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1 Introduction

There is a large experimental literature studying the functioning of decentralized mar-
kets. Starting with the seminal work of Smith (1962, 1964), an important part of this
literature has focused on the price formation process, showing that experimental sub-
jects often converge to a single market clearing price. This finding has been obtained
in different settings and cultures (e.g., Holt 1995, Roth 1995, Bulte et al. 2014), and
participants do not appear to require prompting or guidance to quickly converge to the
market clearing price and to achieve a high level of efficiency (e.g., List 2002, 2004).

In this paper we focus on another common form of market interaction in which
payoffs of economic agents vary depending on who they trade with. For instance, two
workers may value two jobs differently, e.g., because of commuting distance. Similarly,
two employers may value two workers differently from each other, e.g., because of job-
specific skills or attributes. The same holds for many social matching processes – e.g.,
finding a friend or a spouse. All these processes have the following characteristics
in common: (1) link formation is decentralized – there is no Walrasian auctioneer; (2)
payoffs are pair-specific – agents value pairing with a given partner differently from each
other; (3) there is a upper bound or capacity constraint to the number of links that each
agent can form; and (4) offers and counter-offers are allowed – there is competition.
This paper explores the extent to which experimental subjects are adept at playing
decentralized market games with these characteristics.

To this effect, we design an original laboratory experiment that focuses on decen-
tralized link formation with suitable partners. Following Gale and Shapley (1962),
much of the literature on matching games has focused on single matching problems –
e.g., marriage market, employer-employee matching, student-class matching (Roth and
Sotomayor 1992, Echenique and Yariv 2013). Multiple matching has received less theo-
retical attention but has been picked up by the network literature (Jackson and Watts
2002, Demuynck and Vandenbossche 2013). Our experiment bridges the network litera-
ture that focuses on the determinants of link formation, and the literature on matching
games (in our case many-to-many matching, as players are allowed multiple links). For
this reason we use the expressions ‘link formation’ and ‘matching’ interchangeably in
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what follows. We extend the well-known single-match problem à la Gale and Shap-
ley to a competitive market framework where multiple links are admitted and agents
preferences are pair-specific, that is, fully heterogeneous across players and across links.
This payoff structure has the advantage of mimicking the interaction of common pref-
erences and homophyly, which are believed to be the two main forces behind matching
processes in real-life contexts.1

Several equilibrium concepts have been proposed for bilateral network formation
games. They all originate from pairwise stability (PS), a concept initially introduced
by Jackson and Wolinsky (1996). To satisfy pairwise stability, an equilibrium shall
contain only and all the links that are beneficial to both parties involved, which is
a natural requirement for link formation with mutual consent. We refine pairwise
stability to allow agents to deviate in coalitions of size two, that is, we allow a pair of
agents to cut some of their pre-existing links to simultaneously form a new link between
them. This allows players to compete through counter-offers to potential partners. This
equilibrium concept is close in spirit to what Becker calls a stable marriage market, and
has been named ‘strong pairwise stability’ (SPS) by Belleflamme and Bloch (2004)
in the context of network formation. SPS offers several advantages relative to PS.
First, it combines voluntary exchange (the PS part) with competition through offers
and counter-offers (the ‘strong’ PS part). This is desirable because it better represents
decentralized market processes. Second, relative to PS, SPS significant reduces the
number of equilibria, a problem that has plagued previous experiments on bilateral
network formation (Deck and Johnson 2004, Di Cagno and Sciubba 2008, Burger and
Buskens 2009).

Our original experimental protocol extends the Gale-Shapley algorithm to multiple
links, leaving participants free to compete for potential partners. Formally, subjects are
asked to form links with (up to two) other experimental subjects in a sequential and
decentralized way. Link formation requires mutual consent and only direct links affect

1It can be rationalized with a simple model displaying heterogeneity along two dimensions: each
player is endowed with an individual parameter qi representing his quality as a partner (common
preferences), each pair of player is assigned a relational parameter dij representing their socioeconomic
distance (homophyly), and the payoff of i from forming the link ij is qj − dij .
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individual payoff (i.e., there are no externalities from indirect connections).2 Because
of tractability issues, a payoff function of this kind has been rarely investigated in
the context of bilateral link formation and, to the best of our knowledge, it has never
been approached experimentally. Our game is designed in such a way that a SPS
configuration exists and interaction among subjects is guaranteed to lead to an SPS
configuration if participants play a myopic best response strategy. The first objective of
our experiment is to investigate to which extent experimental subjects converge to the
SPS equilibrium in the laboratory. The experimental literature has documented that
participants in games of strategic behavior seem to face difficulties in identifying which
strategy to select, especially when they lack a heuristic from their everyday experiences
to guide their choice.3 We wish to ascertain the extent to which similar difficulties arise
in decentralized matching games with competition.

The second objective is to shed light on which individual motivations and decision-
making techniques make subjects unable to reach the SPS equilibrium. In order to do
so we introduce four main treatments to test different hypotheses regarding strategic
behavior in decentralized matching games. In the first treatment we allocate subjects
to randomly assigned links at the beginning of the game. In contrast, subjects in the
control experiments begin the game with no link. In our game the initial network con-
figuration should not matter as long as subjects play myopic best response. However,
if subjects display inertia or loyalty to existing links, we expect a lower rate of con-
vergence to the SPS equilibrium when subjects start with randomly assigned links. In
the second treatment we provide full information about all payoffs of all other players.
This stands in contrast to the control experiments where subjects only observe their
own payoffs. In our game, information about own payoffs should suffice to reach the
SPS equilibrium as long as subjects play myopic best response. The role of full infor-
mation is thus a priori unclear in this context. On one hand, full information may

2To avoid making the experiment too complex, we also ‘switch off’ the possibility for subjects to
negotiate over contract terms such as link price. This is equivalent to assuming non-transferable utility.

3Significant deviations from rational play have been found in many experimental games (Gintis
et al. 2006, Kahneman 2011). These deviations seem more prevalent in games that are cognitively
challenging (Camerer et al. 2004, Costa-Gomez and Crawford 2006). But they arise even in games
that are seemingly straightforward, at least to economists (e.g., Crawford and Iriberri 2007, Caria and
Fafchamps 2015).
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speed up convergence if better informed subjects refrain from making offers that are
doomed to be rejected. On the other hand, it is difficult for subjects to compute the
SPS equilibrium even when information about payoffs is fully disclosed. Consequently,
full information may confuse players and prevent them from reaching an equilibrium
configuration. In the third treatment we vary the distribution of links in the SPS con-
figuration by introducing so-called ‘unbalanced’ games where certain players are unable
to form two links in equilibrium. If link formation is affected by other-regarding pref-
erences (e.g., Fehr and Schmidt 1999, Blanchflower and Oswaldt 2004), players may
seek to ‘co-opt’ these unfortunate players, thereby reducing convergence to the SPS
equilibrium. In a fourth treatment, we investigate whether difficulties in reaching an
SPS equilibrium arise when the game admits multiple SPS configurations – possibly as
a result of coordination failure.

We find that players in the lab attain the SPS equilibrium in 86% of the games.
When the SPS equilibrium is not reached, most SPS links are nonetheless formed. SPS
thus predicts the overwhelming majority of formed links in spite of the complexity
and the sequential nature of the game. One candidate explanation is that competing
for mates (e.g., sexual partners, team mates) is an evolved human behavior that long
predates the emergence of markets. As a result, the human mind may be naturally
attuned to it, in a way that is captured by the SPS equilibrium. If this confirmed by
further research, it means that strong pairwise stability may be a useful predictor of
behavior in decentralized link formation games of the kind we study here.

We also provide evidence on the reasons for departure from myopic best response.
We find no evidence of link inertia and no evidence of coordination problems in the pres-
ence of multiple SPS equilibria. Information on others’ payoffs speeds up convergence
but is not essential for reaching an SPS configuration. Whenever the SPS equilibrium is
not reached, it is mostly because subjects reject dominating offers. These sub-optimal
decisions appear to be driven by two factors. The first one is players’ tendency to
over-think: they attempt to act strategically in a setting that does not require either
strategy or coordination to converge to the competitive equilibrium. The second factor
is that players seem to (incorrectly) condition their offers and acceptances on past play:
they seem reluctant to link to players who have rejected them before, even when doing
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so is in their interest.
This paper contributes to the existing literature in several ways. First, we provide a

link between the literature on network formation and the literature on matching games
by extending the well-known single-match algorithm à la Gale and Shapley to a com-
petitive market framework where multiple links are admitted. Secondly, we contribute
to the growing experimental literature on network formation. Gathering evidence on
network formation from field data is problematic because of the many confounding fac-
tors such as unobserved heterogeneity and homophyly. Lab experiments provide a valid
alternative – see Kosfeld (2004) for a survey. Perhaps because of the issue of equilib-
rium selection, few experimental papers have dealt with bilateral link formation.4 Out
of the existing studies, only two deal with pairwise stability. Kirchsteiger et al. (2013)
incorporate an element of farsightedness into the notion of PS and provide experimental
evidence rejecting myopic behavior. Carrillo e Gaduh (2012) study individual behavior
and convergence to the stable network configuration in games admitting unique, multi-
ple, or no PS equilibria respectively. Our experiment is closest to these two studies but
it differs from them in two important dimensions. First, we allow two-players devia-
tions: strong pairwise stability keeps our theoretical framework tractable by ruling out
the equilibrium multiplicity inherent to pairwise stability. It also alleviates the need for
farsightedness in order to coordinate (Kirchsteiger et al. 2013). This allows us to offer
the first experiment on link formation that integrates heterogeneity and competition
– two key features of real-life decentralized markets. Secondly, we use information on
individual play to test deviations from myopic best-response, with a view of identifying
what patterns of individual behavior lead to a failure of convergence to an equilibrium
configuration.

The paper is organized as follows: Section 2 introduces the matching process and
4Di Cagno and Sciubba (2008) and Conte, Di Cagno and Sciubba (2009) study player’s coordination

in a linking game with indirect externalities where all players simultaneously submit link proposals
without communication, and they find little evidence of convergence to a stable network. Burger and
Buskens (2009) investigate whether theoretically stable networks are stable experimentally, depending
on whether the externalities from indirect contacts are null, positive or negative, and conclude that
emerging networks tend to correspond with the predicted networks. In a spatial cost topology, Deck
and Johnson (2004) study how the experimental network architecture performs in term of efficiency
with respect to the largest possible social payoff, depending on who pays for the linking costs.
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the experimental design, Section 3 provides information about the four main treat-
ments, and Section 4 discusses the results. More treatments are discussed in Section
5, and Section 6 concludes. Figures and tables are reported at the end of the paper.
Screen shots from the computer interface are illustrated in Appendix A. The written
instructions for players are reproduced in Appendix B.

2 Experimental design

Our experiment was funded by the Paris School of Economics. Experimental sessions
took place in the Parisian Experimental Economics Laboratory (LEEP) between Jan-
uary 2013 and June 2015. The software used was coded specifically for this experiment
by programmers at the LEEP (in HTML, Javascript and Regate5).

All participants were students enrolled in the University Paris 1 Pantheon-Sorbonne
at the time, without distinction of field or discipline. In total we have 48 groups of ex-
actly 6 players each, which are distributed over 17 experimental sessions.6 The average
payment at the end of the experiment is 20.8 euros for about 1.30 to 2 hours of presence
in the laboratory. Half of these players (24 groups) played our main experimental pro-
tocol which includes four treatments, on which we focus our attention in what follows
(Sections 2 to 4). The other half of players (24 groups) played two modifications of the
main protocol that we discuss in Section 5.

In what follows we start by describing the matching process which is the core of
our experimental design. We then specify the practical conditions under which the
experiment was held and we introduce the details of the protocol.

5Regate is an experimental program and language created by Romain Zeiliger (https://www-
perso.gate.cnrs.fr/zeiliger/regate/regate.htm).

6We had 14 sessions with 3 groups, and 3 sessions with 2 groups. We need groups of exactly 6 players,
therefore we always invited more students that strictly necessary (the show-up fee for overbooked
students was 7 euros).
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2.1 The matching process

In order to design a many-to-many matching game, we sought inspiration from differ-
ent matching algorithms that allow for competition through offers and counter-offers.
These algorithms differ in whether they loop through network configurations, players,
or pairs. They also differ in terms of speed and computational efficiency. In spite of
these differences, all these algorithms converge to the same stable match, i.e., the SPS
equilibrium. After some experimentation, we selected an experimental design inspired
by the marriage market algorithm of Gale and Shapley (1962), but extended to a setting
with multiple links.7

Participants play a sequence of games together. Each game is organized, as in a
board game, as a sequence of rounds divided in turns. Within a round, each of the
players gets his turn to play. The order of players within a round changes randomly
across rounds. When his turn comes, the selected player is allowed to sever existing
links and to make linking offers to other players. Each of these offers is either rejected or
accepted – more about this below. At each moment, a player can only hold a maximum
of two links. As in a Gale-Shapley algorithm, this process of offers and acceptances
continues until an entire round takes place without any change in links. The set of
links when the game ends determines the players’ payoff for that game.

The first reason for choosing this protocol is that it is intuitive to participants. Mak-
ing and receiving offers is something people seem to be familiar with in their everyday
life – e.g., making an offer on a flat, procuring a service from a contractor, inviting
someone for dinner. Selecting for the lab a matching process that allows a natural
form of interaction increases the likelihood that our experiment brings to light behavior

7In the Gale and Shapley’s algorithm, all men start by simultaneously making an offer to their
most preferred woman. Women then conditionally accept the best offer they received and reject all
the others. In the next round, each man without a conditionally accepted offer makes an offer to a
woman who did not refuse his offer in the past. This woman then either reject the offer, or accept
it, in which case any conditionally accepted offer she was holding is voided. The sequence of offers
and conditional acceptances continue until no more offers are made. The resulting set of matches is a
stable marriage equilibrium, that is, an SPS equilibrium of a network formation game where only one
link with a person of the other sex is allowed. Perhaps the best known application of this algorithm
is the National Resident Matching Program, which matches physicians and residency programs in the
United States.
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patterns that are predictive outside the lab. Second, computer simulations and piloting
with human subjects both indicate that, for our experimental design at least, cycling
over players is faster than alternative algorithms, such as cycling over pairs (‘dyads’)
or cycling across network configurations. Much care was devoted to create a computer
interface that is both informative and intuitive for players.

2.2 Experimental setting

At the beginning of a session, players are randomly divided into groups of 6 players,
and assigned a letter identifier from A to F . Each group plays four games with each
other. The composition of the group remains unchanged across the games but letter
identifiers are reshuffled at the end of each game. This is done to avoid individual
reputation effects.8 Each game follows the sequence of rounds and turns described
above. The game ends when the network configuration remains unchanged for one
entire round (i.e., 6 turns with no change), or at the end of the 8th round, whichever is
less.9

There are two types of situations in which players act: when it is their turn to move,
and when they are responding to an offer. For simplicity, we call the first role ‘mover’
and the second ‘respondent’. Within his own turn, a player (‘mover’) can take actions
of two types: (1) he can sever a link he holds; and (2) he can offer to link with another
player he’s not linked to. Each of these actions is called a move. A mover can never
hold more than two links at any given moment: if he already holds two links and makes
a new link proposal, he must specify which existing link he is willing to drop if the offer
is accepted.10

8Each player sees on the screen a circle with himself at the bottom (“ME” - followed by his current
letter) and the other 5 players around, labelled with their respective letters. While ME stays always at
the bottom, the other players’ letters are visualized in clockwise order (i.e. C will be always between
B and D). We reshuffle the individual identity at the end of each game, for instance a certain player
can see himself as “ME (D)” in a game, and then in the following game he sees himself as “ME (A)”,
and all other identities have been reshuffled accordingly.

9This feature is included to prevent endless cycling. In practice, only 5% of all games reach the 8th
round without having converged.

10For instance, if mover A already holds two links, say with B and C, and offers to link with D, A
must first specify which link, B or C, he would like to sever in case D accepts the offer. This decision

9



Within his turn the mover can do multiple moves of the types explained above, in
a sequential order of his choice: he can sever one or more links, and he can make offers
to some or all the other players. To avoid cycling within the turn, we only impose
that a mover can: (1) unconditionally sever only the links he holds when the turn
began; and (2) only propose new links that did not exist at the beginning of the turn.11

Movers have 15 seconds per move. If they fail to take any action, by the end of the 15
seconds they are considered having forfeited their turn and the game moves onto the
next player. However, they can make multiple moves during their turn, and for each
move the 15-second limit applies.

During another player’s turn, any player (‘respondent’) may be called on to accept
or reject a linking offer. If the respondent holds less than two links, he can either accept
or reject the offer directly. If the respondent already holds two links, at the moment of
accepting he has to specify which of these two links will be severed.12 If the respondent
decides not to drop one of his two links, the offer is considered rejected. Respondents
have 15 seconds to accept or reject an offer. If they do not take any action within that
time interval, they are considered as having rejected the offer, and the game continues.

All linking offers made and received remain private information between the two
players involved until an offer is accepted and a new link is formed.13

must be made before knowing whether D accepts the offer.
11This means that, within a turn, a mover can only make a maximum of 5 offers (fewer if he is

already holding links). But nothing prevents a mover to re-propose the same link when it is his next
turn to play. Also, a link can be formed and severed within the same turn, but only as a consequence
of getting another offer accepted. Here is an example of a particularly long but feasible sequence of
moves: starting with no links, player A offers to link with B; the offer is rejected; A offers to link with
C; the offer is accepted (A now holds one link); A offers to link with D; the offer is accepted (A now
holds two links); A offers to link with E and commits to drop the link with C if accepted; the offer
is accepted (the link with C is dropped and the link with E is added); A offers to link with F and
to drop the link with E if accepted; the offer is rejected. Since A has made offers to all other players
within this turn, he cannot make any more offers and the turn ends.

12For example, suppose that mover A proposes to D who already holds two links, say with E and
F . Repondent D wishes to accept A’s offer. To do so, D must first specify which link, E or F , he
severs when accepting A’s offer. This guarantees that D never holds more than two links.

13To illustrate, imagine that player A has two links (to B and C) and player D also has two links
(to E and F ): if during his movement A makes an offer to D by conditionally dropping his link to B
but the offer gets refused, neither B (directly involved) nor C,E and F will ever be informed of the
offer made. On the other hand, if the offer is accepted everyone will see the new network configuration
immediately appear on the screen.
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A detailed description of the computer interface is given in Appendix A.

2.3 Payoffs

A key feature of our experiment is that payoffs are pair-specific, that is, fully hetero-
geneous across players and links. To illustrate, let i’s payoff from forming a link with
j be denoted πij.14 We do not require that πij = πji, that is, we do not impose that
two players need to benefit equally from the link. In other words, j may be the most
desirable partner for i even though i is the least desirable partner for j. We also do
not require that πij = πkj, that is, we do not impose that two different players value
linking with j equally: j may be the most desirable partner for i but the least desirable
partner for k.15 The lack of correlation between πij and πkj means that i’s gains are
not informative about others’ gains: if information about other players’ payoff is not
provided in the experiment, players cannot infer anything from their own payoffs. We
do, however, require that πki 6= πkj for all k, i and j. This requirement implies that each
player has a strict ranking over all other players; this guarantees that there are no ties.
Operationally, this is achieved by setting a payoff vector of the form [10, 30, 20, 50, 40]

where the order of the five payoff values has been independently randomized for each
player.16

Because randomization is done independently by player, it can happen that one
player is generally more desirable for all or most other players. For instance, it is
possible that, in some game, the payoff matrix is such that πAB = πCB = πDB = πEB =

πFB = 50. In this case, player B is the most desirable partner for all subjects. Since
players can only hold two links, this means that not everyone will be able to link to B.
In this particular case, we would expect B to receive offers from everyone, and to accept
those that are the highest, those worth 50 and 40 to him. Alternatively, a player, say
C, may only be desirable for players from whom C would gain little. In this case, C

14There are no gains from self-links, i.e., πii = 0.
15In the parlance of the marriage market literature, the latter condition is equivalent to assuming

no common preferences.
16Note that, since all links yield a positive payoff, any outcome in which players hold two links is a

PS equilibrium. This is because no player wishes to unilaterally deviate by dropping a link since doing
so always reduce the player’s payoff.
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may only secure a low payoff. The point of these examples is to draw the attention to
the fact that payoffs need not be equalized across players even though they all face the
same five values in their payoff vector.

The total payoff of each player at the end of a game is simply the sum of the gains
from the links he holds when the game stops.17 At the end of the experiment, we
randomly draw one of the four games played by the group in the session, and players
receive their total payoff from that game.18 This ensures that participants have a
material incentive to form the most profitable links in each of the four games they play.

2.4 Equilibrium and convergence

In order to generate the payoff matrices used in the lab game, we proceed as follows:
we first generate random payoff matrices with the features described in Section 2.3, and
then we check for the existence and the characteristics of the SPS equilibrium. This is
done computationally: to make sure that each selected payoff matrix has (at least) one
SPS equilibrium we loop through all possible network configurations, verifying for each
configuration whether it is SPS for that specific matrix.19 The retained payoff matrices
are those used in the experiment.

Our experimental protocol displays three key features related to the SPS equilib-
rium. First, the SPS equilibrium configuration is fully determined by the payoff struc-
ture of the game. This means that we can vary a number of experimental conditions (for
example the initial network configuration) and we still have the same SPS equilibrium
of reference. This allows us to test several hypothesis about the individual motivations
behind linking choices.

Secondly, our experimental protocol is robust to individual mistakes. Recall that the
game ends only when there is no change in the network for an entire round. This means
that, by the time the game ends, each player has had the opportunity to either sever
existing links (and choose not to) or to make new offers (and if he did, they were not

17For instance, if i is linked to j and k, then i’s payoff for that game is πij + πik.
18The conversion rate was 0.2 euros per point of gain, plus a fixed payment for participation.
19This is computationally burdensome, but feasible in our case because the number of players in a

group is small.

12



accepted).20 Also, since payoffs do not fall across rounds, there is no penalty if the game
continues, the only thing that matters is the final outcome. Thus, individual mistakes
can be easily corrected, links previously severed can be re-formed at no material cost,
and offers previously declined can be re-made and accepted as long as the players
involved change their mind.

Thirdly, players do not need much information in order to play this game success-
fully. As long as a player knows his own payoffs and is willing to make offers, he can
select the best partners out of those who are willing to link with him (possibly because
they have no better offer on their plate). Full information on the payoff of potential
partners may be useful in that it may speed up the game through self-censoring. But it
is not necessary for convergence if players are patient enough and are willing to continue
making offers. On the other hand, even if the entire payoff matrix is disclosed, from
a player’s perspective it is virtually impossible to compute the SPS equilibrium: there
are so many feasible network configurations that even the most mathematically gifted
subject could not work out the SPS without a computer. Thus, our experimental pro-
tocol is complex but convergence does not require complex thinking. This gives us the
opportunity to explore whether experimental subjects respond positively or negatively
(e.g., information overload) to the amount of information they receive.

Although proving this formally is beyond the scope of this paper, we believe that
for the well-chosen payoff matrices described above, the sequence of offers and accep-
tances converges to a SPS equilibrium whenever three requirements are met. The first
requirement is that movers should not make dominated offers (i.e. an offer which, if
accepted, would lead the mover to drop a link that yields a higher payoff than the
one he’s proposing) - or if they do, they correct themselves later on in the game. The
second requirement is that respondents do not reject dominating offers (i.e. an offer
that yields a payoff higher than any of the links currently held by the respondent) -
or if they do, they correct themselves later on in the game. Whenever players comply
with the two requirements above, we say that they are playing a ‘myopic best response
strategy’, choosing actions that maximize one’s payoff based on the current state of

20Note that a player cannot prevent convergence by indefinitely making offers: if a complete round
takes place without any of these offers being accepted, the game stops.
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play, and ignoring any future play. The third requirement is that enough players make
enough offers for a long enough time – convergence would fail if all players consistently
refrain from making offers that are part of the SPS equilibrium.

There are many possible reasons why players may deviate from the three behavior
patterns listed above. For example, players may make dominated offers in order to
increase the payoff of another player whom, in their eyes, needs to be rewarded or
is receiving an unfairly low payoff. They may reject dominating offers because they
believe the other player is benefitting unfairly from the link, or because they want to
punish that player for rejecting them in the past. They may stop making offers early if
they have satisficing preferences and do not wish to search more. Documenting these
departures from myopic best response is a central objective of our paper.

3 The treatments

Our experimental protocol naturally has multiple sources of experimental variation,
such as the variation in payoff vectors across players and the variation in the order
of turns within a round. These sources of variation will be used to study the factors
affecting convergence to an equilibrium. We also introduce four main treatments that
we describe in what follows. Two additional modifications of the main protocol are
discussed in Section 5.

3.1 Initial network

In the control games, the initial network configuration is empty – i.e., players start the
game with no links. Our first treatment introduces games in which all players start
with 2 randomly-assigned links. We call this T1 in the regression analysis of Section 4.

When players start with no links, their initial payoff is 0. They thus have an incentive
to make offers in order to achieve a positive payoff. In contrast, when a player starts
with two links, the player can obtain a positive payoff even without doing anything. This
may induce them to do nothing, for a variety of causes. One possibility is the presence
of an endowment effect that creates a reluctance to drop randomly assigned links (e.g.,

14



Kahneman Knetsch and Thaler 1991, Rabin and Thaler 2001, Koszegi and Rabin 2009).
Another possibility is that players follow a satisficing heuristic (e.g., Simon 1956, Nelson
and Winter 1982), i.e., they stop trying to improve on a satisfactory outcome by making
or accepting new offers. It is also conceivable that players feel some (misplaced) loyalty
towards players to whom they have been linked at the beginning of the game – a bit
like pupils who have been randomly assigned a seat in the class and feel some sense
of loyalty towards the pupil in the seat next to them. If any of the motivations above
prove valid, we expect a lower rate of convergence to an SPS equilibrium under T1.

3.2 Payoff information

In the control games, players only observe their own payoffs (i.e. i only observes πij for
all j). In other words, they can only tell which links are most beneficial to themselves.
We introduce a full-information treatment (called T2) in which players observe the
entire payoff matrix. In this treatment, player i observes not only his own payoffs, but
also the payoffs that other players would obtain from different links and hence who
they would most prefer to link with. Operationally, this is achieved by introducing an
additional functionality to the screen: in a full information game, i can observe the
entire payoff vector of any other player j by hovering the mouse over j’s icon.21 Figure
A2 shows a snapshot of the screen that players could see during a game with full payoff
information by moving their mouse. We see the screen of player F at a particular
moment of the game when it is F ’s turn to play – he has no links and he is currently
browsing the payoffs vector of player A before deciding whether to make him an offer.
Figure A2 is a good illustration of the considerable development effort that went into
designing a player interface that contains all the relevant information, but remains as
intuitive and visual as possible, so as to keep the cognitive burden of the game as low as
possible. In control games where players can only observe their own payoffs this feature
is switched off (Figures A7-A9).

By accessing this information, a player may gain an idea of the likelihood that an
21A proper understanding of this functionality is carefully tested during the training session. We

also record how much time players spend browsing the gains of others, which is used in the analysis of
Tables 3 and 5.
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offer would be accepted. As a result, players may refrain from making offers they think
will be rejected – perhaps to speed up the game, or because each rejection entails a
psychological cost (e.g., Hitsch Hortacsu and Ariely 2010, Belot and Francesconi 2015).
Self-censoring of this kind may speed up convergence – less time is spent making doomed
offers. It may also hinder convergence if players refrain from making offers they think
will be rejected, but in fact belong in the SPS equilibrium. The reader may think that,
once the payoff matrix is known, it is easy enough to compute the SPS equilibrium.
This is actually not the case – even less so when players are only given 15 seconds
for each move. Thus, knowledge of others payoff may be detrimental if player try to
act strategically in a setting where strategic behavior is not necessary, and where the
SPS equilibrium is not computable. The possibility of self-censoring does not arise in
the control treatment. Even in the full information treatment, players may decide not
to check other players’ payoffs – playing myopic best response, for instance, does not
require it, and still leads to the SPS equilibrium.

3.3 Unbalanced or multiple SPS equilibria

Some of the experimental variation across games stems from differences in payoff
matrices. As explained earlier, in the main protocol player payoffs take five values
[10,20,30,40,50]. The retained payoff matrices differ along two dimensions that identify
two treatments: whether the resulting equilibrium is ‘balanced’ or ‘unbalanced’ (which
is explained in what follows); and whether there is one or two SPS equilibria.

In control games we only use payoff matrices with a single SPS configuration that
is ‘balanced’, in the sense that all players have 2 links each in the SPS equilibrium,
making 12 links overall.22 In the third treatment (called T3) we introduce matrices
for which the SPS configuration is ‘unbalanced’, in the sense that it has 10 links in
equilibrium.23 In unbalanced games, payoffs and number of links are more unequally
distributed. Hence, if link formation is affected by other-regarding preferences (e.g.,

22There are only two network configurations allowed in this case: either all players form a circle; or
there are two circles with three players each.

23Either two players are linked to each other and the others form a circle of four players, or one
player has no link and the other five players form a circle.
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Fehr and Schmidt 1999, Blanchflower and Oswaldt 2004), ceteris paribus we expect a
lower likelihood of convergence to the SPS configuration in an unbalanced game.

In control games, there is a single SPS equilibrium. We introduce a fourth treatment
(called T4) where the payoff matrix admits two SPS equilibria.24 When a game has
a single SPS equilibrium, the order of turns (which is randomly assigned) should not
matter for convergence. When a game admits two SPS configurations, the order of
turns may play a role in selecting one equilibrium out of the two. This is what would
happen, for instance, if players always stick to myopic best response: in this case, the
SPS equilibrium would be selected by the order of play. With two SPS configurations,
it may be more difficult to converge to an SPS equilibrium – for instance because
of coordination failure, as players attempt to steer the game towards different SPS
configurations. We therefore conjecture that convergence to an SPS equilibrium may
be less frequent and may take more time when there are two equilibria.

3.4 Sequencing of treatments

We present in Table 1 the sequence of treatments across the 24 groups of 6 participants
that form the core of our experiment (96 unique games in total). Each letter denotes a
particular combination of T1 (initial network) and T2 (payoff information): A stands
for empty initial network and own payoff information only; B stands for empty initial
network and full payoff information; C stands for full initial network and own payoff
information only; andD stands for full initial network and full payoff information. Table
1 shows how the the first two treatments are crossed in a systematic and symmetric way:
with 24 groups we are able to implement each of the 24 possible order permutations
of the four treatment combinations A, B, C and D.25 This enables us to disentangle
treatment effects from a game order effect, e.g., due to learning. Also, letters that are
underlined indicate games in which the SPS equilibrium is unbalanced, i.e., has only
10 links. It is clear from Table 1 that balanced and unbalanced SPS equilibria are
distributed evenly across groups and letters. Finally, letters in green indicate the 12

24Note that only balanced games may admit two SPS configurations.
25Note that the first block (group 1 to 12) plays almost the same sequence as the second block (group

13 to 24), except that the third and fourth letter are switched.
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balanced games that admit two SPS equilibria, whose allocation was let random.
It is important to realize that games with the same letter in Table 1 share common

features but they are not identical. To illustrate, consider two C, that is, two unbalanced
games with a full initial network and own payoff information only. These games share
common features – each player starts the game with two randomly assigned links, and
there are 10 links in the SPS equilibrium. But they differ in many other respects: a
different payoff matrix (and thus a different unbalanced SPS configuration); a different
initial network configuration; and a different order of turns. This implies that when
groups 1 and 2 play game C, they play two different link formation games. We have
done so in order to disentangle the effect of the treatments from specific structural
properties of the network configurations that we generate.

4 Main results

We start the empirical analysis by examining whether players converge to an SPS
equilibrium across the different games played in the lab. We then turn to the analysis
of the different treatments on outcomes, where we analyze our data at three different
levels: game, link, and action. Throughout this section we focus on the main blocks
of experiments (the 96 games described in Sections 2 and 3 and presented in Table 1).
Results from additional sessions testing ancillary hypotheses are discussed in Section 5.

4.1 Outcomes

We start by noting that the SPS equilibrium is a strong predictor of experimental
outcomes. In 83 of 96 games (86%) players converge to an SPS equilibrium. And in
the 13 games where the SPS configuration is not reached, 70% of the SPS links are
nonetheless created and the aggregate payoff is close to the aggregate payoff of the SPS
equilibrium (399 versus 413 experimental points on average).26

26Out of the 13 games where an SPS equilibrium is not reached: 4 are under-connected (i.e. they
have 5 links vs. 6 in the SPS equilibrium); 5 are over-connected (i.e., they have 6 links vs. 5 in the
SPS equilibrium); and 4 have the correct number of links, but some of them do not belong to the SPS
equilibrium.
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Could these results have been generated by chance? To investigate this possibility,
we generate, for each game, random networks with two links per player. As noted earlier,
each of these is a PS equilibrium by construction. By generating 100 such networks
for each game, we approximate the distribution of links under the null hypothesis of
random networks. We find that, on average, random PS networks have 37% of the SPS
links – compared to over 96% across all our experimental networks. Since 99.3% of
the randomly generated PS networks have 80% or fewer SPS links, we firmly reject the
random networks null hypothesis. In other words, the likelihood that these results were
obtained by chance is vanishingly small. Incidentally, this also implies that pairwise
stability is a poor predictor of outcomes in our experiment.

4.2 Games

Next we turn to variation in game outcomes due to the treatments. We start by
reporting an analysis of results from the 96 games presented in Table 1. Table 2 reports
the results of linear regressions of the form:

yi = β0 + βTg + λg + λgr + λs + εi (1)

where yi represents an outcome variable for game i to be described in what follows. The
vector Tg represents the four game-level treatment dummies discussed in Sections 3.1
to 3.3: dummy T1 equals one if the initial network configuration is non-empty (i.e., the
game starts with two randomly assigned links per player). The dummy T2 equals one
if the game was played under full information about the payoff matrix. The dummy T3
equals one if the SPS equilibrium is unbalanced (i.e., has 10 links instead of 12). The
dummy T4 equals one if the payoff matrix admits two SPS equilibria. We include the
game fixed effects λg (i.e. a set of dummies for the order in which the game was played
from 1 to 4), the group fixed effects λgr, and the session fixed effects λs to allow for
possible common shocks. Standard errors are clustered at the group level, which is the
highest level at which participants interact in the experiment.

We estimate model (1) for several outcome variables. In the first column of Table
2, the dummy dependent variable yi equals one if the game converged to an SPS equi-
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librium. In column (2) the dependent variable is the share of SPS links formed in the
final network configuration – i.e., out of the links that exist when the game stops. In
column (3), the dependent variable is the total number of links formed. In column (4)
the dependent variable is the sum of all the payoffs obtained at the end of the game,
which is an indicator of efficiency.27 In column (5) it is the total number of rounds
played; in column (6) is the number of accepted proposals; and in column (7) it is the
number of rejected proposals.

The regression results presented in Table 2 indicate that none of the four treatments
under analysis affects whether players reach an SPS equilibrium or the share of SPS
links they form. In other words, the finding that players consistently converge to the
SPS equilibrium is robust to all four treatments.

The full complete information treatment T2 significantly increases the total number
of links as well as efficiency. It also decreases the time needed to converge and the
number of rejected offers. The increase in efficiency arise due to three combined effects.
First, as shown in column (3) of Table 2, players form more links under full information,
and this tends to mechanically increase the sum of payoffs. Secondly, when players do
not reach the SPS configuration, they still achieve a higher aggregate payoff under full
information: in the incomplete information treatment, the aggregate payoff is lower
than in the SPS equilibrium for 5 out of the 6 games where the SPS equilibrium is not
reached; in the full information treatment, this is observed in only 2 cases out of the
7 games where the SPS equilibrium is not reached. Thirdly, when the game has two
Pareto ranked SPS equilibria, under full information the high equilibrium is selected
much more often: there are 9 games with a low and a high equilibrium in Table 1;
in all the 4 such games with incomplete information, play converges to the low SPS
equilibrium while in all 5 games with full information it converges to the high SPS
equilibrium.

The reduction in the number of rounds before convergence is largely a consequence
of the reduction in the number of rejected offers. On the other hand, there is no
treatment effect on the number of accepted offers. What this seems to suggest is that,

27It is important to keep in mind, however, that the SPS equilibrium is not always the efficient
match.
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in the full information treatment, players are less likely to make offers that they can
predict will be rejected. This constitutes evidence of self-censoring of the kind discussed
in Hitsch, Hortacsu, and Ariely (2010) and Belot and Francesconi (2015), but in the
context of a laboratory experiment. In Section 2 we argued that players may not be able
to precisely predict which offers would be rejected, and that this may result in excessive
self-censoring that would ultimately prevent players from reaching an SPS equilibrium.
The laboratory evidence suggests that, under our experimental conditions, these fears
were unfounded.

The unbalanced SPS treatment is shown to reduce the number of links and the
aggregate payoff, but these are a mechanical consequence of the fact that the SPS equi-
librium has fewer links. Other treatments have no effect on any of the games’ aggregate
outcomes. In summary, contrary to expectations, convergence to an SPS equilibrium is
equally likely and rapid under the treatments with multiple SPS equilibria, unbalanced
SPS equilibrium, or a potentially distracting non-empty initial network. This further
confirms the robustness of convergence to an SPS configuration.

4.3 Links

We now turn our attention to the effect of experimental conditions on link formation.
The unit of observation is the dyad, that is, a pair of subjects that played in the same
group. There are (6x5)96

2
= 1440 such dyads across the 96 games presented in Table 1.

We estimate linear regressions of the form:

yijg = β0 + β1Aijg + β2X ijg + β3 SPSijg + βTg + λg + λij + εijg (2)

where the dummy yijg equals one if dyad ij is linked when game g ends. Variables Aijg,
X ijg and SPSijg denote three experimentally assigned, dyad- and game-specific dummy
variables: Aijg takes value 1 if link ij appears in the initial network configuration of
treatment T1; and X ijg takes value one when the absolute difference between πij and
πji is large, e.g., exceeds 20 points.28 SPSijg takes value one if link ij belongs to the

28|πij − πji| can only take values 0, 10, 20, 30, and 40. Hence Xijg = 1 when the difference is 30 or
40.
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SPS configuration.29

If players are reluctant to sever pre-assigned links, e.g., because of an endowment
or inertia effect, we expect β1 > 0: the link is more likely to remain until the end of
the game, irrespective of whether it belongs to the SPS equilibrium or not. If subjects
are inequality adverse, they may refrain from forming links that yield a very unequal
distribution of gains. In this case, we expect β2 < 0: the more unequal the distribution
of gains is, the lower is the likelihood that the link was formed. Treatment dummies
Tg includes the four game-level basic treatments as before. We also include game fixed
effects λg and dyad fixed effects λij as controls. The former are identified by variation
across dyads in the same game; the latter are identified by systematic variation across
games for the same dyad.

Dyadic regressions typically suffer from correlation in errors across observations.
This case is no exception: since players are restricted to two links, the likelihood that i
is linked with j is not independent from the likelihood that i is link with k. To correct
for this, we cluster errors are the group level. This takes care of any arbitrary patterns
of intra-group correlation in errors.

Regression results are reported in Table 3. We find that β1 is not statistically
different from 0: being matched at the beginning of the game has no effect on the final
network configuration created in the laboratory. Coefficient β2 is also not significant
– this suggests that inequality aversion does not, in fact, affect link formation in our
experiment.30 As expected, the coefficient of SPSijg seem to explain most of observed
links. The coefficient of T2 is in line with what reported in the column (3) of Table
2, namely that the overall number of links is larger in the full information treatment.
Additionally, the coefficient of T4 which was already negative in the column (3) of Table
2 becomes now marginally significant.

29When there game admits two SPS equilibria, we focus on the configuration which was attained or
closer to be attained in the game.

30The results from an experiment by Belot and Fafchamps (2012) provide one possible interpretation
for this finding. In that experiment, the authors let subjects choose between two allocations of payoffs
among four players. These choices are framed either as the division of a pie between four individuals,
or as the selection of a partner. The authors find that altruism is much less likely to affect choices in
the partner selection frame than in the pie allocation frame. This feature may account for the absence
of evidence of other-regarding preferences in our results.
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4.4 Actions

We now turn to the actions taken by players within each turn. We are interested in
assessing the extent to which players’ actions are rational. This is non-trivial because we
do not know what dynamic strategies participants may be playing, and hence we have no
way of telling whether these strategies are rationalizable, e.g., whether the assumptions
they make about other people’s strategies are reasonable. What we can do, however,
is to document the extent to which actions deviate from myopic best response. Since
most games in our experiment converge to an SPS configuration, myopic best response
is a useful yardstick: if we find that actions follow myopic best response in the majority
of cases, we should not be surprised that games converge to an SPS equilibrium.

In the context of our game, myopic best response dictates that a player should only
take actions that can increase its total gains. In particular this implies that offers that
are made and accepted should always dominate those that the player currently holds,
and players should reject and refrain from making dominated offers.31 We identify four
types of actions that strictly violate myopic best response. For movers these violations
are: (1) dropping a link without forming another; (2) proposing a dominated link.32

For respondents these violations are: (3) refusing a dominating offer; and (4) accepting
a dominated offer.

4.4.1 Movers

We first direct our attention to the actions taken by movers – that is, by players whose
turn it is to move. To recall, a mover can decide to do nothing, that is, to accept the
status quo and pass the turn to the next player; or take one or more actions, such as
making offers or deleting links without making offers.

31Formally, let ij denote the link currently being proposed and let si denote the gain that mover i
is offering to drop in order to form a new link. If i currently holds less than two links, then si = 0.
If i currently holds two links worth πik and πim and offers to sever ik if the new link is formed, then
si = πik. The link ij is said to be dominating (for i) if and only if πij > si; it is said to be dominated
if and only if πij < si.

32Failing to making dominating offers may also violate myopic best response, but only weakly: if
the player thinks the offer will be rejected, making it would not increase his payoff – and thus is not
strictly better. For this reason, we focus on the two actions listed above.
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Over the 96 games, we observe 3205 mover actions from 1980 unique turns. 865
(27%) actions consist in keeping the status quo and passing the turn. 2340 actions
(70%) are active actions. The large majority of active actions (97%) do not violate
rules (1) and (2) above. Only 70 active actions (3%) constitute strict violations of
myopic best response: in 35 instances the mover drops a link without forming another
one; and in another 35 instances the mover offers a link which is payoff-dominated by
the link he conditionally deletes.

In Table 4 we report regressions analysis using each turn as unit of analysis. We
estimate fixed-effect linear regressions of the form:

yir = β0 + β X ir + γ Tg + δ r + λg + λs + λi + εir (3)

where yir is a characteristic (to be described below) of the combined actions taken by
mover i in round r. Vector X ir includes three regressors of interest: time historyir

which represents the number of seconds mover i spends browsing the history of the
current game during round r; time gainsir which represents the number of seconds
mover i spends browsing the payoffs of other players during round r;33 and the dummy
already 2 linksir which equals one if mover i already holds 2 links at the beginning of
turn r. The rationale for including these regressors is explained below. Other regressors
include the four game-level treatment dummies Tg, the round number r (which is meant
to capture the effect of time within a game), game fixed effects λg, session fixed effects
λs, and individual fixed effects λi.

In the first column of Table 4 we take as unit of observation all unique turns (n =

1980). Here the dependent variable yir is the share of violations of type (1) or (2) in
the actions taken by mover i in round r. If information is used by players to refine their
action and avoid making mistakes, players who spend more time checking the payoffs
of other players and the history of play may take fewer actions that violate myopic best
response. Regression results presented in column (1) indicate instead that players who
spend more time browsing other players’ payoffs are more likely to take actions that,

33This is zero in the no-information treatment, or if the player did not browse the others’ payoffs
during his move.
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from the point of view of myopic best response at least, appear irrational. Keep in mind
that in our game it is virtually impossible for someone to work out the SPS equilibrium
through mental calculation – there simply are too many combinations to consider. We
therefore conjecture that players who spend much time examining the payoffs of other
players end up making sub-optimal decisions because they either over-think the game,
e.g., try to solve for the SPS equilibrium; and/or because they try to come up with
complex strategies that, in our game, yield no obvious benefit. This interpretation,
which will be re-confirmed later on, is comforted by the fact that, over the duration
of each session, players seem to learn not to take such actions: the coefficient second,
third and forth games are all significantly negative and they increase in magnitude.
We find no effect of any of the four treatments on violating myopic best response.
This is in line with our earlier observation of Table 2 that most games reach an SPS
equilibrium irrespective of treatment. In column (1) we also observe the coefficient of
already 2 linksir being significantly positive - but this is a consequence of the fact that
deviations of type (2) can only occur when the mover already holds two links.

In columns (2) to (4) we focus on what happens when, at the beginning of his turn,
a mover is not currently holding the most desirable links (worth 40 and 50). There are
1379 turns for which this is true. In such a configuration, myopic best response would
suggest that the player should continue making offers in the hope of securing these two
most desirable gains. The links that would generate these desirable gains for the mover
need not be in the SPS equilibrium, however. Hence making these offers repeatedly
will see them rejected multiple times. Players may attach some subjective dis-utility
from repeated rejection, which would lead them to refrain from making such offers. We
report this analysis in the second column of Table 4, where the dependent variable yir
takes value 1 if the mover passed the turn without making any action (neither proposal
nor severance), and 0 otherwise. We note a strong round effect: the coefficient of r
is significantly positive, meaning that players who did not attain the most desirable
configuration yet are more likely to make no offers as the game progresses. This is
consistent with rejection avoidance – or more generally not wanting to waste time in a
satisficing perspective: once players have secured some links, the need to make offers is
less pressing. We do indeed find that players who already hold two links are more likely
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to make no offers. We also observe that making no offer is significantly more frequent
in the full information treatment. This confirms our earlier interpretation: movers are
more likely to refrain from making offers when they have more information about the
payoffs of other players that leads them to expect rejection. In other words, information
leads to self-censoring.

We continue this investigation in column (3) where yir represents the number of
‘wish-list’ proposals made during the turn – i.e., the number of offers that would increase
the mover’s gain if they were accepted that were actually made. In column (4) we
refine this variable to only include offers to the most desirable potential partner at
the beginning of round r.34 Results confirm earlier findings. Movers are less likely
to make wish-list offers when they already hold two links, and in the full information
treatment. We nonetheless observe that more wish-list offers are made by players who
spend much time examining other players’ payoff. The unbalanced SPS treatment
marginally increases the number of wish-list proposals in column (3) – possibly because
players with no links or one link continue making offers even after the game has settled.
We again note, in column (4) fewer top wish-list offers being made in later rounds, which
is consistent with decision fatigue – defined as the tendency for inertia to increase as
the length of the game increases, regardless of the attained payoff (Danziger Levav and
Avnaim-Pesso 2011).

To investigate these issues further, we now take another perspective on the actions
taken by movers. We now take as unit of observation all the potential offers that could
have been made in each round, and create a dependent variable mijr equal to 1 if i
made an offer to j in round r, and 0 otherwise. We omit all dyads for which an offer
could not be made in that round, i.e., because a link ij was already in existence.35 We
further subdivide the observations into two groups: those for which making an offer
would increase i’s payoff;36 and those for which making an offer would decrease it. The

34This is the player yielding a payoff of 50 if i is not linked with him yet, or the player worth 40 in
case the link worth 50 already exists.

35This is easily illustrated with an example. In round 1 player A has no link. For this round we have
five dyadic observations for player A, corresponding to each of the five offers he could have made, i.e.,
AB, AC, AD, AE, AF . Now suppose that in round 2 player A has links to C and D. In this round
A can make three offers: AB, AE, AF and thus we have three dyadic observations.

36If the mover has less than two links at the beginning of round r, all potential offers are payoff-
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first group corresponds to dominating offers, which should be made according to myopic
best response; and the second group corresponds to dominated offers, which should not
be made. We estimate a linear regression model of the following form on each of these
two sets of observations separately:

yijr = β0 + β X ijr + γ πijg + δ Tg + ζ r + λg + λs + λi + εijr (4)

where yijr equals one if mover i makes an offer to player j during round r. Vector
X ijr includes two regressors of interest that we include to capture the history of play
between players i and j during game g.37 The first regressor in X ijr is a dummy that
we call ‘previous refusal’ and equals 1 if j has rejected an offer from i in an earlier
round. This is our most direct test of the self-censoring due to the cost of anticipated
future rejection (which may be an emotional cost or simply wasted time). The second
regressor that we call ‘previous severance’ takes value 1 if link ij existed before, and
was severed by j earlier. It is important to understand that attempts to re-form a link
after previous severances (and/or refusals) do not necessarily signal inconsistency in
player behavior, but they may be naturally arising as a result of the sequential process
through which the game is organized. As players cycle through offers, it is indeed quite
possible that j drops a link with i to form a more advantageous link with k, only to
see this better link dropped by k later – at which point he may be willing to return
to i.38 We also control for πijg directly – the larger the payoff, the more likely that an
offer is made. As before, we include dummies for the four treatments, as well as round
number, and game, session and player fixed effect. As in earlier regressions, standard
errors are clustered at the group level.

Regressions results are presented in Table 5. They indicate that personal history of
play during the game does not affect mover decisions to make an offer to another player.

increasing.
37Remember that players identities are scrambled between games, so that the history of play between

two subjects cannot spill over from one game to the next.
38This would be the case for instance if j had the opportunity to move before k’s turn: following

myopic best response, k shall accept the offer as long as j is better than k’s pre-existing links. However,
when it is his turn to move, k may propose to other players, and j may be forced to come back to i.
This behavior does not signal inconsistency, but is a consequence of the game’s unfolding.
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This is reassuring because taking offense for past rejection may prevent convergence to
an SPS equilibrium. We find no evidence of this kind for movers.

4.4.2 Respondents

Next we turn to players who have received an offer and are called to decide whether to
accept it or not – the respondents. We observe 2305 responses. Of these, 2117 (92%) do
not violate myopic best response: the respondent accepts dominating offers and rejects
dominated offers. In 33 cases (1%) the respondent accepts a dominated offer, and in
155 cases (7%) the respondent rejects a dominating offer. Of these 155 rejections, 94
occur while the respondent has fewer than two links – and thus should take any offer
– and 61 when he already holds two links. There is, therefore, a little more evidence
of irrationality among respondents, and by far the most frequent form is to refuse a
dominating offer.

To explore this behavior further, we take as unit of analysis all 2305 responses and
estimate a linear regression model of the form:

ajir = β0 + β Xjir + γπjig + δTg + ζ r + λg + λs + λj + εjir (5)

where ajir equals 1 if player j violated myopic best response by rejecting a dominat-
ing offer or accepting a dominated offer from player i in round r. Vector Xjir includes
the regressors of interest which are described below. The rest of the controls is as
before.

Coefficient estimates for equation (5) with no Xjir regressor are reported in the
first column of Table 6. We observe that, as anticipated, a respondent is less likely
to reject an offer that would provide him a high payoff πjig. The full information
treatment seems associated with a higher tendency to reject a dominating offer (or
accept a dominated offer). To throw some light on this finding, we re-estimate equation
(5) with two additional regressors: the time spent by j consulting the history of play
during round r, and the time spent examining the payoffs of other players (this can
only be done in the full information treatment). We find that when these regressors are
included, the full information treatment dummy is no longer significant – and even gets
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a negative coefficient. This agains suggests that spending much time consulting the
payoff vector of other players is associated with deviation from myopic best response.
This is in line with our earlier, similar finding for movers: deviation from myopic best
response seems to occur when players are trying to figure out the best overall strategy
given the complete payoff matrix of the game – something that, in this game, is very
difficult to do well (and is not needed to ensure convergence). This means that providing
full information on others’ payoffs can be a distraction for players, but a distraction
that, in our experiment, at the end of the day did not prevent convergence to an SPS
configuration.

In columns (3) and (4) of Table 6, we include the same two Xjir regressors that we
had used for equation (4), namely: previous refusal by i of an offer from j; and previous
severance by i of a link with j. In both cases we find a positive effect, significant at
the 10% level, on the likelihood of violating myopic best response. As noted above,
refusing a dominating offer is the main source of departure from myopic best response
in our experiment. What columns (3) and (4) suggest is that this behavior is due in
part to a refusal to link with players who have ‘mis-behaved’ in the past, i.e., who
have reject a previous offer or have dropped a pre-existing link. This is not altogether
surprising. If our matching game was about finding a spouse or a business partner, it
is very likely that people would take offense at being rebuffed or rejected and would
subsequently refuse a come-back offer. The fear that others may take offense, if strong
enough, may induce players to hold onto a low value link for fear of not being able
to get back to it later on, should a more promising partner prove to be unreliable.
What is remarkable is that, in our experiment, these fears were not strong enough to
bring the decentralized matching process to a halt and prevent convergence to an SPS
equilibrium. But we nonetheless find some evidence that players do take offense for
rejection and broken links, and this may, in another setting, impinge on convergence to
a competitive equilibrium.
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5 Other treatments

As mentioned earlier, we have also implemented two modifications of our main experi-
mental protocol to test two ancillary hypothesis, which we describe in what follows.

5.1 No-PS equilibria

In our main experimental protocol the value of holding no link is normalized to 0, which
means that any existing link is pairwise stable: it is better for a player to hold a link
than not hold it. In order to relax this feature we invited 12 additional groups of play-
ers39 to play link formation games where the payoff matrices admit no pairwise stable
equilibrium other than the unique SPS. In this so-called no-PS treatment, a ‘standard’
payoff matrix as the ones described in Section 2.3 is modified such that all non-SPS
links yield a negative payoff for one of the players involved.40 The transformation en-
sures that we keep one SPS configuration, but make sure that no network configuration
other than this one constitutes a PS equilibrium. The purpose of this is twofold: to test
whether the absence of PS equilibria facilitates and speeds up convergence to the SPS
equilibrium, and to investigate whether players ever form links that are not pairwise
stable – e.g., out of spite, or to equalize payoffs. If we find that convergence to the SPS
is less frequent when a plethora of PS equilibria is available (as in the main experiment)
than when they are removed, this would be consistent with satisficing behavior. The
rest of the experimental protocol remains unchanged. The sequencing of treatments is
the one shown in Table 1, Block 1.

We find that all no-PS games converge to their unique SPS equilibrium, and they
do so much faster than in the main sessions. Under the no-PS treatment, the average
number of rounds is 2.4 rounds, versus 3.4 rounds in the main sessions. The fact that
convergence to the SPS is much more common in the no-PS sessions is consistent with
the idea that the presence of many PS equilibria encourages satisficing behavior: players

394 sessions with 3 groups of 6 players each, from the same population pool as above.
40For example, if the ij link is not in the SPS equilibrium, then we set either πij = −10 or πji = −10.

Since the payoff from not linking is 0, this means that this link is not pairwise stable. If the payoff
matrix admits two SPS equilibria, we randomly select one of the two as the reference SPS configuration
and discard the other by setting one payoff to negative.
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compete less than they could and, as a result, do not reach the maximum payoff they
could guarantee themselves. Eliminating distracting PS equilibria leads players to the
SPS quickly and always.

Given that all games converge to the SPS equilibrium, we cannot conduct the link
analysis that we did for the main sessions. But we can examine the actions of movers
and respondents in the same way that we did above, that is, to look for evidence of
departures from myopic best response. We find that much fewer observed actions devi-
ate from what is predicted by myopic best response (e.g., less than 3% for respondents,
compared with 8% in the main sessions). Given the very small proportion of deviation
from myopic best response, there is too little variation in behavior to repeat the analysis
of equations (3), (4), and (5).

5.2 Partial information

Finally, we have invited 12 groups of players41 to play what we call a partial information
treatment. In this treatment, each player i sees not only his payoff πij from linking with
j, but also j’s payoff πji from linking with him – but he does not see the rest of j’s
payoff vector, that is, we do not reveal to i the payoff that j would get from linking with
other players (πjk and πkj for all other j, k). This information treatment lies in between
the control games (where the player sees only his own payoff) and the full information
games (where the player has access to the entire payoff matrix). The possibility of self-
censoring is present here as well, but because the game is less cognitively challenging
than the full information treatment, the self-censoring effect may even be stronger.
Here too we used the treatment sequencing of the Block 1 in Table 1, except that
partial information replaces full information – i.e., with letters B and D referring now
to partial information treatments. The rest of the experimental protocol is the same.42

We find that the proportion of games converging to a SPS configuration in the
partial information sessions is virtually identical to the main sessions. In Table 7
we replicate the game-level analysis of Table 1 adding the games from the partial

414 sessions with 3 groups of 6 players each, from the same population pool as above.
42Except that players have now 10 seconds to make a move.
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information sessions.43 The results are very similar to those reported in Table 2: the full
information treatment has an effect on the number of links formed, the aggregate gains,
and the number of rounds, but the partial information treatment is not statistically
different from the control treatment. Other findings remain unchanged.

6 Concluding remarks

We design a laboratory experiment to investigate network formation in a market setting:
in our game link formation is decentralized and players with fully heterogeneous payoffs
can make offers and counter-offers, as in a Beckerian marriage model. The game is
designed in such a way that if participants play a myopic best response, it reaches a
stable equilibrium that does not depend on initial conditions. Our goal is to study how
and why players in the lab depart from myopic best response.

We observe a high rate of convergence to the SPS equilibrium, in spite of the com-
plexity of the experimental protocol. One possible interpretation is that competing for
the best match is a strategic situation that is familiar to our subjects and for which
they have good heuristics, probably such situations are ubiquitous in real-life situations
(such as job market, housing market, public and private markets for procurement or
health services). Also, we observe no loyalty towards randomly allocated links which are
easily reshuffled, and we find that self-censoring speeds up the game significantly. We
trace irrational decision mostly to two sources: the tendency of over-think in a setting
where strategic thinking is not rewarding; and a ‘once bitten twice shy’ effect: players
refuse offers from people who have been disloyal in the past, even though accepting
them would be in their interest.

Many departures from rationality and self-interest have been studied in the lab.
But very few experiments have focused on decentralized link formation, and none has
introduced competition for mates. Our paper fills this gap and provides new insights on
the determinants of behavior in decentralized matching games with competition. These
insights should shed light on human behavior in a large class of market bargaining and

43We have 47 (instead of 48) of such games – one game from these sessions was subsequently dis-
covered to have no SPS equilibrium, and it has been excluded from the analysis.
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matching processes that arise in real life. This category of strategic games deserves more
attention, and our experimental design provides a promising avenue to study them.
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Tables and Figures

Table 1: The treatment allocation scheme

game 1 game2 game 3 game4 game 1 game2 game 3 game4
group: 1 A B C D 13 A B D C
group: 2 B C D A 14 B C A D
group: 3 C D A B 15 C D B A
group: 4 B A C D 16 B A D C
group: 5 C B D A 17 C B A D
group: 6 D C A B 18 D C B A
group: 7 C A B D 19 C A D B
group: 8 D B C A 20 D B A C
group: 9 A D B C 21 A D C B
group: 10 D A B C 22 D A C B
group: 11 A C D B 23 A C B D
group: 12 B D A C 24 B D C A

BLOCK 2BLOCK 1

Notes: letter A indicates a game with empty initial configuration and no information, B
indicates a game with empty initial configuration and full information, C indicates a game
with complete initial configuration and no information and D indicates a game with com-
plete initial configuration and full information. Underlined letters indicate unbalanced SPS
configuration, letters in green indicate games with two SPS equilibria.
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Table 3: Analysis of links

VARIABLES link
Aijg (initial match) 0.016

(0.017)
Xijg (extreme match) 0.020

(0.019)
SPSijg 0.934***

(0.025)
T1 (2 initial links) -0.008

(0.010)
T2 (full information) 0.009**

(0.004)
T3 (unbalanced SPS) 0.003

(0.003)
T4 (double SPS) -0.015*

(0.008)
game n. 2 0.008

(0.007)
game n. 3 0.005

(0.005)
game n. 4 -0.000

(0.005)
dyad fixed effect yes
Constant 0.014**

(0.006)
Observations 1,440
R-squared 0.873

Robust standard errors in parentheses, clustered

by group. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Movers analysis

(1) (2) (3) (4)
% violations status quo n. wishlist 1st wishlist

proposals proposal
time on history 0.035 0.135 -0.585 -0.169

(0.038) (0.126) (0.494) (0.143)
time on payoffs 0.004** -0.042*** 0.159*** 0.038***

(0.001) (0.004) (0.011) (0.004)
already 2 links 0.024*** 0.206*** -1.322*** -0.132***

(0.007) (0.021) (0.078) (0.024)
T1 (2 initial links) -0.002 -0.030 0.026 0.002

(0.005) (0.019) (0.060) (0.018)
T2 (full information) -0.011 0.330*** -1.077*** -0.346***

(0.007) (0.033) (0.096) (0.032)
T3 (unbalanced SPS) 0.004 0.011 0.130* 0.014

(0.006) (0.018) (0.063) (0.026)
T4 (double SPS) 0.006 -0.031 -0.004 0.076

(0.010) (0.056) (0.133) (0.069)
round -0.002 0.023** -0.006 -0.039***

(0.002) (0.008) (0.018) (0.010)
game n. 2 -0.017* -0.032 0.009 0.030

(0.009) (0.026) (0.087) (0.033)
game n. 3 -0.017** -0.040 -0.066 0.035

(0.008) (0.026) (0.095) (0.031)
game n. 4 -0.019** -0.038 0.118 0.036

(0.008) (0.032) (0.088) (0.035)
session fixed effects yes yes yes yes
player fixed effects yes yes yes yes
Constant 0.056*** 0.102** 1.958*** 0.828***

(0.009) (0.039) (0.076) (0.042)
Observations 1,980 1,379 1,379 1,379
R-squared 0.155 0.388 0.550 0.373

Robust standard errors in parentheses, clustered by group.

*** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Movers analysis (history of play)

(1) (2) (3) (4)
payoff-increasing payoff-decreasing

offers offers
previous refusal -0.041 0.037

(0.029) (0.035)
previous severance 0.019 0.001

(0.028) (0.019)
gain 0.012*** 0.012*** 0.000 0.001

(0.001) (0.001) (0.000) (0.000)
T1 (2 initial links) 0.038* 0.034 -0.003 -0.003

(0.019) (0.020) (0.005) (0.005)
T2 (full information) -0.137*** -0.135*** -0.002 -0.002

(0.021) (0.021) (0.005) (0.005)
T3 (unbalanced SPS) 0.067** 0.066** -0.002 -0.003

(0.025) (0.025) (0.005) (0.005)
T4 (double SPS) 0.024 0.026 -0.004 -0.006

(0.036) (0.036) (0.006) (0.006)
round -0.009 -0.017*** 0.000 0.001

(0.007) (0.006) (0.002) (0.002)
game n. 2 -0.005 -0.007 -0.013* -0.014*

(0.024) (0.023) (0.007) (0.007)
game n. 3 -0.004 -0.003 -0.010 -0.011

(0.030) (0.030) (0.008) (0.008)
game n. 4 0.036 0.036 -0.002 -0.003

(0.027) (0.027) (0.008) (0.007)
session fixed effects yes yes yes yes
player fixed effects yes yes yes yes
Constant 0.020 0.038 0.038*** 0.035**

(0.041) (0.036) (0.012) (0.013)
Observations 3,871 3,871 2,819 2,819
R-squared 0.244 0.244 0.129 0.126

Robust standard errors in parentheses, clustered by group.

*** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Respondents analysis

(1) (2) (3) (4)
Violation of myopic best response

gains -0.002* -0.001* -0.002** -0.002**
(0.001) (0.001) (0.001) (0.001)

time on history 0.002
(0.003)

time on payoffs 0.008***
(0.003)

previous refusal 0.058*
(0.033)

previous severance 0.055*
(0.031)

T1 (2 initial links) -0.004 -0.002 -0.006 -0.007
(0.011) (0.012) (0.011) (0.011)

T2 (full information) 0.019* -0.021 0.020* 0.020*
(0.010) (0.015) (0.010) (0.010)

T3 (unbalanced SPS) -0.012 -0.015 -0.011 -0.010
(0.010) (0.010) (0.010) (0.010)

T4 (double SPS) 0.032 0.028 0.031 0.032
(0.022) (0.021) (0.021) (0.021)

round -0.007 -0.005 -0.008 -0.009*
(0.005) (0.005) (0.005) (0.005)

game n. 2 0.006 0.007 0.006 0.005
(0.017) (0.017) (0.017) (0.017)

game n. 3 0.007 0.008 0.007 0.006
(0.014) (0.015) (0.014) (0.014)

game n. 4 -0.005 -0.001 -0.005 -0.006
(0.014) (0.014) (0.014) (0.014)

session fixed effects yes yes yes yes
player fixed effects yes yes yes yes
Constant 0.150*** 0.143*** 0.157*** 0.159***

(0.028) (0.030) (0.029) (0.029)
Observations 2,305 2,305 2,305 2,305
R-squared 0.162 0.168 0.164 0.164

Robust standard errors in parentheses, clustered by group.

*** p<0.01, ** p<0.05, * p<0.1.
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Appendix A: Computer interface and information

We provide here a detailed description of the computer interface. All the information
relative to the game is presented to each player in the form of an hexagon with the
six corners representing the six players in the group. An example of this screen is
presented in Figure A1 below. The player always sees himself at the bottom of the
hexagon, associated with his identification letter in the game (letter F in figure A1).
In Figure A1, it’s F ’s turn to play and he can decide whether to propose a link to
any other player or pass his turn. The other five players are distributed on the other
five corners, each with his letter. Within a game this configuration does not change.
Next to player j, player A sees πAj, the payoff associated with linking to that player.
Depending on the treatment, he may also see information about the payoffs vector of
each other player – more about this was said in Section 3.2.

The links that all players are currently holding are represented graphically on the
screen as black lines linking two players. The network that all players see changes in
real time each time a link is added or dropped. The screen also reports in real time
the current state of the game, i.e., the game number (from 1 to 4), the round number
(from 1 to 8), which player’s turn it is (the mover’s letter is highlighted in green), and
the time left to make a decision – see Figure A1. Furthermore, the background color of
the screen changes to red when the player is called to take an action (either when it is
his turn, or when he receives an offer).

When it’s a player turn, he can make decisions of three kinds: sever a link, propose
a link, and terminate the turn. If he decides to make an offer to another player, a blue
dotted line appears on the screen (visible to himself and the offered player only). Figure
A3 depicts player F (who holds no link) who has made an offer to A and is waiting for
a response. In case the mover is already holding two other links, one of those must be
deleted if the new offer is accepted, and this information is also depicted graphically
on the screen: the two links appear in red and the mover is asked to select the link to
delete in case the new offer is accepted, which then turns into a red dotted line. Figure
A4 represents player B who holds links to C and A, and has proposed a link to F – he’s
ready to delete his link with C if the offer to F is accepted. In the moment depicted
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in Figure A4, B is waiting for F ’s response. If the offer is accepted, the blue dotted
line turns into a black continuous line, and the red dotted line disappears. This new
configuration becomes visible to all players (Figure A5). Within his turn the mover
can also decide to sever a link – Figure A6 represents player D about to confirm the
deletion of his link with player E.

Similarly, when a respondent receives a linking offer, a dotted line from the offering
player appears on his screen. Figure A7 depicts player B receiving an offer from D.
Since player B already holds two links, he is asked to select one link to delete (Figure
A8). Upon his choice, the offered link will be considered accepted and turns into a
continuous black line while the link selected for deletion disappears. Changes resulting
from accepted offers become immediately visible to all players in the group, whether it
is their turn or not.

A player can never see information on linking offers that do not involve him directly.
So if player i is offering to link with j, this is only visible to players i and j - the new link
will eventually become visible to everyone if the offer is accepted. Moreover, another
player, say k, does not see that player i to whom he is currently linked is intentioned to
drop this link if his linking offer to another player j is accepted. This feature is intended
to mimic the functioning of real-life markets where an agent observes the offers he makes
and receives, but does not typically observe offers between other players before they
are accepted.

At any time during a game, players can browse through the entire history of the
current game. This history appears on the left-side of the screen in a separate dedicated
window (Figure A9). However the history is only visible if the player requests so by
clicking on the left side of the screen - by default, the left side is empty (figures A1-
A8). The history of the game can be visualized in two different ways: by round, or by
turn. All the retrospective information that was available to a player during the game
(including the order of the unaccepted offers he has made) is made available to him.
Figure A9 illustrates the following situation: during turn number 4 (of game 3, round
1), player E (at the bottom of the hexagon) is browsing the history of turn 1.

Since the game is rather intricate, each experimental session begins with a period of
time during which participants are invited to read the written instructions (reproduced
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in Appendix B). At the end of this reading period, participants are given a PowerPoint
presentation followed by question time. To avoid strategical behavior at the end of
the experiment, players are informed that they would have to wait for all groups to
complete their last game before they could leave the laboratory. After this presentation,
participants play a training session lasting approximately 20 minutes to familiarize
themselves with the game and the different screens. The training session is the same
for all participants, and is designed to illustrate all the main features of the game as
well as the different treatments.

Figure A1

47



Figure A2

Figure A3
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Figure A4

Figure A5
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Figure A6

Figure A7
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Figure A8

Figure A9
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APPENDIX	B:	DESCRIPTION	OF	THE	GAME	

Welcome	 to	 the	 laboratory!	Today	you	are	going	 to	play	a	 game	whose	 rules	are	explained	 in	
what	follows.		

Example	of	screen	

	

General	setting	

There	are	6	players,	visually	 located	around	a	circle	and	 labelled	with	 letters	(A,	B,	C,	D,	E,	F).	
You	are	the	player	located	at	the	bottom	of	the	circle:	your	icon	is	indicated	by	“ME”	plus	your	
identifying	letter	(in	the	example	above	you	are	player	B).	Existing	links	are	indicated	with	a	tick	
black	line.		

This	is	a	link	formation	game	where	links	are	formed	by	mutual	consent:	

‐ Each	player	can	have	up	to	2	links	at	each	moment	of	the	game	(but	it	is	always	possible	
to	have	one	link	or	no	links);			

‐ During	the	game,	players	have	the	opportunity	to	delete	existing	links	and/or	create	new	
links	among	them.	

The	gains	

“your	 gain”:	 below	 the	 name	 of	 other	 players	 you	 can	 see	 a	 label	 “your	 gain”	 indicating	 a	
numerical	value.	The	total	gain	of	a	game	is	for	you	the	sum	of	your	gains	for	all	players	linked	



with	you	at	 the	end	of	 the	game.	For	 instance,	 if	 the	configuration	of	 the	 image	above	was	the	
final	configuration	of	the	game,	your	total	gain	of	the	game	would	be	6+42=48	points.		

“his	gains”:	sometimes	(but	not	always)	you	can	also	see	“his	gains”,	 that	 is,	 the	gains	of	other	
players	for	the	links	that	they	can	possibly	form.	When	you	see	the	symbol	 	below	a	player’s	
name	it	means	that	you	can	browse	his	gains:	just	put	your	mouse	on	this	symbol,	and	a	window	
with	this	information	will	appear.		

For	 instance,	 in	 the	 figure	above	you	can	see	 “his	gains”	 for	player	D.	 In	order	 to	browse	 this	
information,	go	with	your	mouse	on	 	and	you	will	see:		

	

Thus,	if	you	form	a	link	with	D	you	get	a	gain	of	21	and	he	gets	a	gain	of	17.	

- Note	that	gains	are	player‐specific.	This	means	that	if	D	is	worth	21	for	you,	it	does	not	
mean	that	he	is	worth	21	for	the	others!	

Your	final	payoff	is	given	by	the	sum	of	the	values	of	people	you	are	linked	to	at	the	end	of	the	
session.	Your	goal	 is	 therefore	 to	 end	 the	 session	with	 the	most	profitable	 links	you	can	 form	
(keeping	in	mind	that	you	can	form	up	to	2	links,	but	you	may	also	end	up	with	1	link	or	none).	If	
the	 configuration	 in	 the	picture	 above	was	 the	 configuration	of	 the	 end	of	 the	 game,	Player	F	
(“ME”)	would	get	a	payoff	of	3+5=8.		

The	game	

The	game	is	organized	in	several	rounds:	

- At	round	0	the	game	starts	from	a	given	network	configuration;	
- 	In	each	round	all	6	players	have	the	turn	to	form	and/or	sever	links;	
- 	the	order	of	move	changes	at	each	round	(for	instance,	you	can	be	the	first	to	move	in	

round	2,	and	the	4th	to	move	in	round	3).	

The	game	ends:	

‐ At	the	end	of	the	8th	round,	
‐ Before	the	8th	round,	if	for	one	entire	round	no	new	link	is	created	and	no	existing	link	is	

severed.		

The	screen	

At	each	moment	of	the	game	on	the	right	of	the	screen	you	see:	

- The	existing	links	(indicated	with	a	tick	black	line);	
- The	offers	that	you	make	or	you	receive	(indicated	with	a	dotter	arrow);	
- The	player	who	is	moving	in	this	turn	(his	name	appears	in	green);		



If	you	click	on	the	left	of	the	screen	you	can	browse	back	and	re‐see	the	history	of	all	past	
rounds	(in	a	way	we	will	explain	later	on).	

When	 you	 are	 called	 to	 do	 an	 action	 (because	 it	 is	 your	 turn	 to	move	 or	 because	 you	 are	
called	 to	 accept/reject	 an	 offer)	 the	 background	 colour	 of	 your	 screen	 becomes	 red	 to	
capture	your	attention.		

The	actions	

When	 it’s	 your	 turn	 to	move,	 three	buttons	appear	 in	 front	of	 you:	 “propose	a	 link”,	 “delete	 a	
link”,	“end	of	move”.		

You	can:		

- Make	offers	to	all	players	to	which	you	are	currently	not	linked	to,	if	you	wish	(but	keep	
in	mind	that	you	cannot	have	more	than	2	links	at	each	moment	of	the	game:	if	your	offer	
is	accepted,	you	may	need	to	cut	an	existing	link);	

- Cut	one	of	both	the	links	you	hold,	if	you	wish.	

You	can	use	the	buttons	“propose	a	link”	and	“delete	a	link”:	

- As	many	times	as	you	want,	subject	to	the	constraints	above	(in	the	example	of	the	figure	
you	can	cut	the	link	with	C	and/or	A,	and	you	can	propose	a	 link	to	one	of	more	of	the	
following	players:	D,	E	or	F);	

- In	the	order	of	your	choice	(for	instance	you	can	first	propose	a	link	to	D,	then	you	cut	a	
link	with	A,	and	later	on	propose	a	link	to	F);		

- If	you	change	your	mind	you	can	get	back	to	the	main	screen	or	press	the	button	“end	of	
move”.		

You	have	15	seconds	max	to	make	your	choice.	If	you	do	not	press	any	button	within	15	seconds,	
your	turn	will	end.			

1. Button	“propose	a	link”:		
	
By	 pressing	 the	 “propose	 a	 link”	 button	 and	 then	 clicking	 on	 a	 player’s	 icon,	 you	 can	
propose	 a	 link	 to	 a	node.	Only	 the	 icons	of	 the	 nodes	 to	which	 you	 are	 not	 linked	 are	
active.	

- If	 you	 have	 currently	 less	 than	 2	 links:	 when	 you	 propose	 a	 link	 to	 a	 certain	
player	(for	example	player	D),	the	screen	will	display	“invitation	to	D	sent”	and	
will	send	D	the	notification	of	your	offer.		

- If	you	have	currently	already	2	links:	when	you	propose	a	link	to	a	certain	player	
(for	example	player	D),	the	program	will	open	a	window	showing	the	list	of	you	
current	partners	(C	and	A)	asking	“which	link	do	you	want	to	delete,	if	D	accepts	
your	offer?”		Once	you	have	decided	which	link	you	want	to	cut,	the	program	will	
display	 “invitation	 to	D	sent”	and	will	 send	D	 the	notification	of	 the	offer.	Note	
that	the	old	link	will	be	cut			only	in	case	the	new	link	is	accepted!	

The	other	player	shall	accept	or	refuse	your	offer:	In	both	cases,	the	player	to	which	
you	want	to	link	(D	in	this	case)	receives	a	notification,	and	he	must	make	the	current	
choice:		



- If	D	 has	 currently	 less	 than	2	 links:	 he	 has	 to	 decide	whether	 to	 accept	 or	 not	
your	offer.		

- If	D	has	already	2	links:	he	has	to	decide	whether	to	accept	or	not	your	offer,	and	
if	 he	presses	YES	 the	program	will	 show	him	a	 list	 of	his	 current	partners	 and	
asks	him	“which	link	do	you	want	to	delete”?		

- If	 D	 does	 not	 press	 any	 button	 within	 15	 seconds,	 the	 offer	 is	 considered	 as	
refused.		
	

If	 the	 offer	 is	 accepted,	 the	 network	 configuration	 changes	 and	 the	 new	 link	 appears:	
When	D	has	decided	whether	to	accept	or	reject	the	offer	You	are	notified	of	his	decision	
(a	 window	 displays	 “offer	 accepted”	 or	 “offer	 rejected”).	 If	 the	 offer	 is	 accepted,	 the	
network	configuration	changes:	the	new	link	appears	on	the	screen	in	a	solid	black	line,	
and	the	deleted	links	disappear	(these	changes	are	visible	to	all	players).		

2. Button	“delete	a	link”:		
By	pressing	 it	and	then	click	on	the	 icon	of	a	player	 to	which	you	are	currently	 linked,	
you	can	arbitrarily	delete	a	link	of	your	choice	(and	have	it	disappear	from	the	screen).	
Yu	do	not	need	the	consent	of	a	player	to	delete	the	link	with	him.					
	

3. Button	 “end	 of	move”:	 	 once	 you	 are	 done	with	 the	 two	 buttons	 “propose	 a	 link”	 and	
“delete	a	link”	you	can	click	on	“end	of	move”	

The	history	

If	you	click	on	the	buttons	at	 the	 left	of	 the	screen,	you	can	browse	the	history	of	 the	ongoing	
game:	

- You	can	navigate	by	round	and	by	move,	
- You	 always	 see:	 the	 initial	 configuration,	 who	 was	 in	 charge	 of	 moving,	 the	 links	

formed/deleted,	the	propositions	of	links	to	you;	
- If	it	was	your	turn	to	move,	you	can	also	see	ther	propositions	that	you	made	and	were	

not	accepted.			

Today	

Today	you	will	start	with	a	training	game	(to	get	used	to	the	software).	After	that,	you	will	play	4	
games.		

At	the	end	of	each	game,	the	identity	of	the	players	with	whom	you	are	playing	will	stay	the	
same	but	the	letters	will	be	reshuffled.	This	means:	

- You	may	be	called	D	during	the	first	game,	and	A	during	the	second	game	
- You	never	know	how	the	other	players	have	changed	position	(the	person	named	C	

during	the	first	game	may	be	called	D	during	the	second	game)	

Your	final	payment	

Each	game	will	have	his	final	gain	(which	is	the	sum	of	the	values	of	“your	gain”	for	the	players	
you	are	linked	to	at	the	end	of	the	game,	as	explained	above).	At	the	end	of	the	session,	the	



computer	will	randomize	one	of	these	4	games,	and	your	final	payment	will	be	based	on	the	final	
gain	of	this	game.	The	gain	of	the	training	game	will	not	be	considered.		

The	payment	rule	is	the	following:	6	euros	fixed	+	0.2	euros	for	each	point.	

In	order	to	be	paid	and	leave	the	laboratory,	you	need	to	wait	(in	silence)	until	we	call	you.		

Now	you	will	attend	a	PowerPoint	presentation	in	order	to	clarify	further	the	rules	of	the	
game.	All	questions	are	welcome.			

	

	




