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1 Introduction

We explore the effects of recursive preferences and risk in an otherwise standard two-

country exchange economy. We focus on the behavior of the (relative) Pareto weight,

which characterizes consumption allocations across countries. When preferences are

additive over time and across states, as they typically are, the Pareto weight is con-

stant in frictionless environments. But when preferences are recursive and agents

consume different goods, the Pareto weight can fluctuate even in frictionless environ-

ments. This variation in the Pareto weight acts like a wedge from the perspective of

an additive model. Among the potential byproducts are changes in the behavior of

consumption and the exchange rate.

The natural comparison is with models that use capital market frictions to resolve

some of the anomalous features of the standard model. Baxter and Crucini (1995),

Corsetti, Dedola, and Leduc (2008), Heathcote and Perri (2002), Kehoe and Perri

(2002), and Kose and Yi (2006) are well-known examples. The frictions in these pa-

pers might be viewed as devices to produce variation in the Pareto weight, which is

then reflected in prices and quantities. In the language of Chari, Kehoe, and McGrat-

tan (2007), variations in Pareto weights would look look like wedges in the frictionless

model. The question for both approaches is whether these wedges are similar to those

we observe when we confront frictionless models with evidence. Ultimately we would

like to understand how the two approaches compare, but for now we’re simply trying

to understand how the Pareto weight works in models with recursive preferences.

We build in an obvious way on earlier work with multi-good economies by Colacito

and Croce (2013, 2014), Colacito, Croce, Ho, and Howard (2014), Kollmann (2015),

and Tretvoll (2011, 2013, 2015). We show how their models work and introduce some

modest extensions. We also build on the fundamental work on recursive risk-sharing

by Anderson (2005), Borovicka (2015), and Collin-Dufresne, Johannes, and Lochstoer

(2015). These papers study one-good worlds, and in that respect are simpler than

work with multi-good international models, but they lay out the structure of re-

cursive risk-sharing problems. The last paper in the list also describes an effective

computational method which we adapt to our environment.



One byproduct is a clearer picture of what drives the dynamics of the Pareto weights.

In many one-good economies, Pareto weights aren’t stable. Eventually one agent

consumes everything. One of the insights of Colacito and Croce (2013) is that home

bias and imperfect substitutability between goods can produce stable processes for

Pareto weights and consumption shares. That’s true here, as well, but we also show

how changes in risk aversion and intertemporal substitutability affect the dynamics of

the Pareto weight. Relative to the additive case, increasing risk aversion or decreasing

intertemporal substitution generates more persistence in the real exchange rate. Since

real exchange rates are very persistent in the data, this novel source of persistence is

a welcome one.

Risk is a particularly interesting object in this context. Random changes in the

relative supply of foreign and domestic goods also affect demand — with recursive

preferences — through their impact on future utility. As in many dynamic models,

it’s not clear here how (if?) we might separate the concepts of supply and demand. A

change in the conditional variance of future endowments, however, works only though

the second channel; supplies (endowments) do not change. Risk affects allocations

through its impact on the Pareto weight without any direct impact on supply.

All of these results are based on global numerical solutions to the Pareto problem.

These solutions take much more computer time than the perturbation methods used

in most related work, but they come with greater assurance that the solution is

accurate even in states far from the mean of the distribution.

Notation and terminology. We use Latin letters for variables and Greek letters for

parameters. Variables without time subscripts are means of logs. We use the term

steady state to refer to the mean of the log of a variable. Thus steady state x refers

to the mean value of log xt.

2 A recursive two-country economy

We study an exchange version of the Backus, Kehoe, and Kydland (1994) two-country

business cycle model. Like their model, ours has two agents (one for each country),

two intermediate goods (“apples” and “bananas”), and two final goods (one for each
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country). Unlike theirs, ours has (i) exogenous output of intermediate goods, (ii) a

unit root in productivity, (iii) recursive preferences, and (iv) stochastic volatility in

productivity growth in one country. The first is for convenience. The second allows

us to produce realistic asset prices. We focus on the last two, specifically their role

in the fluctuations in consumption and exchange rates.

Preferences. We use the recursive preferences developed by Epstein and Zin (1989),

Kreps and Porteus (1978), and Weil (1989). Utility from date t on in country j is

denoted Ujt. We define utility recursively with the time aggregator V :

Ujt = V [cjt, µt(Ujt+1)] = [(1− β)cρjt + βµt(Ujt+1)
ρ]1/ρ, (1)

where cjt is consumption in country j and µt is a certainty equivalent function. The

parameters are 0 < β < 1 and ρ ≤ 1. We use the power utility certainty equivalent

function,

µt(Ujt+1) =
[
Et(U

α
jt+1)

]1/α
, (2)

where Et is the expectation conditional on the state at date t and α ≤ 1. Preferences

reduce to the traditional additive case when α = ρ.

Both V and µ are homogeneous of degree one (hd1). The two functions together have

the property that if consumption is constant at c from date t on, then Ujt = c.

In standard terminology, 1/(1−ρ) is the intertemporal elasticity of substitution (IES)

(between current consumption and the certainty equivalent of future utility) and 1−α
is risk aversion (RA) (over future utility). The terminology is somewhat misleading,

because changes in ρ affect future utility, the thing over which we are risk averse. As

in other multi-good settings, there’s no clean separation between risk aversion and

substitutability.

Technology. Each country specializes in the production of its own intermediate good,

“apples” in country 1 and “bananas” in country 2. In the exchange case we study,

production in country j equals its exogenous productivity:

yjt = zjt. (3)
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Intermediate goods can be used in either country. The resource constraints are

a1t + a2t = y1t (4)

b1t + b2t = y2t, (5)

where b1t is the quantity of country 2’s good imported by country 1 and a2t is the

quantity of country 1’s good imported by country 2.

Agents consume final ‘goods, composites of the intermediate goods defined by the

Armington aggregator h:

c1t = h(a1t, b1t) =
[
(1− ω)aσ1t + ωbσ1t

]1/σ
(6)

c2t = h(b2t, a2t) (7)

with 0 ≤ ω ≤ 1 and σ ≤ 1. The elasticity of substitution between the two intermedi-

ate goods is 1/(1− σ). The function h is also hd1.

We will typically use ω < 1/2, which puts more weight on the home good in the

production of final goods. This “home bias” in final goods production is essential. If

ω = 1/2, the two final goods are the same. With identical hd1 utility functions, as we

have here, any optimal allocation involves a constant Pareto weight and proportional

consumption paths.

Shocks. Fluctuations in this economy reflect variation in the productivities cum

endowments zjt and the conditional variance of the first one. Logs of productivities

have unit roots and are cointegrated:[
log z1t+1

log z2t+1

]
=

[
log g
log g

]
+

[
1− γ γ
γ 1− γ

] [
log z1t
log z2t

]
+

[
v
1/2
t w1t+1

v1/2w2t+1

]
, (8)

with 0 < γ < 1/2. The only asymmetry in the model is the conditional variance

of productivity. The conditional variance v of log z2t+1 is constant. The conditional

variance vt of log z1t+1 is AR(1):

vt+1 = (1− ϕv)v + ϕvvt + τw3t+1. (9)

The innovations {w1t, w2t, w3t} are standard normals and are independent of each

other and over time.
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3 Features and parameter values

We describe some of the salient features of the model and the benchmark parameter

values we use later on.

Features

Consumption frontier. The resource constraints define a possibilities frontier for con-

sumption. We picture several examples in Figure 1, z1t = z2t = 1. In each case, we

compute the maximum quantity c1t consistent with a given quantity c2t, the resource

constraints (4,5), and the Armington aggregators (6,7). The shape depends on the

aggregator. When ω = 1/2, the two final goods are the same and the tradeoff is

linear. When ω 6= 1/2, the frontier is convex. The degree of convexity depends on

the elasticity of substitution 1/(1− σ) in the Armington aggregator.

In a competitive equilibrium, the slope of the consumption frontier is (minus) the

relative price of consumption in the two countries, p2t/p1t = et, the real exchange

rate. From the figure, we can imagine variation in this price produced either by

moving along the frontier or by changing the frontier through movements in the

quantities of intermediate goods.

Marginal rates of substitution. Competitive equilibria and Pareto optima equate

agents’ marginal rates of substitution (mrs for short). With recursive preferences, the

intertemporal mrs of agent j is

mjt+1 = β

(
cjt+1

cjt

)ρ−1(
Ujt+1

µt(Ujt+1)

)α−ρ
. (10)

The last term summarizes the impact of recursive preferences. If α = ρ, preferences

are additive and the term disappears. Otherwise anything that affects future utility

can play a role in the marginal rate of substitution, hence in allocations. A change

in risk, for example, affects future utility, and through it consumption quantities

and prices. Persistence is critical here, because more persistent shocks have a larger

impact on future utility. The discount factor β is similar: the larger it is, the greater

the weight on future utility and the greater the impact on the mrs.
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Note, too, the dynamics built into the recursive term. Its log is a risk adjustment

plus white noise. The log of the numerator is

logUjt+1 = Et(logUjt+1) +
[

logUjt+1 − Et(logUjt+1)
]
,

the mean plus a white noise innovation. The log of the denominator is

log µt(Ujt+1) = α−1 logEt(e
α logUjt+1)

= Et(logUjt+1) + α−1
[

logEt(e
α logUjt+1)− Et(α logUjt+1)

]
.

The term in square brackets is the entropy of Uα
jt+1 and is positive. We multiply by α

to get what we term the risk adjustment, which is negative if α is. The difference then

is the innovation minus the risk adjustment. The innovation increases the volatility

of the mrs, which is the primary source of success in asset pricing applications.

The mrs (10) is measured in units of agent j’s consumption good, whose price is pjt.

We refer to the relative price of the two consumption goods as the real exchange

rate: et = p2t/p1t. The two mrs’s are then connected by m2t+1 = (et+1/et)m1t+1.

We’ll derive this in the next section, but it should be evident here the dynamics of

the exchange rate reflect the mrs’s. If the two mrs’s are close to white noise, as we

suggested, then the depreciation rate et+1/et has the same property.

Productivity dynamics. One way to think about our log productivity process (8) is

that their average is a martingale and their difference is stable. Denote half the sum

and half the difference by

log z̄ = (log z1 + log z2)/2

log ẑ = (log z1 − log z2)/2.

Then we can express the underlying productivities by log z1 = log z̄ + log ẑ and

log z2 = log z̄ − log ẑ. Equation (8) implies that half the sum,

log z̄t+1 = log g + log z̄t + (v
1/2
t w1t+1 + v1/2w2t+1)/2,

is a martingale with drift. The difference,

log ẑt+1 = (1− 2γ) log ẑt + (v
1/2
t w1t+1 − v1/2w2t+1)/2, (11)
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is stable, which tells us log z1t and log z2t are cointegrated. Given the linear homo-

geneity of the model, changes in z̄ affect consumption quantities proportionately, with

no effect on their relative price, the exchange rate. Changes in relative productivity

ẑ, however, affect consumption quantities differentially and therefore affect the real

exchange rate as well.

Pareto problems. We compute competitive equilibria in this environment by finding

Pareto optimal allocations and their supporting prices. In a two-agent Pareto prob-

lem, we maximize one agent’s utility subject to (i) the other agent getting at least

some promised level of utility (the promise-keeping constraint) and (ii) the productive

capacity of the economy (the resource constraints and shocks). The Lagrangian for

this problem is

L = U1t + λt(U2t − U) + resource constraints and shocks,

with λt the multiplier on the promise-keeping constraint. If utility functions are

strictly concave, this is equivalent to traditional Mantel-Negishi maximization of their

weighted average,

θ1tU1t + θ2tU2t,

with positive Pareto weights (θ1t, θ2t). Evidently λt in the previous problem plays the

same role as θ2t/θ1t. We refer to λt as the Pareto weight, although in terms of the

latter version we might call it the relative Pareto weight.

Transforming utility. We find it convenient to use an hd1 time aggregator, but with

additive preferences (the special case ρ = α) it’s more common to transform utility

to U∗jt = Uρ
jt/ρ. With this transformation, equation (1) becomes

U∗jt = (1− β)cρjt/ρ+ β
[
Et(U

∗α/ρ
jt+1 )

]ρ/α
. (12)

When ρ = α this takes the familiar additive form.

The transformation also changes the look of derivatives. When we represent prefer-

ences with Ujt, marginal utility is

∂Ujt/∂cjt = U1−ρ
jt (1− β)cρ−1jt .
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When we use U∗jt, marginal utility takes the simpler form

∂U∗jt/∂cjt = (1− β)cρ−1jt .

We’ll use this insight later on to simplify some of the expressions we get using the

hd1 form of the time aggregator. This includes the Pareto weight, which is defined

for a specific utility function.

Parameter values

We make only a modest effort to use realistic parameter values. The goal instead is to

highlight the effects of recursive preferences and stochastic volatility with parameter

values in the ballpark of those used elsewhere in the literature. We summarize these

choices in Table 1. The time interval is one quarter.

Preferences. We use ρ = −1 (implying an IES of one-half) and α = −9 (implying risk

aversion of 10). The former is a common value in business cycle modeling; Kydland

and Prescott (1982), for example. The latter is widely used in asset pricing; Bansal

and Yaron (2004) is the standard reference. The key feature of this configuration is

that α− ρ < 0. We set β = 0.98.

Technology. The Armington aggregator plays a central role here, specifically the

elasticity of substitution 1/(1−σ) between foreign and domestic intermediate goods.

A wide range of elasticities have been used in the literature. Some earlier work used

elasticities greater than one. Colacito and Croce (2013, 2014) and Kollman (2015)

use an elasticity of one. Heathcote and Perri (2002, Section 3.2) and Tretvoll (2013,

Table 1; 2015, Table 3) suggest smaller values. We start with an elasticity of one

(σ = 0), but consider other values, particularly when we explore the interaction of

the elasticity and the dynamics of the Pareto weight.

Given a choice of σ, we set the share parameter ω like this. First-order conditions

equate prices to marginal products:

p1t = c1−σ1t (1− ω)aσ−11t

p2t = c1−σ1t ωbσ−11t
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In a symmetric steady state with import share sm = b1/(a1 + b1) and relative price

p2t/p1t = 1, the ratio of these two equations implies(
1− ω
ω

)
=

(
1− sm
sm

)1−σ

. (13)

We set sm = 0.1. Given a value for σ, the import share nails down ω. One consequence

of this calculation is that the parameter ω approaches one-half as σ approaches one

(and the elasticity of substitution approaches infinity).

Shocks. The mean growth rate is log g = 0.004: 0.4% per quarter. The number comes

from Tallarini (2000, Table 4) and applies to the US. We set the persistence parameter

γ that governs productivity dynamics equal to 0.1, which implies an autocorrelation of

1− 2γ = 0.8 for log ẑ. Rabanal, Rubio-Ramirez, and Tuesta (2011, Table 5) estimate

γ to be less than 0.01, which implies significantly greater persistence. The stochastic

volatility process (9) is based on Jurado, Ludvigson, and Ng (2014) as described in

Backus, Ferriere, and Zin (2014, Section 5.3).

4 Solving the recursive Pareto problem

We compute a competitive equilibrium indirectly as a Pareto optimum, a standard

approach in this literature. The competitive prices then show up as Lagrange multi-

pliers on the resource constraints. Similar models have been studied by Colacito and

Croce (2013), Kollman (2015), and Tretvoll (2011).

Pareto problem

We solve the Pareto problem recursively. We make a slight change in notation, and

represent utility of agent 1 by J , the value function, and the utility of agent 2 by

U , without the “2” subscript. The state at date t is then the exogenous variables

st = (z1t, z2t, vt) plus the utility promise Ut made to agent 2. The Bellman equation

is

J(Ut, st) = max
{c1t,Ut+1}

V
{
c1t, µt[J(Ut+1, st+1)]

}
s.t. V

{
c2t, µt(Ut+1)

}
≥ Ut

plus resource constraints and shocks.
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The resource constraints include (4,5) for intermediate goods and (6,7) for final goods.

The shocks follow (8,9).

We use Lagrange multipliers λt on promised utility and (q1t, q2t, p1t, p2t) on the re-

source constraints. The first-order conditions are then

c1t : p1t = J1−ρ
t (1− β)cρ−11t (14)

c2t : p2t = λtU
1−ρ
t (1− β)cρ−12t (15)

a1t : q1t = p1tc
1−σ
1t (1− ω)aσ−11t (16)

b1t : q2t = p1tc
1−σ
1t ωbσ−11t (17)

a2t : q1t = p2tc
1−σ
2t ωaσ−12t (18)

b2t : q2t = p2tc
1−σ
2t (1− ω)bσ−12t (19)

Ut+1 : J1−ρ
t βµt(Jt+1)

ρ−αJα−1t+1 JUt+1 = −λtU1−ρ
t βµt(Ut+1)

ρ−αUα−1
t+1 . (20)

Note, in particular, that equation (20) applies to promises Ut+1 in every state at t+1.

It’s many equations, not just one.

The envelope condition for Ut is

JUt = −λt,

which we use to replace JUt+1 with λt+1 in (20).

Transforming the Pareto weight. We can simplify the solution by transforming the

Pareto weight λ. A Pareto weight is defined for specific a utility function; if we

transform the utility function, we transform the Pareto weight along with it. The

natural benchmark for the Pareto weight is the additive case, in which it’s constant.

Additive preferences are traditionally expressed using utility U∗t = Uρ
t /ρ and J∗t =

Jρt /ρ. The associated Pareto weight is

λ∗t = λtU
1−ρ
t /J1−ρ

t .

We refer to λ∗t as the additive Pareto weight — or simply, when it’s clear, the Pareto

weight.
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With this substitution, we can clearly see the impact of recursive preferences. The

first-order condition (20) becomes

β

(
Jt+1

µt(Jt+1)

)α−ρ
λ∗t+1 = λ∗t β

(
Ut+1

µt(Ut+1)

)α−ρ
. (21)

In the additive case, α = ρ, this reduces to λ∗t+1 = λ∗t : the Pareto weight is constant.

This is, of course, well known, but it’s nice to know we’re on the right track.

With recursive preferences, the Pareto weight need not be constant, although it’s an

open question how important this is quantitatively.

Consumption and the exchange rate. The same transformation of the Pareto weight

changes equations (14,15) to

(1− β)cρ−11t /p1t = λ∗t (1− β)cρ−12t /p2t

or

p2t/p1t = λ∗t (c2t/c1t)
ρ−1. (22)

If the prices of final goods are equal, as they are in a one-good world, the first equation

tells us to equate weighted marginal utilities across agents.

In the second equation, the left side is the real exchange rate et. The right is the

product of the Pareto weight and the consumption ratio. In the additive case, the

Pareto weight is constant and there’s a linear relation between the logs of the real

exchange rate and the consumption ratio. In the data, there is little sign of such

a relation. See, among many others, Backus and Smith (1993), Chari, Kehoe, and

McGrattan (2002), Corsetti, Dedola, and Leduc (2008), Colacito and Croce (2013),

Kollmann (1995), and Tretvoll (2011). We might say that the data suggests a wedge

between the price and consumption ratios.

If we further simplify the model to have a single good, then the real exchange rate

is one in all states. In the additive case, λ∗t is constant and equation (22) tells us

that the ratio of consumptions is also constant. Any variation in consumption by one

agent is exactly mirrored by the other. This is, of course, counterfactual, and one of

the standard anomalies of international business cycle models.
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Marginal rates of substitution. The Pareto problem equates marginal rates of substi-

tution, but since the agents consume different goods this involves the relative price

et = p2t/p1t. The ratio of equation (22) at dates t and t+ 1 is

β

(
c1t+1

c1t

)ρ−1(
et+1

et

)
=

(
λ∗t+1

λ∗t

)
β

(
c2t+1

c2t

)ρ−1
.

Combining this with (21) gives us

β

(
c1t+1

c1t

)ρ−1(
Jt+1

µt(Jt+1)

)α−ρ(
et+1

et

)
= β

(
c2t+1

c2t

)ρ−1(
Ut+1

µt(Ut+1)

)α−ρ
as noted earlier. Note the role of α − ρ. If the difference is zero, the recursive term

drops out. Otherwise the sign of the impact of future utility depends on the sign of

α− ρ.

Computation

Scaling. One challenge with computing solutions to this model is that the productivity

process (8) has a unit root. We deal with that by scaling: we divide everything by z̄t

and label it with a tilde: c̃1t = c1t/z̄t, c̃2t = c2t/z̄t, Ũt = Ut/z̄t, and so on. We define

the relevant state by s̃t = (ẑt, vt) and the growth rate in the scaling variable z̄t by

gt+1 = z̄t+1/z̄t.

Since the functions are all hd1, we can divide the whole Bellman equation by z̄t:

J̃(Ũt, s̃t) = max
{c̃1t,Ũt+1}

V
{
c̃1t, µt[gt+1J̃(Ũt+1, s̃t+1)]

}
s.t. V

{
c̃2t, µt(gt+1Ũt+1)

}
≥ Ũt

plus resource constraints and shocks.

The scaled resource constraints become

ã1t + ã2t = ỹ1t = ẑt

b̃1t + b̃2t = ỹ2t = 1/ẑt

c̃1t = h(ã1t, b̃1t)

c̃1t = h(ã1t, b̃1t).
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The laws of motion for the shocks are (11) for ẑt and (9) for vt (no scaling required).

z̄t drops out, leaving us with a lower-dimensional state.

Given a solution to the scaled problem, we can multiply by z̄t to produce a solution

to the original problem. The notation is horrendous. The point is simply that we can

convert our problem to one with stable shocks. And we do.

Algorithm. Another challenge in computing a solution is that at each date t, we

need to choose utility promises Ut+1 for every state the following period. We adapt

the algorithm of Collin-Dufresne, Johannes, and Lochstoer (2015) to a multi-good

setting. Their algorithm has three essential features. First, they make a clever choice

of state variable. Second, they use backward recursion, starting at a terminal date

and computing the value function recursively at earlier dates. Third, they use the

first-order conditions to solve for the optimal policies, rather than simply choosing

the best from a finite set of possibilities.

Consider the state variable. We characterized the problem using promised utility Ut

as the state. Collin-Dufresne, Johannes, and Lochstoer replace promised utility with

the consumption share. Given the consumption share, the conditions of the solution

give us promised utility as a byproduct. We use the (additive) Pareto weight the

same way, with consumption shares and promised utility as byproducts. The choice

of variable does not change the solution, but in our experience it can have a large

impact on the behavior of the algorithm.

Now consider backward recursion. We approximate an infinite-horizon dynamic pro-

gramming problem with a long finite-horizon problem. At the terminal date T , we

set utility equal to current consumption. This corresponds to a steady state in which

consumptions are constant at these values at all future dates. If we know the Pareto

weight λ∗T in all states at T , we can compute allocations of the two intermediate goods

and consumptions of the two agents in the same states. The consumptions then give

us value functions for each state at T that we can use the previous period.

In any previous period t, we need to choose both current consumptions and continu-

ation values for the Pareto weight in every succeeding state at t + 1. We choose the

Pareto weights λ∗t+1 and current consumptions cjt by solving the planner’s first-order

13



conditions. We speed this up by pre-solving the allocation problem on a fine grid for

the state variables. Given a solution for the Pareto weight, the time aggregators then

give us current utility and the value function.

We repeat this process until the value function and decision rules converge. We use

a sup norm criterion over both value functions and decision rules.

We use a discrete grid for the Pareto weight and other state variables. Our numerical

implementation has 451 points for the Pareto weight, 13 points each for the exogenous

state variables ẑt and vt, and 5 quadrature nodes for each of the three future innova-

tions — a total of 9.5 million points. We then use Hermite quadrature to compute

the expectations in the certainty equivalent functions. If the number of points seems

high, we have found that it’s essential to have a fine grid over the Pareto weight to

describe its dynamics adequately. We could probably work with a less fine grid than

we did, but this gives us some confidence that the solutions are accurate.

We do all of these calculations in Julia, a programming language that combines the

convenience of dynamic vector-based languages like Matlab with the speed of compiled

languages like C or Fortran.

5 Properties of the exchange economy

We compute an accurate global solution to the scaled Pareto problem and describe its

properties. We start with the Pareto weight, then go on to explore the dynamics of

the Pareto weight, the connection between consumption and the real exchange rate,

and the responses of consumption and other variables to changes in various state

variables.

The Pareto frontier. One of the outputs of the numerical solution is the value function

J , a function of promised utility U and the exogenous state variables. Given values for

the exogenous state variables, this gives us the Pareto frontier: the highest utility of

agent 1 (J) consistent with a given level of utility for agent 2 (U) and the productive

capacity of the economy.

We describe the Pareto frontier in Figure 2 with state variables z1t = z2t = ẑt = 1

and vt = v. The outer curve in the figure is the consumption frontier, which echoes
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Figure 1. The inner curve is the Pareto frontier. We see that it has much the same

shape. It’s inside the consumption frontier largely because of risk: utility is below

consumption because risk reduces the level of utility. If we increase risk aversion to

50 (α = −49, not shown), it shifts in further.

Changes in the state variables lead to changes in the frontiers. Movements in pro-

ductivity and output shift the frontiers — both of them — in and out (z̄t, which

affects the two intermediate goods proportionately) or twist them (ẑt, which affects

the two goods differently). Changes in risk twist the Pareto frontier, since it affects

the two goods differently, but not the consumption frontier, since it has no effect on

quantities of intermediate goods.

Dynamics of the Pareto weight. We see the impact of recursive preferences in Figure

3, where we graph log λ∗t against time for a (very long) simulation of the model. The

flat horizontal line refers to the additive case (α = ρ = −1). As we know, the Pareto

weight doesn’t change in this case. The other line refers to the recursive case, and we

see clear variation in the Pareto weight. We also see that the variation is both large

and very persistent. Persistence is important, as we’ll see, in producing persistent

movements in the real exchange rate.

This touches on a question that’s been discussed extensively: Is the Pareto weight sta-

ble, or does one agent eventually consume everything? Anderson (2005) and Borovicka

(2015) document some of the difficulties of establishing stability in similar one-good

settings. Colacito and Croce (2014) prove stability in a two-good world with elastic-

ities of substitution between goods and over time equal to one. Colacito and Croce

(2013), Kollmann (2015), and Tretvoll (2011, 2013, 2015) solve similar models nu-

merically and report that the solutions are stable. We also find that they’re stable,

but extremely persistent.

We get a sense of how stability works in Figure 4, where we plot the expected change

in the log Pareto weight against its level. The exogenous state variables here have

been set equal to their means. In the additive case, the change is zero. The log

Pareto weight is a martingale with no variance. With greater risk aversion, mean

reversion becomes evident. If the Pareto weight is below its steady state value of one

(log λ∗ = 0), it’s expected to increase. If above, it’s expected to decrease. The effect
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is stronger when we increase risk aversion to 50. There is also an evident nonlinearity

in the solution, as there is in Colacito and Croce (2014, Figure 5), but most of it

occurs in regions of the state space we rarely reach.

The elasticity of substitution between foreign and domestic intermediate goods also

plays a role in persistence. See Figure 5. With smaller values, mean reversion is

slower. And with larger values, it’s faster. As the elasticity increases, the line gets

flatter and we approach the one-good world with a constant Pareto weight.

The intertemporal elasticity of substitution also has an effect, but with the numbers

we’ve chosen the effect is smaller. See Figure 6. Evidently smaller values of ρ, and

larger values of the IES [1/(1− ρ)], lead to flatter lines.

Consumption and exchange rate. We noted earlier that the relation between the

log consumption ratio [log(c2t/c1t)] and the log of the real exchange rate [log et =

log(p2t/p1t)] is mediated by the log Pareto weight (log λ∗t ). See equation (22). In the

additive case, the Pareto weight is constant and we have a perfect linear relationship

between the two variables. We see exactly this in the line in Figure 7.

The scatter of points in the same figure represents the recursive case, where the

Pareto weight acts like a wedge from the perspective of the additive model. With our

numbers, the variation in the Pareto weight is enough to change a negative correlation

of minus one between the consumption ratio and exchange rate to a slight positive

correlation. Colacito and Croce (2013), Kollmann (2015), and Tretvoll (2011) show

the same. If we increase risk aversion 1 − α to 50, the correlation becomes strongly

positive. In the recursive model, we can produce almost any correlation we like by

varying the risk aversion parameter.

Recursive preferences also have an impact on exchange rate dynamics. Another well-

known feature of international data is the extreme persistence of the real exchange

rate. The mainstream view is that real exchange rates exhibit modest mean reversion,

with a half-life in the neighborhood of five years. We see in Figure 8 that the addi-

tive model is much less persistent: The half-life (where the autocorrelation function

equals one-half) is about a year. By five years, the autocorrelation is essentially zero.
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Exchange rate dynamics reflect, in this case, the modest persistence of relative pro-

ductivity ẑt. With recursive preferences, the exchange rate is much more persistent.

In fact with these parameter values, it’s virtually a martingale. We can reproduce

any level of persistence we like by varying risk aversion between the two cases, but the

larger point is that recursive preferences are a device that can deliver a high degree

of persistence.

Responses to productivity and volatility shocks. We get another perspective on the

model’s dynamics from impulse responses. Starting at the steady state, we increase

one of the exogenous state variables by one standard deviation at date one and com-

pute the mean dynamics of the other variables in the model.

In Figure 9 we describe responses to an increase in (the log of) relative productivity

ẑt. The effect of the impulse declines geometrically over time as described by equation

(11). Volatility remains constant. Holding constant z̄t, this leads to an increase in

log z1t and an equal decrease in log z2t. The quantity of apples goes up, and the

quantity of bananas goes down. Because of home bias, consumption goes up in

country 1 (the apple eaters) and down in country 2 (banana eaters). The exchange

rate rises as scarce bananas become more expensive.

All of this would be true in the additive case as well. What’s different is the response

of the Pareto weight. It goes up as we compensate the agent in country 2 with

promises of higher future consumption. This effect eventually wears off, but it does

so very slowly.

In Figure 10 we describe the responses to an increase in volatility vt. Here there’s no

change in the quantities of intermediate goods. In the additive case, there would be

virtually no effect. In the recursive case, utility falls, but it falls more for country 1

because of its home bias in favor of the good whose supply is more risky. The social

planner responds by decreasing the Pareto weight on agent 2. Consumption therefore

rises in country 1 and falls in country 2. The real exchange rate falls. This is entirely

a demand-side effect. By increasing the weight on agent 1, the demand for apples

goes up and the demand for bananas goes down. The magnitudes are small, but it’s

an interesting effect that we would like to explore further in a production economy,

where supply can respond to changes in market conditions.
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6 Open questions

We have documented the behavior of the Pareto weight in a relatively simple en-

vironment. We showed, as others have, that recursive preferences can change the

quantitative properties of the model in useful ways. The behavior of exchange rates,

in particular, is much different from the additive case.

Beyond this, we are left with a number of open questions:

• What parameters govern the persistence of the Pareto weight? Can we be more

precise about the impact of risk aversion and intertemporal substitution on the

dynamics of the Pareto weight? Of the substitutability of foreign and domestic

goods in the in the Armington aggregator?

• How would this change in a production economy? Production offers opportunities

to respond to changes in exogenous variables, particularly changes in risk. If pro-

duction in one country becomes more risky, do we shift production to the other

country? Does capital flow to the less risky country? Are the magnitudes plausible?

• How do changes in the Pareto weight generated by frictions and recursive prefer-

ences compare? Are they similar or different? Are the two mechanisms comple-

ments or substitutes?
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Table 1. Benchmark parameter values.

Parameter Value Comment

Preferences
ρ −1 IES = 1/(1− ρ) = 1/2
α −9 RA = 1− α = 10
β 0.98
Armington aggregator
σ 0 Cobb-Douglas
ω 0.1 chosen to hit import share of 0.1
Productivity growth
log g 0.004 Tallarini (2000, Table 4)
v1/2 0.015 Tallarini (2000, Table 4), rounded off
ϕv 0.95 Backus, Ferriere, and Zin (2015, Table 1)
τ 0.74× 10−5 makes v three standard deviations from zero
γ 0.1 persistence of productivity difference
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Figure 1. Consumption frontiers. Lines represent the frontier quantities of con-
sumption given unit quantities of the intermediate goods. The dashed black line has
ω = 1/2, making the two final goods the same. For the others, we choose an import
share of 0.1 and use (13) to adjust ω as we vary σ. The elasticities of substitution
noted in the figure are 1/(1− σ).
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Figure 2. Pareto and consumption frontiers. The outer line is the consumption
frontier with benchmark parameter values. The inner line is the Pareto frontier: the
utility J of agent 1 given promised utility U to agent 2. In each case, the other state
variables are z1t = z2t = ẑt = 1 and vt = v.
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Figure 3. Dynamics of the additive and recursive Pareto weight. The two lines
represent simulations of models with additive (α = ρ = −1) and recursive (α =
−9, ρ = −1) preferences. The simulations use the same paths for exogenous state
variables. In each case, we plot log λ∗t against time.
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Figure 4. Risk aversion and expected changes in the Pareto weight. The lines rep-
resent the expected change in log λ∗t [Et(∆ log λ∗t+1)] with three values of risk aversion
1− α: 2 (additive), 10, and 50.
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Figure 5. Armington substitutability and expected changes in the Pareto weight.
The lines represent the expected change in log λ∗t [Et(∆ log λ∗t+1)] with three values
of the substitutability parameter σ in the Armington aggregator. The elasticities
1/(1− σ) are 2/3, 1, and 2.
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Figure 6. Intertemporal substitution and expected changes in the Pareto weight.
The lines represent the expected change in log λ∗t [Et(∆ log λ∗t+1)] with three values of
the substitutability parameter ρ in the time aggregator: −1, −0.01, and 1/3. They
correspond to intertemporal elasticities of substitution of 1/2, 0.99, and 3/2.
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Figure 7. Consumption and the real exchange rate. The dots represent simulations
of models with additive (α = ρ = −1) and recursive (α = −9) preferences. In each
case, we plot log et = log(p2t/p1t) against log(c2t/c1t) for a simulation of the model.
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Figure 8. Dynamics of the real exchange rate. The lines represent autocorrelation
functions for the real exchange rate (log et) in models with additive (α = ρ = −1)
and recursive (α = −9) preferences.
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Figure 9. Responses of variables to an impulse in relative productivity log ẑt =
(1/2)(log z1t− log z2t) in country 2. The impulse takes place at date t = 1. Responses
are reported as percent deviations from mean values.
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Figure 10. Responses of variables to an impulse in volatility vt. The impulse takes
place at date t = 1. Responses are reported as percent deviations from mean values.
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