are small clusters of 

inventions whose internal connectedness is relatively superior to the strength of their 

outward connections within the global network. The authors argue that islands allow 

accounting for the variety of complementary and competing areas of technical expertise 

that contributed to the advancement of the technology. They report that the results 

                                                        

14 Hu, Rousseau, and Chen (2012) provide another study on the importance of patents using their 
positions in the citation network. Other applications include, e.g., Liu and Shih (2011) who use the 
network formed by patents to improve patent classification. 
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form a consistent map of the major scientific and technological trajectories in the 

domain. 

Fontana, Nuvolari and Verspagen (2009) study the structural connectivity of the 

citation network formed by patents related to local area networks (LAN) technology. 

Innovation in such a systemic technology has three main features. First, innovation is 

distributed: it takes place at the level of individual components but these components 

all have to work together. Second, innovations in systems tend to be incremental and to 

occur around well-established technical designs. Third, innovations also tend to occur 

continuously. The authors argue that the classical approach of assessing the importance 

of patents by counting the number of citations they have received may have drawbacks 

in such systemic technologies. It may fail to identify concepts and principles that could 

act as ‘focusing devices’ for a sequence of inventive activities. By contrast a structural 

analysis of the citation network would allow the identification of inventions that have 

played a major role in the evolution of LAN technology. They find that the main path 

they have identified displays a coherent economic and engineering logic, consistent 

with qualitative accounts of the evolution of the Ethernet standard.  

One of the most interesting insights of the paper comes from the analysis of 

companies owning patents that lie on the main path. No company is ‘dominant’ in the 

sense of claiming ownership of the majority of patents on the main path, which the 

authors take as evidence that no company is strategically placed along the main path of 

knowledge flow. Verspagen (2007) performs a similar analysis for citations among fuel 

cell patents. He finds that there are dominant companies: a small number of 

organizations hold patents belonging to the main path. Study of the ownership structure 

of technologies on the main path provides a novel way of characterizing technology 

dominance. It is a promising avenue for research in industrial economics and strategic 

management. 

5. Pitfalls and best practices in use of citation-based indicators 

We take the opportunity of this review to discuss potential pitfalls associated with 

patent data. We focus on four key challenges. 
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5.1 Office effects 

Institutional differences across jurisdictions induce differences in citation practices 

across offices. We briefly summarize two main differences in citation practices between 

the EPO/JPO and the USPTO for illustrative purposes. More generally, researchers 

should get a clear understanding of citation practices in the office of interest before 

using citation-based indicators.15 

 A first difference is the ‘duty of candor’ in US patent law. Failure to report known 

relevant prior art may lead to subsequent revocation of the patent (inequitable conduct 

doctrine). There is no duty of candor in European patent law, and applicants do not 

have to submit a list of prior art. It follows that search reports at the EPO usually 

contain many fewer references than USPTO search reports. In fact, according to EPO 

philosophy, “a good search report contains all the technically relevant information 

within a minimum number of citations” (Michel & Bettels 2001:189). In addition, since 

applicants at the EPO do not bear the same responsibility to disclose prior art as 

applicants at the USPTO, the citations come mostly from the examiner. This does not 

undermine their interpretation as indicators of impact or value; for example Harhoff, 

Scherer and Vopel (2003, discussed above) find EPO citations to be predictive of value. 

It does suggest that EPO citations might be less indicative of knowledge flows; although 

we are not aware of any empirical analysis of this question comparable to the survey 

work of Jaffe, Trajtenberg and Fogarty (2000).  In Japan, the patent law was revised in 

2002 and imposed on applicants the obligation to disclose prior art. Although not 

complying with the disclosure requirement bears less severe consequence than in the 

United States, the reform led to a substantial increase in prior art disclosure by 

applicants. Takahiro, Nagaoka, and Naito (2015) find that about 8 per cent of citations 

came from applicants in the years following the reform, compared to around 4 to 5 per 

cent before the reform. 

A second important difference with the USPTO is that EPO patent examiners 

classify documents cited in particular citation categories (Schmoch 1993). A document 

that shows essential features of the invention or questions the inventive step of these 

                                                        

15 For example, researchers interested in EPO citations should read the “Guidelines for Examination in the 
European Patent Office” available on the EPO website. 
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features if taken alone is marked with the letter ‘X’. A document that questions the 

inventive step if combined with another document is marked with the letter ‘Y’ (hence 

‘Y’ citations never occur singly). The letter ‘A’ marks a document that shows the general 

state of the art. According to Schmoch (1993:195) a patent document can be highly cited 

because it comprises “a good description of the prior art from a didactic point of view.” 

The classification provides opportunities for finer analyses. One may want to exclude 

class ‘A’ citations for assessing the inventive step of patents, but class ‘A’ citations are 

relevant for measuring technological proximity of patents. Additional classification 

codes exist; see Webb, Dernis, Harhoff, and Hoisl (2005) for a discussion. Examiners at 

the JPO also classify citations into categories. In particular, they flag whether citations 

are used as ground for rejection, similar to ‘X’ and ‘Y’ citations at the EPO, or whether 

they are used for assessing the application but do not serve as a basis for rejection, 

similar to ‘A’ citations at the EPO (Goto & Motohashi 2007). 

The classification into categories opens the door to original uses of citation data. 

For example, von Graevenitz, Wagner and Harhoff (2011) identify patent thickets at the 

EPO using X and Y citations. Their measure identifies constellations in which three firms 

each own patents that block patent applications of the other two firms (so-called 

triples). The authors show that density of triples in complex technology areas has risen 

steadily since the early 1980s, whereas the density of triples has been constant in 

discrete technology areas. Guellec, Martinez and Zuniga (2012) use ‘X’ and ‘Y’ citations 

together with administrative information on the patent examination process 

(withdrawal and grant events) to identify defensive patents, i.e. patent applications 

used to pre-empt others from getting their patents granted. Palangkaraya, Webster and 

Jensen (2011) posit that patents with a higher inventive step will generate more ‘X’ and 

‘Y’ citations, and use this information to proxy for the probability of grant ex-ante.  

Beyond institutional differences in the use of citations, researchers have also 

illustrated the presence of home bias in citation practices. Bacchiocchi and Montobbio 

(2010) analyze the geographic distribution of cited documents for a set of 657,151 

equivalent patents filed at the EPO and the USPTO. In theory, distributions should be 

similar since they refer to the same invention. They find that the frequency of US-cited 

patents at the USPTO exceeds 65 per cent, while the frequency at the EPO is less than 40 

per cent. That examiners have a tendency to cite local documents does not come as a 
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surprise.16 However, it illustrates an important limitation of the use of citations for 

assessing cross-border knowledge flows. 

5.2 Time and technology field effects 

The number of citations received by a patent increases as time passes such that there 

are strong cohort effects. This issue can be dealt with in a straightforward manner by 

counting citations received in a fixed time interval (e.g., citations received up to five 

years after grant). A more serious concern is the increase over time of citations made 

per patent. Hall, Jaffe and Trajtenberg (2001) report that the average patent issued in 

1999 made over twice as many citations as the average patent issued in 1975 (10.7 

versus 4.7 citations). Although this issue does not affect the comparison of patents 

within a cohort, citation inflation makes it challenging to compare patents across 

cohorts. Analogously, citation practices and the intensity of activity vary by technology 

fields, so that what constitutes a high citation rate in one field may be modest or small 

for another field.17 The authors discuss two econometric techniques to deal with 

citation inflation and varying intensities by field: scaling citation counts by “dividing 

them by the average citation count for a group of patents to which the patent of interest 

belongs”; and identifying the multiple biases on citation rates via econometric 

estimation. Marco (2007) provides a recent illustration of the latter technique. He 

argues that by estimating a hazard rate based only on factors that are correlated to 

citation inflation rather than value, residuals can be used to measure latent patent 

value. For example, the ratio of observed citations to predicted citations may represent 

a proxy of patent value. Such an approach is an important step forward, although it is 

difficult to identify factors that are truly exogenous to value. 

 A broader question, which has received little coverage in the literature, relates to 

differences in patenting and citation practices across technology fields. We know that 

the propensity to patent differs across fields (Cohen, Nelson & Walsh 2000) and that the 

relevance of patent data as innovation indicator therefore also varies across fields (e.g., 

                                                        

16 For example, there is a substantial cost to including non-English references at the USPTO. When using a 
foreign language reference in a rejection, examiners should provide a translation of the entire document.  
17 Technology fields are tracked using the patent office classification systems. Historically, the United 
States has maintained its own classification (USPC), while other offices use the International Patent 
Classification (IPC). The USPTO has recently introduced a Cooperative Patent Classification (CPC) based 
on the IPC, and is phasing out the USPC. 
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Danguy, de Rassenfosse & van Pottelsberghe 2014). However, to the best of our 

knowledge, no study has investigated in a systematic manner how differences across 

fields affect the relevance of patent citation data. 

5.3 Examiner effects 

Cockburn, Koru and Stern (2002) show that there is substantial examiner 

heterogeneity, e.g., in terms of variations in tenure at the USPTO and in the average 

approval time per issued patent. Such heterogeneity translates into variations in 

outcomes of the examination process — such as in the volume and pattern of citations 

made.18 Lemley and Sampat (2012) demonstrate the presence of an examiner effect, in 

the sense that more experienced examiners cite less prior art. Alcácer and Gittelman 

(2009) painted a picture of examiner-added citations across key strata of patent data. 

They report that the proportion of citations added by examiners is higher for patents: 

by foreign applicants to the USPTO; by applicants with a large patent portfolio; and by 

applicants in electronics, communications, and computer-related fields. Criscuolo and 

Verspagen (2008) perform a similar analysis for EPO patent data. They show that the 

share of inventor citations has been declining from about 14 per cent in 1985 to 9 per 

cent in 2000. In addition, there is also substantial variation across fields. More than 20 

per cent of citations in organic chemistry patents were added by the inventor, while for 

information technology patents this share is 4 per cent.19 

Examiner intervention may bias the information content of citations. It may 

undermine the use of citations as a measure of knowledge flow, since the inventors may 

not have even been aware of the patents cited by examiners at the time of invention. 

However, examiner citations may be taken as a valid reflection of technological and 

economic value. In this spirit, Hegde and Sampat (2009) show that examiner citations 

have a much stronger relationship with renewal probability (a measure of private 

value) than the number of applicant citations. 

                                                        

18 Alcácer and Gittelman (2006) estimate that examiners insert two-thirds of citations on the average 
patent, and 40 per cent of all patents have all citations added by examiners. 
19 There are few country-specific studies. See Azagra-Caro, Mattsson and Perruchas (2011) for Spanish 
evidence. 
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5.4 Strategic effects 

Variations in the number of examiner-added citations may also come from differences 

in applicants’ incentives to search for or disclose prior art. Recent research suggests 

that citing prior art (or not) is a strategic decision. Atal and Bar (2010) study firms’ 

incentives to search for unknown prior art. Although applicants at the USPTO have a 

duty to disclose what they know, they have no duty to search for prior art and may be 

better off by remaining ignorant. The authors show theoretically that firms search more 

when R&D investment (a proxy for innovation quality) and patenting costs are higher. 

Sampat (2010) provides empirical data on when applicants search for prior art. He 

shows that applicants contribute more prior art for their more important inventions. He 

also shows that applicants are more likely to search for prior art in fields where 

individual patents are important for appropriating returns from R&D (chemicals and 

drugs) and less likely to do so in industries where firms tend to accumulate patent 

portfolios for other strategic reasons (computers and communications, electronics and 

electrical, and mechanical). 

Lampe (2012) focuses on applicants’ decision to disclose known prior art. He 

identifies ‘voluntary withholding’ of citations to prior art material by looking only at 

citations that were present on prior patents issued to the same firm. He estimates that 

applicants withhold between 21 per cent and 33 per cent of relevant citations. The rate 

is higher for firms applying for computer and electronic patents (25 to 42 per cent) and 

lower for firms applying for drug and chemical patents (8 to 22 per cent). More 

generally, Lampe finds that the likelihood of citation is positively correlated with 

proxies of patent value (number of claims and forward citations) and negatively 

correlated with the size of applicant patent portfolios. 

6. Conclusion 

The use of patent citation data in social science research has exploded in the last two 

decades. As just one indication, the frequency of appearance of the term ‘patent citation’ 

in scientific documents listed in Google Scholar increased 10-fold between 2000 and 

2014 (Appendix A). As is often the case, this increase reflects increases in both supply 

and demand. On the supply side, the digitization of the patent office records, combined 

with the increased power of computers to analyze them, makes analyses possible today 
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that simply could not have been undertaken 25 years ago. The number of scientific 

documents referencing the NBER patent citation data file is likewise continuously 

increasing (Appendix A). On the demand side, intangible assets are increasingly seen as 

a source—some would argue the dominant source—of economic returns. By definition, 

intangible assets are hard to track and measure, and so researchers interested in 

diverse questions about knowledge accumulation and diffusion, innovation, firm 

strategy and regional economic growth seek measures that convey information about 

the sources and consequences of these assets. 

Neither of these trends is likely to reverse, so interest in measures of this kind is 

likely to continue to grow. Recent developments in computational linguistics may allow 

for construction of measures that are conceptually related to citations but use all of the 

information contained in the patent text rather than relying solely on the links between 

patents that are explicitly identified via citation. It is now possible, for example, to 

identify connections between a patent and its antecedents by measuring the frequency 

with which important words are used in both patents, to measure novelty by identifying 

patents that use a certain technical term or combination of words in a particular phrase 

for the first time, and to measure impact by counting the number of subsequent patents 

that use such a phrase (e.g., Packalen & Bhattacharya 2015). Younge and Khun (2015) 

use more advanced techniques to develop a text-based pairwise similarity comparison 

of any and every two patents at the USPTO. These new approaches have not yet been 

subjected to the kind of validation that has demonstrated the economic significance of 

citations, but because they utilize more information, they offer the promise of a valuable 

broadening and deepening of the research possibilities. 

A more mundane, but equally important task, is to further validate citation 

indicators. This applies to both established and novel indicators, at both the USPTO and 

other offices. For example it is unclear whether the count of backward citations proxies 

for patent importance. Even the link between forward citations and economic value, one 

of the most established and used indicators, is not well understood. In a similar vein, 

little research exists on technology field differences on the relevance of patent citation 

data. The need for validation studies will grow more pressing as new indicators are 

being developed and more patent offices make their data available. Similarly, legislative 

changes affect citation practices in non-trivial ways, and conclusions drawn using data 
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from one time period are not necessarily valid in another time period. This calls for a 

continuous assessment of the validity of citation indicators. 

Another exciting area of research is the further application of network theory 

and analysis tools to the patent citation network. For example, the identification of key 

technologies and actors on the main knowledge path promises to greatly improve our 

understanding of industry dynamics and the knowledge creation process. A limitation of 

current research in the area is the insularity of two communities of scholars. Studies by 

scholars using advanced network analysis tools offer little practical implications, 

whereas studies by scholars looking at real-world implications use quite basic network 

analysis tools. A promising way forward is to better integrate the technical and the 

practical aspects of network analysis. 

Finally, researchers realize that the patent citation generation process is complex 

but more work needs to be done to understand it. The complexity of the patent citation 

generation process is a blessing and a curse. Whereas it may distort the reality in an 

undesirable fashion, it may also provide a window into the incentives faced by 

inventors, patent attorneys and examiners and serve as a source of econometric 

identification. The example of examiner-added citations is a case in point. Whereas 

citations made by examiners arguably weaken the measurement of knowledge flows, 

they also strengthen the measurement of patent value.  
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Appendix A 

Figure A plots the yearly number of scientific articles listed in Google Scholar that 

contain the term ‘patent citation’ (blue line), and the number of articles citing the NBER 

patent citation data file described in Hall, Jaffe and Trajtenberg (2001) (red dashed 

line). One can reasonable assume that the latter group of articles forms a subset of the 

former group. 

 

Figure A. Number of scientific articles listed in Google Scholar. 

 

Notes: HJT refers to Hall, Jaffe and Trajtenberg (2001). 


