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1 Intro

A growing literature argues that the microeconomic distribution of price changes matters

for macroeconomic price �exibility and thus monetary policy. In this paper, we extend the

existing empirical literature by systematically documenting the time-series evolution of the

entire distribution of U.S. price changes at various stages of production. Using the Bureau

of Labor Statistics (BLS) microdata that underlies the Consumer, Producer and Import

Price Indices we show that there are important common patterns in the distribution of price

changes over time. We then explore the implications of this variation for aggregate price

�exibility. Using a simple, �exible accounting framework we argue that price �exibility rises

in recessions.

While there has been widespread attention to "�rst moments"2 of the price change distri-

bution, there has been much less empirical study of higher moments of the distribution and

their relationship to the broader business cycle.3 Furthermore, existing studies have focused

on particular moments and data sets in isolation, which makes it more challenging to identify

robust features of pricing behavior.4 In this paper, we show that there are striking common

patterns in the distribution of price changes collected at di�erent stages of production, but

there are also certain features which are unique to particular data sets.

We systematically report time-series statistics for numerous moments and percentiles

that go well beyond the existing literature, and several empirical regularities emerge from

this analysis: 1) There are large movements across time in all percentiles of the distribution

of price changes. 2) The frequency of adjustment is positively correlated with the variance

of price changes. 3) The frequency of adjustment and variance of price changes are strongly

countercyclical. We show that these basic facts hold across each of our data sets and regard-

less of how price series are �ltered.5 Conversely, some patterns related to higher moments

2Studies typically focus on e.g. the frequency and size of price changes and their relationship to in�ation.
3Klenow and Malin (2010) and Vavra (2014) are exceptions
4For example, using CPI data, Vavra (2014) and Alvarez and Lippi (2014) explore the implications of the variance

of price changes for monetary policy while Midrigan (2011) and Alvarez et al. (2014) focus on the implications of
kurtosis. Berger and Vavra (2015) focus on the implications of variance in IPP import price data.

5It is important to note that many, but not all of these empirical facts are new. In particular, all of the empirical
facts relating to �centered moments� of the CPI from an earlier draft of this paper were subsumed in Vavra (2014).
In particular, Table 1 in Vavra (2014) documents that the frequency is countercyclical as well as the business cycle
co-movement of the variance, skewness and kurtosis of the distribution of price changes. Berger and Vavra (2015)
document the positive correlation between the frequency of adjustment and the standard deviation of price changes
in IPP data. All remaining statistics are to the best of our knowledge new to this paper.



of the distribution of price changes di�er across CPI, PPI and IPP data, or are sensitive to

measurement issues. In particular: 4) Various measures of price change kurtosis are strongly

procyclical and are negatively correlated with frequency in the CPI, but not in PPI or IPP

data. 5) Statistics related to skewness are highly sensitive to the particular measure used

and also vary substantially across data sets.

Why is it important to study the distribution of price changes and what should we take

from the array of statistics computed in the �rst half of the paper? Microeconomic price-

setting behavior in�uences the degree of aggregate price �exibility, which will in turn have

strong implications for the real response of the economy to nominal shocks. In the second

half of the paper, we introduce an accounting framework which allows us to collapse the

complicated high dimensional distribution of price changes at each point in time into a

single, easily interpretable measure of aggregate price �exibility.

This step necessarily requires introducing additional structure, but we try to do so in a

highly �exible way. For example, in a Calvo model, �rms are selected to adjust prices at

random so aggregate price �exibility is completely determined by the average frequency of

adjustment. At the opposite extreme, in the Caplin and Spulber (1987) model, adjusting

�rms change prices by such large amounts that the aggregate price level is fully �exible

regardless of the underlying frequency of adjustment. Rather than taking a strong stand

on a particular price-setting environment, we use a version of the generalized Ss model of

Caballero and Engel (2007), which nests many of these extremes. Furthermore, we estimate

this model using a highly �exible functional form which imposes minimal restrictions on the

distribution of desired price changes at a point in time and no restrictions on the evolution

across time.

The �exible modeling framework of Caballero and Engel (2007) is useful for summarizing

our somewhat complicated pricing facts and their implications for how price �exibility varies

over time. We show that greater frequency, greater variance and smaller kurtosis are all

associated with greater price �exibility in this model. In contrast, the skewness of �rms'

desired price changes has little relationship with aggregate price �exibility. Thus, movements

across time in the frequency of adjustment, variance or kurtosis of price changes should be

associated with movements in aggregate price �exibility. When viewed through the lens of

our model, we �nd that most of the time-series correlations we document in the BLS data

imply time-varying �exibility which rises during recessions. That is, aggregate price �exibility

is highly variable and strongly countercyclical. Furthermore, we �nd that a large fraction of
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this time-variation in price �exibility arises from changes in the distribution of price changes

rather than through time-variation in the frequency of adjustment. This implies that a

Calvo model which exogenously matched the frequency of adjustment across time would

substantially understate the time-variation in price �exibility in the data.

Many recent papers have used fully speci�ed structural models to argue that the distribu-

tion of price changes has important implications for aggregate price �exibility. For example,

Midrigan (2011) and Alvarez et al. (2014) show that theory assigns a large role to the price

change distribution in shaping the average response of inaction to nominal shocks and Vavra

(2014) argues that similar mechanisms lead to increases in price �exibility during recessions.

Such structural models necessarily impose strong assumptions on the shocks which hit �rms

and thus on the evolution of desired price changes across time. This in turn implies that

they are unable to fully replicate the complicated evolution of the distribution of observed

price changes across time. In contrast, our model is �exible. It imposes no restrictions on

the evolution of �rms' desired price changes across time but still allows us to construct a

measure of price �exibility at a point in time. This �exibility comes at a cost: our framework

is less useful for making predictions (aside from the fact that pricing moments are somewhat

persistent, so that knowledge of the distribution today is informative for the distribution to-

morrow) or for assessing counterfactuals under alternative policy environments. We have no

theory for the evolution of price gaps and instead simply estimate their distribution period

by period. So while our methodology provides a useful way of summarizing the complicated

distribution of price changes and how this will respond to shocks on impact, we have less

to say about how variables will evolve after impact or how distributions will potentially

change in response to changes in policy. That is, our framework provides a historical view of

price �exibility which requires minimal structure, but is somewhat sensitive to lucas critique

arguments when trying to do predictive analysis.

While specifying a full structural model is important if one wants to understand what

drives �rms' pricing decisions or for performing counterfactual analysis, one contribution of

our paper is showing that an important component of the nominal transmission mechanism

can be measured with more minimal structural assumptions. Measuring aggregate price

�exibility at a particular point in time can be done without an explicit model of the evolution

of price distributions across time. In particular, given a speci�cation for the hazard of price

adjustment and the distribution of �rms' desired price changes at a moment in time, aggregate

price �exibility is fully revealed by the observed distribution of �rms' actual price changes at
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that same point in time. We apply this identi�cation procedure to BLS CPI, PPI and IPP

micro data to create a time-series for price �exibility in each data set and �nd that in all

cases it is strongly countercyclical.

Our work relates to many existing, largely empirical papers which document facts about

the distribution of price changes. Typically, these papers focus on one data set, whereas we

focus on the time-series properties of a broad set of statistics in multiple data sets covering

di�erent points in the supply chain. For example, Klenow and Malin (2010) document many

interesting facts about prices, but concentrate solely on CPI data and do not focus on the

time-series properties of higher moments of the price change distribution. Chu et al. (2015)

study the distribution of price changes in the U.K., but exclusively study the CPI and do not

discuss implications for price �exibility and monetary policy. Vavra (2014) is the most closely

related paper, and our work is distinguished in several ways: Vavra (2014) studies only CPI

data and focuses mostly on the variance of price changes rather than broader features of the

price distribution studied in our analysis. On the theoretical front, as mentioned above, his

model imposes much stronger structural assumptions while our analysis uses a more �exible

accounting framework to describe price �exibility.

The remainder of the paper proceeds as follows: Section 2 contains our main empirical

�ndings. Section 3 discusses the implications for time-varying �exibility using the simple,

�exible structure of Caballero and Engel (2007) . Section 4 lays out our main results which

are that price �exibility varies signi�cantly over time and his strongly countercyclical. Finally,

Section 5 concludes.

2 Data

2.1 Data Sources

We analyze three sources of micro data collected by the BLS, and we describe each data

set in brief. The restricted access CPI research database collected by the Bureau of Labor

Statistics (BLS) contains individual price observations for the thousands of non-shelter items

underlying the CPI and spans the period 1988-2012. Prices are collected monthly only in
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New York, Los Angeles and Chicago, and we restrict our analysis to these cities6 to en-

sure the representativeness of our sample. The database contains thousands of individual

"quote-lines" with price observations for many months. Quote-lines are the highest level of

disaggregation possible and correspond to an individual item at a particular outlet. An ex-

ample of a quote-line collected in the research database is 2-liter coke at a particular Chicago

outlet. These quote-lines are then classi�ed into various product categories called "Entry

Level Items" or ELIs. The ELIs can then be grouped into several levels of more aggregated

product categories �nishing with eleven major expenditure groups: processed food, unpro-

cessed food, household furnishings, apparel, transportation goods, recreation goods, other

goods, utilities, vehicle fuel, travel, and services. For more details on the structure of the

database see Nakamura and Steinsson (2008).

We use con�dential micro data on import prices collected by the Bureau of Labor Statistics

for the period 1994-2011. This data is collected on a monthly basis and contains information

on import prices for very detailed items over time. This data set has previously been used by

Gopinath and Rigobon (2008), Gopinath and Itskhoki (2010), Neiman (2010), Berger et al.

(2012) and Berger and Vavra (2015). Below, we provide a brief description of how the data is

collected. The target universe of the price index consists of all items purchased from abroad

by U.S. residents (imports). An "item" in the data set is de�ned as a unique combination

of a �rm, a product and the country from which a product is shipped. The target universe

of the price index consists of all items purchased from abroad by U.S. residents (imports).

An "item" in the data set is de�ned as a unique combination of a �rm, a product and the

country from which a product is shipped. Price data are collected monthly for approximately

10,000 imported items. The BLS collects "free on board" (fob) prices at the foreign port of

exportation before insurance, freight or duty are added, and almost 90% of U.S. imports have

a reported price in dollars. Following the literature, we restrict our analysis to these dollar

denominated prices. The BLS collects prices monthly using voluntary con�dential surveys,

which are usually conducted by mail. Respondents are asked for prices of actual transactions

that occur as close as possible to the �rst day of the month. For more details about the IPP

data set seeGopinath and Rigobon (2008).

The PPI Research Database contains a panel of raw data from the productions �rms used

to construct the PPI. The earliest prices in the database are from the late 1970s. For most

6Prices were also collected monthly in San Francisco and Philadelphia from 1988-2012. We do not include these
cities because we want to have a consistent sample for the entire life of the data set (1988-2009).
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categories, however, the sample period begins some time during the early to mid 1980s. For

the period 1981-2012 (the period we focus on), the PPI Research Database contains data for

categories that constitute greater than 90% of the value weight for the Finished Goods PPI.

For more details see Nakamura and Steinsson (2008).

Like the IPP, the PPI is collected by BLS through a representative survey of �rms. This

methodology introduces greater concerns about data quality than in the CPI where BLS

agents actually observe prices of products on the shelf. In order to address these concerned

the BLS focuses on only collecting actual transaction prices. Speci�cally, the BLS requests

the price of actual shipments transacted within a particular time frame. It is important to

note that many of the transactions for which prices are collected as part of the IPP and

PPI are a part of implicit or explicit long-term contracts between �rms and their suppliers.

The presence of such long-term contracts makes interpreting the IPP and PPI data more

complicated than interpreting CPI data. This is less of a concern in the IPP because we only

use market based transactions, however, this concern remains in the PPI data.

2.2 Variable de�nitions

Much of the recent literature has discussed the di�erence between sales, regular price changes

and product substitutions. In our analysis, we focus on regular price changes, excluding sales

and product substitutions. We use the series excluding sales and product substitutions as

our benchmark for two reasons: 1) Eichenbaum et al. (2011) and Kehoe and Midrigan

(2015) argue that the behavior of sales is often signi�cantly di�erent from that of regular or

reference prices and that regular prices are likely to be the important object of interest for

aggregate dynamics. Thus, we choose to exclude sales in our benchmark analysis. However,

it is important to note that sales are infrequent in IPP and PPI data, and our results are

largely similar if we include sales in the CPI analysis rather than excluding them. 2)

Product substitutions require a judgement on what portion of a price change is due to quality

adjustment and which component is a pure price change. Thus, this introduces measurement

error in the calculation of price changes at the time of product substitution. Bils (2009)

shows that these errors can be substantial. For this reason, we exclude product substitutions

from our benchmark analysis.
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We de�ne the price change of item i at time t as dpi,t = log pi,t
pi,t−1

.7 Then, using aggregation

weights provided by the BLS, it is straightforward to calculate the cross-sectional distribution

of log price changes for each month and investigate how it varies over the business cycle.

Following Vavra (2014), we focus separately on the distribution of non-zero price changes

and frequency rather than computing statistics for the distribution of price changes including

zeros.

2.3 Data facts

Figure 1 plots the distribution of (non-zero) price changes across time for the CPI, IPP and

PPI. In particular, we plot the 10th, 25th, 37.5th, 50th, 62.5th, 75th and 90th percentiles

of the distribution of price changes for all three data sets along with (gray) NBER recession

bars. The �rst observation is that the average size of a price change is large in all three

datasets: the mean interquartile range (the 75th percentile minus the 25th percentile) is

around 7%. Second, the distribution of price changes varies signi�cantly over time. This

variation is most dramatic for the CPI, but is still substantial for the IPP and PPI.8 These

time-series movements do not occur at random; they are correlated with the business cycle.

In particular, the average size of price changes falls, and the frequency and dispersion of price

changes rises during recessions.

Table 1 formally documents the business cycle properties of price-setting at quarterly

frequencies.9 Since there is some high frequency noise in the data, and because low frequency

trends can introduce spurious correlation, our preferred speci�cations focus on variation at

business cycle frequencies. In particular, the top panel shows how bandpass �ltered (BP)

frequency and the �rst four moments of price changes vary with GDP growth rates. The

middle panel reports the same correlations using a Hodrick-Prescott �lter (HP) to eliminate

low frequency trends and a 3-quarter moving average �lter (MA) to eliminate high frequency

7In addition to this measure of the size of a price change, we also computed the price change size as dp = 2
(pt−pt−1)

(pt+pt−1)
,

which has the advantage of being bounded and thus less sensitive to outliers. We also investigated using residuals
from a regression of the current price on the previous price as a measure of the size of price changes. Results with
these two alternative measures are very similar to the results reported below and so are excluded for brevity. The
results are available from authors upon request.

8The larger time variation in the CPI might be related to the fact that CPI is not a�ected by long-term contracts.
9In Appendix A we report results for various percentiles of the distribution. We also show that the same time-series

relationships that we document below are also present in monthly data.
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Figure 1: Distribution of price changes across time

variation. Finally, the bottom panel reports results for un�ltered data and shows that all

patterns are largely similar.10 In the Appendix, we also show that similar conclusions obtain

when regressing variables on recession indicators.

We document two main facts. The �rst fact is that the frequency of adjustment is counter-

cyclical. Vavra (2014) �rst documented this fact for the CPI but we see here that it holds at

all stages of production. The second fact is that price dispersion is strongly countercyclical.

Table 1 presents results for three measures of price change dispersion: the standard deviation

(XSD), the interquartile range (IQR) and the di�erence between the 90th and 10th percentile

of the distribution of price changes, and all three measures tell the same story. In almost

10In the un�ltered speci�cation, we detrended all data with a quadratic trend to eliminate spurious trend correla-
tions, but results are similar with no detrending.
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Table 1: Business Cycle Correlations of Pricing Moments

Freq XSD IQR 90-10 Skew Robust-Skew Kurt Robust-Kurt Obs

BP Filtered

CPI -0.53*** -0.59*** -0.65*** -0.52*** 0.20 0.14 0.39*** 0.40*** 76

IPP -0.36** -0.66*** -0.61** -0.68*** 0.16 0.55*** 0.25*** -0.17 51

PPI -0.35*** -0.57*** -0.48*** -0.56*** 0.04 -0.20 0.17** -0.08 105

HP + MA Filtered

CPI -0.52*** -0.61*** -0.64*** -0.64*** 0.15** 0.12 0.38*** 0.34*** 96

IPP -0.40** -0.63*** -0.62*** -0.65*** 0.24 0.50*** 0.20 0.01 71

PPI -0.28*** -0.40*** -0.31* -0.39** 0.09 -0.17 0.06 -0.09 125

Un�ltered

CPI -0.35*** -0.46*** -0.45*** -0.44*** 0.10 0.14*** 0.14* 0.07 96

IPP -0.26 -0.52*** -0.54*** -0.51** 0.12 0.35** 0.05 0.11 71

PPI -0.27*** -0.27 -0.22* -0.24 0.09 -0.10 -0.02 -0.02 125

Each cell displays the correlation of a particular pricing moment in a particular data set with GDP growth. BP uses

a baxter king(6,32,10) �lter. HP+MA uses a hodrick-prescott �lter with smoothing parameter 1600 and a 3 quarter

moving average. Un�ltered data uses no �lters but detrends series using a quadratic trend. All data is quarterly.

Robust-Skew= (P90+P10−2P50)/((P90−P10). Robust-Kurt = (P90−P62.5+P37.5−P10)/((P75−P25). Standard errors

are computed using a Newey-West correction with optimal lag length. *=10%, **=5%, ***=at least 1% signi�cance.

all of the speci�cations, the dispersion of price changes is signi�cantly negatively correlated

with the business cycle. This fact is consistent with the large body of evidence presented in

Bloom et al. (2012) documenting that many variables exhibit countercyclical dispersion and

shows that this fact holds in a variety of pricing series.11

The last four columns of Table 1 show that, across datasets, there is a less consistent

relationship between the third and fourth moments of the distribution of price changes and

the business cycle. The standard moment-based skewness exhibits no notable cyclicality in

any data set. The robust, quantile based measure of skewness is strongly procyclical in the

IPP but not in the CPI or PPI. The kurtosis of price changes measured using both moments

and more robust percentiles is strongly procyclical in the CPI but is not robustly so in

11Vavra (2014) showed it held in the CPI; Berger and Vavra (2015) showed it holds in the IPP. In this paper we
show it holds in the PPI as well.
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IPP or PPI. This shows the importance of jointly analyzing pricing data at various stages

of production, as facts gleaned in one data set may not be representative of more general

price-setting patterns. A large recent literature has emerged trying to match features of the

kurtosis of price changes in CPI data, but here we show that the time-series behavior of

kurtosis in the CPI is somewhat unique.12

Table 2: Correlation of Pricing Moments with Frequency of Adjustment

XSD IQR 90-10 Skew Robust-Skew Kurt Robust-Kurt Obs

BP Filtered

CPI 0.52*** 0.55*** 0.43*** 0.16 0.18 -0.54*** -0.44* 76

IPP 0.44* 0.47** 0.43* -0.24 -0.41** -0.05 -0.09 51

PPI 0.41*** 0.40*** 0.40*** -0.16 0.47* 0.08 0.13 105

HP + MA Filtered

CPI 0.50*** 0.55*** 0.41*** -0.10 0.09 -0.54*** -0.52** 96

IPP 0.19 0.23 0.22 -0.20 -0.24* -0.09 -0.01 71

PPI 0.26** 0.30** 0.30** -0.04 0.38*** 0.01 0.12 125

Un�ltered

CPI 0.36*** 0.43*** 0.35*** -0.06 0.01 -0.35*** -0.27* 96

IPP 0.12 0.16 0.16 -0.15 -0.18** -0.04 0.01 71

PPI 0.18** 0.33** 0.25** -0.02 0.20** -0.04 0.03 125

Each cell displays the correlation of the frequency of adjustment in a particular data set with the corresponding

moment in the same data set. BP uses a baxter king(6,32,10) �lter. HP+MA uses a hodrick-prescott �lter with

smoothing parameter 1600 and a 3 quarter moving average. Un�ltered data uses no �lters but detrends series

using a quadratic trend. All data is quarterly. Robust-Skew= (P90 + P10 − 2P50)/((P90 − P10). Robust-Kurt =

(P90 − P62.5 + P37.5 − P10)/((P75 − P25). Standard errors are computed using a Newey-West correction with optimal

lag length. *=10%, **=5%, ***=at least 1% signi�cance.

Table 2 documents the correlation of pricing moments with the frequency of adjustment.

In price-setting models, the frequency of adjustment is typically closely related to the amount

of aggregate price �exibility, so it is useful to explore the relationship between the price change

distribution and frequency. The �rst three columns of Table 2 show that the frequency of

adjustment is signi�cantly and positively correlated with price dispersion in all speci�cations

12All data sets exhibit excess kurtosis on average, as emphasized by Midrigan (2011).
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for the CPI and PPI. The relationship is less consistent for the IPP, however, the point

estimates are always positive even when not statistically signi�cant. The next two columns

document the relationship between skewness and frequency. Overall, the relationship is

idiosyncratic to the speci�c data set: skewness and frequency are positively correlated in the

PPI, negatively correlated in the IPP and there is no time-series relationship in the CPI.

Finally, the last two columns of table 2 show that there is a strong negative relationship

between kurtosis and frequency in the CPI, but again, this pattern is unique to the CPI:

frequency and kurtosis are uncorrelated in the IPP and PPI.

To summarize the more robust patterns in the above tables: we �nd strong evidence

that the frequency and price dispersion are both countercyclical and positively related to

each other in all three data sets. Conversely there is no robust relationship between higher

moments and the business cycle across data sets: we �nd that skewness is procyclical only

in the IPP and kurtosis is procyclical only in the CPI.

While we �nd it informative to highlight these particular patterns, it is clear that there

are many moments of the price distribution upon which one could focus. In Appendix A, we

report additional patterns for ten percentiles of the price change distribution. What should

we take away from these empirical facts, and why should we care about matching them?

In the next section, we explore the implications of these price facts for the e�ectiveness

of monetary policy, and show that the complicated high-dimensional distribution of price

changes at a point in time can be summarized by a useful measure of price �exibility. When

viewed through the lens of this price �exibility measure, matching the distribution of price

changes across time has important implications for the cyclicality of aggregate price �exibility.

3 Accounting framework

3.1 Basic setup

We use the generalized Ss model developed by Caballero and Engel (2007) to formalize the

link between changes in the timing of individual price adjustments and macro price �exibility.

The main appeal of this framework is that it �exibly encompasses several pricing mechanisms

commonly used in macroeconomic applications in a parsimonious way as well as providing a

good �t to the micro data.

First, some preliminaries. There are both aggregate and idiosyncratic shocks, We assume
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that shocks to the growth rate of money (or nominal demand) ∆mt are i.i.d with mean µA

and variance σ2
A. Firms also face idiosyncratic (productivity and demand) shocks, vit, which

are i.i.d. with potentially time-varying variance σ2
I . No assumptions are made regarding the

common distribution of idiosyncratic shocks. These shocks are independent across �rms and

from the aggregate shock. Given these assumptions, the optimal �exible price for �rm i (the

�desired price�) is:

∆p∗it = ∆mt + vit

That is, conditional on adjusting, �rm i adjusts to innovations in all the shocks since it last

adjusted. De�ne the price gap as x ≡ pi,t−1 − p∗it, the di�erence between �rm i's, current

price and the price it would choose if it temporarily faced no adjustment costs. The price

gap is the relevant state variable in this pricing model since �rms are more likely to adjust

the larger the absolute size of the gap.

We further assume that there are i.i.d. idiosyncratic shocks to adjustment costs, $, drawn

from a distribution G($) . Integrating over all possible realizations of these adjustment

costs, we obtain an adjustment hazard,Λ(x), de�ned as the probability of adjusting�prior

to knowing the current adjustment cost draw�by a �rm that would adjust by x, if its

adjustment cost draw were zero. It is straightforward to prove that Λ(x) is decreasing for

x < 0 and increasing for x > 0. This is referred to by Caballero and Engel (2007) as the

increasing hazard property: the probability of adjusting is increasing in the absolute size of

a �rm's price gap.

A nice feature of this generalized Ss framework is that it nests many standard models as

special cases. For example, a standard menu cost model is obtained when G($) has all of its

mass at one point. The Calvo model (Λ(x) = λ for all x) is obtained when G($) has mass λ

at $ = 0 and mass 1−λ at a very large value of $. The model also has empirical relevance:

it gives rise to infrequent and lumpy price adjustment, which is a central feature of the price

data that we seek to reproduce. It can also well match the observed distribution of price

changes, and it is consistent with the evidence in Eichenbaum et al. (2011) that �rms are

more likely to adjust prices that are out of line with marginal cost.

The model also aggregates nicely. Denote by ft(x) the cross section of price gaps imme-

diately before any adjustments take place at time t. In�ation is given by the simple formula:

πt = −
ˆ
xΛt(x)ft(x)dx
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De�ne F = ∂πt
∂4mt

as the price �exibility index. It measures the price response upon impact to

a nominal shock. When log nominal demand follows a random walk, a common assumption in

the literature (Woodford (2003) Nakamura and Steinsson (2010); Vavra (2014)), the �exibility

index is a summary measure of monetary non-neutrality because the larger is the (price)

�exibility index, the smaller is the output response. Thus knowledge of the �exibility index

is a useful proxy for the current e�cacy of monetary policy. Fortunately, Caballero and Engel

(2007) show how to derive the �exibility index for the generalized Ss model:

F = lim4mt→0
∂πt
∂4mt

=

ˆ
Λt(x)ft(x)dx+

ˆ
xΛ′t(x)ft(x)dx (1)

The �exibility index can be decomposed into two components: an intensive margin and an

extensive margin. The �rst term is the intensive margin, which measures the part of in�ation

coming from �rms that would have adjusted even absent the monetary shock. This margin

is present in both the Ss and Calvo models. The second term is unique to state-dependent

models. The extensive margin refers to the amount of in�ation coming from �rms whose

decisions to adjust are altered by the monetary shock. This includes both �rms who would

have kept their price constant and instead change it, as well as �rms who would have changed

prices but now choose not to. The extensive margin is only present in Ss models since in a

Calvo model Λ′t(x) = 0.

When will each of these margins be more important? Inspecting the expression for the

intensive margin shows that this component is equal to the frequency of adjustment. The

more �rms that are adjusting absent the aggregate shock, the greater the aggregate price

response to that shock through the intensive margin. The extensive margin grows with the

number of �rms near the margin of adjustment (�rms with large Λ′t(x) ). In addition, the

extensive margin is ampli�ed if �rms near the margin of adjustment also have large values

of |x|: if the di�erence between adjusting and not adjusting grows, then triggering �rms to

switch their adjustment decisions will have a bigger e�ect on the overall price level.

The �exibility index is our main object of interest as it tells us how the the price response

upon impact to a nominal shock varies over time. Moreover, it is also potentially useful

for discriminating between price setting models. Equation (1) shows that if one knew both

the hazard function, Λt(x), and the distribution of price gaps, ft(x), one could estimate the

�exibility index at each moment of time. Of course, both of these objects are unobservable.

However, with some minimal structure and data on observed price changes, we are able to
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identify this object. First, the product of Λt(x) and ft(x) relates unobservable price gaps of

size x to the observable distribution of price changes of size x. We put further structure on

the problem by assuming that the hazard rate is quadratic (until the point at which �rms

adjust with probability 1), since this parsimoniously captures the state-dependence of the Ss

model while also nesting the Calvo model.

Λ(x) = min(at + btx
2, 1)

What determines the distribution of price gaps ft(x)? In traditional structural approaches,

one assumes some simple process for vit, and combines this assumption with Λ(x) to derive

the evolution of ft(x). For example, Caballero and Engel (2006) assume that v is drawn

from a time-invariant normal distribution, while Midrigan (2011) assumes a time-invariant

leptokurtic distribution. Perumuting these shock processes with the adjustment hazard pro-

duces some distribution of price gaps f(x). One then estimates the underlying shock process

to match the stationary distribution of price changes. This approach has the advantage of

being highly parsimonious since it estimates a limited number of parameters. It is also useful

for performing counterfactual exercises in response to changes in the policy environment,

under the assumption that the distribution of v is policy invariant. However, it also has an

important disadvantage: the imposition of this structure implies strong restrictions on the

evolution of price gaps and thus the distribution of price changs across time. Given these

tight restrictions and the small number of parameters estimated, this means these models

can at best very roughly capture the complicated evolution of the price change distribution

documented in the previous section.

In order to try to more directly assess the implications of this complicated price dis-

tribution for aggregate price �exibility, we take a di�erent approach that tries to estimate

outcomes rather than the underlying shock process. In particular rather than trying to esti-

mate underlying structural parameters of some shock process v, we instead directly estimate a

�exible functional form for the distribution of price gaps ft(x). Given that we have much less

theoretical guidance for shape of distribution of price gaps, we leave it largely unrestricted.

In our primary speci�cation, we allow ft(x) to follow a Pearson Type 7 Distribution, which

means it has an unrestricted mean, variance, skewness and kurtosis. Given these 4 parame-

ters together with the 2 parameters of the adjustment hazard, equation (1) delivers the price

response upon impact at each moment in time. In addition to this functional form, we also
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provide additional results following Guvenen, Ozkan and Song (2014) in using a mixture of

normals to provide a �exible parameteric form for ft(x). While it might seem that there is

little di�erence between estimating the distribution of v and that of ft(x), the key distinction

is that the distribution of v is assumed to be time-invariant13, while we estimate a separate

ft(x) in each period.14 That is, the main distinction between the two approaches is on the

restrictions placed on parameter variation across time. Our approach estimates 6× t param-
eters while a structural approach assuming a time-invariant Pearson distribution for v and a

stationary hazard Λ would estimate only 6 parameters.
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Figure 2: E�ect of parameters on Frequency and Price Flexibility

How does underlying variation in the parameters governing Λand f a�ect both the ob-

served distribution of price changes and aggregate price �exibility? We illustrate this by

13Or to only vary across time in extremely simple ways.
14These approaches are exactly equivalent if one allows the distribution ofv and Λ to vary across time with equivalent

degrees of freedom.
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picking some sample parameters,15 and then varying moments of the price gap distribution

and reporting both the frequency of adjustment and the price response upon impact for these

various parameter values. The top panel of Figure 2 shows how the frequency and aggregate

�exibility vary with the standard deviation of f . It is obvious from the �gure that increases

in the stdandard deviation of desired price changes increase both frequency and aggregate

price �exibility. Importantly the e�ect is non-linear: the e�ect on aggregate price �exibility

is highly convex in the std. deviation of the price gap distribution. The logic behind these

e�ects is that an increase in standard deviation of the distribution of price gaps means that

there is more mass in the region of the state space where there is a higher probability of

adjustment. That is, both the intensive and extensive margins are strengthened.16

In contrast, the middle panel of Figure 2 shows that there is little relationship between

the skewness of ft(x) and either the frequency of adjustment or price �exibility. Finally,

the bottom panel shows that there is a negative relationship between kurtosis and both the

frequency of price changes and price �exibility.17 Why? Higher kurtosis means that the

distribution of price gaps has fatter tales relative to a normal distribution. That is, there are

both more price gaps near zero and more price gaps at extreme values. Since the hazard of

adjustment as a function of the price gap is bounded above by 1, this limits the degree to

which the price gaps at the extremes can raise frequency. That is, �rms with large price gaps

will adjust anyway, while simultaneously pushing more mass towards zero lower the frequency

of adjustment. Higher kurtosis also reduces the fraction of intermediate �rms who are on

the margin of adjustment, which lowers price �exibility through a decline in the extensive

margin.

Identi�cation

Thus far, we have show that variation in the moments of the (unobservable) distribution

of price gaps can be mapped through our �exible parametric model into the frequency of

adjustment and aggregate �exibility. The next step is to show that there is a mapping

from the unobservable distribution of gaps to the observable distribution of price changes.

15We choose [mean,std. deviation, skewness,kurtosis,a,b]=[.005,.05,0,6,90,.01] for this illustration, as it produces
moments in line with the average distribution of price changes.

16This conforms with the more structural results in Vavra (2014).
17This is consistent with Midrigan (2011).
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Table 3 shows the relationship between parameters of the gap distribution and the (observed)

distribution of price changes.

Table 3: Correlation between f(x) parameters and distribution of price changes

Gap Parameter Observed Price Change Moment

Frequency In�ation Std. Deviation Skewness Kurtosis
Mean -0.00 0.99*** -0.00 -0.65*** 0.00
Std. Deviation 0.99*** -0.02 1.00*** -0.01 -0.83***
Skewness -0.05 1.00*** -0.01 0.79*** 0.02
Kurtosis -0.70*** -0.04 0.96*** 0.05 0.92***

The �rst column shows that variation in the mean and skewness of the gap distribution

does not a�ect the frequency of adjustment. In contrast, the standard deviation of the gap

distribution is strongly positively correlated with frequency while the kurtosis of the distri-

bution is strongly negatively correlated with frequency. This reinforces what we observed in

�gure 2. The next fact which jumps out is that changes in each moment of the gap distribu-

tion are strongly positively correlated with the same moment in the distribution of observed

price changes. For example, variation in the mean of the gap distribution implies similar

variation in the level of in�ation in the distribution of observed price changes. This shows

that we can use variation in the moments of the distribution of price changes to identify

movements in the unobserved distribution of price gaps. Finally, we see that while variation

in each parameter is strongly informative for a particular moment, it also induces variation

in other moments of the distribution. For example, variation in the mean of the distribution

of price gaps a�ects skewness, while variation in the standard deviation of the price gap

distribution a�ects kurtosis. In sum, Table 3 shows that there is a tight mapping between

moments of the unobserved distribution of price gaps and various moments of the observed

distribution of price changes so that the latter is useful for ident�ying the former.

How restrictive are our identifying assumptions that within each month, the hazard is

quadratic and that the distribution of price gaps follows a four parameter Pearson Type

7 distribution? It is clear that our approach is more �exible than more typical structural

models, but it is more restrictive than a fully non-parametric approach. However, it is also

clear that identi�cation requires some parametric assumptions, as a fully non-parametric

gap distribution and hazard is unidenti�ed. This is because if one allows for a fully non-
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parametric gap distribution, then one can always perfectly replicate the data with a Calvo

model by setting b = 0, choosing the frequency of adjustment to be equal to a, and picking

the gap distribution to correspond to the actual observed distribution of price changes in

each period. However, this is not a particularly appealing model of price-setting for several

reasons. First, this model would have essentially no actual predictive content. A model which

allows for a completely arbitrary distribution of shocks to explain observable data essentially

explains nothing. Similarly, it would be extremely di�cult to construct any model that

generates such complicated distributions of �rms' desired price changes. Finally, there is

strong empirical evidence of state-dependence in micro pricing data, so that a Calvo model

with a complicated gap distribution seems at odds with the data.18

Conversely, our approach is substantially more �exible than more traditional structural

approaches such as those in Vavra (2014) and Alvarez and Lippi (2014). We think there is

signi�cant value in exploring the implications of a less restrictive model for aggregate price

�exibility. Thus, while our assumption that the gap process is determined by a parametric

distribution at each point is restrictive relative to a fully non-parametric gap distribution, it is

signi�cantly less restrictive than previous structural frameworks. Within a period, we impose

a highly �exible parametric functional form for price gaps19 , but across periods this object

can evolve in a fully unrestricted way. Standard structural models impose strong restrictions

on the relationship between distributions at a point in time and how they evolve across

time.20 We believe it is interesting to take an intermediate approach between fully structural

and completely non-parametric approaches and explore its implications for aggregate price

�exibility.

18Midrigan (2010) argues that U.S. manufacturing pricing data are much more consistent with state dependent
models than with time dependent ones. Midrigan (2012) and Nakamura and Steinsson (2010) use structural approachs
and �nd that micro price data are consistent with state dependent pricing. Gagnon (2010) and Alvarez and Lippi
(2013) use evidence from high in�ation episodes from Mexico and Argentina respectively and provide very strong
empirical evidence that price setters exhibit state dependence in price. Most directly, Eichenbaum, Jaimovich and
Rebelo (2011) show that prices are much more likely to adjust when �rms' price gaps (as measured by the deviation
in their markup from average) are large.

19In our baseline we use a Pearson Type 7 distribution, but we also show that results are similar using a time-varying
mixture of normals.

20For example, the closest structural analogue is contained in Caballero and Engel (2006). They use the same
accounting framework as in Caballero and Engel (2007) and impose the structural assumption that idiosyncratic
shocks are normal with mean zero and constant variance, which they try to estimate to match the average distribution
of price changes in the CPI. If one instead allows for an arbitrary shock process then these more structural models
also have essentially no content.
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4 Results and implications

We now use the theoretical framework to explore the level and time-variation in aggregate

price �exibility for the CPI, IPP and PPI. We assume that the hazard function is a quadratic

in price gaps x which is consistent with both the increasing hazard property of Ss models

while also nesting the Calvo model. Since we have less guidance for the structure of the

distribution of price gaps, we assume in our baseline results that the distribution follows a

Pearson Type 7 distribution, which leaves the �rst 4 moments unrestricted. This means we

have six parameters to estimate: the intercept and slope coe�cient of the hazard function

and the �rst four moments of the price gap distribution. We also show below that a version of

the model where we assume that the distribution of price gaps is given by the mixture of two

normal distributions instead of a Pearson Type 7 distribution delivers similar conclusions.

In our baseline speci�cation, we estimate these six parameters period-by-period using

seven moments, Mt, for identi�cation:

Mt = [freqt,meant, vart, skewnesst, kurtosist,mediant, IQRt]

The seven moments are the frequency of adjustment as well as the mean, median, variance,

skewness, kurtosis and interquartile range of the distribution of price changes.21 Each period

we minimize a quadratic form of these moments M and �nd the parameters which provide

the best �t.22 That is we �nd the parameters which minimize M ′WM , where W is a weight

matrix. For our baseline speci�cation we weight each moment equally.23 Once we have

speci�ed the quadratic form, we minimize it period-by-period. Then we compute aggregate

price �exibility - the price response upon impact to a nominal shock - using equation (1) and

analyze how it co-varies with the business cycle and the frequency of adjustment.

21Results are similar if instead on uses 10 rather than 7 moments. The moments we added were the 10th, 25th,
75th and 90th percentile of the distribution of price changes, and the interquartile range was removed because it was
redundant.

22We experimented with multiple quadratic forms but we found the most stable results when the odd moments

were speci�ed in percentages,
(

msim−mdata

mdata

)2

and the even moments as
(
msim −mdata

)2
. The reason is the even

moments can be either positive or negative and are often centered around zero. If we speci�ed all the moments in
percentage terms, this would lead to us dividing by a number near zero, which lead to unstable estimated. However,
most results were robust to specifying all the moments symmetrically, either in percentage terms or as raw quadratic
forms.

23Altonji and Segal (1996) argue that simulated minimum distance estimation often performs better in small samples
if an identify weight matrix is used rather than the optimal weight matrix.
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We conduct this exercise for all three price series and for all three price �lters. Appendix

Table 13 reports mean parameter results and goodness of �t for our baseline speci�cation

using a Pearson Type 7 distribution to match the seven pricing moments across the three

data sets. The �t is slightly worse for PPI data, but is in general quite good for all three

data sets. The most important takeaway is that the estimation identi�es high values for the

quadratic adjustment hazard parameter b in all three data sets. This will imply an important

role for extensive margin e�ects in generating price �exibility.

Table 4: Cyclicality and Time-Variation in Price Flexibility: Matching Moments

Time-Variation
Cyclicality Mean Std. Dev. 5th 95th

BP Filtered

CPI -0.57*** 0.11 0.014 0.085 0.140
IPP -0.27** 0.22 0.020 0.184 0.253
PPI -0.28* 0.40 0.045 0.317 0.462

HP + MA Filtered

CPI -0.56*** 0.11 0.013 0.096 0.137
IPP -0.37*** 0.22 0.018 0.188 0.246
PPI -0.30** 0.40 0.050 0.316 0.475

Un�ltered

CPI -0.37*** 0.11 0.020 0.084 0.150
IPP -0.31** 0.22 0.025 0.172 0.258
PPI -0.30*** 0.40 0.087 0.278 0.541

This table shows results for the Pearson Type 7 distribution targeting M moments of the price change distribution.

The �rst column shows the correlation between the price �exibility index and GDP growth. In the �rst panel, series

are �ltered using a Baxter King (6,32,10) �lter. In the second panel, series are �ltered using a Hodrick-Prescott(1600)

�lter and a 3 quarter moving average. In the third panel, series are un�ltered but are detrended with a quadratic trend.

�Mean� shows the mean price �exibility over the entire sample. This is computed prior to �ltering, since �ltered data

is mean zero. �Std. Dev.�, �5th� and �95th� shows the standard deviation, 5th and 95th percentile of price �exibility

across time, after �ltering. Standard errors for the cylicality calculation are adjusted for serial correlation using a

Newey-West correction with optimal lag length. *=10% signi�cance, **=5% signi�cance, ***=1% signi�cance.

Given this set of parameters, how does price �exibility vary across time? We have two

main results, both of which are shown in Table 4. The �rst fact is that aggregate price
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�exibility varies substantially across time. Column 2 shows the mean level of price �exibility

while columns 3-5 show the time-series standard deviation of price �exibility together with

the �fth and ninety-�fth percentile. The �rst two panels �lter the price �exibility series,

leaving only price �exibility variation at business cycle frequencies. Even with this �ltering,

there is still substantial time-series variation: the 95th percentile of price �exibility is 30-60%

larger than the 5th percentile of price �exibility. The time-series standard deviation of price

�exibility is typically around 10% of the mean level of price �exibility. The bottom panel

shows that, unsurprisingly, price �exibility variation is even larger when using variation at

all time frequencies. The 95th percentile of un�ltered price �exibility is 50-95% higher than

the 5th percentile of the same series.

The second important fact shown in Table 4 is that price �exibility is strongly counter-

cyclical, so that this variation in price �exibility does not occur at random. Column 1 shows

that our �exibility index is higher when the growth rate of gdp is lower in all nine speci�-

cations. Since this �exibility index measures how reponsive prices are to a nominal shock

at a moment in time, this implies that monetary policy which increases nominal output by

a given amount will be less e�ective at stimulating real output during recessions.24 Thus

monetary policy is least e�ective during the times when policy makers most want to conduct

expansionary policy.

One concern with our estimation approach thus far is that it might be sensitive to the par-

ticular pricing moments we chose to target. Targeting centered moments of the distribution

of price changes utilizes all information, but it also makes results more sensitive to outliers.

In particular, some of the higher moments we choose to target are di�cult to estimate in

small samples. Targeting these moments in our estimation could thus lead us astray. In order

to explore the robustness of our results to these concerns, we run our estimation targeting

nine percentiles of the distribution of price changes rather than centered moments of this

distribution. In particular, we target the following ten moments:

Mt = [freqt, p1t, p5t, p10t, p25t, p50t, p75t, p90t, p95t, p99t]

These moments robustly summarize the distribution of price changes while at the same

24Statements about recessions vs. general cyclicality can be somewhat more sensitive to the exact timing of recession
dates. Nevertheless, regressing price �exibility on recession dummies implies signi�cant increases for all CPI and IPP
speci�cations and for PPI speci�cations with the HP+MA �lter. Point estimates are positive but insigni�cant for the
other two PPI �lters.
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Table 5: Cyclicality and Time-Variation in Price Flexibility: Matching Percentiles

Time-Variation
Cyclicality Mean Std. Dev. 5th 95th

BP Filtered

CPI -0.36 0.13 0.011 0.110 0.144
IPP -0.27*** 0.20 0.019 0.172 0.232
PPI -0.35*** 0.29 0.031 0.248 0.348

HP + MA Filtered

CPI -0.37** 0.13 0.011 0.111 0.147
IPP -0.29*** 0.20 0.018 0.171 0.230
PPI -0.34** 0.29 0.032 0.237 0.342

Un�ltered

CPI -0.26* 0.13 0.017 0.101 0.153
IPP -0.28*** 0.20 0.030 0.151 0.249
PPI -0.25** 0.29 0.053 0.200 0.384

This table shows results for the Pearson Type 7 distribution targeting 10 percentiles of the price change distribution

plus frequency. The �rst column shows the correlation between the price �exibility index and GDP growth. In the �rst

panel, series are �ltered using a Baxter King (6,32,10) �lter. In the second panel, series are �ltered using a Hodrick-

Prescott(1600) �lter and a 3 quarter moving average. In the third panel, series are un�ltered but are detrended with

a quadratic trend. �Mean� shows the mean price �exibility over the entire sample. This is computed prior to �ltering,

since �ltered data is mean zero. �Std. Dev.�, �5th� and �95th� shows the standard deviation, 5th and 95th percentile

of price �exibility across time, after �ltering. Standard errors for the cylicality calculation are adjusted for serial

correlation using a Newey-West correction with optimal lag length. *=10% signi�cance, **=5% signi�cance, ***=1%

signi�cance.

time being less susceptible to outliers. The results are shown in Table 5 which has the same

structure as Table 4. We see that both our stylized facts hold up to targeting di�erent

moments: aggregate price �exibility is highly countercyclical and the magnitude of this

variation is economically large, especially from peak to trough.25

How sensitive are our results to the functional form we have chosen for the distribution

of price gaps f? In our baseline results, we assume that this distribution follows a Pearson

25Heteroscedasticity is more substantial for the bandpass �ltered CPI speci�cation under this speci�cation so that
while point estimates remain strongly negative, p-values are approximately 0.15.
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Type 7 distribution which allows us to independently choose values for the mean, variance,

skewness and kurtosis. Following Guvenen et al. (2014), we have also experimented with

instead using a gap distribution which is a mixture of normals. In this case, we have �ve

parameters to estimate: the mean and variance of each normal distribution together with

the weight placed on each of the two normal distributions. This mixed normal speci�cation

allows for substantial �exibility. For example, it is straightforward to generate distributions

with excess kurtosis or to allow for bimodal distributions. Table 6 shows that again, our

conclusions are unchanged by using a di�erent functional form for our price gap distribution.

Table 6: Cyclicality and Time-Variation in Price Flexibility: Mixed Normal Gap Distribution

Time-Variation
Cyclicality Mean Std. Dev. 5th 95th

BP Filtered

CPI -0.66*** 0.07 0.014 0.055 0.103
IPP -0.54*** 0.17 0.014 0.154 0.199
PPI -0.50*** 0.38 0.056 0.310 0.486

HP + MA Filtered

CPI -0.67*** 0.07 0.013 0.056 0.102
IPP -0.54*** 0.17 0.015 0.152 0.202
PPI -0.40*** 0.38 0.057 0.303 0.483

Un�ltered

CPI -0.43*** 0.07 0.018 0.048 0.111
IPP -0.31** 0.17 0.021 0.142 0.221
PPI -0.33*** 0.38 0.102 0.245 0.564

This table shows results for the mixed normal distribution targeting M moments of the price change distribution.

The �rst column shows the correlation between the price �exibility index and GDP growth. In the �rst panel, series

are �ltered using a Baxter King (6,32,10) �lter. In the second panel, series are �ltered using a Hodrick-Prescott(1600)

�lter and a 3 quarter moving average. In the third panel, series are un�ltered but are detrended with a quadratic trend.

�Mean� shows the mean price �exibility over the entire sample. This is computed prior to �ltering, since �ltered data

is mean zero. �Std. Dev.�, �5th� and �95th� shows the standard deviation, 5th and 95th percentile of price �exibility

across time, after �ltering. Standard errors for the cylicality calculation are adjusted for serial correlation using a

Newey-West correction with optimal lag length. **=5% signi�cance, ***=1% signi�cance.

The results thus far show that price �exibility varies substantially across time and is
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countercyclical, but they tell us little about the forces which drive this variation. Recall from

Section 3.1 that our price �exibility index can be decomposed into both an intensive margin

and an extensive margin component. The intensive margin is given by IM =
´

Λt(x)ft(x)dx,

which is just equal to the frequency of adjustment. The extensive margin is given by EM =´
xΛ′t(x)ft(x)dx. The intensive margin gives the response of in�ation to monetary shocks

driven by �rms which would adjust prices independently of the shock. The extensive margin

re�ects the additional in�ation e�ects which arise from changes in the mix of adjusting

�rms. In a Calvo model, Λ′t=0 so that only the intensive margin is active. Put slightly

di�erently, knowledge of the frequency of adjustment is su�cient for determining aggregate

price �exibility. In contrast, standard Ss models such as Golosov and Lucas (2007) imply

very important roles for the extensive margin. Recall that our hazard is parameterized as

Λ(x) = min(at + btx
2, 1), so that our framework nests a Calvo model as well as models with

strong extensive margin e�ects, depending on the estimated value of b. Thus, the relative

strength of these e�ects in our framework depends on the particular parameters which are

identi�ed to match observed price change behavior.

Is the variation we �nd in F = IM + EM then driven mainly by movements in IM or

movements in EM? In Table 7, we �rst show that there is a positive correlation between

IM and EM but this correlation is far less than 1. This implies that there are signi�cant

movements in the extensive margin which occur independently of movements in frequency of

adjustment. We can assess the relative importance of movements in frequency versus higher

moments using a formal variance decomposition. By de�nition, V AR(F ) = V AR(IM) +

V AR(EM) + 2COV (IM,EM). If movements in price �exibility are driven by movements

in the intensive margin, as in a Calvo model, then V AR(IM)/V AR(F ) should be equal to

1. Table 7 shows that this is clearly not the case. Pure movements in the intensive margin

explain only around 20-30% of overall movements in price �exibility. If we also include

covariance terms, in which movements in the intensive margin and extensive margin amplify

each other, then the share of explained variance rises. However, it remains the case that

30-40% of movements in price �exibility are explained by independent movements in the

extensive margin.

Thus, extensive margin e�ects driven by changes in the distribution of price changes are

crucial for understanding price �exibility in our data. It is worth stressing again that this

did not have to be the case. For certain parameters, our model nests a Calvo model where

all �exibility is driven by time-variation in the frequency of adjustment. However, our model
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Table 7: Intensive Margin and Aggregate Price Flexibility

Match Moments Match Percentiles

corr(IM,EM) V AR(IM)
V AR(F )

V AR(IM)+2COV (IM,EM)
V AR(F ) corr(IM,EM) V AR(IM)

V AR(F )
V AR(IM)+2COV (IM,EM)

V AR(F )

BP Filtered

CPI 0.68*** 0.22 0.61 0.69*** 0.19 0.58

IPP 0.80*** 0.15 0.52 0.83*** 0.29 0.74

PPI 0.46*** 0.17 0.61 0.80*** 0.28 0.68

HP + MA Filtered

CPI 0.69*** 0.21 0.60 0.67*** 0.20 0.59

IPP 0.61*** 0.16 0.50 0.84*** 0.30 0.76

PPI 0.47*** 0.26 0.60 0.67*** 0.32 0.71

Un�ltered

CPI 0.70*** 0.17 0.56 0.49*** 0.24 0.57

IPP 0.45*** 0.22 0.51 0.83*** 0.31 0.77

PPI 0.49*** 0.31 0.61 0.68*** 0.35 0.76

This table assesses the contribution of the extensive margin for price �exibility. The �rst two columns �Match

Moments� do this for the Pearson version of the model which matches centered moments while the �Match Percentiles�

columns do this for the version of the model which matches percentiles of the observed price distribution. In the �rst

panel, series are �ltered using a Baxter King (6,32,10) �lter. In the second panel, series are �ltered using a Hodrick-

Prescott(1600) �lter and a 3 quarter moving average. In the third panel, series are un�ltered but are detrended with

a quadratic trend. Correlations are computed using standard errors which are adjusted for autocorrelation using a

Newey-West correction with optimal lag length. ***=1% signi�cance.

prefers alternative regions of the parameter space in order to �t the observed distribution

of price changes, and these alternative parameters imply a crucial role for extensive margin

e�ects. Thus, our quantitative results imply that while one could exogenously calibrate a

Calvo model to match the time-series for frequency, this exercise would grossly understate

the extent of time-variation in price �exibility. Higher moments of the distribution of price

changes vary across time and play a crucial role in determining �exibility.
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5 Conclusion

In this paper, we synthesized many new and existing facts on the evolution of price changes

across time using a consistent empirical methodology to simultaneously study pricing at three

stages of production. Our empirical results are unique in the variety of moments collected

as well as in the uni�cation of moments across data sets. This simultaneous study of data

from the CPI, IPP and PPI is important: we show that several price-setting statistics are

idiosyncratic to particular stages of production. For example, patterns related to skewness

and kurtosis are quite sensitive to particular data sets. However, there are also several robust

patterns which hold across all three data sets: the frequency of adjustment and all measures

of price change dispersion are always positively correlated with each other and negatively

correlated with output. More generally, there are large movements in the distribution of

price changes across time in each of these data sets.

While our paper is largely empirical, we also use a �exible version of the Caballero and

Engel (2007)) generalized Ss model to summarize the implications of these complicated

pricing moments for aggregate price �exibility and the e�ectiveness of monetary policy. While

there is a large and growing literature using structural models to explore the implications

of various pricing moments for aggregate price �exibility, our paper is unique in exploring

these implications using a much broader set of moments with more minimal identifying

assumptions. Using this generalized Ss framework, we show that in all three data sets: 1)

Aggregate price �exibility is counterycyclical and 2) The level of time-variation is signi�cant.

The 95th percentile of the price �exibility index is often 50% or more larger than the 5th

percentile of the price �exibility index. This suggests that the e�cacy of monetary policy

varies signi�cantly over time with policy being much less e�ective in recessions than in booms.
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Appendix

This appendix provides a number of robustness checks and results which are suppressed

from the body of the text. In Table 1 in the body of the text, we report a number of statistics

on the business cycle properties of price moments. We prefer these measures both because

they are less sensitive to slight changes in the timing of recessions, and more importantly,

because we do not have a large number of recessions in our data set. Using more general

correlations with output allows us to exploit much more variation. Nevertheless, Table 8

shows that similar conclusions are obtained when regressing price-setting statistics on re-

cession dummies. For these speci�cations, we do not perform any �ltering beyond a simple

quadratic detrending, so they are most comparable to �Un�ltered� panel in Table 1. The

coe�cients in these tables are reported in units which re�ect the proportionate change in

statistics during recessions relative to average. For example, in CPI data, during recessions

the frequency of adjustment is 20% above the average over the whole sample.

Table 8: Regression of pricing moments on recession dummies
Freq XSD IQR 90-10 Skew Q-Skew Kurt Q-Kurt Obs

CPI 0.20*** 0.19*** 0.33*** 0.24*** -0.58 -0.06 -0.28** -0.08** 96
IPP 0.05 0.10*** 0.12** 0.12*** 1.62*** 9.32** -0.013 0.004 71
PPI 0.10 0.11** 0.11 0.118** 0.23 -0.40 -0.07 -0.005 125

Data is quadratically detrended but otherwise un�ltered. Coe�cients represent the relative change
in recessions: (Recession Value / Average Value)-1. *=10%, **=5%, ***1% signi�cance.

Tables 9 and 10 extend the analysis in Tables 1 and 2 to a number of additional pricing

percentiles. (See also Figure 1 in the text). We concentrate on centered moments in the text

since they are more easily interpretable, but the various percentiles in Table 9 and Table 10

are less sensitive to outliers and could potentially be useful targets for business cycle models.

In Table 5 in the text, we present results for a version of our pricing model which targets

these percentiles instead of the pricing moments in Table 1 and show that we obtain similar

conclusions.
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Table 9: Business Cycle Correlations of Percentiles of the Price Change Distribution

p1 p5 p10 p25 p375 p50 p625 p75 p90 p95 p99 Obs

BP Filtered

CPI 0.36** 0.65*** 0.58*** 0.63*** 0.58*** 0.34*** 0.25** -0.00 -0.15 -0.38** 0.15 76

IPP 0.38* 0.64*** 0.65*** 0.58*** 0.49*** 0.42*** 0.33*** 0.28** 0.17 0.01 -0.22 51

PPI 0.36** 0.54*** 0.55*** 0.46*** 0.39*** 0.43*** 0.34*** 0.17 -0.09 -0.13 -0.01 105

HP + MA Filtered

CPI 0.33*** 0.60*** 0.57*** 0.56*** 0.52*** 0.28** 0.11 -0.12 -0.21*** -0.37*** 0.06 96

IPP 0.48** 0.62*** 0.64*** 0.57*** 0.50*** 0.44*** 0.35*** 0.27* 0.16 0.05 -0.08 71

PPI 0.30* 0.36** 0.39** 0.35*** 0.28*** 0.34*** 0.33*** 0.17* -0.03 -0.07 0.04 125

Un�ltered

CPI 0.22*** 0.46*** 0.46** 0.38** 0.36** 0.17* 0.05 -0.06 -0.13 -0.18* 0.00 96

IPP 0.37* 0.48** 0.52** 0.48** 0.40* 0.34* 0.28 0.21 0.16 0.02 -0.05 71

PPI 0.22 0.20 0.21 0.16* 0.11 0.14* 0.14 0.00 -0.07 -0.06 -0.01 125

Each cell displays the correlation of a particular pricing moment in a particular data set with GDP growth. BP uses

a baxter king(6,32,10) �lter. HP+MA uses a hodrick-prescott �lter with smoothing parameter 1600 and a 3 quarter

moving average. Un�ltered data uses no �lters but detrends series using a quadratic trend. All data is quarterly.

Standard errors are computed using a Newey-West correction with optimal lag length. *=10%, **=5%, ***=at least

1% signi�cance.
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Table 10: Correlations of Percentiles of the Price Change Distribution with the Frequency of Ad-
justment

p1 p5 p10 p25 p375 p50 p625 p75 p90 p95 p99 Obs

BP Filtered

CPI -0.13 -0.51*** -0.37** -0.41* -0.35 -0.20 -0.04 0.30* 0.35*** 0.56*** 0.03 76

IPP -0.43** -0.40** -0.40** -0.33* -0.23 -0.21 -0.14 -0.04 -0.08 0.00 0.42*** 51

PPI -0.28* -0.18* -0.27** -0.30** -0.26* -0.23 -0.19 -0.02 0.24* 0.14 -0.23* 105

HP + MA Filtered

CPI -0.19 -0.48*** -0.35** -0.34* -0.30* -0.15 0.08 0.38*** 0.30** 0.42*** -0.13 96

IPP -0.21 -0.22 -0.21 -0.16 -0.10 -0.09 -0.06 -0.02 -0.05 -0.06 0.04 71

PPI -0.11 -0.03 -0.14 -0.17* -0.14 -0.15 -0.11 0.08 0.27** 0.20** -0.13 125

Un�ltered

CPI -0.02 -0.34*** -0.28** -0.23* -0.17 -0.05 0.08 0.25** 0.22*** 0.24*** -0.10 96

IPP -0.16 -0.14 -0.12 -0.06 0.00 0.03 0.04 0.04 0.02 -0.03 0.01 71

PPI -0.00 0.05 -0.05 -0.06 0.01 0.02 0.03 0.22* 0.29*** 0.19** -0.07 125

Each cell displays the correlation of a particular pricing moment in a particular data set with GDP growth. BP uses

a baxter king(6,32,10) �lter. HP+MA uses a hodrick-prescott �lter with smoothing parameter 1600 and a 3 quarter

moving average. Un�ltered data uses no �lters but detrends series using a quadratic trend. All data is quarterly.

Standard errors are computed using a Newey-West correction with optimal lag length. *=10%, **=5%, ***=at least

1% signi�cance.
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All results in the body of the paper are reported using quarterly data since this is the

frequency with which GDP is measured and is less sensitive to high frequency noise. However,

the raw pricing data is available monthly, so Tables 11 and 12 repeat our analysis at the

monthly frequency, using industrial production instead of GDP as our measure of the business

cycle.

Table 11: Business Cycle Correlations of Pricing Moments: Monthly

Freq XSD IQR 90-10 Skew Robust-Skew Kurt Robust-Kurt Obs

BP Filtered

CPI -0.57*** -0.71*** -0.76*** -0.63*** 0.18** 0.15 0.37*** 0.37** 222

IPP -0.20 -0.44** -0.42* -0.48*** 0.26** 0.55*** 0.07 -0.22 147

PPI -0.23** -0.57*** -0.37** -0.57*** 0.08 0.07 0.26 -0.21 306

HP + MA Filtered

CPI -0.47*** -0.60*** -0.62*** -0.56*** 0.15** 0.16** 0.28*** 0.25** 288

IPP -0.35*** -0.52*** -0.59*** -0.56*** 0.32*** 0.49*** 0.10 0.13 213

PPI -0.15* -0.36** -0.27** -0.39*** 0.10 0.01 0.12 -0.13 372

Un�ltered

CPI -0.12** -0.33*** -0.33** -0.34*** 0.07 0.06 0.14*** 0.06 288

IPP -0.01 -0.33*** -0.38** -0.37*** 0.20*** 0.19** 0.08 -0.00 213

PPI -0.13** -0.19** -0.17*** -0.18** 0.06 -0.03 0.01 -0.00 372

Each cell displays the correlation of a particular pricing moment in a particular data set with industrial production

growth. BP uses a baxter king(18,96,33) �lter. HP+MA uses a hodrick-prescott �lter with smoothing parameter

129,600 and a 5 month moving average. Un�ltered data uses no �lters but detrends series using a quadratic trend. All

data is monthly. Robust-Skew= (P90+P10−2P50)/((P90−P10). Robust-Kurt = (P90−P62.5+P37.5−P10)/((P75−P25).

Standard errors are computed using a Newey-West correction with optimal lag length. *=10%, **=5%, ***=at least

1% signi�cance.
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Table 12: Correlation of Pricing Moments with Frequency of Adjustment: Monthly

XSD IQR 90-10 Skew Robust-Skew Kurt Robust-Kurt Obs

BP Filtered

CPI 0.54*** 0.56*** 0.47** 0.14 0.21 -0.52*** -0.38 222
IPP 0.32** 0.37** 0.31** -0.12 -0.30** -0.04 -0.04 147
PPI 0.38*** 0.41** 0.38** -0.12 0.39** 0.03 0.07 307

HP + MA Filtered

CPI 0.41*** 0.43*** 0.34*** -0.12 0.05 -0.35*** -0.33** 288
IPP 0.16 0.23 0.24 -0.19 -0.21 -0.25* 0.06 213
PPI 0.18** 0.26* 0.26** -0.00 0.17** -0.06 0.15* 373

Un�ltered

CPI 0.24*** 0.28*** 0.25*** 0.01 -0.03 -0.23*** -0.12 288
IPP 0.03 0.10 0.13* 0.02 -0.05 -0.20** 0.07 213
PPI 0.04 0.14 0.11* 0.08 0.10** -0.07 0.06 373

Each cell displays the correlation of the frequency of adjustment in a particular data set with the corresponding

moment in the same data set. BP uses a baxter king(6,32,10) �lter. BP uses a baxter king(18,96,33) �lter. HP+MA

uses a hodrick-prescott �lter with smoothing parameter 129,600 and a 5 month moving average. Un�ltered data uses no

�lters but detrends series using a quadratic trend. All data is monthly. Robust-Skew= (P90+P10−2P50)/((P90−P10).

Robust-Kurt = (P90−P62.5 +P37.5−P10)/((P75−P25). Standard errors are computed using a Newey-West correction

with optimal lag length. *=10%, **=5%, ***=at least 1% signi�cance.
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Table 13 displays the mean parameters and goodness of �t for our primary pricing model

whose results are shown in Table 4.

Table 13: Mean Parameter Values and Goodness of Fit

Parameters Fit

mean xsd skew kurtosis slope intercept mean squared error std. dev errors
CPI 0.0008 0.042 0.016 6.74 16.01 0.026 0.014 0.01
IPP 0.0043 0.053 0.081 9.78 22.25 0.043 0.0085 0.005
PPI 0.0047 0.050 -0.038 6.87 46.44 0.093 0.037 0.19
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