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ABSTRACT

This paper analyzes and estimates the impact of quantity discounts for basic staples in rural 
Mexico. We propose a model of price discrimination that nests those of Maskin and Riley (1984) 
and Jullien (2000), in which consumers differ in their tastes and, due to subsistence constraints, in 
their ability to pay for a good. We show that, under mild conditions, a model in which consumers 
face heterogeneous subsistence or budget constraints is equivalent to one in which consumers 
have access to heterogeneous outside options. We then rely on known results (Jullien (2000)) to 
characterize the equilibrium price schedule. We analyze the effects of nonlinear pricing on 
market participation, as well as the impact of a market-wide income transfer on the price 
schedule, when consumers are differentially budget constrained. Such a transfer, which is a 
common policy in developing countries, stimulates consumption by increasing households’ 
ability to pay but also typically leads to an increase in the intensity of price discrimination. We 
prove that the structural parameters of the model are identified from data on prices and quantities 
in a given market. The intuition behind this identification result is that the equilibrium price 
schedule in a market is a function of the distribution of consumers’ willingness and ability to pay, 
which, in turn, is related to the distribution of quantities. We estimate the parameters of the model 
using data from municipalities and localities in Mexico on three commodities, rice, kidney beans, 
and sugar, which are consumed by most households and are part of the evaluation component of 
the well-known conditional cash transfer program Progresa. The model fits the data remarkably 
well. Interestingly, we find that nonlinear pricing is beneficial to a large number of households, 
especially those who consume small quantities, relative to linear pricing. Available evidence 
indicates that the program had no effect on average prices. We show, however, that the program 
has affected the slope (in quantity) of the price schedule, which has become steeper as implied by 
our model, and has thus lead to an increase in the degree of price discrimination. We also show 
that, empirically, accounting for the impact of the hazard function of the distribution of quantities 
on prices, as consistent with our model, explains a large fraction of the shift in the price schedule 
induced by the program.
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1 Introduction
Quantity discounts, in the form of unit prices declining with quantity, appear to be pervasive in developing

countries. McIntosh (2003), for instance, documents differences in the price of drinking water paid by

poor households in the Philippines, whereas Fabricant et al. (1999) and Pannarunothai and Mills (1997)

document similar differences in the price of health care and services in Thailand and Sierra Leone. Attanasio

and Frayne (2006) show evidence that consumers purchasing basic staples in Colombian villages face price

schedules rather than linear prices: within a village, relatively richer households buy larger quantities and pay

substantially lower unit prices for homogeneous commodities. Similar patterns arise in rural Mexico, as we

document here. This evidence is commonly interpreted as symptomatic of poor households paying more than

rich ones for the same goods they purchase. Since the poor are close to subsistence in developing countries,

by this argument, nonlinear prices are usually considered to have undesirable distributional implications.

This view is consistent with the implications of the nonlinear pricing model of Maskin and Riley (1984),

henceforth the standard model, in which consumers differ in their marginal willingness to pay for a good.

This model explains quantity discounts as arising from a seller’s incentive to screen consumers by their

preferences through the offer of multiple price and quantity combinations. One of its key insights is that

the ability of a seller to discriminate across consumers implies not only that the consumption of (nearly) all

consumers is depressed relative to first best but also, crucially, that consumption distortions tend to be more

severe for purchasers of smaller quantities, typically poorer consumers in developing countries.

The standard model, however, assumes consumers differ only in their tastes, are unconstrained in their

ability to pay, and have access to similar alternatives to purchasing from a particular seller or in a given mar-

ket. This framework thus naturally accounts for the dispersion in the unit prices of goods that absorb a small

fraction of consumers’ incomes, in settings in which consumers have access to similar outside consumption

opportunities.1 As such, the standard model abstracts from key features of food markets in developing coun-

tries, in which households typically face subsistence constraints on the consumption of basic staples, spend

a large fraction of their income on food, and have access to alternative consumption possibilities, through

self-production or highly subsidized government stores, that are uncommon in developed countries.

To rationalize the occurrence of quantity discounts in settings that are typical of developing countries, we

propose a model of price discrimination that explicitly formalizes households’ subsistence constraints and

allows households to differ in both their marginal willingness to pay and their absolute ability to pay for a

good. The model also incorporates a rich set of alternatives to purchasing in a particular market that differ

across consumers. The model we propose is structurally identified from information just on the distribution

of prices and quantities in a market. We estimate the model on data from a sample of villages in rural

Mexico collected to evaluate the conditional cash transfer program Progresa and show that it successfully

fits the observed differences in prices and quantities consumed within and across villages. We find that,

contrary to common intuition, nonlinear pricing is beneficial to a large number of households, especially

1Formally, consumers are assumed to be able to pay more than their reservation prices for a good. See Che and Gale (2000).
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those who consume less, relative to linear pricing. We also characterize and estimate the effect of income

(cash) transfers in this framework and find that in the villages we study, the Progresa transfers stimulated

consumption but also induced an increase in the intensity of price discrimination, which affected negatively

both beneficiaries of the transfers as well as non-eligible households.

This paper makes four important contributions. First, from a theoretical point of view, we show that

when facing subsistence constraints, consumers can be formally thought of as facing an additional budget

constraint on the expenditure on a seller’s good. In the language of the literature on auctions and nonlinear

pricing, consumers are budget constrained, and their constraints depend on their preferences and incomes.

This class of models has been considered in general to be intractable. We show that even when consumers

differ in both their tastes and budgets, a model with budget-constrained consumers maps into the class of

nonlinear pricing models with so-called countervailing incentives, in particular the one of Jullien (2000),

in which consumers have heterogeneous outside options. By relying on this formal equivalence between

models, we can exploit existing results to characterize optimal nonlinear pricing. In such an environment,

nonlinear pricing has more desirable welfare properties than those implied by the standard model, as it leads

to higher levels of consumption, even above first best, lower marginal prices, and for sufficiently comparable

outside options across the two models, higher consumer surplus. Intuitively, since the existence of budget

constraints implies that there is a maximum price that a consumer can pay, budget constraints effectively

limit sellers’ ability to extract consumer surplus. In these instances, nonlinear pricing may be preferable to

linear pricing, especially because it may lead to a higher degree of market participation.

Second, we show that the model’s primitives and structural parameters are identified just from informa-

tion on the distribution of prices and quantities in one market. The intuition behind this result is relatively

simple. In the model, a price schedule is set by a seller to discriminate among consumers with different tastes

and budgets, and therefore it depends on the distribution of consumers’ characteristics. Since this latter dis-

tribution is reflected in that of quantities, the observed distribution of quantities can be used to pin down

the determinants of a price schedule. The estimation approach we propose crucially relies on the seller’s

optimality conditions, which imply that the difference between prices and marginal costs depends on the

difference between the cumulative multiplier associated with consumers’ participation constraints and the

distribution function of consumers’ preferences. The approach we propose, relying on this relationship, al-

lows us to discriminate between different versions of the model, including the standard model that our model

nests, and therefore to identify the distinct welfare implications of different types of price schedules.

Third, we estimate the model for three commodities in a large number of villages in rural Mexico. We

use data from the high-quality surveys collected for the evaluation of the conditional cash transfer program

Progresa, which have been extensively used. Although we can achieve nonparametric identification, to

improve efficiency and be able to deal with the small number of observations in several villages, we choose

specific yet flexible functional forms for the relevant objects. We show that our model fits remarkably well

the data we use and is robust to key parameterizations. In particular, the estimates of the model’s primitives

satisfy the model’s restrictions on the monotonicity of the hazard rate of the distribution of consumers’
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unobserved marginal willingness to pay, as well as the inverse relationship between marginal utility and

quantity consumed, without being imposed. We are also able to test different versions of the model and show

that the standard model is rejected in all villages.

Fourth, although the effect of conditional cash transfer programs including Progresa on average prices

has been studied before and often detected to be negligible or absent, we show that the program has induced

significant shifts in price schedules that might have had important distributional implications. Furthermore,

using an approximate reduced-form version of the optimality conditions for sellers’ and consumers’ behavior,

we show that our model is able to explain a large fraction of the shift in price schedules we document.

The intuition for some of our theoretical results is simple and deserves a mention, in particular, the impact

of nonlinear pricing on market participation and of income transfers on prices. As for market participation,

we show that nonlinear pricing can be efficiency enhancing relative to linear pricing by leading to greater

market participation, when consumers are differentially constrained in their access to a market. Specifically,

by allowing a seller to tailor prices and quantities to consumers’ willingness (and ability) to pay, nonlinear

pricing enables a seller to trade at a profit with consumers with more stringent subsistence constraints—

typically poorer consumers purchasing smaller quantities—or with access to especially attractive outside

options. Such consumers would be excluded from the market under linear pricing and so are better off under

nonlinear pricing. The reason is as follows. To induce such consumers to participate, a seller needs to offer

a low enough marginal price. Since the marginal price is constant and equals the unit price under linear

pricing, such a low linear price would lower profits from all consumers for the benefit of including just a few

more. Thus, including these consumers would not typically be profitable at linear prices.

In terms of the impact of income (cash) transfers on prices, we show that these policies not only encourage

consumption but also provide an incentive for sellers to take advantage of consumers’ greater ability to pay.

In particular, targeted cash transfers that are more generous for poorer households, who tend to purchase

smaller quantities, lead not just to a greater demand for a seller’s good but also to higher prices for at least

some consumers. Depending on the distribution of tastes and outside options across consumers, transfers can

give rise to increases in the unit prices of low quantities but decreases in the unit prices of high quantities.

Although the average impact on unit prices is therefore ambiguous, we prove that overall transfers lead to

an increase in the degree of price discrimination, thereby exacerbating some of the consumption distortions

associated with nonlinear pricing.

Our empirical results are consistent with these intuitions. Our estimates imply that sellers have substan-

tial market power in the villages in our data and exercise it by price discriminating across consumers through

distortionary quantity discounts. However, the pattern of consumption distortions we detect is mostly oppo-

site to that implied by the standard model. In particular, in most villages, the consumption of households with

intermediate to large taste for a good is the most compressed relative to first best, whereas a sizable fraction

of consumers of low to intermediate quantities, with low to intermediate tastes, do not suffer large distortions.

Under the standard model, instead, these latter consumers would suffer the largest distortions. Interestingly,

several consumers of the smallest quantities consume quantities above first best rather than, as often argued,
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below it—in the standard model, as mentioned, consumption is below first best for all consumers.

When comparing observed nonlinear pricing to a counterfactual scenario in which sellers cannot price

discriminate, we find that nonlinear pricing leads to greater consumer and social surplus for most consumers

with low to intermediate types, especially consumers of the smallest quantities. A large fraction of such

consumers would be excluded under linear pricing and thus benefit from nonlinear pricing. On the contrary,

consumers of large quantities tend to be better off under linear pricing.

Several studies have analyzed the effect of transfers on the price of commodities and have found no

impact. Hoddinott et al. (2000), for instance, conclude that “there is no evidence that Progresa communities

paid higher food prices than similar control communities” (p. 33). Similarly, Angelucci and De Giorgi

(2009), when assessing the impact of Progresa on the consumption of non-eligible households, consider the

possibility that their results are mediated by changes in local prices but dismiss this possibility based on their

empirical analysis. Thus, the consensus seems to be that Progresa did not have noticeable effects on local

prices. Our finding that cash transfers implemented by Progresa have had a significant impact on prices (and

in particular on price schedules) is therefore novel, as far as we know. Importantly, we show that the effects

of the program on the price schedule that we document can be explained by our model.2

The reason for the difference between our results and those in the existing literature is as follows. Most

of the studies that have looked at the effect of cash transfers on prices focus on average changes in unit prices

associated with the introduction of cash transfers but fail to account for the nonlinearity of unit prices when

assessing the impact of transfers on prices. Our model implies that income transfers to consumers affect

equilibrium prices, as sellers adjust their price schedules in response to consumers’ greater incomes. In line

with this prediction, we find that the schedule of unit prices becomes significantly steeper after transfers are

introduced, with unit prices increasing at low quantities but decreasing at high quantities. Since the resulting

average impact of cash transfers on unit prices is much less pronounced—in fact, insignificant according

to our estimates—we also show that ignoring the variability of unit prices with quantity leads to a much

smaller estimate of the price effect of transfers, as consistent with the results in the literature. When, instead,

the dependence of unit prices on quantity is explicitly taken into account, the price effect is substantial: by

increasing consumers’ ability to pay, cash transfers also effectively increase a seller’s market power and the

intensity of price discrimination. Such a change in equilibrium prices affects not just households who are

beneficiaries of the program but also non-eligible households. Cash transfers can then lead to much lower

consumer surplus gains than typically inferred.

As for the rest of the paper, in Section 2, we discuss our sample of rural villages included in the evaluation

of Progresa. In Section 3, we present our model, characterize optimal nonlinear pricing, and analyze its

implications for consumption, market participation, and the impact of income transfers. In Section 4, we

prove that our model is identified and propose an estimation strategy. In Section 5, we present our estimates,

assess their welfare implications, and evaluate the effect of the Progresa transfer on prices. Finally, Section

6 concludes the paper.
2Interestingly, Cunha et al. (2017), who analyze a different program that included cash and in-kind transfers, find that the latter

significantly reduced prices. Once again, this pattern is consistent with our model, as discussed in Section 3.
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2 Quantity Discounts: The Case of Mexico
Here we provide a description of our data from the Progresa program and evidence of quantity discounts.

Data: Background and Description. The dataset we use was collected to evaluate the impact of the con-

ditional cash transfer program called Progresa, which was started in 1997 under the Zedillo administration

in Mexico. The program consists of cash transfers to eligible families with children, conditional on behavior

such as class attendance by school-aged children and regular visits by young children to health centers, as

well as attendance of education sessions on nutrition and health by mothers. Among the villages targeted

by the first wave of the program expansion between 1998 and 2000, about 70% of households were deemed

eligible. Eligibility was determined on the basis of a survey that collected information on a set of poverty

indicators considered difficult to manipulate, such as the material of the roof or floor of a household’s home.3

In this first phase targeted to marginalized rural communities, the Progresa grant consisted of two com-

ponents. The first one was targeted to families with children less than 6 years old and was conditioned on

children being brought to health centers with some regularity. The second component was targeted to fam-

ilies with children between ages 9 and 16 and was conditioned on regular school attendance. Although the

program administration was relatively strict in enforcing these conditionalities, they were not very binding

for several households—for instance, households with primary school aged children whose school atten-

dance is very high. For eligible households, the grant was substantial. On average, grants amounted to 25%

of their income and consumption, therefore constituting a large fraction of it.

Since the first rollout of the program was targeted to about 20,000 marginalized localities and would take

about two years to be implemented, the program’s administration and the government decided to use it for

evaluation purposes, by randomizing the timing of part of the rollout. In particular, in 1997 the program

selected 506 localities in 7 states, each belonging to one of 191 larger administrative units, municipalities, to

be included in the evaluation sample. Each municipality is composed of several localities, not all of which

were included in the evaluation survey. Of these localities, 320 were randomly chosen and assigned to early

treatment in that the program started there in the middle of 1998; the remaining 186 were assigned to the

end of the rollout phase, so the program started there in December 1999. Households in these localities were

followed for several periods. We use the waves of October 1998, May and November 1999, and November

2000 and 2003. Some waves, such as those collected in 1997 and April 2000, could not be used because they

do not contain information on household expenditure, which we rely on.

The evaluation data have been used extensively in recent years and are remarkable for at least three rea-

sons. First, the randomized rollout of the program in a subset of the villages—at least for the first waves—

introduced substantial exogenous variation in the resources available to some households, which we exploit

to examine key implications of the model we propose, in particular about the impact of cash transfers on

prices. Second, the data provide a census of 506 villages in that all households in the relevant localities are

3A first registration wave in 1997 was complemented by some further registrations in early 1998, the so-called densificados, as
the program administration assessed eligible households to be too few, which led to a slight modification of eligibility rules. We
consider these added families as eligible.
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surveyed, therefore allowing us to estimate the entire distribution of quantities and prices in each village, at

least for commodities whose purchase is common. Third, the data are very rich and exhaustive. The con-

sumption and expenditure module in the survey contains key information for the purpose of our paper. Each

household is interviewed and asked to report not only the quantity consumed of each of 36 food commodities

during the week preceding the interview, but also the quantity purchased and its monetary value. The data

also contain information about quantities consumed and not purchased, for instance, acquired through self-

production or received as a gift or a payment in kind. The food items recorded include fruits and vegetables,

grains and pulses, and meat and other animal products, and are supposed to be exhaustive of the foods con-

sumed by households. In what follows, we focus on commodities that are relatively homogeneous in terms

of quality, and are purchased and consumed by most households, as explained below.

Since the survey contains information on the quantities purchased of each recorded item as well as on

total household expenditure on each item, it is possible to compute unit values, as measured by the ratio

of expenditure to quantity purchased. From now on, we refer to unit values as prices. Attanasio et al.

(2013) discuss some of the measurement issues associated with the construction of unit values, ranging from

measurement error to the heterogeneous quality of goods and to the nonlinearity in quantity we model here.

However, they find that average and median unit values well approximate local prices, which are available

for some commodities in the locality survey and are collected from local stores. They also find that unit

values closely match data from national sources on prices.

Progresa was targeted to marginalized communities, where marginalization was defined by an index

used by the Mexican government to target social programs. However, they were not the most marginalized

communities in the country. The exclusion of the poorest communities (targeted by a different program,

studied, for instance, by Cunha et al. (2017)) was justified by the fact that to comply with the Progresa

conditions, eligible households had to have access to certain public services and infrastructure, such as

schools and health centers. The communities included in the evaluation survey are small—the average

number of households in a locality is just over 50—and remote. Households living in these villages are poor:

on average, for instance, food accounts for nearly 70% of household budgets. However, within villages, the

level of poverty exhibits substantial variation. These differences are captured by a variety of indicators and

reflected in the fact that not every household within a village was eligible for Progresa: on average, about

78% of the households of the villages in the evaluation survey were. In addition to variation in poverty

within villages, our sample is also characterized by variation in the level of poverty across villages. This

heterogeneity is reflected, for instance, in the variability of the rate of eligible households across villages,

which is obviously related to differences in the distribution of consumption. Such heterogeneity should thus

account for differences in price schedules across villages. Furthermore, differences in the proportion of

eligible households across villages are likely to affect how the Progresa transfer has modified the distribution

of quantities consumed and, according to our model, the shape of a village price schedule. We will investigate

these relationships in our empirical analysis below.

To perform the empirical exercise we propose, we develop a model that relates the shape of the price
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schedule to the distribution of quantities in a given market. Since we specialize the model to focus on the

behavior of a single seller in our empirical analysis, ideally, one would like to consider a relatively isolated

market with one seller or a small number of them. Although the definition of a market as a locality would

be natural, using the locality as our definition of “market” would result in few observed transactions in

several cases, given the size of localities and the number of transactions we observe. Moreover, despite some

localities being quite isolated, from an administrative point of view, they all belong to a municipality and are

often connected in several ways. For instance, it is not unusual for some households to shop for certain items

in a locality within the municipality of residence but different from the locality where they live. For these

reasons, in the main text we focus primarily on villages defined as municipalities. However, we estimate

our model on both village markets defined as municipalities and on village markets defined as localities and

obtain fairly similar results across these two definitions of villages, as discussed in Section 4.

Evidence of Quantity Discounts. The model of nonlinear pricing we propose gives rise to quantity dis-

counts. As mentioned in the introduction, this type of discounts is common in several markets in developing

countries. Attanasio and Frayne (2006), for instance, estimate the supply schedule for several basic food

staples, including rice, carrots, and beans in Colombian villages, and document substantial discounts for

large volumes. Specifically, they find that the elasticity of the unit price of rice to the quantity bought is as

large as −0.11 in their preferred specification. They estimate even larger quantity discounts for other speci-

fications and for commodities such as carrots or beans. In our empirical exercise, we use the Mexican data

described above. To motivate the model we develop and estimate using these data, we start by documenting

the existence of discount patterns in Mexico similar to those observed in Colombia.

Table 1: Price Schedule

Rice Kidney Beans Sugar Tomatoes Tortillas
Constant 1.858 2.426 1.795 2.256 2.080

(0.007) (0.008) (0.006) (0.010) (0.046)
Ln(quantity) −0.247 −0.145 −0.172 −0.320 −0.452

(0.013) (0.011) (0.017) (0.019) (0.020)
Observations 62, 368 82, 024 91, 782 108, 345 38, 599
R2 0.139 0.094 0.116 0.331 0.353

Note: wave fixed effects are included; standard errors are clustered at the locality level.

For a sense of quantity discounts and their importance in our data, we relate observed prices to quanti-

ties purchased for several commodities in each village. Here we use the waves of October 1998, May and

November 1999, and November 2000 and 2003 from all localities. Table 1 contains estimates of this rela-

tionship between (real) log unit prices and log quantities for the most common commodities, namely, rice,

kidney beans, sugar, tomatoes, and tortillas. The different number of observations in each row reflects the

different number of purchases we observe in our sample. The elasticity of prices to quantities we observe is

largest (in absolute value) for tortillas (−0.45), tomatoes (−0.32), and rice (−0.25). However, it is also siz-

able for the other two commodities: −0.14 for kidney beans and−0.17 for sugar. For all these commodities,

this elasticity is statistically different from zero. The estimates we obtain do not vary appreciably when we
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restrict attention to the somewhat smaller set of municipalities and localities part of our estimation sample,

discussed below. As explained in Section 4, the sample selection criteria we impose when estimating the

model entail only a small loss of villages.

Some studies have argued that the dispersion in prices observed in a market for a same commodity might

reflect differences in quality. Deaton (1989), for instance, argues that this might be the case for rice in

Thailand. Here we focus on commodities for which the quality homogeneity assumption does not seem un-

reasonable in our context for two reasons. First, even in the case of rice, conversations with program officials

and others familiar with the reality of rural Mexico confirm that this is the case. Second, we do not consider

commodities such as meat, for which quality is likely to be heterogeneous. In any case, heterogeneity in the

quality of goods would likely give rise to an upward-sloping price schedule, contrary to what we observe; see

also Crawford et al. (2003). The evidence in Table 1 therefore seems to indicate the presence of important

quantity discounts for the commodities considered.

For the rest of our empirical analysis, we focus on three commodities—rice, kidney beans, and sugar—

that conform to the assumptions we maintain in the theoretical model. Specifically, we consider commodities

that are of homogeneous quality, so as to minimize the possibility that price differences reflect any hetero-

geneity in this unmodeled dimension. We also focus on commodities that are commonly consumed and

purchased by the households in our sample. Of the commodities in Table 1, we exclude tortillas because

a large number of households buy corn or wheat to make them and because price differences are known to

reflect quality differentials. Tomatoes are also excluded because of potential quality differentials affecting

their prices that we cannot detect in our data. The commodities we choose are not only widely consumed but

also storable, so observed zero purchases do not reflect exclusion from the market but could simply be due to

the timing of the Progresa interview. Hence, the assumption of full market participation we formulate in our

empirical analysis is not implausible. Across localities, the median fraction of households consuming rice

in the week preceding the interview is 58%, while the corresponding fraction is 85% for kidney beans and

sugar. Virtually all of these households (97% for rice, 91% for kidney beans, and 98% for sugar) purchase

these commodities rather than producing them or receiving them as a gift or an in-kind payment.

The model we present in the next section considers a seller facing a heterogeneous population of con-

sumers with any degree of market power, ranging from monopoly to oligopoly to no power (perfect com-

petition). In the empirical analysis, however, we specialize our model to consider the behavior of only one

seller in each market. This assumption is for consistency with the data, which show that markets defined

as either municipalities or localities are highly concentrated with very few stores. Specifically, in the 506

localities in our dataset, the median number of stores is 1 or 2 depending on the Progresa wave. As for

municipalities, the mean and median number of stores are higher, as some government stores and other very

heterogeneous types of sellers, such as periodic open air and itinerant street markets, might be present. These

sellers, however, can be considered as having a very different cost structure, and their possible presence in

the markets for the commodities we study can be interpreted as a degree of competition that is incorporated

into households’ outside options in our model. Moreover, even at the level of the municipality, the number of
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grocery stores that might sell the goods we consider is very small: the median is zero and the mean is 0.68.

Hence, the supply of the goods we focus on is indeed highly concentrated in each market, so the restriction

to one seller per market in our empirical analysis is not a strong one.

3 Models of Price Discrimination
As just reviewed, for many commodities in rural Mexico, prices per unit decline with the quantity purchased.

A simple model consistent with this feature of the data is the standard model of price discrimination of

Maskin and Riley (1984), in which quantity discounts emerge when a seller screens consumers by their

marginal willingness to pay according to the quantities they purchase. This model, however, can be too

restrictive for the markets we study, since it assumes that consumers have the same reservation utilities and

abstracts from consumers’ budget or subsistence constraints. To capture the value of richer consumption

possibilities alternative to purchasing from a particular seller or in a particular market, we build on the model

of Jullien (2000), which assumes consumers differ not just in their taste for a good but also in their reservation

utility. Suitable interpretations of consumers’ reservation utility can then accommodate different settings of

interest.

A particularly relevant case arises when consumers face subsistence constraints in consumption, which

give rise to a budget constraint on the expenditure on a seller’s good. As discussed in Che and Gale (2000),

models with this type of budget constraint are considered to be intractable in general. The optimal pricing

schedule is only known for special cases, when, for instance, utility is linear in consumption (see Che and

Gale (2000)) or the budget is identical across consumers, so that a seller does not have an incentive to

discriminate across all consumers (see Thomas (2002)). In what follows, we establish that a model with

heterogeneous budget constraints is equivalent to a model with heterogeneous reservation utilities under

simple conditions. This equivalence allows us to adapt and extend the results in Jullien (2000) to a model

with budget-constrained consumers and characterize nonlinear pricing in the presence of these constraints.

The model we propose captures a variety of situations that are relevant to our application. First, con-

sumers in our data have access to a wide range of outside options: households in a village may purchase a

good from sellers in other villages or in government-regulated Diconsa stores; they may have the ability to

produce a good as an alternative to purchasing it; or they may receive a good from relatives, friends, or the

government as a transfer. As the desirability or feasibility of these alternative consumption possibilities may

differ across consumers, so does consumers’ reservation utility. Second, although we focus on the problem

of a single seller, by interpreting a consumer’s reservation utility as the utility obtained when purchasing

from other sellers, the model can account for varying degrees of seller market power and so different market

structures, ranging from monopoly to oligopoly to near perfect competition.4 Finally, as consumers typically

have preferences for multiple goods, we incorporate the possibility of consumers’ substitution across them

and allow subsistence constraints to affect the consumption of any good.

4Near competition obtains when the reservation utility is arbitrarily close to first-best utility. The problem of a seller we con-
sider can be alternatively interpreted as the best-response problem of a price-discriminating oligopolist competing to exclusively
serve any given consumer in a village. We establish this result in the Supplementary Appendix.
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As is common in the nonlinear pricing literature, our framework implicitly excludes the possibility of

collusion among consumers, for instance, through resale. Anecdotal evidence we obtained from program of-

ficers and surveyors indicates that resale does not occur in our context. A natural question is why consumers

do not form coalitions, buy in bulk, and resell quantities among themselves at linear prices. A possible an-

swer is that our context is that of small, isolated, and geographically dispersed communities in rural Mexico.

Thus, it might be difficult for consumers to engage in the type of agreements that would sustain resale.5

3.1 A Model with Heterogeneous Outside Options

Consider a market (village) in which consumers (households) and a seller exchange a quantity q≥0 of a good

for a monetary transfer t. Consumers’ preferences depend on a taste attribute, θ, continuously distributed

with support [θ, θ], θ > 0, cumulative distribution function F (θ), and probability density function f(θ),

positive for θ∈ (θ, θ). We refer to this attribute as marginal willingness to pay. We assume the seller knows

the distribution of θ but does not observe its value for a given consumer or, alternatively, prices contingent

on consumers’ characteristics are not legally permitted or enforceable. Thus, a seller must post a single price

schedule for all consumers, although it can entail different unit prices for different quantities.6

Faced with a price schedule, a consumer decides whether to purchase and, if so, the quantity q to buy.

Upon trade, a consumer of type θ obtains utility v(θ, q)− t, with v(·, ·) positive and twice continuously

differentiable, vθ(θ, q) > 0, vq(θ, q) > 0, and vqq(θ, q)≤ 0. We assume, as standard, that vθq(θ, q) > 0 for

q > 0 so that consumers can be ordered by their marginal utility from the good. Denote by c(·) the seller’s

cost function, which is weakly increasing and twice continuously differentiable, and by c(Q) the cost of

producing the total quantity of the good provided to the market, Q. For simplicity of exposition, here we

maintain that the cost function c(·) is additively separable across consumers; we relax this assumption in the

empirical analysis.7 We denote by s(θ, q) = v(θ, q)−c(q) the social surplus from quantity q and maintain

that sq(θ, ·)/vθq(θ, ·) decreases with q. This assumption ensures that the seller’s problem admits a unique

solution and that first-order conditions are necessary and sufficient to characterize it: it plays the same role

as the assumptions that s(θ, ·) is concave in q and vθ(θ, ·) is convex in q in the standard model. We define the

first-best quantity, qFB(θ), as the one that maximizes social surplus for a consumer of type θ.

Let u(θ) be a consumer’s reservation utility when not purchasing from the seller, which is assumed

to be absolutely continuous and, unlike in the standard model, can vary across consumers. We normalize

the seller’s reservation profit to zero. A consumer of type θ participates when the consumer purchases a

single quantity with probability one—the restriction to deterministic contracts is without loss. We focus on

situations in which all consumers trade, so q = 0 is interpreted as the limit when the contracted quantity

5Conceptually, such a situation can be translated into a simple assumption on the existence of imperfections in contracting
between consumers analogous to those between sellers and consumers usually maintained in models of nonlinear pricing. With
enforcement, coordination, or transaction costs, such as commuting costs, not even a coalition of all consumers could achieve
higher utility for any member than the utility a member obtains by trading with a price-discriminating seller. See Appendix A.

6 We rely on results from the mechanism design literature with private information. A standard result, the taxation principle,
is that an economy with observable types in which a seller is restricted to nonlinear prices, referred to as “tariffs,” is equivalent to
an economy with unobservable types and no restrictions on the space of contracts a seller can offer. See Segal and Tadelis (2005).

7One instance of nonseparability occurs when the cost function is subadditive. Given the compact support of consumer types,
with a suitable lower bound on c′(Q), we can ensure that the seller’s problem is concave even in this case.
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becomes small. Observe, however, that in the presence of consumer exclusion, the equilibrium contract for

types who participate would be the same as the one we characterize below.

By the revelation principle, a contract between consumers and seller can be summarized by a menu

{t(θ), q(θ)} such that the best choice within the menu for a consumer of type θ is the quantity q(θ) for the

price t(θ); that is, the menu is incentive compatible. Let u(θ) = v(θ, q(θ)) − t(θ) denote the utility of

a consumer of type θ when purchasing from the seller under the incentive compatible menu {t(θ), q(θ)}.
The seller’s optimal menu maximizes expected profits subject to consumers’ incentive compatibility and

participation constraints, that is,

(IR problem) max
{t(θ),q(θ)}

(∫ θ

θ

t(θ)f(θ)dθ − c(Q)

)
s.t.

(IC) v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) for any θ, θ′

(IR) v(θ, q(θ))− t(θ) ≥ u(θ) for any θ,

where Q =
∫ θ
θ
q(θ)f(θ)dθ and, using the additive separability of c(·), c(Q) =

∫ θ
θ
c(q(θ))f(θ)dθ. We refer to

this model in which the seller’s constraints are IC and IR as the IR model and define an allocation {u(θ), q(θ)}
to be implementable if it satisfies the IC and IR constraints. The IC constraint of a consumer of type θ is

satisfied if choosing q(θ) for the price t(θ) maximizes the left-hand side of the constraint. Taking first-order

conditions, this requires vq(θ, q(θ))q′(θ) = t′(θ) or, equivalently, u′(θ) = vθ(θ, q(θ)). Since vθq(θ, q)> 0, an

allocation is incentive compatible if, and only if, it is locally incentive compatible in that u′(θ)=vθ(θ, q(θ)),

the schedule q(θ) is weakly increasing (a.e.), and the utility u(θ) is absolutely continuous. Since the functions

t(θ) and q(θ) of an incentive compatible menu are continuous and monotone, we can represent this menu as

a tariff or price schedule, T (q): the tariff pair (T (q), q) corresponds to the menu pair (t(θ), q(θ)) evaluated

at each θ such that q=q(θ). We use these menu and tariff interpretations interchangeably throughout.

Crucial for the characterization of the seller’s optimal menu are the seller’s first-order condition

vq(θ, q(θ))− c′(Q) =
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) (1)

for each type, and the complementary slackness condition on the IR constraints,

∫ θ

θ

[u(θ)− u(θ)]dγ(θ) = 0. (2)

In (1) and (2), γ(θ)=
∫ θ
θ
dγ(x) is the cumulative multiplier associated with the IR constraints, which has the

properties of a cumulative distribution function, that is, it is nonnegative, weakly increasing, and γ(θ) = 1.

See the Supplementary Appendix for details.8 Jullien (2000) shows that under the assumptions of potential

8The integral in the definition of γ(θ) is interpreted as accommodating not just discrete and continuous distributions but also
mixed discrete-continuous ones. That is, this formulation allows for the possibility that the IR constraints bind at isolated points.
See the Supplementary Appendix for details. It is understood that q(θ) is evaluated taking the left-limit at jump points.
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separation (PS), homogeneity (H), and full participation (FP), there exists a unique optimal solution to the

seller’s problem in which all consumers participate, characterized by the first-order conditions (1) and the

complementary slackness condition (2) with q(θ) weakly increasing.

Assumption (PS) effectively ensures that the optimal q(θ) is weakly increasing. Formally, note that for

each type θ, the first-order condition in (1) defines the optimal quantity as a function of the primitives of the

economy and the cumulative multiplier γ(θ). It is convenient to define the function l(γ̃, θ) as the quantity that

satisfies (1) at θ when the actual cumulative multiplier γ(θ) is replaced by an arbitrary one, γ̃ ∈ [0, 1]. Note

that l(γ̃, θ) weakly decreases with γ̃. Assumption (PS) requires l(γ̃, θ) to weakly increase with θ for all γ̃ ∈
[0, 1], and thus guarantees that the seller has an incentive to discriminate across consumers.9 Assumption (H)

requires that there exist a quantity profile {q(θ)} such that the allocation with full participation {u(θ), q(θ)}
is implementable in that u′(θ) = vθ(θ, q(θ)) and q(θ) is weakly increasing. This assumption guarantees that

the reservation quantity profile is incentive compatible so that the IC constraints can be satisfied when the IR

constraints bind. Assumption (FP) requires that all types participate. Sufficient conditions for (FP) are (H)

and s(θ, q(θ)) ≥ u(θ), which guarantees that the seller has an incentive to trade with all consumers.

The solution to the seller’s problem is q(θ) = l(γ(θ), θ) with associated price t(θ) = v(θ, q(θ)) − u(θ),

where u(θ) is the utility reached by a consumer of type θ and equals u(θ) for consumer types whose IR

constraints bind. As mentioned, a consumer’s reservation utility, u(θ), can be equivalently interpreted as the

value of purchasing from another seller, producing the good at home, or receiving it as a transfer. By varying

the level of the reservation utility, the model can accommodate very different degrees of market power for a

seller, ranging from no market power to oligopoly and monopoly power. Specifically, when the reservation

utility equals the social surplus under first best for each type, that is, ū(θ) = v(θ, qFB(θ)) − c(qFB(θ)), the

solution to the seller’s problem implies γ(θ) = F (θ) for all consumers so that consumers purchase from the

seller first-best quantities, {qFB(θ)}, at first-best prices, {c(qFB(θ))}. When the reservation utility is lowered

from its maximal value under first best, profits correspondingly increase, allowing the model to capture any

degree of market power.10 This feature of the model provides an important dimension of flexibility over the

standard model for the measurement exercises in later sections.

To build intuition for how the model works and differs from the standard model, it is useful to consider

the case when the degree of convexity of u(θ) is high, the highly convex case, and so the IR constraints

bind only for isolated types; see Jullien (2000) for details.11 Note that since q(θ) is continuous, γ(θ) can

have mass points, and thus the IR constraints can bind at isolated points, only at θ or θ. In particular, when

γ(θ) = 0 for θ < θ̄, the IR constraints bind only at θ. In contrast, when γ(θ) = 1 for all types, the IR

constraints bind only at θ and the model reduces to the standard model, in which the IR constraints simplify

9See the proof of Proposition 1 for sufficient conditions on primitives for (PS) to be satisfied and Jullien (2000) for details.
10Assumption (H) naturally holds in a model of seller competition with vertical differentiation. Under such interpretation of our

model, here we characterize the best-response problem of any such oligopolist. See the Supplementary Appendix.
11The monotonicity of u(θ) is an immediate implication of assumption (H), since u′(θ) = vθ(θ, q(θ)) and vθ(·, ·) > 0 by

assumption. Our analysis would equally apply to the case in which consumers dislike the seller’s good and can be ranked by their
distaste for it, with θ replaced by −θ, under analogous conditions. We model u(θ) as increasing with θ for consistency with the
fact that nearly all households in each village consume the goods we consider. The convexity of u(θ) is to prevent bunching and
is implied by the requirement of assumption (H) that q(θ) be weakly increasing.
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to u(θ) ≥ u with u constant. When γ(θ) = γ ∈ (0, 1) for all θ ∈ [θ, θ), the IR constraints bind at both θ and

θ. In this case, F (θ) starts below γ, crosses γ at some type, θHC , and then lies strictly above it. Types below

θHC consume quantities below first best, whereas types above θHC consume quantities above first best.

3.2 A Model with Heterogeneous Budget Constraints

Suppose now that instead of having heterogeneous outside options, consumers face heterogeneous subsis-

tence constraints. These constraints limit the amount of resources a consumer can spend on a seller’s good

and formally give rise to a budget constraint for the good. We show that under simple conditions, this model

and the one of the previous subsection are equivalent in that they imply the same choice of price schedule by

a seller and, thus, the same participation and purchase decisions by consumers.

Setup. Suppose that consumers have quasilinear preferences over the seller’s good, q, and the numeraire, z,

which represents all other goods. A consumer is characterized by a preference attribute, θ, which, as before,

affects her valuation of q, and by a productivity attribute, w, which affects her overall budget or income,

Y (w).12 The consumer faces a subsistence constraint on the consumption of z of the form z ≥ z(θ, q),

which can be interpreted as capturing the notion that a certain number of calories are necessary for survival

and can be achieved by consuming the seller’s good and the numeraire. To see how, define the calorie

constraint Cq(θ, q)+Cz(θ)z ≥ C(θ), where Cq(θ, q) and Cz(θ)z are, respectively, the calories produced

by the consumption of q units of the seller’s good and z units of the numeraire for a consumer of type θ,

and C(θ) is the subsistence level of calories for such a consumer.13 Clearly, this calorie constraint can be

rewritten as z ≥ [C(θ)− Cq(θ, q)]/Cz(θ) ≡ z(θ, q).

Let T (q) be the seller’s price schedule, where T (q) is the price of quantity q. Conditional on purchasing

from the seller, the consumer’s problem is

max
q,z
{v(θ, q) + z} s.t. T (q) + z ≤ Y (w) and z ≥ z(θ, q). (3)

Using the fact that the budget constraint holds with equality at an optimum and substituting z = Y (w)−T (q)

into the objective function and the constraint z ≥ z(θ, q) in (3), the problem in (3) can be restated as

max
q
{v(θ, q)− T (q)}+ Y (w) s.t. T (q) ≤ I(θ, q, w) ≡ Y (w)− z(θ, q), (4)

where I(θ, q, w) is the maximal amount that the consumer can pay to purchase q units of the seller’s good

and meet her subsistence constraint.14 Note that the constraint in (4) is a budget constraint for the seller’s

good arising from the consumer’s subsistence constraint. We assume that I(θ, q, w) is absolutely continuous

12We implicitly assume that utility is separable across a seller’s goods and the seller prices them independently. See Stole (2007)
for a discussion and a formalization of the several instances in which this assumption is appropriate.

13This formulation of the calorie constraint generalizes Cqq+Czz ≥ C, used, for instance, by Jensen and Miller (2008), where
Cq and Cz are the calories provided by one unit of q and one unit of z, and C is the subsistence intake.

14Quasilinear preferences in q and z, and so in q and T , are standard in the literature. The more general formulation of
preferences as v(θ, q, T ) typically gives rise to a nonconvex constraint set for the seller that renders the characterization of the
optimal menu problematic and random tariffs desirable. The latter, however, are unrealistic in the context of our application.
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in θ, and twice continuously differentiable and weakly increasing in θ and q.

Suppose that when consumers do not purchase from the seller, they can achieve the exogenous utility

level u, which is constant with θ as in the standard model. Then, the seller’s optimal menu solves

(BC problem) max
{t(θ),q(θ)}

(∫ θ

θ

t(θ)f(θ)dθ − c(Q)

)
s.t.

(IC) v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) for any θ, θ′

(IR’) v(θ, q(θ))− t(θ) ≥ u for any θ

(BC) t(θ) ≤ I(θ, q(θ), w) for any θ.

We refer to this model in which the seller’s constraints are IC, IR’, and BC as the BC model, and to an

allocation that satisfies these constraints as implementable. Although the model admits heterogeneity in both

θ and w among consumers, in this section, for expositional simplicity, we consider the case of constant w

and suppress the dependence of I(θ, q, w) and all other variables on w. We examine the implications of this

additional dimension of heterogeneity in Appendix A and consider the general case in the empirical analysis,

as explained in Section 4.1.

We maintain the same potential separation (PS) and full participation (FP) assumptions as in the IR

model. In analogy to assumption (H), we assume there exists an incentive compatible menu {t(θ), q(θ)} that

induces each consumer to spend her entire budget for the good, that is,

(BCH) t(θ) = I(θ, q(θ)), t′(θ) = vq(θ, q(θ))q
′(θ), and q(θ) is weakly increasing. (5)

Importantly, under assumption (BCH), incentive compatibility can be satisfied when the budget constraint

t(θ) ≤ I(θ, q(θ)) binds. As in the IR model, this condition is key to ensuring that there exists an imple-

mentable menu that induces all consumers to participate.15

Since income affects consumers’ purchase behavior in this model, changes in the distribution of income

across consumers, due, for instance, to income transfers, typically influence a seller’s price schedule. In the

IR model, instead, changes in income have no impact on the consumption of the seller’s good and, thus, on

the seller’s pricing decisions—unless a consumer’s reservation utility, ū(θ), is affected in some unspecified

way by a change in income. We explore these different implications of the BC and IR models below when

we assess the effect of the Progresa transfer on prices.

Equivalence Between Participation and Budget Constraints. The seller’s problem with constraints IC,

IR’, and BC has no known solution. Here we proceed to characterize a seller’s optimal menu indirectly by

establishing an equivalence between the BC problem and the IR problem. A natural approach, which leads

15Sufficient conditions for full participation, and so the IR’ constraints, to be satisfied are v(θ, q(θ))− I(θ, q(θ)) ≥ u and
I(θ, q(θ)) ≥ c(q(θ)) for each θ. Note first that (BCH) and I(θ, q(θ)) ≥ c(q(θ)) ensure that no type is excluded because of a
violation of the BC constraint: the seller is better off by offering q(θ) to type θ at price I(θ, q(θ)) for a profit of I(θ, q(θ))−c(q(θ))
than by excluding this consumer for a profit of zero. Observe next that v(θ, q(θ))−I(θ, q(θ))≥u guarantees that the IR’ constraint
is satisfied when the BC constraint binds. Thus, all types participate. Under (FP), the IR’ constraints are effectively redundant.
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to a simple constructive argument, would be to define the budget for the seller’s good of a consumer of type

θ as I(θ, q(θ))=v(θ, q(θ))−uIR(θ), where here uIR(θ) denotes the reservation utility of a consumer of type

θ in the IR problem. Since, by definition, t(θ) = v(θ, q(θ))−u(θ), it is immediate that in this case, the BC

constraint is equivalent to the IR constraint of the IR problem. Although this approach is intuitive since it

directly relates reservation utilities to budgets, it is unduly restrictive: it requires the schedules of reservation

utilities in the IR problem and budgets in the BC problem to agree for each type. For the two problems to

admit the same solution, instead, it is sufficient that reservation utilities and budgets, and the derivatives of

consumers’ utility function and the budget schedule with respect to quantity, agree just for types whose IR

constraints bind in the IR problem—as long as consumers have enough income to afford the IR allocation.16

Formally, as shown in Appendix A, the BC problem can be conveniently restated as

max
{q(θ)}

(∫ θ

θ

{
v(θ, q(θ))+

[
F (θ)−Φ(θ)

f(θ)

]
vθ(θ, q(θ))+

φ(θ) [I(θ, q(θ))−v(θ, q(θ))]

f(θ)

}
f(θ)dθ−c(Q)

)
, (6)

with q(θ) weakly increasing and u(θ) ≥ u. We term (6) the simple BC problem, where Φ(θ) =
∫ θ
θ
φ(x)dx

is the cumulative multiplier, defined analogously to γ(θ), on the budget constraint expressed as I(θ, q(θ)) ≥
t(θ) = v(θ, q(θ))− u(θ) and φ(θ) is its derivative. The first-order conditions of this problem are

vq(θ, q(θ))− c′(Q) =

[
Φ(θ)− F (θ)

f(θ)

]
vθq(θ, q(θ)) +

φ(θ)[vq(θ, q(θ))− Iq(θ, q(θ))]
f(θ)

(7)

for each type, along with the complementary slackness condition

∫ θ

θ

{I(θ, q(θ))− [v(θ, q(θ))− u(θ)]}dΦ(θ) = 0. (8)

Result 1 in the proof of Proposition 1 states that an implementable allocation is optimal if, and only if, there

exists a cumulative multiplier function Φ(θ) such that conditions (7) and (8) are satisfied, with Φ(θ)=1. Next

we establish the desired equivalence, denoting by {tIR(θ), qIR(θ)} the optimal menu in the IR problem.

Proposition 1 (Equivalence of Problems). Assume (PS), (BCH), and (FP). Suppose that the allocation that

solves the IR problem is affordable in the BC problem in that I(θ, qIR(θ)) ≥ v(θ, qIR(θ))−uIR(θ), with

equality for types whose IR constraints bind, and uIR(θ)≥u. If Iq(θ, qIR(θ)) equals vq(θ, qIR(θ)) for types

whose IR constraints bind, then the solution to the BC problem coincides with that to the IR problem.

For intuition, note that in the IR model, a seller in principle can induce a consumer to purchase by offering

a high enough quantity for a given price or a low enough price for a given quantity. The IR constraint,

however, implicitly places a restriction on the maximal price a seller can charge to a consumer, since the

requirement uIR(θ) ≥ uIR(θ) is equivalent to v(θ, qIR(θ)) − uIR(θ) ≥ tIR(θ), which effectively limits a

16Note that if we replaced (IR’) with (IR), it would be easier to establish that the IR and BC problems are equivalent by showing
that (IR) implies (BC). We chose a formulation of the BC problem with participation constraints of the form (IR’) rather than (IR)
to highlight that the equivalence of interest holds more generally, even when participation constraints differ in the two problems.
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consumer’s expenditure on the seller’s good. Hence, in this precise sense, IR and BC constraints are related.

Proposition 1 follows by combining this intuition with the construction of a multiplier function on the BC

constraints such that the BC constraints bind in the BC problem if, and only if, the IR constraints bind in the

IR problem. When this is the case, by comparing (1) and (7), it is easy to see that the first-order conditions

of the two problems, and so the optimal quantity schedules, coincide if vq(θ, qIR(θ)) equals Iq(θ, qIR(θ)) for

consumers whose IR constraints bind. The first two conditions in the proposition guarantee not just that the

solution to the IR problem is feasible for the BC problem but also that utilities, and hence price schedules,

in the two problems coincide. This equivalence result extends to any BC problem in which preferences are

obtained from an affine transformation of those in the IR problem.

Corollary 1 (Preferences for Equivalence). Consider an IR problem with preferences given by v(θ, q)+z and

a BC problem with budget for the seller’s good given by I(θ, q). Then, under the conditions of Proposition

1, the solution to the new BC problem with preferences η0(θ) + η1(θ)[v(θ, q) + z], with η0(θ) and η1(θ)

increasing, and the solution to the IR problem also coincide.

Proposition 1 and its corollary are important for several reasons. First, these results provide a simple

argument for how a model with heterogeneous budget constraints can be represented as a model with hetero-

geneous reservation utilities, and its solution characterized, even when the preferences in the two problems

do not coincide. Second, these results allow us to consider a number of cases of empirical and practical rele-

vance. For instance, we can examine how subsistence constraints affect prices, consumption, and consumers’

utilities. We can also evaluate the effect of policies, such as cash transfers, that directly affect consumers’

ability to pay and budgets. A natural question, then, is how stringent the assumptions of Proposition 1 are,

in particular (BCH), which we address next when v(θ, q) = θν(q), a specification of utility common in the

literature that we maintain in our empirical analysis.

Proposition 2 (Subsistence Functions for Equivalence). Let utility be v(θ, q) = θν(q) and the subsistence

level be z(θ, q)=−z1(θ)−z2ν(q) with z′1(θ)=ψ(log(θ−z2)), ψ(·) positive and continuous, and θ > z2 > 0.

Then, (BCH) is satisfied, and Iq(θ, q) equals vq(θ, q) for types whose BC constraints bind.

The conditions in Proposition 2 imply that assumption (BCH) holds for a large class of utility functions,

v(θ, q), and subsistence functions, z(θ, q), compatible with Proposition 1; see the proof of Proposition 2 for

examples. The assumption that z(θ, ·) decreases with q, which is equivalent to assuming that the calorie

intake from q, C(θ, ·), increases with q, is natural: the greater the amount of the seller’s good consumed, the

greater the calorie intake. The requirement that ψ(·) be positive, or, equivalently, that z(·, q) decreases with

θ, is to ensure that q(θ) is increasing. An intuition for why z(·, q) may decrease with θ in practice is that if

the same calorie intake can be reached through different combinations of food items, a consumer who values

the seller’s good more may require less of other goods to achieve it. See Lancaster (1966) on the distinction

between the caloric and taste attributes of goods, and Jensen and Miller (2008) on the relationship between

these attributes and subsistence constraints.
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3.3 Nonlinear Pricing: Properties and Implications

By the equivalence just established between models with heterogeneous reservation utilities and heteroge-

neous budget constraints, from now on we refer to the IR model as the augmented model and interpret it as

covering both cases. We now examine the implications of the augmented model for prices, consumption,

and market participation, for consumer surplus and welfare under nonlinear and linear pricing, and for the

impact of policies, such as income transfers, that affect consumers’ ability to pay. We maintain assumptions

(PS), (H), and (FP), and, for simplicity, that v(θ, q) = θν(q) and c′(Q) = c > 0, as common in the literature.

Our results can be extended to the case of nonseparable utility and increasing and convex cost functions.

Prices and Consumption. We start by providing sufficient conditions for quantity discounts to arise and

show that quantity discounts are consistent with consumption both below and above first best. Formally,

since q(θ) is increasing, we can define the inverse function θ(q) and derive the observed price schedule,

T (q) = t(θ(q)), as a function of quantity. Using θ′(q) = 1/q′(θ), we can then rewrite the local incentive

compatibility condition, θν ′(q(θ))q′(θ) = t′(θ), as θν ′(q(θ)) = T ′(q(θ)) so that (1) becomes

T ′(q(θ))− c
T ′(q(θ))

=
γ(θ)− F (θ)

θf(θ)
. (9)

The price schedule T (q) exhibits quantity discounts if T ′′(q)≤ 0 or p′(q) ≤ 0, where p(q) = T (q)/q is the

unit price of quantity q = q(θ); the two characterizations are equivalent when q(θ) = 0. Denote by εr(θ)

the elasticity of F (θ)/f(θ), which is the reciprocal of the reverse hazard of the distribution of types, with

respect to θ, and by A(q(θ))≡−ν ′′(q(θ))/ν ′(q(θ)) the coefficient of absolute risk aversion at q(θ).

Proposition 3 (Quantity Discounts). Assume ν ′(·) > 0, ν ′′(·) < 0, ∂
∂θ

(
1−F (θ)
f(θ)

)
≤ 0, and q′(θ) > 0. If

εr(θ) ≥ 1 and u′′(θ) ≥ ν ′(q(θ))/[θA(q(θ))] for each θ and θf(θ) ≥ 1, then T ′′(q) ≤ 0 for each q.

Whereas the first three conditions in the proposition are standard—the third one is a common sufficient

condition for assumption (PS)—the remaining ones are novel. The condition q′(θ)>0 is a technical assump-

tion to guarantee that T ′′(q) is bounded when IR constraints bind. The restriction εr(θ) ≥ 1 is equivalent

to ∂
∂θ

(F (θ)/f(θ))≥F (θ)/f(θ) and thus strengthens the usual condition on the distribution of types for as-

sumption (PS) to hold in models with heterogeneous reservation utilities, ∂
∂θ

(F (θ)/f(θ))≥0. It guarantees

that the seller has an incentive to discriminate across consumers. The condition that u′′(θ) be large enough

ensures that consumers whose IR constraints bind are offered quantity discounts. Intuitively, convexity im-

plies that outside consumption opportunities are increasingly more valuable for consumers of higher types.

By offering higher quantities at lower marginal prices (T ′′(q) ≤ 0), the seller can profitably induce higher

types to distinguish themselves from lower types by purchasing more. Then, quantity discounts are optimal

for the seller. The condition θf(θ)≥1 plays a similar role for types whose IR constraints do not bind.

By comparing the first-order condition in (9) with the one for the first-best allocation, T ′(q(θ)) = c, it is

immediate that the quantity provided to a consumer of type θ is below first best when γ(θ)>F (θ), whereas

it is above first best when γ(θ)< F (θ). Underprovision arises when the reservation utility is low for high
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consumer types. In this case, a seller just needs to induce low types to purchase—if they do, high types

purchase too—and devise a menu to best extract surplus from the most profitable segment of demand, high

consumer types. Since high types anticipate this rent-extraction behavior by sellers, they have an incentive to

copy the behavior of lower types and purchase small quantities. But since higher types face a higher marginal

benefit from consuming the good, a seller can nonetheless separate them from lower types by decreasing the

offered quantities meant for lower types below the lower types’ first-best level of consumption. This way, a

seller makes the purchase of a small quantity by high-type consumers especially costly for them.

Overprovision, instead, arises when the reservation utility is large for high consumer types. In this case, a

seller needs to induce high types to buy in the first place, and can do so while separating them from low types

by offering quantities meant for high types that are larger than first best at marginal prices below marginal

cost. This way, a seller can not only induce higher types to trade by purchasing these large quantities but also

distinguish them from lower types, who naturally prefer smaller quantities. Sorting occurs because lower

types would need to purchase much larger quantities than desirable to them, that is, quantities above the

first-best level of consumption of higher types, to mimic the behavior of higher types.17

Augmented vs. Standard Model. Relative to the standard model, the augmented model gives rise to

higher levels of consumption and, correspondingly, lower marginal prices. The reason is that if the cu-

mulative multiplier γ(θ) is different from one, which is its value in the standard model, it must be strictly

smaller than one, since it has the properties of a distribution function. But then the first-order condition in

(9) immediately implies that a seller has an incentive to provide higher quantities than under the standard

model, which the seller can induce consumers to buy only by charging lower marginal prices. Since higher

quantities may be offered for a higher tariff, the overall effect on consumers’ utility is ambiguous. When the

reservation utility in the augmented model is higher than in the standard model, though, consumer surplus is

clearly higher in the augmented model.18 Intuitively, the more attractive outside consumption opportunities

are, the more desirable the seller’s offered price and quantity must be to induce a consumer to purchase.

Proposition 4 (Augmented vs. Standard Models). Assume full participation under the standard model. The

augmented model implies higher consumption and lower marginal prices than the standard model for each

consumer type. If u(θ) ≥ u, where u is the reservation utility in the standard model, then the augmented

model also implies higher consumer surplus than the standard model for each consumer type.

Nonlinear vs. Linear Pricing. A natural question is whether consumers are better off under nonlinear

or linear pricing. We argue here that for nonlinear pricing to be preferred, it must typically lead to greater

market participation than under linear pricing. Indeed, when all consumers participate under both pricing

schemes and nonlinear pricing entails quantity discounts, consumers are better off under linear pricing.

Intuitively, linear pricing is preferred when the quantity provided under linear pricing is larger. Perhaps

17Formally, incentive constraints are upward-binding for consumer types whose closest marginal type, namely, a type indifferent
between purchasing and not, is above them and downward-binding for types whose closest marginal type is below them, leading,
respectively, to consumption above and below first best. In the standard model, the only marginal type is the lowest one.

18Whenever |γ(θ)− F (θ)| ≤ 1− F (θ), the distortion to marginal surplus is smaller in our model than in the standard model.
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more surprisingly, consumers prefer linear to nonlinear pricing even when the quantity provided under linear

pricing is smaller: in this case, a seller who can price discriminate asks for “too high” a price for the greater

quantity the seller is willing to provide. In terms of notation, in the linear (monopoly) problem, a seller

charges the unit price pm for any quantity and a consumer of type θ chooses the quantity q to maximize utility

θν(q)−pmq, has demand function qm(θ)=(ν ′)−1(pm/θ), and obtains utility um(θ)=θν(qm(θ))−pmqm(θ).

Proposition 5 (Nonlinear vs. Linear Pricing). Assume full participation under linear pricing. If p′(q)≤0 at

q= q(θ) and qm(θ)≥ q(θ), or if T ′′(q) ≤ 0 at all q = q(θ), γ(θ)< 1, and q(θ)>qm(θ), then a consumer of

type θ is better off under linear than under nonlinear pricing.

Naturally, a consumer who is excluded from the market under linear pricing but included under nonlinear

pricing prefers nonlinear pricing. The next result shows that consumers who have access to generous enough

outside consumption possibilities in that q(θ)> qFB(θ) can indeed be excluded under linear pricing and so

are better off under nonlinear pricing.19 Note that this situation cannot arise when γ(θ) = 1 for all types, as

is the case in the standard model, since q(θ) ≤ qFB(θ) for all types in this case.20

Proposition 6 (Nonlinear vs. Linear Pricing with Exclusion). Assume ν ′′(·) < 0. Let s(θ, q(θ)) ≥ u(θ) and

q(θ) > qFB(θ) for consumer types in the interval [θ′, θ′′]. If there exists θ̂ ∈ [θ′, θ′′] with um(θ̂) = u(θ̂),

then an interval of consumer types in [θ̂, θ′′] are excluded under linear pricing but included under nonlinear

pricing and so are better off under nonlinear than under linear pricing.

To understand the condition q(θ)>qFB(θ), note that with u′(θ)=ν(q(θ)), as implied by assumption (H)

or (BCH), large values of q(θ) are associated with a rapidly increasing reservation utility profile: outside

consumption possibilities are relatively more attractive for consumers of higher types than of lower types.

Intuitively, to induce consumers with these generous outside consumption possibilities to participate, a seller

needs to offer a low enough marginal price. Since the marginal price is constant and equals the unit price

under linear pricing, such a low linear price would lower profits from all consumers for the benefit of in-

cluding only a few more. Hence, it would not be profitable to include such consumers under linear pricing;

see Example 1 in Appendix A for an illustration. Proposition 6 then highlights an efficiency dimension of

nonlinear pricing: whenever a seller can include different consumers at different prices, the seller may have

an incentive to serve those consumers who would demand unprofitably large quantities under linear pricing.

Income Transfers. The formalization of subsistence and budget constraints allows us to explore how in-

come transfers, such as those implemented by Progresa, affect sellers’ incentives to price discriminate, and

so prices and consumption, when individuals face subsistence constraints or, more generally, have a limited

ability to pay. As we show here, our model implies that income transfers increase consumption but can also

lead to an increase in prices, as sellers adjust their menus in response to consumers’ greater ability to pay.
19The claim requires the existence of a type at risk of exclusion under linear pricing, whose utility equals u(θ) under linear

pricing. For instance, this occurs when a consumer’s reservation utility equals first-best utility. In this case, under linear pricing,
such a consumer is either included, so um(θ) = u(θ), or excluded, in which case again um(θ) = u(θ).

20See Corollary 1 in Jullien (2000) for a proof that if q(θ) ≤ qFB(θ) for all types, then q(θ) ≤ qFB(θ) under assumptions (PS),
(H), or (BCH), and (FP).
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Intuitively, when consumers are constrained by a budget for the seller’s good, changes in their income af-

fect prices by creating an incentive for a seller to extract more surplus. Suppose, for instance, that consumers

receive an income transfer that is independent of their characteristics, that is, τ(θ) = τ > 0. Such a transfer

naturally gives rise to a uniform increase in the price schedule. Why? Since the quantities offered before

the transfer are still incentive compatible after the transfer, a seller can offer the same quantities at higher

prices without affecting consumers’ behavior. The seller then maximizes profits by increasing the price of

each quantity by the amount of the transfer. As a result, prices uniformly increase by the amount τ .

Consider now the more interesting case in which the transfer depends on consumers’ characteristics, and

so affects individual demands differentially. In the villages in our data, transfers depend on household income

in that only sufficiently poor households qualify for them and also depend on the number of children in a

household. Since poorer households tend to have more children, transfers are larger for poorer households

and so effectively progressive in income; see Attanasio et al. (2013). As poorer households also consume

less of normal goods, such as those we consider in our application, than richer ones, assuming a transfer such

that τ ′(θ)≤0 seems then in line with the data, given the one-to-one relationship between types and quantities

in our model.

Note that a transfer τ(θ)≥0 amounts to a decrease in the level of consumers’ utility when they spend their

entire budgets for the seller’s good, from θν(q(θ))−I(θ, q(θ)) to θν(q(θ))−I(θ, q(θ))−τ(θ), and, importantly,

to an increase in its slope in θ when τ ′(θ)≤ 0. Thus, a transfer makes outside consumption opportunities

less attractive overall but relatively more desirable to higher types than to lower ones. To induce higher types

to trade while preserving incentive compatibility, a seller must then offer all consumers higher quantities at

lower marginal prices. As a result, the marginal price of the same percentile of quantities, before and after the

transfer, decreases in response to the transfer. Yet, the price schedule increases for at least some consumers,

since the seller can charge higher prices without losing any consumers, as in the case of a uniform transfer.

Thus, the positive effect of the transfer on consumption is attenuated by the associated increase in prices.

To formalize these intuitions, we denote by {qτ (θ)} the incentive compatible quantity profile when con-

sumers spend their entire budgets for the seller’s good after the transfer is introduced. For any quantity

q= q(θ) consumed before the transfer, we also define the quantity q̃τ (q)= qτ (θ) consumed after the transfer

that corresponds to the same percentile in the distribution of quantities after the transfer as the percentile in

the distribution of quantities before the transfer that q corresponds to. By definition, q̃τ (q) satisfies

∫ q̃τ (q)

q
τ

gτ (x)dx

[∫ q̄τ

q
τ

gτ (x)dx

]−1

=

∫ q

q

g(x)dx

[∫ q̄

q

g(x)dx

]−1

,

where q = q(θ) and q̃τ (q) = qτ (θ) are the quantities consumed before and after the transfer by type θ, and

g(q) and gτ (q) are, respectively, the probability density functions of quantities before and after the transfer.

Proposition 7 (Transfers). An income transfer τ(θ) > 0 with τ ′(θ) ≤ 0 leads to a higher price schedule with

lower marginal prices for each percentile of the distribution of quantities before and after the transfer and to

20



a first-order stochastic improvement in the distribution of quantities for: i) all consumer types, if the binding

pattern of the BC constraints is the same before and after the transfer; or ii) any interval of consumer types

with binding BC constraints either on the entire interval or only at its extremes before and after the transfer,

if the binding pattern of the BC constraints differ before and after the transfer.

Since, by this result, larger quantities are offered at higher prices, the overall effect on the unit price

T (q)/q of the good is ambiguous, though. In general, however, the intensity of price discrimination, as mea-

sured by the size of quantity discounts, increases with the transfer regardless of its degree of progressivity,

except for the consumers of the largest quantities.

Corollary 2. If ν ′′′(·) ≤ 0 and the transfer τ(θ) ≥ 0 leads to greater consumption for all consumers, then

there exist θmax ≤ θ and a corresponding percentile of the distribution of quantities before and after the

transfer, pmax, such that the transfer gives rise to greater price discrimination in that T ′′τ (q̃τ (q))≤T ′′(q) for

each percentile of the distribution of quantities before and after the transfer up to pmax.

Although the exact shape of unit prices depends on the distribution of types and quantities and on how this

latter distribution is affected by the transfer, asymmetric changes in unit prices for low and high quantities

occur naturally. An example is when ν(q) is a HARA function with decreasing absolute risk aversion and

types are uniformly distributed. In this case, unit prices increase at low quantities but decrease at high

quantities in response to an increase in income—provided utility is sufficiently convex in θ when the BC

constraints bind. See the Supplementary Appendix. Hence, the schedule of unit prices becomes steeper. We

explore the extent to which these implications of our model are borne out in the data in Section 5.4.

Observe, finally, that an opposite logic applies to the case of in-kind transfers, when they lead to an

increase in the consumption floor z(θ, q). Specifically, by reversing the argument that establishes Proposition

7, it is possible to show that an in-kind transfer can lead to an increase in the consumption floor on other

goods, which reduces consumers’ budgets for the good priced nonlinearly and so gives rise to a decrease in

its price. In this case, in-kind transfers would have an opposite effect to that of cash transfers and generate a

decrease rather than an increase in prices. Consistently with this implication of our model but using Mexican

data different from ours, Cunha et al. (2017) indeed show that the price effects of in-kind transfers are

nonnegligible and negative in more remote and less competitive areas but are otherwise small. In these

cases, in-kind transfers may be preferable to cash transfers.

4 Identification and Estimation
In this section, we discuss the identification and estimation of the model’s primitives. The basic idea, which

builds on intuitions from Perrigne and Vuong (2010), is that the pricing behavior of a seller depends on the

property of the distribution of consumer types in a village. Since this distribution can be mapped into the

distribution of quantities, it can be recovered from the joint distribution of observed prices and quantities.

Although one can show that the parameters of the model can be identified and estimated semiparametrically,

here we derive estimators that use flexible parametric functions, partially to accommodate the sparsity of the
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data in some of the villages. Omitted details and proofs are collected in Appendix B.

4.1 Identification

In a village market, the model’s primitives are the consumers’ utility function, v(θ, q), the cumulative distri-

bution function of consumers’ types or marginal willingness to pay, F (θ), its support [θ, θ], and the associated

probability density function, f(θ), the seller’s marginal cost at the total quantity provided of the good con-

sidered, c′(Q), and the determinants of participation in the market: the reservation schedule u(θ) in the IR

model and the budget schedule I(θ, q, w) in the BC model. We consider the general version of the BC model

with heterogeneity in θ and w, both of which are assumed to be noncontractible. We allow for dependence

between θ and w so that, without loss of generality, we can interpret the budget schedule as a function of θ

only, with Υ(θ) ≡ I(θ, q(θ), ω(θ)); see the discussion of the two-dimensional case in Appendix A.21 Under

standard assumptions, we show that these primitives are identified in each village from data on consumers’

expenditures and quantity purchases, which provide information, respectively, about T (q) and q. Note that

u(θ) and Υ(θ) are only identified for households with binding IR and BC constraints, respectively.22 Key

properties of the model depend on the cumulative multiplier γ(θ), which we refer to simply as the multiplier.

In establishing identification, we maintain that the sufficient condition s(θ, q(θ)) ≥ u(θ) for full partici-

pation holds: it states that a seller obtains nonnegative profits from each consumer’s type at the reservation

quantity, q(θ). This approach is justified by the fact that nearly all households in each village consume the

three goods we consider, namely, rice, kidney beans, and sugar, as discussed. We also adopt the normaliza-

tion θ=1, since a scaling assumption on types is necessary for identification. LetG(q) denote the cumulative

distribution function of quantities in a village and g(q) the corresponding density function. Since G(q), g(q),

the price schedule T (q), and its derivatives are identifiable from information on quantities and prices, we

treat them as known in our identification arguments.

Our arguments rely on the condition for local incentive compatibility of an optimal menu, T ′(q) =

vq(θ, q), and a seller’s first-order condition for the choice of quantity. This latter condition provides the only

condition for the identification of a seller’s cost structure. By relying exclusively on information on quantities

and prices, we can only identify a seller’s marginal cost at the total quantity of a good provided in a village,

Q=
∫ θ
θ
q(θ)f(θ)dθ. Yet, based on this information alone, we can identify all primitives under the assumption

that v(θ, q) = θν(q), which we maintain from now on, up to the coefficient of absolute risk aversion.23 This

21Note that consumers’ marginal willingness to pay and absolute ability to pay, captured here by θ and w, are highly correlated
in the data, as apparent from the observed strong relationship between consumption and income and the fact that the commodities
we consider are normal goods. Recall also that the budget I(θ, q(θ), ω(θ)) matters only for consumers whose budget constraints
bind, in which case it just equals T (q).

22Any economy with reservation utility u(θ) or budget schedule Υ(θ) binding on the set Θ′ ⊆ Θ is observationally equivalent
to an economy with the same primitives but reservation utility ũ(θ) or budget schedule Υ̃(θ) that agree, respectively, with u(θ)
and Υ(θ) on Θ′ and are appropriately adjusted for the remaining types.

23Restrictions on the utility function are common in the auction and nonlinear pricing literature. Note that in auction models
with risk-averse bidders, even restricting the utility function to belong to well-known families of risk aversion is typically not
sufficient for identification; see Campo et al. (2011). Here we presume that the absolute risk aversion coefficient is known, but we
do not otherwise restrict consumers’ utility function or type distribution. When v(θ, q) is not multiplicatively separable in θ, then
γ(θ) is set-identified, but vq(θ, q) is still point-identified; see the Supplementary Appendix for this argument and a discussion of
related results in the nonlinear pricing and hedonic pricing literature.
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multiplicative specification of utility is ubiquitous in the theoretical and empirical literature on auctions and

nonlinear pricing for its tractability (see Guerre et al. (2000) and Perrigne and Vuong (2010)). Thus, we

consider it a natural benchmark.

Marginal Cost and Multipliers on Constraints. The relationship between θ and q implied by incentive

compatibility is central to the identification of the model. To see why, let q ≡ q(θ) and q ≡ q(θ) denote,

respectively, the smallest and largest observed quantities in a village. Since q′(θ) ≥ 0, it follows that G(q)=

F (θ): the cumulative distribution function of types is identified by that of quantities and g(q) = f(θ)/q′(θ).

Given this mapping between the distribution of types and quantities, a seller’s first-order condition can be

used to identify the marginal cost c′(Q), the multiplier γ(θ(q)) on participation (or budget) constraints, and

so the set of consumers whose participation (or budget) constraints bind. Formally, rewrite (9) as

g(q)

ϕ(q)

[
c′(Q)

T ′(q)
− 1

]
= G(q)− γ(θ(q)), (10)

with ϕ(q) ≡ ∂ log(θ(q))/∂q = θ′(q)/θ(q). We show next that both c′(Q) and γ(θ(q)) are identified up to the

coefficient of absolute risk aversion. As a preliminary step, we show that c′(Q) is identified up to the ratio

ϕ(q)/ϕ(q). To this purpose, note that, by taking derivatives of both sides of (10) and then integrating the

resulting expressions from q and q, it is easy to show that

c′(Q) =

[
g(q)

ϕ(q)

ϕ(q)
− g(q)

]
/

[
g(q)

T ′(q)

ϕ(q)

ϕ(q)
−

g(q)

T ′(q)

]
;

see the proof of Proposition 8 in Appendix A for details. Hence, since g(q) and T ′(q) are identified, c′(Q)

is identified up to ϕ(q)/ϕ(q). To complete the argument, recall that A(q) =−ν ′′(q)/ν ′(q) is the coefficient

of absolute risk aversion. Differentiating the local incentive compatibility condition T ′(q) = θ(q)ν ′(q) gives

θ′(q)/θ(q) = T ′′(q)/T ′(q) + A(q). Therefore, condition (10) also implies

γ(θ(q)) = G(q) + g(q)

[
1− c′(Q)

T ′(q)

] [
T ′′(q)

T ′(q)
+ A(q)

]−1

. (11)

Then, the multiplier γ(θ(q)) is identified up to c′(Q) and A(q), given that G(q), g(q), T ′(q), and T ′′(q) are

identified. However, since ϕ(q)/ϕ(q) only depends on θ′(q)/θ(q), which is known up to A(q), it follows

that c′(Q) is identified if A(q) is known. Hence, γ(θ(q)) is identified just up to A(q). Equation (11) makes

it clear that the identification of c′(Q) and the multiplier requires some knowledge of the shape of the utility

function. In estimation, we sidestep this issue by specifying γ(θ(q)) as a parametric yet flexible function of

q, which reduces the identification problem to the problem of identifying c′(Q) and the parameters of this

function.

Proposition 8. In a village, the marginal cost of the total quantity provided, c′(Q), and the schedule of

multipliers, γ(θ(q)), are identified up to the coefficient of absolute risk aversion. In particular, up to this

coefficient, γ(θ(q)) is identified from the cumulative distribution function of quantities, G(q), the associated
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probability density function, g(q), and the marginal price schedules T ′(q) and T ′′(q).

There are special cases of interest in which identification is simpler. For instance, when the reservation

utility is highly convex, γ(θ(q)) = γ is constant on [θ, θ) so that γ equals G(q) only once between q and q.

In this case, c′(Q) and this constant γ are identified just up to one scale normalization, namely, ϕ(q)/ϕ(q):

once c′(Q) is identified, this constant γ is identified by the value ofG(q) at the quantity at which T ′(q) equals

c′(Q) by (10). When the resulting γ equals one, our model reduces to the standard model.

Distribution of Consumer Types. We now show that the type support, θ(q), and the probability density

function of types, f(θ), are identified. Note that condition (10) can be rewritten as θ′(q)/θ(q)=g(q)[T ′(q)−
c′(Q)]/{T ′(q)[γ(θ(q))−G(q)]}, which can be used to express θ(q) as

log(θ(q)) = log(θ(q)) +

∫ q

q

∂ log(θ(x))

∂x
dx = log(θ(q)) +

∫ q

q

g(x)[T ′(x)− c′(Q)]

T ′(x)[γ(θ(x))−G(x)]
dx, (12)

where the first equality in (12) follows by integrating ∂ log(θ(q))/∂q with respect to quantity.24 Once c′(Q)

and γ(θ(q)) are identified, expression (12) implies that θ(q) is identified too up to θ(q), since it is a known

function of objects that are either identified or known, that is, q, q, g(q), T ′(q), and G(q). Then, f(θ) is

identified from g(q) and the derivative θ′(q), since f(θ)=g(q)/θ′(q) by F (θ)=G(q).

Proposition 9. In a village, the support of consumers’ marginal willingness to pay, θ(q), is identified from

the cumulative distribution and the probability density functions of quantities, G(q) and g(q), the marginal

cost c′(Q), the marginal price schedule, T ′(q), and the schedule of multipliers, γ(θ(q)), up to a scale nor-

malization. The probability density function of consumers’ marginal willingness to pay, f(θ), is identified

from the probability density function of quantities, g(q), and the first derivative of θ(q).

Utility Function and Schedule of Reservation Utility. Here we show how ν ′(q), ν(q), and u(θ) are iden-

tified. Note first that with knowledge of the coefficient of absolute risk aversion, base marginal utility ν ′(q)

is identified up to a scale normalization. Here we show that this scale normalization is unnecessary to

identify ν ′(q) if the marginal price schedule, T ′(q), and the type support, θ(q), are identified. To this end,

observe that once θ(q) is identified, the incentive compatibility condition ν ′(q) = T ′(q)/θ(q) implies that

ν ′(q) is identified from T ′(q). Next, given ν ′(q), we can recover ν(q) up to one point, say, q′= q(θ′), since

ν(q)=ν(q′)−
∫ q′
q
ν ′(x)dx for q ≤ q′ and ν(q)=ν(q′)+

∫ q
q′
ν ′(x)dx for q ≥ q′. With θ(q) and ν(q) identified,

u(θ) is identified for all consumers whose participation (or budget) constraints bind, since their utility is

u(θ)=θ(q)ν(q)−T (q).

Proposition 10. In a village, the base marginal utility function, ν ′(q), is identified from the marginal price

schedule, T ′(q), and the support of consumers’ marginal willingness to pay, θ(q). Hence, ν(q) is identified

24The integrand in (12) is positive since g(q)>0, T ′(q)>0, and T ′(q)≥c′(Q) if, and only if, γ(θ(q))≥G(q) by (10). It is well-
defined when γ(θ(q))=G(q) and T ′(q)=c′(Q) if the slope of γ(θ(q)) differs from g(q) at such quantities, which is the case under
our assumptions, as apparent from the seller’s first-order condition expressed as γ(θ(q))=G(q)+f(θ(q))sq(θ(q), q)/vθq(θ(q), q).
To see where this slope condition on γ(θ(q)) comes from, denote by qs any quantity such that γ(θ(q))=G(q) and T ′(q)=c′(Q),
and note limq→qs g(q)[T ′(q)− c′(Q)]/{T ′(q)[γ(θ(q))−G(q)]}=g(qs)T ′′(qs)/{T ′(qs)[γ′(θ(qs))θ′(qs)− g(qs)]}.
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up to a scale normalization. The reservation utility (or budget) function is identified for all consumers whose

participation (or budget) constraints bind.

4.2 Estimation

For each of the three goods considered, we estimate the model separately in each village in two steps. In the

first step, we parameterize the functions T (q),G(q), and γ(q)—this latter as a flexible cumulative distribution

function—and estimate them by maximum likelihood together with the model’s primitives c′(Q), θ(q), and

ν ′(q). Specifically, we use flexible parameterizations for T (q) and G(q), which, together with the seller’s

first-order condition, provide the estimating equations for the parameters of T (q), G(q), and γ(θ(q)), and

for c′(Q). We estimate θ(q) and ν ′(q) as known transformations of T ′(q), G(q), γ(θ(q)), and c′(Q) based on

equation (12) for θ(q) and the local incentive compatibility condition ν ′(q) = T ′(q)/θ(q) for ν ′(q). In the

second step, we estimate f(θ) in each village from the estimated θ(q) via a kernel density estimator. Since

the rate of convergence of the parametric estimator of θ(q) is faster than that of the nonparametric estimator

of f(θ), the estimation of θ(q) in the first step does not affect this second step.25 This approach is appealing

not only for its simplicity but also for its consistency with the nature of our data, which would make a full

nonparametric approach problematic.

Price Schedule and Distribution of Quantities. For each of the three goods we consider, our data contain

information on the quantities purchased and the unit prices paid by each household in each village. Denote

by Nvj the number of consumers of good j in village v and by qvji the quantity of good j purchased by

household i in the village. We estimate the price schedule, {Tvj(q)}, of good j in village v as

log[Tvj(qvji)] = tvj0 + tvj1 log(qvji) + εpvji, (13)

where Tvj(qvji)≡E[p(qvji)|qvji]qvji, given the observed unit price p(qvji) of quantity qvji, and εpvji is mea-

surement error in expenditure. We use the mean unit value of a quantity in each village as the unit price

of that quantity for consistency with our model: multiple unit values may correspond to a given quantity

in a village but our model implies that the price schedule is a function of quantity rather than a correspon-

dence. We also do so in order to minimize measurement error in unit values, due, for instance, to recall and

recording error—the assumption implicit in (13) is that unit values rather than quantities are contaminated

by error. We treat quantity as exogenous, since information on the quantity purchased and the price paid by

each household provides direct information on the price schedule of the seller and T (q) is a deterministic

function of q in our model. Let T ′vj(q) ≡ ∂E[Tvj(q)|q]/∂q.
We parameterize the cumulative distribution function of the quantities of good j purchased in village v

25We estimated the first-step system also by GMM, but convergence was problematic in many villages due to the sparseness of
the data. If f(θ) is interpreted as the probability mass function associated with the empirical G(q), the second step is unnecessary.
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as a logistic function with a quadratic index allowing for error in recorded purchase frequency, εvji,

Gvj(qvji) =
exp{gvj0 + gvj1qvji + gvj2q

2
vji + εvji}

1 + exp{gvj0 + gvj1qvji + gvj2q2
vji + εvji}

, (14)

where {Gvj(qvji)} is the empirical cumulative distribution function of good j in village v. Note that εvji
captures not only recall error but also the error resulting from the timing of the Progresa interview relative to

the timing of a household’s regular purchases, which may lead to understating or overstating the fraction of

households purchasing a particular quantity.

Marginal Cost and Multiplier Function. We rewrite the seller’s first-order condition in (10) to relate the

cumulative distribution function of quantities, G(q), to marginal cost, c′(Q), and the multiplier, γ(θ(q)), as

G(q) =

[
1

T ′(q)
− 1

c′(Q)

]
x3(q) + γ(θ(q)) =

[
1

t1p(q)
− 1

c′(Q)

]
x3(q) + γ(θ(q)), (15)

where x3(q)≡ c′(Q)g(q)θ(q)q′(θ) and the second equality in (15) follows from (13), which implies p(q) =

T ′(q)/t1 by dropping subscripts. Denote the marginal cost of the total quantity of good j in village v by

c′vj(Qvj). We specify the auxiliary function x3(q) as a (positive) fractional polynomial with noninteger

powers, xvj3(qvji) = χvj0 +χvj1q
χvj2
vji , to encompass a wide range of shapes. Given the limited granularity of

our data, estimating x3(q) nonparametrically would be infeasible. Since the multiplier function γ(θ(q)) has

the properties of a cumulative distribution function, we specify it as a flexible logistic function of quantity,

γvj(qvji) =
exp{γvj0 + γvj1qvji + γvj2q

2
vji}

1 + exp{γvj0 + γvj1qvji + γvj2q2
vji}

. (16)

We consider both a linear specification with γvj2 set to zero and a quadratic one, in which we estimate γvj2.

In this latter case, expression (15) becomes

Gvj(qvji)=

[
1

pvj(qvji)
− 1

c′vj(Qvj)

]
(χ

vj0
+ χ

vj1
q
χvj2
vji ) +

exp{γvj0 + γvj1qvji + γvj2q
2
vji}

1 + exp{γvj0 + γvj1qvji + γvj2q2
vji}

+ εsvji

=−
χ
vj0

c′vj(Qvj)
+

χ
vj0

pvj(qvji)
−
χ
vj1
q
χvj2
vji

c′vj(Qvj)
+
χ
vj1
q
χvj2
vji

pvj(qvji)
+

exp{γvj0 + γvj1qvji + γvj2q
2
vji}

1 + exp{γvj0 + γvj1qvji + γvj2q2
vji}

+ εsvji, (17)

with c′vj(Qvj) ≡ c′vj(Qvj)/tvj1, χ
vj0
≡ χvj0/tvj1, and χ

vj1
≡ χvj1/tvj1, and εsvji accounts for measurement

(or specification) error. Equation (17) provides the estimating equation for marginal cost and the multiplier

function. Note that the second line of (17) is the sum of a linear-in-parameters function (the first two terms),

a fractional polynomial (the third and fourth terms), and a function of e−qvji and e−q
2
vji , whose parameters

are identified.26 We test whether the estimated parameters of {γvj(qvji)} in each village are individually and

26From the fact that the multiplier is known at the smallest and largest quantities (from the density function of quantities) and
must equal G(q) at least at one interior quantity, at which marginal cost is identified by T ′(q), we obtain four moment conditions
to identify the three parameters of γvj(·) as well as marginal cost in each village. Then, the identification of the parameters of
xvj3(·) based on (17) follows by standard arguments. Note that the empirical G(·) is a step function, so limq↓q G(q) =G(qvj1)
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jointly significant to infer the shape of the multiplier, and thus the binding pattern of the relevant constraints.

Specifically, if γvj1 and γvj2 are not significantly different from zero, we infer that the multiplier is constant,

and so, depending on its value, the relevant constraints bind only at θ or θ or at both types. Otherwise, if γvj1
and γvj2 are significantly different from zero, we determine the intervals of types whose constraints bind by

testing whether γvj(qvji+1) is significantly different from γvj(qvji) at any qvji and qvji+1. If not, we infer that

the derivative of the multiplier is zero over the corresponding interval of types, and so the constraints do not

bind.

Support of Consumer Types and Utility Function. Normalizing θ to 1, we specify consumers’ log

marginal willingness to pay in village v for good j by (12) as

log(θvj(q)) =
1

Nvj

∑Nvj

i=1

(
[T ′vj(qvji)− c′vj(Qvj)]1{qvji ≤ q}
T ′vj(qvji)[γvj(qvji)−Gvj(qvji)]

)
,

where Nvj is the number of consumers of good j in village v, Qvj is the total quantity purchased in village

v, T ′vj(qvji) is computed from (13), and Gvj(qvji) and γvj(qvji) are specified in (14) and (16). Using local

incentive compatibility, ν ′(q)=T ′(q)/θ(q), and the forms of θ(q) and T ′(q), we estimate ν ′(q) as

log(ν ′vj(q)) = log(T ′vj(q))−
1

Nvj

∑Nvj

i=1

(
[T ′vj(qvji)− c′vj(Qvj)]1{qvji ≤ q}
T ′vj(qvji)[γvj(qvji)−Gvj(qvji)]

)
.

Probability Density Function of Types. Given the estimated θvji = θvj(qvji), we estimate the density of

households’ marginal willingness to pay for good j in village v as fvj(θ) = (Nvjh
θ
vj)
−1
∑Nvj

i=1 K
θ
vj((θ −

θvji)/h
θ
vj), with Epanechnikov kernel function Kθ

vj(·) and bandwidth hθvj .

5 Empirical Results
In this section, we present the main results obtained by estimating the model on data from the Mexican

villages that were part of the survey collected for the evaluation of Progresa, as explained in Section 2.

We start by discussing the sample selection criteria used in estimation. We then present estimates of the

primitives of the model and discuss the fit of the model to the data. Since we consider many villages, we

represent graphically the point estimates of the objects of interest and report their associated t-statistics in

Appendix B. Next, we use the model to analyze the distortions implied by the price discrimination we

observe and evaluate the welfare implications of alternative pricing schemes. Finally, we derive a reduced

form of the first-order conditions for the optimality of sellers’ and consumers’ behavior that relates unit prices

to quantities and the hazard rate of the distribution of quantities in each village. We use this reduced form

to explain the effect of the Progresa transfers on prices, in particular on the intensity of price discrimination,

which we estimate by exploiting the experimental variation in the data induced by the introduction of the

Progresa transfer in a randomly selected subset of villages. Omitted details are collected in Appendix B.

and limq↑q=G(qvjNvj−1), whereas γvj(·) ranges from zero to one. Thus, we do not impose that G(·) equals the multiplier at any
quantity.
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5.1 Sample Selection

We estimate the model for three commodities—rice, kidney beans, and sugar—which we chose for three

reasons, as explained in Section 2. First, they are commonly consumed, so that the full participation assump-

tion is likely to be valid, and we observe a large number of transactions for them. Second, they are normal

goods, whose consumption increases with income, so that assuming that households’ marginal willingness

to pay and absolute ability to pay are related, as we do in our BC model, is plausible. Third, they are goods

of homogeneous quality, so that the variation in prices across quantities we document is likely to reflect just

quantity discounts. We use five waves of the Progresa survey, adjusting the observed prices over time for

inflation. To minimize the impact of measurement error, we exclude extreme observations, both in terms

of quantity and, importantly, in terms of prices—we drop the top 5% of observations on (unit) prices and

quantities. We also exclude observations reported in incorrect units—say, liters rather than kilos. We focus

on villages with at least 75 observations on each of the goods of interest and with at least 50% of unit prices

declining with quantity. These restrictions imply the loss of very few observations: the original sample of

191 municipalities is reduced to 170 for rice, 176 for kidney beans, and 183 for sugar.

While in this section a village is defined as a municipality, in Appendix B, we also present the estimates of

our model on villages defined as Mexican localities. Applying to this sample of localities the same selection

rules applied to the sample of municipalities restricts the original sample of 506 localities to 371 for rice,

396 for kidney beans, and 442 for sugar. The estimates of the model are very similar across villages defined

as municipalities and localities.27

5.2 Estimates

The core elements of our model in each village are the unit price schedule p(q), the cumulative distribution

function of quantities G(q), which is mapped in the cumulative distribution function of types F (θ), the

multiplier γ(θ(q)), the type support, θ(q), and consumers’ utility function, θ(q)ν(q). In this subsection, we

first present the estimates of these objects in each municipality and then illustrate the fit of the model to the

data. See Appendix B for the omitted t-statistics of these estimates and the Supplementary Appendix for the

estimates of the probability density function of consumer types.

Estimation Sample: Prices and Quantities. As discussed in Section 4.2, we estimate both a linear and a

quadratic version of the logistic index of the multiplier function in equation (16). For the linear specification

of the multiplier, we successfully estimate the model primitives for 134, 144, and 143 of the 170, 176, and

183 municipalities considered in the estimation sample for rice, kidney beans, and sugar, respectively. For

the quadratic specification, we obtained estimates for 142, 153, and 139 of these municipalities.28 For this

sample, in the top panels of Figure 1 we report the schedule of mean unit prices per quantity in each village,

27Restricting attention to villages with at least 50% of unit prices declining with quantity accounts for a very small loss of
villages, namely, 3, 8, and 3 villages defined as municipalities, and 2, 31, and 13 villages defined as localities, respectively, for
rice, kidney beans, and sugar. This loss is primarily due to the irregularity of the price schedule in these excluded villages.

28For the remaining villages defined as either municipalities or localities, we could not obtain estimates of the primitives due to
numerical issues—the estimation routine failed to achieve convergence—largely stemming from the sparsity of the data.
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computed as explained above, together with a fractional polynomial interpolating line, the solid line. In the

bottom panels of Figure 1, we plot the cumulative distribution function of quantities in each village. All

goods are measured in kilos. As apparent, in most villages the unit price of each good declines with quantity,

so unit prices are highest for the households who purchase the smallest quantities and decrease more rapidly

over the range of small quantities that most households purchase, as evident from comparing the top panels

and bottom panels. Thus, households are affected by the nonlinearity of prices, and most of them face

significant quantity discounts. For instance, the mean unit price of the smallest quantity of rice, 0.1 kilos, in

general is more than 5 pesos, whereas that of the largest quantity, 2 kilos, can be as low as 1 peso.

Figure 1: Unit Prices and Cumulative Distribution Function of Quantities
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Figure 2: Estimated Multiplier on Participation (or Budget) Constraints
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Estimates of Multipliers. Figure 2 reports the estimated multipliers on the participation (or budget) con-

straints in each village for each good under the quadratic specification of the multiplier in equation (16); see

Appendix B for the linear specification. Note that, by construction, the estimated multiplier, γ(θ(q)), ranges

between 0 and 1 in each village for each good. We estimate that its mean across quantities and villages is

0.727 for rice with a standard deviation of 0.280, 0.713 for kidney beans with a standard deviation of 0.214,
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and 0.735 for sugar with a standard deviation of 0.227. For each good, the estimated multiplier is highly vari-

able across quantities and clearly smaller than one for several of them: the 25th, 50th, and 75th percentiles

of the distribution of γ(θ(q)) across quantities and villages are 0.481, 0.875, and 0.963 for rice, 0.500, 0.750,

and 0.899 for kidney beans, and 0.559, 0.810, and 0.919 for sugar. As discussed, the shape of the function

γ(θ(q)) discriminates across different instances of our model. In particular, the multiplier is estimated to be

constant, as in the highly convex case of our model, only in a handful of villages. Furthermore, from tests

of individual and joint significance of the parameters of γ(θ(q)), we reject the hypothesis that the standard

model applies (γ(θ(q))=1 at all q) in all villages at standard significance levels.

For an intuition about why most villages do not conform to the standard model or, more generally, to

the highly convex case of our model, recall that the seller’s first-order condition can be expressed as in (15).

For the highly convex case to apply, and therefore the multiplier to be constant, the term in brackets should

replicate the variability of G(q), since x3(q) is constrained to be positive and estimated to be approximately

constant. Thus, G(q) and p(q) should be approximately inversely related. Since the unit prices p(q) in the

top panels of Figure 1 are decreasing and convex, G(q) should then be increasing and concave. As Figure 1

shows, however, the curvature of p(q) is most pronounced at small quantities, whereas the curvature of G(q),

which is initially convex, is most pronounced at intermediate quantities. This difference in the observed

shapes of p(q) and G(q) must then be accommodated by γ(θ(q)) varying across quantities, thus ruling out

both the standard model and the highly convex case of our model.

Figure 3: Estimated Distribution of Types
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Estimates of Marginal Willingness to Pay. In the top panels of Figure 3, we plot our estimates of con-

sumers’ marginal willingness to pay as a function of quantity, θ(q), in each village for rice, kidney beans,

and sugar. In the bottom panels of the same figure, we display our estimates of the reverse hazard rate of

the distribution of consumer types in each village for each good as a function of quantity, f(θ(q))/F (θ(q)).

(For readability, we trimmed the top 5% of estimates.) From the upward-sloping profiles in the top pan-
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els of Figure 3, we see that in each village, consumers’ estimated marginal willingness to pay, θ, increases

with quantity, as consistent with the incentive compatibility condition of our model. Also apparent from the

bottom panels of the figure is that the estimated reverse hazard rate function, f(θ)/F (θ), decreases nearly

everywhere with θ and so with quantity, as is consistent with the monotone hazard rate condition sufficient

for our assumption (PS). Since none of these restrictions have been imposed in estimation, we interpret these

findings as validating our estimates of the type distribution. The t-statistics of these estimates reported in

Appendix B further imply that these functions are estimated fairly precisely.

We note that the estimates of the support of types imply a much greater dispersion in consumers’ marginal

willingness to pay than in quantities purchased; recall from (12) that the level of θ is identified up to a

normalization. Indeed, the bottom panels of Figure 1 show that most consumers purchase relatively small

quantities: nearly all consumers consume less than 1 kilo of rice and less than 2 kilos of kidney beans

and sugar per week. Instead, as the top panels of Figure 3 reveal, the support of types for each good is

several times wider than the support of quantities. The fact that consumers markedly differ in their marginal

willingness to pay for a good is important for the nonlinearity of observed prices, since it provides sellers

with a strong incentive to discriminate across consumers. In particular, there is scope for sellers to distinguish

consumers by their intensity of preference. We examine the extent to which sellers exert market power and

extract surplus through price discrimination in Section 5.3.1.

Figure 4: Estimated Base Marginal Utility

0
2

4
6

8
Ba

se
 M

ar
gi

na
l U

til
ity

0 .5 1 1.5 2
Quantity

Rice

0
2

4
6

8
10

Ba
se

 M
ar

gi
na

l U
til

ity

0 1 2 3 4
Quantity

Kidney Beans
0

1
2

3
4

5
Ba

se
 M

ar
gi

na
l U

til
ity

0 1 2 3
Quantity

Sugar

Estimates of Marginal Utility. In Figure 4, we plot the estimates of base marginal utility, ν ′(q), at each

quantity in each village and for each good. Note that ν ′(q) decreases with quantity in all villages, as con-

sistent with the model, even though no such monotonicity restriction has been imposed in estimation. Since

consumers’ marginal willingness to pay, θ(q), increases with quantity whereas their base marginal utility,

ν ′(q), decreases with quantity, marginal utility, θ(q)ν ′(q), decreases with q less rapidly than base marginal

utility. The fact that marginal utility is nonetheless downward sloping implies that at the margin, each good

is valued very differently at different levels of consumption. The large curvature in utility we estimate sug-

gests the potential for rich distributional implications of nonlinear pricing, especially compared to alternative

pricing schemes such as linear pricing, since different quantities are valued differently by consumers of any

given taste. We further explore these implications in Section 5.3.1, where we link the scope for price dis-

crimination, as captured by the distribution of consumers’ tastes and marginal utility, to the type (first or

second degree) of price discrimination that we infer sellers practice in our villages.
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5.2.1 Model Fit

A key implication of our model is that the shape of the price schedule is determined by the cumulative

distribution function of quantities, G(q), and thus of consumers’ marginal willingness to pay, F (θ), the

associated probability density function, f(θ), and the multiplier on consumers’ participation (or budget)

constraints, γ(θ(q)), as implied by a seller’s first-order condition. Although the distribution of consumers’

marginal willingness to pay and the multiplier are unobserved, they are directly related to the observed

distributions of quantities and unit prices, as argued. Thus, one way to assess the fit of the model to the data

is to determine the extent to which our estimates of the marginal cost c′(Q), the multiplier γ(θ(q)), and the

auxiliary function x3(q) satisfy the relationship between the observed distribution of quantity, G(q), and unit

prices, p(q), implied by a seller’s first-order condition in (15) in each village for each quantity and good.

Figure 5: Model Fit within and across Villages for Linear and Quadratic Specification of Multiplier Function
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To this purpose, we re-write equation (15) and plot in Figure 5 the estimated value of G(q)−γ(θ(q))

on the y-axis against the markup measure 1/T ′(q)−1/c′(Q) weighted by the auxiliary function x3(q), or

weighted markup for brevity, on the x-axis, for each quantity and good in each village. To compute this

markup measure, we use the fact that T ′(q) = t1p(q) by our specification of T (q) in (13), with t1 estimated

and p(q) observed. The closer the relationship between G(q)−γ(θ(q)) and the weighted markup to the 45-

degree line, the better the fit of the model to the data. In Figure 5, each dot represents the fit for a quantity

of a given good in a given village: the top panels correspond to the case in which the multiplier γ(θ(q)) is

specified as a logistic function with a linear index in quantity, and the bottom panels correspond to the case in

which the multiplier γ(θ(q)) is specified as a logistic function with a quadratic index in quantity. The model

fits the price and quantity data from each village remarkably well for each good. For instance, the R2 of a

linear regression line in each of the top panels is 0.953, 0.919, and 0.947 for rice, kidney beans, and sugar,

respectively, whereas in each of the bottom panels, it is 0.968, 0.899, and 0.936. The R2 for the bottom
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panels is lower partly because of the greater number of villages we successfully estimate in the quadratic

case, as discussed in Section 5.1. We omit the corresponding regression lines from the figure since they are

indistinguishable from the 45-degree lines.

5.3 Welfare Implications of the Estimated Model

5.3.1 Distortions Associated with Price Discrimination

As discussed, our model allows for varying degrees of market power among sellers. Sellers’ market power

can distort the allocation of a good relative to first best, thereby reducing the gains from trade. It also affects

the distribution of these gains between consumers and sellers. For instance, in the extreme case in which

a seller could charge personalized prices and perfectly price discriminate, the resulting allocation would be

efficient, but the seller would obtain all surplus. Alternatively, sellers could practice less efficient forms of

price discrimination, of the second- or third-degree type, leading to allocations that do not maximize social

surplus but in which larger surplus fractions accrue to consumers.

Here we examine the size of the distortions induced by sellers’ market power in each village and their

distributional implications, as implied by our estimates, by comparing social surplus and quantities consumed

under observed nonlinear pricing and under first best. We interpret first best as a scenario in which free entry

in a market is possible, so sellers price at cost. Since only the marginal cost of the total quantity of a good

is identified in each village, for this exercise we assume the simplest possible (weakly convex) cost schedule

for each village, whereby marginal cost is constant at all quantities—and so equal to average cost—except at

the largest one, where it is given by our estimate of c′(Q). Since a seller must break even at each quantity, we

further assume that the average cost of any quantity different from the largest one equals the lowest observed

unit price of these quantities. Hence, a seller’s profit is nonnegative at each such quantity.

In the top panels of Figure 6, we graph the percentage gains in social surplus against (log) consumer

types, when moving from observed nonlinear pricing to the counterfactual first-best scenario in which unit

prices equal cost for each village, good, and quantity considered. We compute these gains as ∆SSfb =

[SSfb(θ)/SSnp(θ) − 1]100, where the subscript fb stands for first-best pricing and np for nonlinear pricing.

The dotted lines join social surplus across (log) consumer types in each village. Note that the loss in social

surplus implied by nonlinear pricing, across quantities and villages, ranges from about zero to over 100%

of the surplus under nonlinear pricing, is especially large for kidney beans, and is approximately U-shaped

over the interval where most types are. In particular, a sizable fraction of consumers of low to intermediate

quantities do not suffer large distortions. (In the figure, we have trimmed the top 2% of such changes for

readability, so the figure slightly underestimates actual losses from nonlinear pricing.)

In the bottom panels of Figure 6, we plot the ratio qfb/qnp of first-best quantities, qfb, to observed quan-

tities, qnp, as a function of qnp. In most villages, the consumption of households with intermediate to large

valuations of a good is most compressed relative to first best: the ratio is maximal at intermediate to large

quantities. Interestingly, several consumers of the smallest quantities consume above first best; that is, the

ratio qfb/qnp is smaller than one for these households. Hence, sellers overall practice an inefficient form of
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price discrimination, which, however, leads consumers of the smallest quantities to overconsume rather than,

as commonly argued, underconsume.

Figure 6: Social Surplus and Quantities under Nonlinear Pricing vs. First-Best Pricing
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5.3.2 Nonlinear vs. Linear Pricing

It has been argued that the ability of sellers to price discriminate through quantity discounts in developing

countries hurts poor consumers more than rich consumers. In particular, quantity discounts may limit the

access of the poorest households to basic goods and services, since these households tend to purchase the

smallest quantities and thereby face the highest unit prices; see Attanasio and Frayne (2006) for references.

Based on our model and estimates, we can examine which households are hurt (or benefit) more from the

price discrimination we observe relative to linear pricing, as well as the efficiency of nonlinear and linear

pricing, by comparing consumer and social surplus under nonlinear pricing and under the counterfactual

scenario that would emerge if sellers were constrained to price linearly, for instance, by regulation. Impor-

tantly, this exercise entails not just a comparison of the price and quantity combinations under the two pricing

schemes, but also of the size of the market served under each scheme. As formalized in Propositions 5 and

6, a seller who is prevented from discriminating may end up excluding some consumers under linear pricing.

We find that this is precisely the case for many villages in our sample. We can also compare nonlinear to

linear pricing in our model and in the standard model. Since the standard model is rejected in all villages, this

exercise helps to shed light on the nature of the bias that would arise if the standard model was incorrectly

presumed to apply.

Our Model. To compare the allocations observed under nonlinear pricing to those that would emerge coun-

terfactually under linear pricing, we need an estimate of consumers’ reservation utility to determine which

households participate under linear pricing. As discussed in Section 4.1, though, reservation utility is only

identified for consumer types whose participation (or budget) constraints bind.
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In the absence of a point estimate, we proceed as follows. We set the reservation utility of the lowest type

equal to this type’s estimated utility, u(θ)=u(θ). For any other type, we set u(θ)=u(θ) if the change in the

estimated multiplier across the corresponding quantities is significantly different from zero (in which case we

infer that the relevant constraint binds at θ) or we set u(θ)=u(θ′) otherwise (in which case we infer that the

relevant constraint does not bind at θ), where θ′ is the largest estimated type smaller than θ whose constraint

binds. When we cannot reject that the multiplier is constant at all quantities, and so the relevant constraint

does not bind anywhere in the interior of the interval of types, we bound consumers’ reservation utility from

below and above. In particular, we bound reservation utility from below by setting u(θ)=u(θ) except for the

highest type, whose reservation utility we set at u(θ). We refer to this case as the low reservation utility case.

Alternatively, we bound reservation utility from above by setting u(θ)=u(θ) for each θ and refer to this case

as the high reservation utility case, in which reservation utility is the highest possible one consistent with our

model. See Appendix B for details.

Given these reservation utilities, we compute the percentage gains in consumer surplus, ∆CSlp=[CSlp(θ)-

/CSnp(θ)− 1]100, and social surplus, ∆SSlp = [SSlp(θ)/SSnp(θ)− 1]100, when switching from nonlinear

to linear pricing, where lp stands for linear pricing and np for nonlinear pricing. We then plot these gains (for

each of the assumed reservation utility schedules) against (log) consumers types. Here we consider the low

reservation utility case and discuss the high reservation utility case in Appendix B. In this latter case, results

are qualitatively and quantitatively similar, except that a high reservation utility implies lower linear prices

and so a somewhat higher consumer surplus under linear pricing than implied by the low reservation utility

case. In both cases, consumers of small to intermediate quantities largely benefit from nonlinear pricing, that

is, ∆CSlp < 0, especially purchasers of the smallest quantities, and so prefer nonlinear to linear pricing.

Figure 7: Nonlinear vs. Linear Pricing under Augmented Model (Low Reservation Utility)
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Consider then the low reservation utility case. In the top panels of Figure 7, we plot the social surplus
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gains from switching to linear pricing against (log) consumer types, and in the bottom panels, we plot the

corresponding consumer surplus gains. As the top panels of Figure 7 show, nonlinear pricing leads to greater

social surplus for most consumers with low to intermediate types, especially for rice and kidney beans.29

Also, as the bottom panels show, a large fraction of consumers of small quantities are better off under

nonlinear pricing, in particular for kidney beans—note the range of the y-axis is first negative then positive

in all panels. That is, for a sizable fraction of consumers who purchase small quantities under nonlinear

pricing, the greater consumption that nonlinear pricing gives rise to leads to higher levels of consumer and

social surplus. On the contrary, consumers of intermediate to large quantities are better off under linear

pricing—for them, consumer and social surplus are higher under linear pricing. Intuitively, under linear

pricing, sellers provide smaller quantities, thereby inducing consumers to purchase less, but also charge

lower prices. From the bottom panels of Figure 7, the benefit of lower prices indeed outweighs the utility loss

from lower consumption only for intermediate to high types who consume intermediate to large quantities:

their consumer surplus is higher under linear pricing.30 The reduced ability of sellers to exert market power

under linear pricing also implies a lower producer surplus from nearly all types than under nonlinear pricing.

A critical reason why consumer and social surplus are higher for some consumer types under nonlinear

pricing is the higher degree of market participation that nonlinear pricing generates. In fact, since we ob-

serve quantity discounts, nonlinear pricing can increase consumer surplus only if linear pricing leads to the

exclusion of some consumers by Propositions 5 and 6. We can measure the degree of exclusion that linear

pricing induces by computing the fraction of consumers who would not participate in the market under linear

pricing. The fractions of excluded consumers below the 25th, between the 25th and the 75th, and above the

75th percentile of types across villages are 0.635, 0.340, and 0.021 for rice; 0.839, 0.626, and 0.007 for

kidney beans; and 0.802, 0.607, and 0.014 for sugar, respectively. Since nearly all consumers participate

under observed nonlinear pricing, it follows that a large fraction of consumers, mostly purchasers of small

quantities, would be excluded under linear pricing and thus benefit from nonlinear pricing.31

Standard Model. Nonlinear pricing has very different implications in the economy described by our model

relative to that described by the standard model of Maskin and Riley (1984). To stress this point, we consider

a scenario in which we counterfactually assume that the standard model applies to all villages. Formally, we

assume that u(θ) = u(θ) so that γ(θ) = 1 for all consumers and reestimate the model’s primitives under

this assumption in each village for each good. See Appendix B for the estimates of marginal cost, marginal

29Social surplus is virtually unchanged across nonlinear and linear pricing for consumers who do not participate under linear
pricing, and thus experience utility u(θ), but participate and obtain utility close to u(θ) under nonlinear pricing. As apparent from
Figure 7, this latter group of consumers are either the smallest or the largest types.

30Consumer surplus changes close to zero are those of types whose average price paid under nonlinear pricing is close to the
linear price. Changes of consumer surplus by −100% or so are experienced by consumers with low taste for a good who do not
participate under linear pricing. Their utility under linear pricing then equals their reservation utility, which is estimated at close
to zero in many villages. An analogous argument holds for social surplus changes by −100% or so.

31The pattern of exclusion implied by linear pricing depends in general on the distribution of consumer types and the shape of
reservation utility. Intuitively, though, since higher types are more profitable than lower ones, a seller typically faces a stronger
incentive to exclude lower types than higher ones. Based on our estimates, high linear prices are optimal and lead consumers of
relatively small quantities to be excluded. The reason is that the large taste parameters we estimate for households who purchase
intermediate to large quantities imply that sellers can more than make up for excluding low types by charging high prices to the
remaining ones.
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willingness to pay, and base marginal utility, when the standard model is incorrectly assumed to apply. Given

these new estimated primitives, we then compute consumer and social surplus under the observed nonlinear

pricing allocation, under first best, and under linear pricing.

We find that, contrary to our model, the standard model implies that the greatest distortions, relative to

first best, are suffered by the households who consume the smallest quantities and that these households

consume quantities much smaller than under first best. Relative to our model, the standard model not only

overestimates the loss in consumer and social surplus for consumers of small quantities, when moving from

nonlinear to linear pricing, but also overestimates the corresponding gains for consumers of intermediate to

large quantities. Indeed, by comparing the bottom panels of Figure 8 with those of Figure 7, it is apparent

that consumers with low to intermediate types tend to benefit more from nonlinear pricing under the standard

model than under our model whereas consumers with intermediate to high types tend to benefit more from

linear pricing under the standard model than under our model. The top panels of Figures 7 and 8 also show

that the standard model overestimates the loss in social surplus for consumers of small quantities, and the

gains in social surplus for consumers of large quantities, when moving to linear pricing.

Figure 8: Nonlinear vs. Linear Pricing under Standard Model
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To understand these findings, note that two countervailing forces are at play. On the one hand, the

standard model requires that [θν ′(q(θ))− c′(Q)]/ν ′(q(θ)) be equal to [1−F (θ)]/f(θ), which decreases with

θ by assumption (PS), as discussed. Hence, the standard model necessarily implies greater consumption

distortions for lower consumer types than for higher ones relative to first best, contrary to what we estimate.

This monotonicity of consumption distortions, in turn, tends to make nonlinear pricing less desirable for

consumers of small quantities with low marginal willingness to pay but more desirable for consumers of large

quantities with intermediate to high marginal willingness to pay. On the other hand, since the reservation

utility profile is flat in the standard model, sellers have a greater ability to extract consumer surplus through

linear pricing under the standard model than under our model. Sellers may thus induce greater consumer
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exclusion under linear pricing than under our model, even among purchasers of large quantities. On balance,

this second force dominates in many villages for low consumer types: many more low and intermediate

consumer types are excluded under linear pricing according to the standard model than according to our

model, as apparent by comparing the bottom panels of Figures 7 and 8: much more mass is piled at −100%,

which signifies consumer exclusion, in the panels for the standard model than in those for our model.

Discussion. Even small deviations of γ(θ(q)) from one—its value in the standard model—which we esti-

mate for several quantities and villages, are associated with very different behavior on the part of sellers and

consumers. These deviations have important distributional implications and thus are key to evaluating alter-

native pricing mechanisms. In particular, assuming counterfactually that the standard model applies, when

it is rejected instead, can lead to incorrect inferences about the impact of nonlinear pricing and the relative

benefits of nonlinear and linear pricing.

5.4 The Effect of Income Transfers

As discussed in Section 3.3, the version of our model with budget-constrained consumers can be used to

evaluate the impact of a targeted transfer, such as the Progresa one, on consumption and prices. Here we do

so and find that the Progresa program had a significant impact on prices. Note that by Proposition 7, income

transfers not only encourage greater consumption but also induce sellers to modify their price schedules

in response to consumers’ greater ability to pay, typically by charging higher prices to some (if not all)

consumers. Indeed, it has been documented that food expenditure per adult equivalent has increased by

13% among eligible households as a result of Progresa; see, for instance, Angelucci and De Giorgi (2009).

A small literature has also examined the effect of Progresa on the prices of agricultural commodities. As

mentioned, however, Hodinott et al. (2000) and Angelucci and De Giorgi (2009) found no evidence that the

Progresa transfer has induced a systematic increase in the (average unit) price of basic staples.

In this section, we assess the extent to which the Progresa transfer has affected prices, in particular, the

degree of price discrimination, and consumer surplus. Unlike the studies just mentioned that focus only on

the impact of transfers on average unit prices, we examine the impact of Progresa on their entire schedule.

We find that Progresa has had a significant effect on prices but that this effect cannot be detected without

accounting for the nonlinearity of unit prices. Moreover, we show that our model can account for the shift in

the price schedule induced by the program.

Transfers and Prices. We measure the impact of the Progresa transfer on prices based on a second-order

bivariate Taylor expansion in log(q) and [1−G(q)]/g(q) of a seller’s first-order condition,

log[p(q)]≈β0+β1 log(q)+β2

[
1−G(q)

g(q)

]
+β3 log(q)

[
1−G(q)

g(q)

]
+β4 log(q)2+β5

[
1−G(q)

g(q)

]2

, (18)

derived at the end of Appendix A. In this expansion, the multiplier γ(θ(q)) is treated as a function of quantity.

This reduced form relates log unit prices, log[p(q)], to log quantities, log(q), and the inverse hazard rate of the

distribution of quantities, [1−G(q)]/g(q), in each village. Note that this latter term captures the importance
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of the shape of the distribution of consumers’ marginal willingness to pay for prices, as consistent with our

model. Unit prices are related to the distribution of consumer preferences in a market, in particular to its

inverse hazard rate, and so to the distribution of quantities because of the one-to-one relationship between

consumer tastes and demand from F (θ) = G(q) and q = q(θ).

To start, in the first column of Table 2, we estimate the effect of Progresa on the average prices of rice,

kidney beans, and sugar in the localities in our sample. Specifically, we regress observed unit prices on a

constant and an indicator of the program, the dummy variable “Treatment,” which equals one in (randomly)

treated villages; we include wave fixed effects and cluster standard errors at the village level. Consistently

with the existing literature on the price effects of Progresa, the Progresa transfer effectively has had no impact

on average unit prices: the estimated coefficient on the “Treatment” dummy for each good is small and not

significantly different from zero.

Our model implies that the effect of an income transfer on unit prices, p(q)=T (q)/q, is ambiguous, even

when it may give rise to substantial changes in the overall price schedule, since households’ expenditure,

T (q), and consumption, q, may both increase. But Corollary 2 also implies that even no increase or a

modest increase in average unit prices after a transfer can be associated with a substantial change in the

price schedule, leading to a greater intensity of price discrimination overall, which we observe in our data.

Therefore, we next examine how the Progresa transfer has affected the magnitude of quantity discounts. To

this purpose, in the second column of Table 2, we report the results of a regression of log unit prices on

the “Treatment” dummy, log quantity, and an interaction between these two variables. Note that this is an

exercise analogous to that of Table 1, except that we allow the Progresa transfer to shift both the intercept

and the slope of the price schedule. For each commodity, we find that the coefficient on log quantity becomes

more negative, and significantly so for kidney beans and sugar, that is, the intensity of price discrimination

increases with the Progresa transfer. The effect of log quantity on log unit prices increases in absolute value

from −0.212 to −0.256 for rice, from −0.114 to −0.154 for kidney beans, and from −0.123 to −0.185 for

sugar.32

We then assess the extent to which our model accounts for the observed nonlinearity of prices as well

as the change in the unit price schedule resulting from Progresa. To this end, we first estimate (18) and

next a version of it augmented to account for the impact of the Progresa transfer through the “Treatment”

dummy and the interaction between this dummy and log quantity. We report the results of this estimation

in columns 3 and 4 of Table 2. We stress that the inverse hazard rate of quantities, [1 − G(q)]/g(q), in both

regressions is computed for each village.33 This approach, therefore, allows for heterogeneous impacts of the

program across villages and, since the program obviously affected the inverse hazard function of quantities in

32Although this regression captures the variability of unit prices both across quantities within a village and across villages,
the aggregation implicit in this exercise is valid. In particular, we could allow for village fixed effects to capture the unobserved
variability in marginal costs across villages. We notice that both village fixed effects and the coefficients on the inverse hazards
are identified, since we have several waves of data and the inverse hazards vary also across quantities. The results we obtain with
or without village fixed effects are very similar, though, consistently with the fact that marginal costs estimated at the locality level
do not display a large degree of variation across localities; see Appendix B.3.3. Effectively, the variation in the inverse hazards
captures most of the variation in price schedules. Therefore, we present here the results of the simpler estimation without fixed
effects and illustrate the fixed effect estimates in Appendix C.

33Standard errors are computed by bootstrap to account for the fact that inverse hazard rates are estimated too.
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“treated” villages, could be interpreted as a mediation analysis of the effect of Progresa on the price schedule.

In column 3, where we report the estimates of (18), we notice that both the inverse hazard rate, [1 −
G(q)]/g(q), and its interaction with log(q) are significant for each of the three commodities—strongly so for

rice and kidney beans. The quadratic inverse hazard rate is not significant for any commodity, whereas the

quadratic term in log(q) is significant for kidney beans and strongly so for sugar.

In column 4, we report the estimates of the augmented version of equation (18) that accounts for the

Progresa transfer through the “Treatment” dummy and the interaction between this dummy and log(q). Im-

portantly, we see that the “Treatment” dummy is not significant and, unlike in column 2 for kidney beans

and sugar, does not significantly affect the impact of log(q) on log unit prices. We also notice that the point

estimates of the coefficient on log(q) interacted with the “Treatment” dummy are greatly reduced in abso-

lute value. These results thus indicate that our model is capable of explaining the shift in price schedules

documented in column 2. Specifically, a significant portion of the change in prices induced by the program

is accounted for by the change in the distribution of quantities consumed in each village, in particular in

the curvature of this distribution as captured by its inverse hazard rate, rather than by the direct effect of

the transfer on the intercept or slope of the price schedule. Indeed, unlike the “Treatment” dummy and its

interaction with log(q), the coefficients on log(q), [1−G(q)]/g(q) and their interaction are all significant in

column 4 of Table 2.

Price Changes and Consumer Surplus. The reduced-form analysis just presented shows that our model

can explain the substantial shifts in price schedules induced by the Progresa transfer. This evidence and the

mediation analysis provided in Table 2 support the budget constraint interpretation of our model. In light of

this evidence, we can use our model, in which consumers’ preferences and subsistence or budget constraints

are explicitly formalized, to further assess the impact of Progresa on consumer surplus. Specifically, given

our estimates of consumer surplus in the localities of our sample, we can compute the elasticity of consumer

surplus to unit prices, which ranges across villages between −91.91% and −0.33% with a median (mean)

of −7.50% (−10.96%) for rice, between −89.04% and 0.00% with a median (mean) of −9.86% (−11.23%)

for kidney beans, and between −81.08% and 0.00% with a median (mean) of −8.51% (−10.14%) for sugar

in the low reservation utility case. The elasticity of consumer surplus to quantity consumed is much smaller,

ranging from 0.10% to 27.40% for rice, from 0.00% to 24.56% for kidney beans, and from 0.00% to 22.58%

for sugar. Hence, ignoring the price change associated with the Progresa transfer can substantially over-

state the increase in consumer surplus from the program: in some villages, the price increase almost erases

households’ gains from consuming any of the goods before the transfer took place.

Discussion. These results are important in assessing the impact of cash transfers, a common policy tool

in developing countries. Cash transfers may not affect, on average, unit prices in a market but may lead

to an overall increase in the intensity of price discrimination, as we observe in our data. Such a change in

prices has an impact not just on households that are beneficiaries of the program but also on non-eligible

households. Since all households are affected by the resulting price change, cash transfers may then have a

more limited beneficial effect than is commonly estimated, because of their partially positive direct effect on
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eligible households and their negative indirect effect on non-eligible ones.34

6 Conclusion
We propose a model of nonlinear pricing in which consumers differ in their tastes for goods, face hetero-

geneous subsistence constraints leading to heterogeneous budget constraints for a seller’s good, and have

access to different outside options to participating in a market. Incorporating budget constraints is an impor-

tant advance in this literature, since it makes the model relevant for several contexts of practical relevance.

The model we propose also encompasses a wide variety of market structures, ranging from pure monopoly

to competition. In all these settings, the implications of nonlinear pricing for consumer, producer, and social

surplus are fundamentally different from those arising from standard models of nonlinear pricing, in which

outside options are identical across consumers and consumers are assumed unconstrained in their purchase

decisions. In particular, quantity discounts for large volumes can be associated with consumption above first

best at low volumes.

We prove that this more general model is identified under common assumptions from information on

prices and quantities purchased. We derive estimators of the model’s primitives that can be readily imple-

mented using a variety of publicly available data sets. We use the publicly available data on the evaluation

of a large and celebrated conditional cash transfer program, Progresa, to estimate the model, which fits the

data extremely well. Our empirical results have important implications for the relative desirability of non-

linear and linear pricing. In particular, we find that most consumers of small to intermediate quantities,

typically the poorest ones, benefit from nonlinear pricing, despite the fact that sellers price discriminate

through distortionary quantity discounts. We also find that nonlinear pricing leads to a greater degree of

market participation, especially for consumers of the smallest quantities, which is all the more critical for the

marginalized villages in our data in which the consumption of several households is at levels of subsistence.

Crucially, though, we show that by increasing consumers’ ability to pay, cash transfers provide sellers

with the opportunity to extract more surplus through nonlinear pricing. Thus, cash transfers in general lead

to an increase in the intensity of price discrimination, as we document in the case of Progresa. Indeed,

our paper is one of the first to uncover important shifts in the price schedule in the villages included in the

Progresa evaluation sample. Specifically, we find that cash transfers implemented by Progresa have had a

significant impact on prices in our villages, unlike what is commonly found in the literature. Furthermore,

we show that our model can explain the observed shifts in price schedules.

This result is all the more relevant since cash transfers have become an increasingly popular policy tool in

Latin America and many other developing countries. A few studies have analyzed the effect of transfers on

the price of commodities and the consensus so far seems to have been that Progresa did not have appreciable

effects on local prices. We prove that if we look beyond average prices, this conclusion is unwarranted.

When the dependence of unit prices on quantity is taken into account, the price effect is substantial, in

particular, the program is associated with an increase in the degree of price discrimination. Such a change

34This argument, though, neglects the positive spillovers on non-eligible households found by Angelucci and De Giorgi (2009).
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in the equilibrium price schedule has had an impact not just on households beneficiaries of the program but

also on non-eligible households, since all households have been affected by the overall price change. Cash

transfers can then be less beneficial than typically inferred.

Overall, our estimation results thus suggest the importance of accounting for heterogeneity in consumers’

preferences, constraints, and consumption opportunities when assessing the impact of nonlinear pricing.
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A Model: Omitted Proofs and Details
Cumulative Multiplier in the Highly Convex Case: We derive here an expression that defines the multiplier in the
highly convex case in terms of primitives. For simplicity, we consider the case in which v(θ, q) = θν(q) and c′(q) = c;
the argument extends naturally to the more general case. Recall that in the highly convex case, the cumulative multiplier
γ(θ) is equal to a constant, γ, at all points θ ∈ [θ,θ). Here we solve for γ in the interesting case in which 0 < γ < 1 for
[θ,θ). In the remaining cases, the multiplier is trivial: γ(θ) = 1 for all θ ∈ [θ,θ] and γ(θ) = 0 for all θ ∈ [θ,θ). First,
observe that (1) implies that

ν ′(q(θ)) = cf(θ)/[θf(θ) + F (θ)− γ], (19)

so q(θ) = (ν ′)−1(cf(θ)/[θf(θ) + F (θ) − γ]). Recall that u(θ) = u(θ) and u(θ) = u(θ) when 0 < γ < 1. Hence,
u(θ)− u(θ) = u(θ)− u(θ) so γ is implicitly defined by

u(θ)− u(θ) =

∫ θ

θ
u′(x)dx =

∫ θ

θ
ν(q(x))dx =

∫ θ

θ
ν

(
(ν ′)−1

(
cf(x)

xf(x) + F (x)− γ

))
dx,

where the first equality follows from u(θ) − u(θ) = u(θ) − u(θ) and the fundamental theorem of calculus, and the
second equality from the local incentive compatibility condition u′(θ) = ν(q(θ)).
Proof of Proposition 1: Before proving Proposition 1, we first derive the simple BC problem and then establish that
the first-order and complementary slackness conditions of the simple BC problem in (6) are necessary and sufficient
to characterize an optimal menu. The proof of this result requires that assumptions analogous to those of potential
separation, homogeneity, and full participation in the IR model hold in the BC model. We have discussed assumption
(BCH) in the text and assumption (FP) in footnote (15), so we discuss here only assumption (FP). As in the IR model,
the potential separation assumption in the BC model requires l(Φ, θ) to be a weakly increasing function of θ for all
Φ ∈ [0, 1], for which sufficient conditions are

∂

∂θ

(
sq(θ, q)

vθq(θ, q)

)
≥ 0 and

d

dθ

(
F (θ)

f(θ)

)
≥ 0 ≥ d

dθ

(
1− F (θ)

f(θ)

)
. (20)

As explained in Jullien (2000), the first inequality in (20) implies that the conflict between rent extraction and efficiency
is not too severe so that the marginal benefit of increasing the slope of the utility profile is weakly increasing with
the type. When this occurs, a seller tends to desire convex quantity profiles, which implies that the monotonicity
condition for q(θ) for incentive compatibility is easier to satisfy. The second and third inequalities in (20) amount to a
simple strengthening of the monotone hazard rate condition ubiquitous in the mechanism design literature: as the type
increases, the relative weight of types above θ compared with below θ decreases, and the seller becomes progressively
more concerned about the “informational rents” left below θ.

To derive the simple BC problem in (6), we proceed in analogy with the derivation of the simple IR problem in the
Supplementary Appendix. First, we rewrite the BC constraint as

I(θ, q(θ)) ≥ t(θ) = v(θ, q(θ))− u(θ), (21)

since u(θ) = v(θ, q(θ)) − t(θ). We presume u is low enough and then show that under the conditions of Proposition
1, (IR’) is indeed redundant. The BC problem can be expressed in Lagrangian-type form as

max
{u(θ)},{q(θ)}∈Q̂

(∫ θ

θ
[v(θ, q(θ))−c(q(θ))−u(θ)]f(θ)dθ +

∫ θ

θ
{I(θ, q(θ))−[v(θ, q(θ))−u(θ)]}dΦ(θ)

)
(22)

s.t. u′(θ) = vθ(θ, q(θ)), (23)

where Q̂ is the set of weakly increasing functions q(θ), and Φ(θ) is the cumulative Lagrange multiplier on the budget
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constraints expressed as in (21). Next, note that∫ θ

θ
u(θ)f(θ)dθ = u(θ)

∫ θ

θ
f(θ)dθ +

∫ θ

θ
[u(θ)− u(θ)]f(θ)dθ = u(θ) +

∫ θ

θ

(∫ θ

θ
u′(x)dx

)
f(θ)dθ.

Using the local incentive compatibility condition u′(θ) = vθ(θ, q(θ)) and integrating by parts thus gives

∫ θ

θ
u(θ)f(θ)dθ = u(θ) +

∫ θ

θ

(∫ θ

θ
vθ(x, q(x))dx

)
f(θ)dθ = u(θ) +

(∫ θ

θ
vθ(x, q(x))dx

)
F (θ)

∣∣∣∣θ
θ

−
∫ θ

θ
vθ(θ, q(θ))F (θ)dθ = u(θ) +

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
vθ(θ, q(θ))F (θ)dθ. (24)

Similarly,

∫ θ

θ
u(θ)dΦ(θ) = u(θ)[Φ(θ)− Φ(θ)] +

(∫ θ

θ
vθ(x, q(x))dx

)
Φ(θ)

∣∣∣∣θ
θ

−
∫ θ

θ
vθ(θ, q(θ))Φ(θ)dθ = u(θ)[Φ(θ)− Φ(θ)] + Φ(θ)

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
vθ(θ, q(θ))Φ(θ)dθ. (25)

Substituting (24) and (25) into the objective function in (22) yields∫ θ

θ
[v(θ, q(θ))− c(q(θ))− u(θ)] f(θ)dθ +

∫ θ

θ
{I(θ, q(θ))− [v(θ, q(θ))− u(θ)]}dΦ(θ)

=

∫ θ

θ
[v(θ, q(θ))− c(q(θ))]f(θ)dθ +

∫ θ

θ
[I(θ, q(θ))− v(θ, q(θ))]dΦ(θ)− u(θ)−

∫ θ

θ
vθ(θ, q (θ))dθ

+

∫ θ

θ
F (θ)vθ(θ, q(θ))dθ + u(θ)[Φ(θ)− Φ(θ)] + Φ(θ)

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
Φ(θ)vθ(θ, q(θ))dθ,

which, by collecting terms, can be simplified to further obtain∫ θ

θ
[v(θ, q(θ))− c(q(θ))]f(θ)dθ +

∫ θ

θ

[
F (θ)− Φ(θ) + Φ(θ)− 1

f(θ)

]
vθ(θ, q(θ))f(θ)dθ

+

∫ θ

θ

φ(θ)[I(θ, q(θ))− v(θ, q(θ))]

f(θ)
f(θ)dθ + u(θ)[Φ(θ)− Φ(θ)− 1].

By collecting terms one more time and dropping irrelevant constants, this expression reduces to that in (6). The
following result is the analogue of Result 4 in the Supplementary Appendix.

Result 1. Under (PS), (BCH), and (FP), the implementable allocation {u(θ), q(θ)} solves the simple BC problem if,
and only if, there exists a cumulative multiplier function Φ(θ) on [θ, θ] such that the first-order conditions (7) and the
complementary slackness condition (8) are satisfied. Moreover, q(θ) is continuous.

We now turn to proving Proposition 1. Consider a solution to the IR problem. We claim that under sufficient
conditions, it is also a solution to the BC problem. For notational simplicity, in the following we suppress the subscript
IR from uIR(θ), qIR(θ), tIR(θ), and uIR(θ). To start, by Result 4 in the Supplementary Appendix, an implementable
allocation {u(θ), q(θ)} solves the IR problem if, and only if, there exists a cumulative multiplier function γ(θ) with
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the properties of a cumulative distribution function such that the first-order conditions

vq(θ, q(θ))− c′(q(θ)) =
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) (26)

for each type and the complementary slackness condition∫ θ

θ
[u(θ)− u(θ)] dγ(θ) = 0 (27)

hold, together with u(θ) ≥ u(θ). By Result 1 above, the allocation that solves the IR problem solves the BC problem
if, and only if, there exists a cumulative multiplier function Φ(θ) such that the first-order conditions

vq(θ, q(θ))− c′(q(θ)) =

[
Φ(θ)− F (θ) + 1− Φ(θ)

f(θ)

]
vθq(θ, q(θ)) +

φ(θ) [vq(θ, q(θ))− Iq(θ, q(θ))]
f(θ)

(28)

for each type and the complementary slackness condition∫ θ

θ
[I(θ, q(θ))− v(θ, q(θ)) + u(θ)] dΦ(θ) = 0 (29)

hold, together with t(θ) ≤ I(θ, q(θ)) and u(θ) ≥ u. Note that for Φ(θ) to be a legitimate cumulative multiplier, it must
be nonnegative and weakly increasing with θ. Let Φ(θ) =α + γ(θ) be the cumulative multiplier in the BC problem.
Clearly, Φ(θ) = α + γ(θ) for any constant α is a legitimate cumulative multiplier. Also, with Φ(θ) = α + γ(θ), the
multiplier dγ(θ) on the IR constraint of type θ is zero or strictly positive if, and only if, the multiplier dΦ(θ) on the BC
constraint of type θ is zero or strictly positive.

The rest of the proof proceeds in three steps. In the first step, we show that at the IR allocation, the complementary
slackness condition of the BC problem, (29), holds and the IR allocation satisfies t(θ) ≤ I(θ, q(θ)) and u(θ)≥u. In the
second step, we argue that the first-order conditions of the BC problem in (28) are identical to those of the IR problem
in (26). In the third step, we show that consumers reach the same utility in the two problems.

Step 1: Verify Complementary Slackness Condition in BC Problem, t(θ) ≤ I(θ, q(θ)), and u(θ)≥u. We now claim
that at the IR allocation, the complementary slackness condition in the BC problem, (29), holds and the IR allocation
satisfies t(θ) ≤ I(θ, q(θ)). To this purpose, recall that I(θ, q(θ))≥ v(θ, q(θ))−u(θ), I(θ, q(θ)) = v(θ, q(θ))−u(θ),
and u(θ)≥ u by assumption. Note that when the IR constraints bind so that dγ(θ) = dΦ(θ) > 0, then q(θ) = q(θ)
and v(θ, q(θ)) − t(θ) = u(θ) or, equivalently, t(θ) = v(θ, q(θ)) − u(θ). Since, by assumption, v(θ, q(θ)) − u(θ) =
I(θ, q(θ)) for types whose IR constraints bind, it follows that t(θ) = I(θ, q(θ)). When, instead, the IR constraints
do not bind so that dγ(θ) = dΦ(θ) = 0, then v(θ, q(θ)) − t(θ) ≥ u(θ) or, equivalently, t(θ) ≤ v(θ, q(θ)) − u(θ).
Since, by assumption, v(θ, q(θ)) − u(θ) ≤ I(θ, q(θ)) for consumers whose IR constraints do not bind, it follows that
t(θ) ≤ I(θ, q(θ)). Hence, if condition (27) holds for the IR problem, then condition (29) holds for the BC problem.
Also, t(θ) ≤ I(θ, q(θ)) is satisfied, and u(θ)≥u with strict inequality for any θ > θ, since u(θ) ≥ u(θ), u(θ) is strictly
increasing, and, by assumption, u(θ)≥u.

Step 2: Verify First-Order Conditions of IR Problem Identical to Those of BC Problem. We now show that given
the cumulative multiplier Φ(θ), the quantity profile that solves the IR problem satisfies the first-order conditions of the
BC problem, namely (28). First, note that

Φ(θ) + 1− Φ(θ) = α+ γ(θ) + 1− [α+ γ(θ)] = γ(θ), (30)

where the first equality follows from Φ(θ) =α + γ(θ) and the second equality holds since γ(θ) = 1; see the Supple-
mentary Appendix for a proof of this latter result. Second, observe that, by assumption, Iq(θ, q(θ)) equals vq(θ, q(θ))
when the IR constraints bind. Thus, for each θ, either φ(θ) = 0 or, if not, Iq(θ, q(θ)) =vq(θ, q(θ)). Hence, the second
term on the right side of (28) equals zero for each θ. These two observations imply that the first-order conditions of the
BC problem in (28) are identical to those of the IR problem in (26).

Step 3: Same Utility in IR and BC Problems. The requirement that I(θ, q(θ)) = v(θ, q(θ))− u(θ) for types whose
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IR constraints bind in the IR problem ensures that the utility achieved by each consumer is identical in the IR and BC
problems. Specifically, let θ′ be such type. Then, for any type θ higher than θ′, in the IR problem we have

u(θ) = u(θ′) +

∫ θ

θ′
vθ(x, q(x))dx = v(θ′, q(θ′))− I(θ′, q(θ′)) +

∫ θ

θ′
vθ(x, q(x))dx, (31)

since u′(θ) = vθ(x, q(x)) by local incentive compatibility, and u(θ′) = u(θ′) = v(θ′, q(θ′))− I(θ′, q(θ′)) by assump-
tion. The utility in (31) equals the utility that the consumer achieves in the solution to the BC problem, given that the
BC constraints bind in the BC problem if, and only if, the IR constraints bind in the IR problem and the optimal quan-
tity profiles in the two problems coincide, as argued in Step 2. An analogous argument holds for any type lower than
θ′. Hence, consumers’ utility schedules coincide in the two problems. Lastly, u(θ) ≥ u since u(θ) ≥ u by assumption
so that full participation is satisfied in both problems.

Thus, the solutions to the IR and BC problems are the same. By an argument similar to the one in the proof of
Result 1 in the Supplementary Appendix, it is also possible to show that Φ(θ) = 1.
Proof of Proposition 2: Recall that I(θ, q) = Y − z(θ, q), where

z(θ, q) = −z1(θ)− z2ν(q), z′1(θ) = ψ(log(θ − z2)), and θ > z2 > 0. (32)

Let ψ(·) be a positive continuous function. To show that (BCH) is satisfied under these assumptions, we proceed by
showing that it is possible to construct a menu {t(θ), q(θ)} such that t(θ) = I(θ, q(θ)) = Y − z(θ, q(θ)), t′(θ) =
θν ′(q(θ))q′(θ), and q(θ) is weakly increasing. Since this third condition can be restated as θ(q) is weakly increasing,
it is possible to define the function T (q) such that T (q) = t(θ(q)). Thus, the first requirement of (BCH) amounts
to T (q) = I(θ(q), q) = Y − z(θ(q), q), whereas the second requirement amounts to t′(θ(q))θ

′
(q) = θ(q)ν ′(q) or,

equivalently, T ′(q) = θ(q)ν ′(q), with q = q(θ) ∈ [q(θ), q(θ)]. Then, rather than establishing that we can construct
an increasing function q(θ) that satisfies t(θ) = Y − z(θ, q(θ)) and t′(θ) = θν ′(q(θ))q′(θ) under (32), we show,
equivalently, that we can construct an increasing function θ(q) that satisfies{

T (q) = Y − z(θ(q), q)
T
′
(q) = θ(q)ν ′(q)

(33)

under (32). Now, using (32) it follows that the derivative of the first expression in (33) with respect to q is

T
′
(q) = z′1(θ(q))θ

′
(q) + z2ν

′(q) = ψ(log[θ(q)− z2])θ
′
(q) + z2ν

′(q).

By equating the right sides of this last expression and of the second expression in (33), we obtain

ψ(log[θ(q)− z2])θ
′
(q) + z2ν

′(q) = θ(q)ν ′(q)⇔ ν ′(q) = ψ(log[θ(q)− z2])θ
′
(q)/[θ(q)− z2]. (34)

By integrating both sides of (34) from q(θ) to q ≤ q(θ) and using θ = θ(q(θ)), it follows that

ν(q)− ν(q(θ)) = Ψ(log[θ(q)− z2])−Ψ(log(θ − z2)), (35)

where Ψ(·), the integral of ψ(·), is weakly increasing since ψ(·) is positive. Simple manipulations yield

θ(q) = z2 + exp{(Ψ)−1(ν(q)− ν(q(θ)) + Ψ(log(θ − z2)))},

with q(θ) determined by the last equality in (34) evaluated at q = q(θ). Note that θ(q) is an increasing function
of q, since (Ψ)−1 (·) and ν(·) are increasing functions. So, q(θ) is an increasing function of θ. Moreover, T (q) =
Y + z1(θ(q)) + z2ν(q), which implies

T
′
(q) = z′1(θ(q))θ

′
(q) + z2ν

′(q) = ν ′(q)[θ(q)− z2] + z2ν
′(q) = θ(q)ν ′(q),

where the second equality follows from (34). So the three requirements of (BCH) are satisfied, and indeed T ′(q) =
θ(q)ν ′(q) for types whose BC constraints bind. For example, it is easy to show that if z(θ, q) = z0 − z1(θ − z2)λ −
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z2ν(q), λ ≥ 2, z1, z2 > 0, and θ > z2, then

q(θ) = (ν)−1

{
ν(q(θ)) +

λz1

λ− 1

[
(θ − z2)λ−1 − (θ − z2)λ−1

]}
, q′(θ) > 0, and

T (q) = Y (w)− z0 + z1

{
(θ − z2)λ−1 +

λ− 1

λz1
[ν(q)− ν(q(θ))]

} λ
λ−1

+ z2ν(q).

The Two-Dimensional Case: Suppose that the parameter w differs across consumers so that the budget schedule is
I(θ, q, w) = Y (w)−z(θ, q). The analysis of this case differs from that of the case of constant w depending on whether
the seller can discriminate across consumers based on w (Case 1) or, rather, only based on a menu of prices at most
contingent on q (Case 2).
Case 1: Contractible Income Characteristic. Suppose that the seller can segment consumers across submarkets indexed
by w and offer nonlinear prices in each submarket w so as to screen consumers based on θ. For ease of exposition,
suppose that there are only two levels of w, say, wL and wH , with Y (wH) > Y (wL). In any such submarket w, the
seller’s problem is as stated in the BC problem with income Y (w) and budget schedule I(θ, q, w). For the correspond-
ing simple BC problem, the necessary and sufficient conditions for an optimal solution are given by the analogue of
Result 1 under the same maintained assumptions: the implementable allocation {u(θ, w), q(θ, w)} solves the simple
BC problem if, and only if, there exists a cumulative multiplier function Φ(θ, w) such that the first-order conditions in
(28) and the complementary slackness condition in (29) apply with I(θ, q, w) = Y (w)−z(θ, q). Our next result shows
how this menu varies across submarkets. For this, let

t(θ, wH) = t(θ, wL) + Y (wH)− Y (wL), q(θ, wH) = q(θ, wL), and Φ(θ, wH) = Φ(θ, wL). (36)

Result 2. If {u(θ, wL), q(θ, wL)} with associated cumulative multipliers {Φ(θ, wL)} solves the simple BC problem in
submarket wL, then {u(θ, wH), q(θ, wH)} with associated cumulative multipliers {Φ(θ, wH)} satisfying (36) solves
the simple BC problem in submarket wH .

This result states that type (θ, wH) in the submarket with the higher income level is offered the same quantity
as type (θ, wL) in the submarket with the lower income level, that is, q(θ, wH) = q(θ, wL). Moreover, the bind-
ing patterns of the multipliers in the two submarkets are identical in that the cumulative multiplier binds for type
(θ, wH) in submarket wH if, and only if, it binds for type (θ, wL) in submarket wL. The only difference is that type
(θ, wH) in submarket wH pays Y (wH) − Y (wL) more for the same quantity purchased by type (θ, wL) in submar-
ket wL. The idea is straightforward. In the submarket with income Y (wL), a consumer with taste θ chooses the
pair (t(θ, wL), q(θ, wL)) leading to the consumption of z(θ, wL) = Y (wL) − t(θ, wL) units of the numeraire good.
The consumption bundle (q(θ, wL), z(θ, wL)) must jointly provide enough calories so that the consumer meets the
constraint z(θ, wL) ≥ z(θ, q(θ, wL)). Suppose that this constraint binds for a consumer with taste θ, that is,

z(θ, wL) = z(θ, q(θ, wL)) = Y (wL)− t(θ, wL). (37)

In submarket wH , at (t(θ, wL), q(θ, wL)) the budget constraint is slack for a consumer with taste θ since Y (wH) >
Y (wL). Clearly, in submarket wH , it is feasible for the seller to offer the same quantity as in submarket wL, that
is, q(θ, wH) = q(θ, wL), since q(θ, wL) is implementable in submarket wH too, and simply increase the price by
Y (wH)− Y (wL). In the proof of Result 2, we show that doing so is in general optimal for the seller.
Proof of Result 2: Let {u(θ, wL), q(θ, wL)} and the cumulative multipliers {Φ(θ, wL)} solve the simple BC problem in
submarketwL. By Result 1, we know that these schedules satisfy the first-order conditions (28) and the complementary
slackness condition (29) with t(θ), q(θ), Φ(θ), φ(θ), and I(θ, q) replaced by t(θ, wL), q(θ, wL), Φ(θ, wL), φ(θ, wL),
and I(θ, q, wL). It is immediate that the allocations and multipliers given in (36) solve the corresponding first-order
and complementary slackness conditions for submarket wH . To see why, note that since Iq(θ, q, w) = −zq(θ, q) is
independent of w (conditional on q), the first-order conditions in the two submarkets are identical under (36). Consider
next the complementary slackness condition. Since this condition holds in submarket wL, for any θ whose budget
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constraint for the seller’s good binds and so φ(θ, wL) is positive, we have

t(θ, wL) = I(θ, q(θ, wL), wL) ≡ Y (wL)− z(θ, q(θ, wL)). (38)

But then for this same θ in submarket wH under (36), the multiplier φ(θ, wH) is also positive, since

t(θ, wH) = t(θ, wL) + Y (wH)− Y (wL) = Y (wH)− z(θ, q(θ, wL)) = Y (wH)− z(θ, q(θ, wH)),

where the first and third equalities follow from (36), and the second equality from (38). Hence, the conjectured
solution satisfies the first-order conditions and complementary slackness condition for submarket wH . So, by Result 1,
this conjectured solution solves the simple BC problem for submarket wH .
Case 2: Noncontractible Income Characteristic. Suppose now that the seller cannot segment consumers across sub-
markets. That is, the seller must offer the same price schedule to all consumers regardless of their w (and θ). This
environment is equivalent to one in which the seller observes neither w nor θ. Assume that w and θ are sufficiently
positively dependent thatw can be expressed as a nonlinear monotone function of θ, namely, w = ω(θ) with ω′(θ) > 0.
Then, substituting w = ω(θ) into I(θ, q, w) = Y (w)− z(θ, q) gives

I(θ, q, ω(θ)) = Y (ω(θ))− z(θ, q). (39)

Under (39), the analogues of Proposition 1 and Result 1 apply. To see that the analogue of Proposition 2 also holds,
let Y (ω(θ)) = Y + y(ω(θ)) without loss. Then, the analogous result holds with v(θ, q) = θν(q), z(θ, q) = −z1(θ)−
z2ν(q), and y′(ω(θ))ω′(θ) + z′1(θ) = ψ(log(θ − z2)) for θ > z2 > 0.
Proof of Proposition 3: Recall that T ′(q(θ))=θν ′(q(θ))>0 by local incentive compatibility, andA(q)=−ν ′′(q)/ν ′(q).
Differentiating T ′(q) = θ(q)ν ′(q) yields

T ′′(q) = θ′(q)ν ′(q) + θ(q)ν ′′(q) = θ(q)ν ′(q)

[
θ′(q)

θ(q)
+
ν ′′(q)

ν ′(q)

]
= T ′(q)

[
1

θ(q)q′(θ)
−A(q)

]
. (40)

By using T ′(q)=θ(q)ν ′(q), the first-order condition (9) can be expressed as {θ− [γ(θ)−F (θ)]/f(θ)}ν ′(q(θ))−c=0.
Applying the implicit function theorem to this condition, we obtain

q′(θ) = −
∂
∂θ

[
θ − γ(θ)−F (θ)

f(θ)

]
ν ′(q(θ))[

θ − γ(θ)−F (θ)
f(θ)

]
ν ′′(q(θ))

=

∂
∂θ

[
θ − γ(θ)−F (θ)

f(θ)

]
[
θ − γ(θ)−F (θ)

f(θ)

]
A(q(θ))

.

Note that θ > [γ(θ) − F (θ)]/f(θ), since the seller’s first-order condition can also be expressed as {θ − [γ(θ) −
F (θ)]/f(θ)}= c/ν ′(q(θ)) and both c and ν ′(q(θ)) are strictly positive by assumption. Also, q′(θ) > 0 by assumption
(PS); see Jullien (2000). Using (40) and the fact that T ′(q), A(q) > 0, we can equivalently express T ′′(q) ≤ 0 as

T ′(q(θ))A(q(θ))

 θ − γ(θ)−F (θ)
f(θ)

θ ∂
∂θ

[
θ − γ(θ)−F (θ)

f(θ)

] − 1

 ≤ 0⇔
θ − γ(θ)−F (θ)

f(θ)

θ ∂
∂θ

[
θ − γ(θ)−F (θ)

f(θ)

] ≤ 1. (41)

We establish the desired result by showing that (41) holds.
Consider first any interval of consumer types whose IR constraints bind. By construction, any such type θ consumes

q(θ) and achieves utility u(θ). The homogeneity assumption implies ν(q(θ))− u′(θ) = 0, which in turn yields

q′(θ) = − −u
′′(θ)

ν ′(q(θ))
=

u′′(θ)

ν ′(q(θ))

by applying the implicit function theorem, with q′(θ) > 0 by assumption, and so by (40)

T ′′(q) =
ν ′(q)

q′(θ)
+ θ(q)ν ′′(q) =

[ν ′(q)]2

u′′(θ)
+ θ(q)ν ′′(q) = ν ′(q)

{
ν ′(q)

u′′(θ)
− θ(q)A(q)

}
.
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Since ν ′(q)>0 by assumption, it follows T ′′(q)≤0 if, and only if, ν ′(q)≤θ(q)A(q)u′′(θ), which holds by assumption.
Consider now any interval of consumer types whose IR constraints do not bind, in which case γ(θ) = γ for all

types in such an interval. When γ = 1, it follows that

q′(θ) =

∂
∂θ

[
θ − 1−F (θ)

f(θ)

]
[
θ − 1−F (θ)

f(θ)

]
A(q(θ))

≥ 1

θA(q(θ))
=

ν ′(q(θ))

−θν ′′(q(θ))
, (42)

where the inequality in the above follows from the assumption that [1− F (θ)]/f(θ) decreases with θ. Condition (42)
implies 1/q′(θ) ≤ −θ(q)ν ′′(q)/ν ′(q), which combined with (40) yields

T ′′(q) =
ν ′(q)

q′(θ)
+ θ(q)ν ′′(q) ≤ ν ′(q)

[
−θ(q)ν ′′(q)

ν ′(q)

]
+ θ(q)ν ′′(q) = 0.

When, instead, γ ∈ [0, 1), the last inequality in (41) becomes

θf(θ)− γ + F (θ)

θf(θ)
≤ ∂

∂θ

[
θ − γ

f(θ)
+
F (θ)

f(θ)

]
⇔ θf2(θ) ≥ −[γ − F (θ)]f(θ)− [γ − F (θ)]θf ′(θ). (43)

We prove that (43) holds by considering two further cases.
Case 1: γ ≥ F (θ). In this case, [γ − F (θ)]f(θ) ≥ 0 so that a sufficient condition for (43) is

f2(θ) ≥ −[γ − F (θ)]f ′(θ). (44)

If f ′(θ) ≥ 0, then it is immediate that the displayed inequality is satisfied. Suppose now that f ′(θ) < 0. Since

∂

∂θ

(
1− F (θ)

f(θ)

)
=
−f2(θ)− [1− F (θ)] f ′(θ)

f2(θ)
≤ 0⇔ f2(θ) ≥ − [1− F (θ)] f ′(θ)

by assumption and −[1− F (θ)]f ′(θ) > −[γ − F (θ)]f ′(θ) with γ < 1 and f ′(θ) < 0, it follows that (44) and so (43)
are satisfied.

Case 2: γ < F (θ). In this case, we can rewrite (43) as

θf2(θ) ≥ [F (θ)− γ]f(θ) + [F (θ)− γ]θf ′(θ)⇔ θf(θ) ≥ F (θ)− γ + [F (θ)− γ]θ
f ′(θ)

f(θ)
. (45)

When f ′(θ) ≤ 0, a sufficient condition for the last displayed inequality to hold is f(θ) ≥ F (θ)− γ, which is satisfied
whenever θf(θ) ≥ 1 since F (θ) − γ ≤ 1. But since θf(θ) ≥ 1 holds by assumption, it follows that (43) is satisfied.
When, instead, f ′(θ) > 0, a sufficient condition for (45) is

θf(θ) ≥ F (θ) + F (θ)θ
f ′(θ)

f(θ)
⇔ f2(θ) ≥ F (θ)f(θ)

θ
+ F (θ)f ′(θ)

or, equivalently,

f2(θ)− F (θ)f ′(θ) ≥ f(θ)

f(θ)

F (θ)f(θ)

θ
=
f2(θ)F (θ)

θf(θ)
⇔ ∂

∂θ

(
F (θ)

f(θ)

)
=
f2(θ)− F (θ)f ′(θ)

f2(θ)
≥ F (θ)

θf(θ)
,

which can be restated as εr(θ) = ∂
∂θ

(
F (θ)
f(θ)

)
θ
[
F (θ)
f(θ)

]−1
≥ 1, which is satisfied by assumption.

Proof of Proposition 4. Let the allocation in the standard nonlinear pricing model be {us(θ), qs(θ)}. A seller’s
first-order conditions in the standard model and the augmented model can be written, respectively, as

1− c

T ′(qs(θ))
=

1− F (θ)

θf(θ)
and 1− c

T ′(q(θ))
=
γ(θ)− F (θ)

θf(θ)
. (46)
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Recall that in the standard model, the IR constraints bind only for the lowest type so that us(θ) = u. Since γ(θ) ≤ 1,
it follows that

[1− F (θ)]/θf(θ) ≥ [γ(θ)− F (θ)]/θf(θ)

with strict inequality if γ(θ) < 1. Using (46) and local incentive compatibility then yields

T ′(q(θ)) = θν ′(q(θ)) ≤ T ′(qs(θ)) = θν ′(qs(θ)). (47)

Thus, T ′(q(θ)) ≤ T ′(qs(θ)) with strict inequality if γ(θ) < 1, which further implies that q(θ) ≥ qs(θ) since ν ′(·) is
decreasing by assumption. This latter result, in turn, yields that

u(θ)=u(θ) +

∫ θ

θ
u′(x)dx=u(θ) +

∫ θ

θ
ν(q(x))dx≥us(θ) +

∫ θ

θ
ν(qs(x))dx=us(θ) +

∫ θ

θ
u′s(x)dx=us(θ), (48)

where the second and third equalities in (48) follow from local incentive compatibility in both the standard and the
augmented model in that u′(θ) = ν(q(θ)) and u′s(θ) = ν(qs(θ)). The inequality in (48) follows because u(θ) ≥ u(θ),
u(θ) ≥ u by assumption, us(θ) = u since the IR constraint binds at θ in the standard model, q(θ) ≥ qs(θ) as just
argued, and ν(·) is strictly increasing.
Proof of Proposition 5: We divide the proofs into two parts, Case a) and Case b). In both parts, we rely on the
assumption of full participation under nonlinear and linear pricing.

Case a). We start by showing that if the price schedule exhibits quantity discounts in that p′(q) ≤ 0 at q = q(θ)
and if qm(θ) ≥ q(θ), then the utility of a consumer of type θ is higher under linear than under nonlinear pricing, that
is, um(θ) ≥ u(θ). By contradiction, assume that p′(q) ≤ 0 at q = q(θ) and qm(θ) ≥ q(θ) but

u(θ) = θν(q(θ))− T (q(θ)) > um(θ) = θν(qm(θ))− θν ′(qm(θ))qm(θ), (49)

where in (49) we have used the fact that pm = θν ′(qm(θ)) under linear pricing by consumer optimality. Given that
qm(θ) maximizes the consumer’s utility under linear pricing, it follows that

θν(q(θ))− T (q(θ)) > θν(qm(θ))− θν ′(qm(θ))qm(θ) ≥ θν(q(θ))− θν ′(qm(θ))q(θ), (50)

which implies θν(q(θ))− T (q(θ)) > θν(q(θ))− θν ′(qm(θ))q(θ) or, equivalently,

θν ′(qm(θ)) > T (q(θ))/q(θ) = p(q(θ)). (51)

Note that the first inequality in (50) restates (49), whereas the second inequality follows from the fact that any quantity
demanded that is different from qm(θ), including q(θ), implies a lower utility for the consumer at the linear price pm.
Next, by the assumption of the case, p′(q) = [T ′(q)− T (q)/q]/q ≤ 0 or, equivalently,

T ′(q(θ)) ≤ T (q(θ))/q(θ). (52)

This inequality, together with (51) and the incentive compatibility condition T ′(q(θ)) = θν ′(q(θ)), implies

θν ′(q(θ)) = T ′(q(θ)) ≤ T (q(θ))/q(θ) < θν ′(qm(θ)), (53)

and so θν ′(qm(θ)) > θν ′(q(θ)), which is a contradiction since qm(θ) ≥ q(θ) by assumption and ν ′(·) is decreasing.
Hence, um(θ) ≥ u(θ).

Case b). We now show that if the price schedule exhibits quantity discounts in that T ′′(q) ≤ 0 for all q = q(θ),
γ(θ) < 1, and q(θ) > qm(θ), then the utility of a consumer of type θ is higher under linear pricing than under nonlinear
pricing. Consider one such type, say, θ̂. By way of contradiction, suppose that u(θ̂) > um(θ̂). We will show that if
this assumption holds, then we contradict the assumption that all types participate under linear pricing. That is, if
u(θ̂) > um(θ̂), then there exists a type θ2 > θ̂ whose participation constraint binds under nonlinear pricing, that is,
u(θ2) = ū(θ2), but is violated under linear pricing, that is, um(θ2) < u(θ2). Hence, type θ2 is excluded under linear
pricing. Note that a consumer θ2 > θ̂ with u(θ2) = ū(θ2) must exist if γ(θ̂) < 1.
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To reach the desired contradiction, rewrite u(θ̂) > um(θ̂) as

u(θ2)− [u(θ2)− u(θ̂)] > um(θ2)− [um(θ2)− um(θ̂)], (54)

which can be equivalently expressed as

u(θ2)−
∫ θ2

θ̂
u′(x)dx > um(θ2)−

∫ θ2

θ̂
u′m(x)dx. (55)

Condition (55), in turn, is equivalent to

u(θ2)− um(θ2) >

∫ θ2

θ̂
[ν(q(x))− ν(qm(x))] dx (56)

by using u(θ2) = u(θ2) since the IR constraint binds at θ2 under nonlinear pricing by construction, by exploiting
incentive compatibility under nonlinear and linear pricing, namely, u′(θ) = ν(q(θ)) and u′m(θ) = ν(qm(θ)) for all
types, and by rearranging terms.

We now argue that the right side of (56) is positive, which establishes the desired contradiction. To see that the
right side of (56) is positive, note first that for all θ ≥ θ̂,

pm = θν ′(qm(θ)) = θ̂ν ′(qm(θ̂)) ≥ θ̂ν ′(q(θ̂)) = T ′(q(θ̂)) ≥ T ′(q(θ)) = θν ′(q(θ)), (57)

where the first two equalities follow from a consumer’s first-order condition under linear pricing, which, of course,
holds for each θ, the first inequality follows from q(θ̂) > qm(θ̂) by the assumption of the case and the fact that ν ′(·)
is decreasing, the third and fourth equalities follow from local incentive compatibility under nonlinear pricing, and
the second inequality holds for any θ ≥ θ̂ since T ′′(q) ≤ 0 at all q = q(θ) by assumption. Hence, (57) implies
θν ′(qm(θ)) ≥ θν ′(q(θ)) for all θ ≥ θ̂, and so q(θ) ≥ qm(θ) for all θ ≥ θ̂, given that ν ′(·) is decreasing. But since ν(·)
is increasing, then the right side of (56) is positive when q(θ) ≥ qm(θ) for all θ ≥ θ̂, which implies u(θ2) > um(θ2).
Then, θ2 does not participate under linear pricing, which is a contradiction.
Proof of Proposition 6: To start, note that s(θ, q(θ)) ≥ u(θ) for consumers with types θ ∈ [θ′, θ′′] implies that the
seller makes nonnegative profits from each such consumer type under nonlinear pricing and these types participate by
the argument in the proof of Proposition 1. To establish the desired claim, we need to show that there exists a subinterval
of types in [θ′, θ′′] who do not participate under linear pricing. To this purpose, suppose, by way of contradiction, that
all consumer types in [θ′, θ′′] participate under linear pricing. We prove that if this assumption holds, then the seller
makes negative profits under linear pricing. To prove this result, let θ̂ be a type in [θ′, θ′′] with um(θ̂) = u(θ̂) by
assumption. Observe that for any type θ in [θ̂, θ′′] who participates under linear pricing, it must be um(θ) ≥ u(θ),
which can be expanded as

um(θ) = um(θ̂) +

∫ θ

θ̂
u′m(x)dx = um(θ̂) +

∫ θ

θ̂
ν(qm(x))dx

≥ u(θ) = u(θ̂) +

∫ θ

θ̂
u′(x)dx = u(θ̂) +

∫ θ

θ̂
ν(q(x))dx, (58)

where the second equality in (58) uses the fact that u′m(θ) = ν(qm(θ)) by the consumer’s first-order condition under
linear pricing, θν ′(qm(θ)) = pm, and the last equality uses the homogeneity assumption that u′(θ) = ν(q(θ)). Since
um(θ̂) = u(θ̂) by assumption, (58) implies∫ θ

θ̂
ν(qm(x))dx ≥

∫ θ

θ̂
ν(q(x))dx. (59)

With ν(·) positive and increasing, (59) implies that there exists a subinterval of [θ̂, θ] with positive measure, say, [θ3, θ4],
such that qm(θ) ≥ q(θ) for all θ ∈ [θ3, θ4]. Since q(θ) > qFB(θ) by assumption for consumers with types in [θ′, θ′′]
and qm(θ) ≥ q(θ) for all θ ∈ [θ3, θ4], it follows that qm(θ) > qFB(θ) for consumers with types in [θ3, θ4]. Combining
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qm(θ) > qFB(θ) with the fact that ν ′(·) is strictly decreasing gives

pm = θν ′(qm(θ)) < θν ′(qFB(θ)) = c, (60)

for θ ∈ [θ3, θ4], where the first equality follows from the first-order condition for qm(θ) and the second equality
follows from the definition of the first-best quantity for type θ, qFB(θ). But pm < c implied by (60) contradicts seller
optimality: the seller can always raise pm and earn at least zero profits.
Proof of Proposition 7: To prove this result, we exploit the equivalence between the BC and IR models. In particular,
we map the change in income due to the transfer in the BC model into a corresponding change in reservation utility in
the IR model. For simplicity of exposition only, we use the simple version of the equivalence between the IR and BC
models by defining u(θ) as

I(θ, q) = θν(q)− u(θ). (61)

Consider a consumer of type θ receiving a transfer τ(θ) with τ ′(θ) ≤ 0. Hence, the consumer’s budget for the seller’s
good is I(θ, q)+ τ(θ) after the transfer, and the analogue of condition (61) for the equivalence between the two models
under the new budget schedule is

I(θ, q) + τ(θ) = θν(q)− u(θ, τ), (62)

where u(θ, τ) is the new reservation utility associated with τ(θ). Subtracting (62) from (61) gives

u(θ, τ) = u(θ)− τ(θ). (63)

Hence, in the proof we need only show that replacing the original IR constraint u(θ) ≥ u(θ), where u(θ) is defined in
(61), with the new constraint

u(θ) ≥ u(θ, τ), (64)

where u(θ, τ) is defined in (63), leads to an increase in the amount purchased of the seller’s good, a decrease in marginal
prices, and an increase in the total price for each quantity.

To develop some intuition, note that a consumer of type θ spends t(θ) to purchase q(θ) and the rest of her income
to purchase z = Y − t(θ) ≥ z(θ, q(θ)) before the transfer is introduced, so her budget constraint for the seller’s
good is t(θ) ≤ Y − z(θ, q(θ)). If this consumer receives a transfer of τ(θ), then the seller can ask for a higher
price, since the consumer’s ability to pay has increased, that is, her new budget constraint for the seller’s good is
t(θ) ≤ Y + τ(θ)− z(θ, q(θ)). When we translate this consumer’s new budget constraint for the seller’s good back to
a participation constraint using (62), we see from (63) that the transfer amounts to a decrease in the reservation utility
by the amount of the transfer, which reflects the fact that the seller can now charge a higher price while still satisfying
the consumer’s participation constraint.

We now proceed to the formal argument. Let {tτ (θ), qτ (θ)} denote the equilibrium menu with participation con-
straints (64) and {t(θ), q(θ)} denote the original menu in the absence of the transfer with participation constraints
u(θ) ≥ u(θ). The proof involves several steps. The first step establishes that the new reservation quantity, qτ (θ), is
greater than the original one, q(θ), type by type in that

qτ (θ) ≥ q(θ) for all θ. (65)

This result follows immediately from the fact that qτ (θ) and q(θ) satisfy assumption (BCH) in that u′(θ, τ) = ν(qτ (θ))
and u′(θ) = ν(q(θ)), which, using (63), implies that

ν(qτ (θ)) = u′(θ, τ) = u′(θ)− τ ′(θ) ≥ u′(θ) = ν(q(θ)), (66)

since τ ′(θ) ≤ 0. As ν(·) increases with q, (66) implies qτ (θ) ≥ q(θ), as desired. We show next that for each type

qτ (θ) ≥ q(θ) and T ′τ (qτ (θ)) ≤ T ′(q(θ)). (67)

In Part I, we establish (66) when the set of types whose IR constraints bind is the same before and after the transfer
is introduced. In Part II, we establish (66) in the general case.
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Part I: Suppose that the set of types whose IR constraints bind is the same before and after the transfer is introduced.
Since the multiplier can bind at isolated points only at θ or θ, we can partition [θ, θ] into intervals in which the IR
constraints bind for each type in the interval (Case 1) and into intervals in which they bind at either or both of the
extremes of any such interval but nowhere in the interior of it (Case 2). Given this partition, intervals of Case 2 are
either interior, in which case the IR constraints bind at both extremes, or they have θ or θ as extrema, in which case the
IR constraints may or may not bind at θ and θ.

Case 1: Consider first an interval in which the IR constraints bind for each type. Then, qτ (θ) ≥ q(θ) for all
θ’s in this interval by (65), and so qτ (θ) = qτ (θ) ≥ q(θ) = q(θ) for all θ and, using local incentive compatibility,
T ′τ (qτ (θ)) = θν ′(qτ (θ)) ≤ θν ′(q(θ)) = T ′(q(θ)) since ν ′(·) is decreasing, as desired.

Case 2: Consider now an interval in which the IR constraints bind only at either or both of the extremes. Consider
first this latter case in which the IR constraints bind at both extremes of the interval (one of which may be θ or θ or
they both may be θ and θ). Denote such an interval by [θ′, θ′′]. By construction, the IR constraints only bind at θ′ and
θ′′, so the cumulative multiplier γτ (θ) = γτ ∈ (0, 1) is constant on (θ′, θ′′). Note that∫ θ′′

θ′
u′(x, τ)dx = u(θ′′, τ)− u(θ′, τ) = uτ (θ′′)− uτ (θ′) =

∫ θ′′

θ′
u′τ (x)dx =

∫ θ′′

θ′
ν(qτ (x))dx

≥
∫ θ′′

θ′
u′(x)dx = u(θ′′)− u(θ′) = u(θ′′)− u(θ′) =

∫ θ′′

θ′
u′(x)dx =

∫ θ′′

θ′
ν(q(x))dx. (68)

Consider the first line in (68). The second equality holds since the IR constraints of types θ′ and θ′′ bind before and
after the transfer by the assumption of the case, and the fourth equality follows from local incentive compatibility.
Consider now the second line in (68). The inequality holds because u′(θ, τ) ≥ u′(θ) for each type, as established, and
the equalities hold by the same argument that proves that the corresponding equalities in the first line hold. Equation
(68) then implies that ∫ θ′′

θ′
ν(qτ (x))dx ≥

∫ θ′′

θ′
ν(q(x))dx. (69)

Since ν(·) is positive and increasing, (69) implies that l(γτ , θ) = qτ (θ) ≥ q(θ) = l(γ, θ) for a set of types in [θ′, θ′′]
with positive measure—recall the definition of l(·, ·) from assumption (PS). Since, as argued, l(·, θ) decreases with γ,
the fact that qτ (θ) ≥ q(θ) yields that γτ ≤ γ on this subset of [θ′, θ′′]. But given that the multiplier is constant in the
interior of [θ′, θ′′] by construction, it must be that γτ ≤ γ on the entire interval (θ′, θ′′). Therefore, qτ (θ) ≥ q(θ) for all
types in (θ′, θ′′). By local incentive compatibility, then, T ′τ (qτ (θ)) = θν ′(qτ (θ)) ≤ θν ′(q(θ)) = T ′(q(θ)) for all types
in (θ′, θ′′) since ν ′(·) is decreasing. Finally, qτ (θ) ≥ q(θ) and T ′τ (qτ (θ)) ≤ T ′(q(θ)) for θ′ and θ′′ follow immediately
from (65), given that the IR constraints bind for θ′ and θ′′ by the assumption of the case, and so qτ (θ) = qτ (θ) and
q(θ) = q(θ).

Consider next the case in which the IR constraints bind only at one of the extremes of the interval. As argued,
these last intervals to consider are of the form [θ, θ′′′], where the IR constraints bind only at θ′′′, and [θ′′′′, θ], where
the IR constraints bind only at θ′′′′. But then γτ = 0 for all types in [θ, θ′′′) and γτ = 1 for all types in [θ′′′′, θ].
Since the binding pattern of the IR constraints is the same before and after the transfer, it must be that γ = γτ , and so
qτ (θ) = q(θ) and T ′τ (qτ (θ)) = T ′(q(θ)) for all types in [θ, θ′′′) and [θ′′′′, θ]. (A similar argument holds when γτ = 0
or γτ = 1 for all types.) For θ′′′, the same argument as the one leading to (65) applies, and so qτ (θ) ≥ q(θ) and
T ′τ (qτ (θ)) ≤ T ′(q(θ)).

Under both Case 1 and Case 2, given that F (θ) = G(q) = Gτ (qτ ) and qτ (θ) ≥ q(θ) for each type, it follows
that the distribution of quantities after the transfer is introduced first-order stochastically dominates the one before the
transfer is introduced. Since, as argued, the transfer amounts to a reduction in consumers’ reservation utilities in that
u(θ, τ) ≤ u(θ), the menu {t(θ), q(θ)} is still implementable, so profits must weakly increase. Moreover, the offered
quantity (weakly) increases for each type, and so the cost of producing each type’s quantity is higher after the transfer.
Hence, T (q(θ)) must (weakly) increase for each type.

Part II: Consider now the more general case in which the binding pattern of the IR constraints is not the same before
and after the transfer. Pick an interval of consumer types whose IR constraints bind before and after the transfer. Then,
the same argument as that leading to (65) proves the desired result. Consider now an interval of consumer types with
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binding IR constraints only at the extremes of such an interval before and after the transfer. Then, the same argument
as that leading to (68) and (69) and the discussion following them establish the desired claim.
Proof of Corollary 2: Recall that T ′(q)=θ(q)ν ′(q) and T ′τ (qτ )=θτ (qτ )ν ′(qτ ) by local incentive compatibility before
and after the transfer, and that q = q(θ) and qτ = q̃τ (q) = qτ (θ). Differentiating these local incentive compatibility
conditions gives

T ′′τ (qτ (θ)) =
1

q′τ (θ)
ν ′(qτ (θ)) + θν ′′(qτ (θ)) and T ′′(q(θ)) =

1

q′(θ)
ν ′(q(θ)) + θν ′′(q(θ)). (70)

Now, F (θ) = Gτ (qτ (θ)) and F (θ) = G(q(θ)), respectively, imply that 1/q′τ (θ) = gτ (qτ )/f(θ) and 1/q′(θ) =
g(q)/f(θ). Then, q′(θ) ≤ q′τ (θ) if, and only if, gτ (qτ ) ≤ g(q), since

1

q′τ (θ)
=
gτ (qτ )

f(θ)
≤ 1

q′(θ)
=
g(q)

f(θ)
⇔ gτ (qτ ) ≤ g(q).

Suppose that qτ (θ) ≥ q(θ) for each consumer type. Thus, Gτ (qτ ) ≤ G(q). Since Gτ (·) first-order stochastically
dominates G(·), it follows that gτ (qτ ) ≤ g(q) up to a certain type θmax ≤ θ. Hence, q′(θ) ≤ q′τ (θ) for any θ ≤ θmax.
Also, qτ (θ) ≥ q(θ), by assumption, for all types implies that ν ′(qτ (θ)) ≤ ν ′(q(θ)) if ν ′′(·) ≤ 0, which is a maintained
assumption, and ν ′′(qτ (θ)) ≤ ν ′′(q(θ)) if ν ′′′(·) ≤ 0, which holds by assumption. Thus, by inspecting (70) it is
immediate that T ′′τ (q̃τ (q)) ≤ T ′′(q) for all θ ≤ θmax or, equivalently, for all percentiles of quantities up to the percentile
pmax corresponding to the quantity q(θmax) before the transfer and to the quantity qτ (θmax) after the transfer, as
desired.
No Resale: We interpret the fact that it may be difficult for consumers to engage in the type of contracts that would
sustain resale as capturing imperfections in contracting among consumers analogous to those we maintain among
sellers. The argument is simple. When consumers’ characteristics are observable but not contractible to consumers
too, the problem that a coalition of consumers would face at the resale stage is a constrained version of the one that
the seller faces. In particular, the coalition’s problem of maximizing consumers’ utility in excess of the utility each
type achieves by purchasing from the seller, that is, s(θ, q(θ))− u(θ), would be identical to the seller’s problem given
that s(θ, q(θ)) − u(θ) = t(θ) − c(q(θ)), except for the additional constraint of linear pricing, if only linear prices
were enforceable by the coalition. If enforcement or transaction costs, due, for instance, to commuting across villages,
were of the order of s(θ, q(θ)) − u(θ) or higher for each type θ, then the coalition could not achieve higher utility for
any member than the utility each member obtains by trading with the seller. See Ligon et al. (2002) for evidence on
contracting imperfections in developing countries.
Example 1 (Nonlinear vs. Linear Pricing): Suppose the base utility function, ν(q), is a three-parameter HARA
function with ν(q) = (1 − d)[aq/(1 − d) + b]d/d, a > 0, aq/(1 − d) + b > 0, and 0 < d < 1. Denote by us(θ) the
utility of a type θ consumer under the standard model. With a uniform type distribution on [θ, θ], u(θ) = 0, a = c = 1,
b = 0, and d = 1/2, it follows us(θ) ≥ um(θ) if, and only if, (2θ − θ)2 − (2θ − θ)2 ≥ θ2. When θ = 1 and θ = 2,
this expression reduces to 3θ2 − 8θ + 4 ≥ 0, a polynomial with roots θ = 2/3 and θ = 2. Thus, um(θ) ≥ us(θ)
for all consumer types. Consider now the highly convex case of the augmented model with γ = 1/2. In this case,
u(θ) ≥ um(θ) if, and only if, 3θ2−6θ+2 ≥ 0. So, u(θ) ≥ um(θ) for θ ≥ 1.58. Also, all such types demand quantities
above first best. Thus, not only u(θ) ≥ us(θ), as implied by Proposition 4, but also more than half of the consumers
prefer nonlinear to linear pricing under the augmented model, whereas all consumers prefer linear to nonlinear pricing
under the standard model.
Proof of Proposition 8: Rewrite the seller’s first-order condition as

1

T ′(q)
=

1

c′(Q)
+

[F (θ)− γ(θ)]

c′(Q)θf(θ)
=

1

c′(Q)
+

[G(q)− γ(θ(q))]θ′(q)

c′(Q)g(q)θ(q)
=

1

c′(Q)
+

[G(q)− γ(θ(q))]ϕ(q)

c′(Q)g(q)
(71)

with ϕ(q) ≡ ∂ log(θ(q))/∂q = θ′(q)/θ(q) or, equivalently,

g(q)

ϕ(q)

[
c′(Q)

T ′(q)
− 1

]
= G(q)− ψ(q),
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where ψ(q) ≡ γ(θ(q)). By taking derivatives of each side of this expression, we obtain

∂{g(q)c′(Q)/[ϕ(q)T ′(q)]}
∂q

− ∂[g(q)/ϕ(q)]

∂q
= g(q)− ψ′(q).

Integrating these expressions from q to q gives∫ q

q

∂{g(x)c′(Q)/[ϕ(x)T ′(x)]}
∂x

dx−
∫ q

q

∂[g(x)/ϕ(x)]

∂x
dx =

∫ q

q
g(x)dx−

∫ q

q
ψ′(x)dx = 0,

where the last equality follows from the fact that
∫ q
q g(x)dx =

∫ q
q ψ
′(x)dx = 1, so that

g(q)c′(Q)

ϕ(q)T ′(q)
−
g(q)c′(Q)

ϕ(q)T ′(q)
− g(q)

ϕ(q)
+
g(q)

ϕ(q)
= 0,

which implies

c′(Q) =

[
g(q)− g(q)

ϕ(q)

ϕ(q)

]
/

[
g(q)

T ′(q)
−

g(q)

T ′(q)

ϕ(q)

ϕ(q)

]
.

Since g(q) and T ′(q) are identified, it follows that c′(Q) is identified up to ϕ(q)/ϕ(q). The rest of the proposition is
proved in the main text.
Derivation of Reduced Form in (18): The seller’s first-order condition can be rewritten as

T ′(q)− c′(Q)

T ′(q)
=
γ(θ)− F (θ)

θf(θ)
=
θ′(q)

θ(q)

[
γ(θ(q))−G(q)

g(q)

]
⇔ c′(Q)

T ′(q)
= 1 +

θ′(q)

θ(q)

[
G(q)

g(q)
− γ(θ(q))

g(q)

]
,

by using F (θ) = G(q), f(θ) = g(q)q′(θ), and θ(q)q′(θ) = θ(q)/θ′(q). Further manipulation yields

log

(
c′(Q)

T ′(q)

)
≈ θ′(q)

θ(q)

[
G(q)

g(q)
− γ(θ(q))

g(q)

]
⇔ log

(
p(q)
c′(Q)
t1

)
≈ θ′(q)

θ(q)

[
γ(θ(q))− 1

g(q)
+

1−G(q)

g(q)

]
⇔ log[p(q)] ≈ log

[
c′(Q)

t1

]
− θ′(q)

θ(q)

[
1− γ(θ(q))

g(q)

]
+
θ′(q)

θ(q)

[
1−G(q)

g(q)

]
, (72)

using the fact that T ′(q) = t1p(q) given our log-linear specification for T (q). Note that [1 −G(q)]/g(q) is the inverse
of the hazard rate of the distribution quantities. Letting γ(θ(q))=ψ(q), (72) becomes

log[p(q)] ≈ log

[
c′(Q)

t1

]
− θ′(elog(q))

θ(elog(q))

[
1− ψ(elog(q))

g(elog(q))

]
+
θ′(elog(q))

θ(elog(q))

[
1−G(q)

g(q)

]
.

We can interpret the right side of this expression as a function of log(q) and [1 − G(q)/g(q)], which we term
f (log(q), [1−G(q)]/g(q)). A second-order Taylor expansion of f(·) in a neighborhood of (log(q), [1−G(q)/g(q)]) =
(a, b) gives

log[p(q)] ≈ f(a, b) + f1(a, b)(log(q)− a) + f2(a, b)

[
1−G(q)

g(q)
− b
]

+
1

2

{
f11(a, b)[log(q)− a]2 + 2f12(a, b)[log(q)− a]

[
1−G(q)

g(q)
− b
]

+ f22(a, b)

[
1−G(q)

g(q)
− b
]2
}
,
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and so

log[p(q)] ≈ f(a, b)− af1(a, b)− bf2(a, b) +
a2

2
f11(a, b) +

b2

2
f22(a, b) + abf12(a, b)︸ ︷︷ ︸

β0

+ [f1(a, b)− af11(a, b)− bf12(a, b)]︸ ︷︷ ︸
β1

log(q) + [f2(a, b)− af12(a, b)− bf22(a, b)]︸ ︷︷ ︸
β2

[
1−G(q)

g(q)

]

+ f12(a, b)︸ ︷︷ ︸
β3

log(q)

[
1−G(q)

g(q)

]
+

1

2
f11(a, b)︸ ︷︷ ︸
β4

log(q)2 +
1

2
f22(a, b)︸ ︷︷ ︸
β5

[
1−G(q)

g(q)

]2

,

which can be equivalently expressed as

log[p(q)] ≈ β0 + β1 log(q) + β2

[
1−G(q)

g(q)

]
+ β3 log(q)

[
1−G(q)

g(q)

]
+ β4 log(q)2 + β5

[
1−G(q)

g(q)

]2

.

B Appendix
B.1 Omitted Estimation Results
We present here estimation results omitted from the main text for brevity.

Marginal Cost Estimates. Figure 9 reports the estimated marginal cost at the total quantity provided of each
good in each estimated village according to our quadratic specification of the multiplier function; we truncated the top
5% of the estimates for readability. The estimates for the linear specification are very similar; see Section B.3. The
mean of the estimated marginal cost across villages defined as municipalities is 6.342 pesos for rice with a standard
deviation of 4.120, 10.839 pesos for kidney beans with a standard deviation of 20.647, and 9.834 pesos for sugar with
a standard deviation of 7.837. Although estimated marginal cost varies noticeably across villages for each good, its
range is similar for rice and sugar, from close to 0 pesos to about 15 pesos, and its mean comparable across kidney
beans and sugar. Villages are very dispersed and isolated, so some variability in estimated marginal cost across villages
is to be expected.

Figure 9: Estimated Marginal Cost
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Predicted Multiplier Schedule. We perform significance tests on the parameters of the multiplier function γ(θ(q))
in each village and for each good so as to determine whether the multiplier is ever constant and construct the predicted
multiplier for each quantity accordingly. We illustrate our procedure only in the quadratic case, since the linear case is
a special case of it. Consider village v and good j. First, we test whether the three parameters, γvj0, γvj1, and γvj2,
are individually significant. If they are, then we use all of them to construct the predicted γ(θ(q)). If only γvj0 is
significant, then we set all other parameters to zero and next test whether the implied multiplier is equal to 0 or 1. If we
reject these hypotheses, then we keep the original value of γvj0; otherwise, we set the multiplier to 0 or 1 depending on
the outcome of the test. If only γvj1 is significant, then we set all other parameters to zero. If only γvj2 is significant,
then we set all other parameters to zero. If only γvj0 and γvj1 are significant, then we set γvj2 to zero. If only γvj0
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and γvj2 are significant, then we set γvj1 to zero. If only γvj1 and γvj2 are significant, then we set γvj0 to zero. If no
parameter is significant, then we set all of them to zero so that γ(θ(q)) equals 0.5 at all quantities.

Statistics on Estimates. Tables 3 to 5 report selected percentiles of the distribution of the t-statistics of the es-
timates of c′(Q), γ(θ(q)), θ(q), ν ′(q), and f(θ) across villages. These statistics are meant to illustrate the overall
precision of our estimates. We then calculate selected percentiles of the distribution across village-level quantities of
the t-statistics of the estimates of γ(θ(q)), θ(q), ν ′(q), and f(θ) for each village. Tables 6 to 8 report the quartiles of
the distribution of these selected percentiles across villages. These statistics are meant to show the variability across
villages of the precision of the estimates of γ(θ(q)), θ(q), ν ′(q), and f(θ) at the different quantities consumed of a
good in a village. As apparent from these tables, the model’s primitives as well as the multiplier γ(θ(q)) are fairly
precisely estimated in most villages and for most quantities.

Table 3: Percentiles of t-Statistics across Quantities and Villages for Rice

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.029 0.465 1.569 5.737 13.606 24.958 46.042 57.108 123.646
γ(θ(q)) 1.177 3.891 6.062 22.413 112.474 1.653× 103 3.781× 104 3.630× 105 7.131× 107

θ(q) 0.045 0.113 0.363 0.967 2.735 7.174 22.840 46.671 138.463
ν′(q) −109.942 −26.071 −13.560 −3.979 −0.980 −0.008 10.468 32.654 189.972
f(θ) 1.118 1.118 1.118 3.665 9.671 15.163 24.950 29.262 50.702

Table 4: Percentiles of t-Statistics across Quantities and Villages for Kidney Beans

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.015 0.047 0.165 2.363 7.364 15.099 26.034 35.793 60.875
γ(θ(q)) 2.585 5.642 10.147 31.358 156.134 492.064 3.603× 103 2.231× 104 1.627× 105

θ(q) 9.029× 10−18 0.135 0.519 1.458 3.513 7.078 11.241 15.223 23.309
ν′(q) −15.049 −9.306 −7.152 −3.434 −1.202 0.615 13.109 30.124 80.267
f(θ) 1.118 1.118 1.581 5.244 11.565 18.473 24.239 27.613 36.652

Table 5: Percentiles of t-Statistics across Quantities and Villages for Sugar

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.004 0.012 0.081 3.668 11.742 30.069 72.451 129.396 274.517
γ(θ(q)) 1.166 4.322 8.200 32.756 170.466 575.413 3.650× 103 1.795× 104 1.749× 106

θ(q) 0.002 0.225 0.414 1.127 2.683 5.862 12.785 18.854 49.134
ν′(q) −28.371 −12.893 −8.537 −4.123 −1.345 −0.326 2.810 9.445 51.105
f(θ) 1.118 1.118 1.118 6.800 12.942 18.874 24.520 27.407 35.777
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Table 6: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Rice

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.940 2.901 4.969 8.183 23.735 114.980 3.114× 103 2.894× 104 6.335× 105

p50 1.502 10.257 15.798 32.789 84.607 635.232 9.581× 103 1.922× 105 1.776× 106

p75 8.125 24.850 44.102 125.823 397.046 3.300× 103 7.418× 104 2.370× 106 2.194× 108

θ(q) p25 0.024 0.087 0.281 0.704 1.725 4.215 14.759 38.274 66.776
p50 0.082 0.155 0.495 1.171 2.541 6.509 18.461 58.424 99.308
p75 0.148 0.543 0.833 1.805 4.076 9.827 28.787 77.431 119.838

ν′(q) p25 −109.942 −49.192 −22.981 −6.238 −2.203 −0.848 −0.243 −0.125 1.199
p50 −83.125 −33.848 −13.560 −3.826 −0.928 −0.101 1.537 4.799 63.914
p75 −28.180 −16.361 −5.874 −1.777 −0.092 3.762 24.882 65.786 188.850

f(θ) p25 1.118 1.118 1.118 2.168 4.330 9.093 15.330 28.657 50.279
p50 2.739 5.000 6.120 8.281 11.307 15.163 27.161 31.031 50.727
p75 5.123 6.703 7.583 9.269 12.500 17.746 27.166 31.055 50.727

Table 7: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Kidney Beans

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 2.222 4.049 8.732 12.704 34.369 112.622 231.876 295.473 908.156

p50 4.337 12.143 21.240 41.340 107.275 231.221 436.778 626.987 3.432× 103

p75 20.332 65.232 115.150 172.986 411.486 1.300× 103 2.838× 103 6.372× 103 4.907× 104

θ(q) p25 0.001 0.120 0.384 0.927 2.628 5.160 8.517 10.301 15.412
p50 0.024 0.271 0.576 1.458 3.547 6.453 9.597 13.718 21.626
p75 0.024 0.438 0.907 2.165 4.421 8.372 13.787 17.482 24.552

ν′(q) p25 −15.421 −12.178 −9.057 −5.783 −2.612 −1.101 −0.306 −0.047 2.284
p50 −10.922 −7.841 −5.372 −2.967 −1.324 −0.185 1.481 2.389 35.157
p75 −7.341 −4.222 −3.387 −1.170 0.429 5.723 11.765 21.521 66.214

f(θ) p25 1.118 1.581 1.809 3.162 5.477 9.417 13.509 16.508 31.605
p50 4.183 6.349 7.804 10.094 15.026 20.520 27.060 32.365 36.646
p75 7.045 8.657 9.421 12.298 16.771 21.700 27.458 32.365 36.663

Table 8: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Sugar

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 1.248 2.004 5.879 12.244 44.027 191.167 424.775 2.054× 103 6.874× 105

p50 3.344 12.293 20.236 38.504 119.964 289.418 888.764 6.885× 103 7.345× 105

p75 14.400 31.077 39.699 124.092 345.134 886.617 3.359× 103 6.000× 104 2.943× 106

θ(q) p25 7.700× 10−9 0.144 0.281 0.906 2.001 3.989 8.619 10.142 22.735
p50 0.082 0.303 0.797 1.109 2.721 6.396 11.350 16.743 31.355
p75 0.111 0.402 0.978 1.869 3.790 8.155 17.517 25.216 113.818

ν′(q) p25 −95.314 −16.733 −12.057 −6.204 −2.784 −1.144 −0.564 −0.326 −0.094
p50 −21.357 −9.803 −7.400 −3.830 −1.654 −0.730 −0.208 0.014 0.810
p75 −11.786 −5.866 −4.410 −1.864 −0.635 0.474 3.811 8.184 70.169

f(θ) p25 1.118 1.118 1.350 3.873 6.982 10.062 13.229 19.170 23.372
p50 3.741 7.746 9.152 12.349 15.652 20.767 25.125 26.972 34.424
p75 6.801 8.056 9.485 13.038 17.045 22.220 27.407 32.215 36.552
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B.2 Details on Counterfactuals
In computing counterfactuals for each good and village, we exclude observations for which any of the objects of
interest in a village, that is, either the model’s primitives, c′(Q), ν ′(q), and θ(q), or objects used in their estimation,
G(q), g(q), T (q), T ′(q), and γ(θ(q)), were not successfully estimated. We also drop observations for which we
estimate an implausibly large increase in θ(q), that is, whenever θ(qi) for quantity qi is more than 1, 000 times larger
than its values for the previous quantity, θ(qi−1). If this is the case, then we drop such a quantity observation and all
subsequent observations in the village considered. In terms of notation, we denote by θ̂i = θ̂(qi) the estimated type
consuming quantity qi and by f̂ the estimate of the object f . For simplicity, we focus here on a particular good and
village so that the associated subscripts are omitted.

Base Utility Function. For the first quantity in each village, we set

ν̂(q1) =

{
qiν̂
′(q1), if q1ν̂

′(q1)− T (q1)/θ̂(q1) ≥ 0

T (q1)/θ̂(q1), otherwise
.

This approach guarantees that base utility at the lowest quantity is nonnegative. For the remaining quantities, we
compute base utility using a standard Riemann sum approximation as

ν̂(qi) = q1ν̂ ′(q1) +
∑i−1

j=1
(qj+1 − qj)ν̂ ′(qj+1).

Given ν̂(qi) evaluated at the observed quantities {qi}, we compute ν̂(q) at any other quantity q as the predicted value
from a regression of ν̂(qi) on log(qi), that is, ν̂(q) = β̂0 + β̂1 log(q).

Reservation Utility. Recall that γ̂(θ̂i) = γ̂(θ̂i(qi)) is estimated as a function of quantity and weakly increases with
θ̂i. We set u(θ̂1) = ĈSnp(θ̂1), where ĈSnp(θ̂1) is the estimated consumer surplus of type θ̂1 under nonlinear pricing.
For the remaining consumer types, we consider two cases:

Case 1: When γ̂(θ̂i) ≥ γ̂(θ̂i−1), we test whether γ̂(θ̂i) is statistically different from γ̂(θ̂i−1). To do so, we use a
critical value of the Student’s t-distribution for a 1% confidence level. If γ̂(θ̂i) is statistically different from γ̂(θ̂i−1),
then we set u(θ̂i) = ĈSnp(θ̂i). If, instead, γ̂(θ̂i) is not statistically different from γ̂(θ̂i−1), then we set u(θ̂i) = u(θ̂i−1).

Case 2: When γ̂(θ̂i) is constant for each type, that is, γ̂(θ̂i) = γ̂(θ̂i−1) for each θ̂i−1 and θ̂i, we consider two
possibilities, referred to in the main text as the low reservation utility case and the high reservation utility case. In
the low reservation utility case, we set u(θ̂i) = ĈSnp(θ̂1) except for the highest type, u(θ̂N ), for which we set
u(θ̂N ) = ĈSnp(θ̂N ), where qN is the largest quantity purchased in a village. In the high reservation utility case, we
set u(θ̂i) = ĈSnp(θ̂i) for each θ̂i.

First-Best Counterfactual. When comparing consumer, producer, and social surplus under nonlinear and first-
best pricing, we start by computing the quantities demanded under first best. To this purpose, we define a grid qpc =
(q1, . . . , qmax) of 10,000 equidistant points for candidate quantities. Given that the first-best price ppc equals the
marginal cost, each type θ̂i solves the problem maxq∈qpc [θ̂iν̂(q) − ppcq]. Then, the quantity demanded by type θ̂i at
price ppc is

qpc(θ̂i) =

{
q̃(θ̂i), if θ̂iν̂(q̃(θ̂i))− ppcq̃(θ̂i) ≥ u(θ̂i)
0, otherwise

,

with u(θ̂i) is determined as just explained. Then, consumer surplus is

ĈSpc =

N−1∑
i=1

r(θ̂i) max{θ̂iν̂(qpc(θ̂i))− ppcqpc(θ̂i), u(θ̂i)},

where r(θ̂i) is the proportion of type θ̂i in the village, computed as r(θ̂1) =G(q1) and r(θ̂i+1) =G(qi+1) − G(qi) for
i= 1, . . . , N − 1, and N is the number of consumers in the village. In plotting results, we only consider types with
ĈSnp(θ̂i) ≥ 0 and ŜSpc(θ̂i) > ĈSnp(θ̂i) + P̂Snp(θ̂i), that is, with nonnegative consumer surplus under nonlinear
pricing and positive social surplus under first best; we consider this latter condition as a regularity condition. We trim
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observations of quantities corresponding to types in the top 2% of the type distribution in a village for the readability
of the graphs in the main text.

Linear Pricing Counterfactual. When comparing consumer, producer, and social surplus under nonlinear and
linear pricing, we compute a seller’s linear price, individual demand, and aggregate demand as follows. Let Θ̃ be the
set of estimated types θ̂i = θ̂(qi) with ĈSnp(θ̂i) ≥ 0 and ŜSpc(θ̂i) > ĈSnp(θ̂i) + P̂Snp(θ̂i), that is, with nonnegative
consumer surplus under nonlinear pricing and positive social surplus under first best; as mentioned, we consider this
latter condition as a regularity condition. We compute the price p∗m that maximizes profits under linear pricing as

max
pm

[(pm − c)Q(pm)], (73)

where Q(pm) is aggregate demand, computed as described next. To solve for pm, we set a grid of 10,000 equidistant
points, p = (pm1, . . . , pmP ), and for each θ̂i we compute the schedule

q((pm1, . . . , pmP ), θ̂i) = (q(pm1, θ̂i), . . . , q(pmP , θ̂i)).

To do so, given a grid q = (q1, . . . , qmax) of 10,000 equidistant points for candidate quantities demanded, we determine
the quantity chosen by type θ̂i for each possible price pmp by solving q̃(pmp, θ̂i) = arg maxq∈q[θ̂iν̂(q)− pmpq]. Then,
the quantity demanded by type θ̂i at price pmp is

q(pmp, θ̂i) =

{
q̃(pmp, θ̂i), if θ̂iν̂(q̃(pmp, θ̂i))− pmpq̃(pmp, θ̂i) ≥ u(θ̂i)
0, otherwise

,

with u(θ̂i) determined as explained above. Aggregate demand for each price pmp is

Q(pmp) =
∑
θ̂i∈Θ̃

r(θ̂i)q(pmp, θ̂i),

where r(θ̂1) =G(q1) and r(θ̂i+1) =G(qi+1) −G(qi) for i = 1, . . . , N − 1, and N is the number of consumers in the
village. We then solve for the price p∗m such that (pm − c)Q(pm) is maximal. We calculate consumer surplus as

ĈSlp =
∑
θ̂i∈Θ̃

r(θ̂i) max{θ̂iν̂(q(p∗m, θ̂i))− p∗mq(p∗m, θ̂i), u(θ̂i)}.

We compute producer surplus as P̂Slp = (p∗m − c)Q(p∗m). In plotting results, we exclude observations in the top 2%
of the type distribution in a village for the readability of the graphs in the main text.

Nonlinear vs. Linear Pricing: High Reservation Utility. We present in Figure 10 the results of the linear
pricing counterfactual in the high reservation utility case. As in the case of low reservation utility, social surplus at
low quantities is higher, and most consumers of the lowest quantities are better off under nonlinear pricing, than under
linear pricing. As in the case of low reservation utility, social surplus as well as consumers surplus are lower under
nonlinear pricing for consumers of intermediate to large quantities. Intuitively, the key difference between the low and
high reservation utility case is the level of the linear price that a seller can charge without inducing any consumer type
to drop out of the market. In the low reservation utility case, a seller can charge any given consumer type a much
higher price than in the high reservation utility case before that type prefers not to participate. Lower linear prices
in the high reservation utility case, compared to the low reservation utility case, benefit consumers with low and high
marginal willingness to pay. For some low consumer types, in particular, the combination of high reservation utility
and sellers’ lower ability to extract surplus under linear pricing implies higher levels of utility under linear pricing
than under nonlinear pricing, and so a reversal of preferences between nonlinear and linear pricing relative to the low
reservation utility case. Nonetheless, consumers who do not participate in the market under linear pricing are still
mostly those with low to intermediate types, as in the low reservation utility case. These consumers prefer nonlinear to
linear pricing.
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Figure 10: Nonlinear vs. Linear Pricing under Augmented Model (High Reservation Utility)
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B.3 Robustness Exercises
We assess here the robustness of our empirical findings to specific functional forms and modeling assumptions. We do
so by first reestimating the model under a more restrictive specification of the multiplier function, which is assumed
now to be a logistic function of quantity with a linear index. We find that the estimates based on this more restricted
specification of our model are similar to the ones based on the more general specification discussed in the main text,
both qualitatively and quantitatively. We then reestimate the model under the assumption that it reduces to the standard
model of Maskin and Riley (1984), that is, by imposing that the multiplier function equals one for each type (quantity)
in each village. The estimates implied by the standard model differ from those implied by our model in two main
dimensions: the range of the support of consumer types is less wide, and base marginal utility is less convex, according
to the standard model than according to our model. As discussed in the main text, though, we reject the standard model
in all villages. Finally, we estimate the model’s primitives on villages defined at the level of the Mexican locality
rather than the Mexican municipality. The estimates we obtain are similar for these two definitions of villages. In
the following figures and tables, we refer to the linear (respectively, quadratic) specification of the multiplier function
as either the “Linear Specification” (respectively, “Quadratic Specification”) or, for brevity, “Linear” (respectively,
“Quadratic”). Similar, we refer to kidney beans at times as “Beans” for brevity.

B.3.1 Linear Specification
In Figures 11-14, we plot the estimates of marginal cost, c′(Q), the multiplier on participation (or budget) constraints,
γ(θ(q)), the distribution of types, as captured by its support, θ(q), and its reverse hazard rate, f(θ)/F (θ), and the base
marginal utility function, ν ′(q), for the version of our model in which γ(θ(q)) is specified as a logistic function of
quantity with a linear index, that is, when we set γvj2 = 0 for each village v and good j. As is apparent from these
figure, all estimates are fairly similar to those reported in the main text, which are obtained under a logistic specification
of the multiplier with a quadratic index. As mentioned in the main text, we focus there on the quadratic specification
due to the greater number of villages for which we could estimate all primitives, as discussed in Section 5. As before,
we drop the top 5% of estimates for readability in the plots of the estimated marginal costs.
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Figure 11: Estimated Marginal Cost (Linear Specification)
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Figure 12: Estimated Multiplier on Participation (or Budget) Constraints (Linear Specification)
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Figure 13: Estimated Distribution of Types (Linear Specification)

0
50

0
10

00
15

00
20

00
Lo

g 
C

on
su

m
er

 T
yp

e

0 .5 1 1.5 2
Quantity

Rice

0
10

0
20

0
30

0
40

0
Lo

g 
C

on
su

m
er

 T
yp

e

0 1 2 3 4
Quantity

Kidney Beans

0
20

0
40

0
60

0
80

0
Lo

g 
C

on
su

m
er

 T
yp

e

0 1 2 3
Quantity

Sugar

0
.1

.2
.3

Pr
ed

ic
te

d 
R

ev
er

se
 H

az
ar

d 
R

at
e

0 .5 1 1.5 2
Quantity

Rice

0
.1

.2
.3

.4
Pr

ed
ic

te
d 

R
ev

er
se

 H
az

ar
d 

R
at

e

0 1 2 3 4
Quantity

Kidney Beans

0
.0

5
.1

.1
5

.2
Pr

ed
ic

te
d 

R
ev

er
se

 H
az

ar
d 

R
at

e

0 1 2 3
Quantity

Sugar

Figure 14: Estimated Base Marginal Utility (Linear Specification)
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Table 9: Percentiles of t-Statistics across Quantities and Villages for Rice (Linear Specification)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.026 0.179 0.795 6.767 13.553 24.958 42.519 59.439 155.314
γ(θ(q)) 1.076 6.195 11.401 39.296 244.326 3934.064 8.7× 104 6.1× 105 3.0× 107

θ(q) 0.022 0.075 0.265 0.812 2.131 5.621 13.109 22.586 65.943
ν′(q) −48.777 −15.717 −8.711 −3.493 −1.096 −0.197 2.632 9.333 120.315
f(θ) 1.118 1.118 1.118 3.354 9.874 15.154 22.444 28.657 50.489

Table 10: Percentiles of t-Statistics across Quantities and Villages for Beans (Linear Specification)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.005 0.053 0.826 3.018 8.307 18.076 41.567 55.740 86.208
γ(θ(q)) 2.838 7.235 13.672 41.614 157.055 561.841 2144.465 5528.561 7.0× 104

θ(q) 0.000 0.153 0.338 0.980 2.584 5.454 10.271 13.884 21.219
ν′(q) −17.063 −9.213 −6.082 −3.085 −1.277 −0.207 3.197 10.292 41.422
f(θ) 1.118 1.118 1.581 5.244 11.854 19.007 25.922 30.166 36.742

Table 11: Percentiles of t-Statistics across Quantities and Villages for Sugar (Linear Specification)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.036 0.282 2.382 5.921 17.718 42.050 68.605 105.833 147.383
γ(θ(q)) 1.223 4.624 9.748 36.081 134.470 557.324 3948.123 2.1× 104 5.9× 105

θ(q) 0.015 0.155 0.345 1.322 4.044 8.708 16.235 23.071 62.843
ν′(q) −38.690 −15.960 −10.907 −5.386 −1.955 −0.416 0.744 7.616 45.952
f(θ) 1.118 1.118 1.581 6.661 12.966 18.941 26.292 31.682 63.498
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Table 12: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Rice (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.610 3.486 6.944 14.628 51.198 142.166 1911.203 7074.768 1.8× 105

p50 1.433 11.990 17.459 47.653 244.704 683.711 1.2× 104 7.3× 104 3.7× 105

p75 17.025 42.254 65.914 333.436 1287.829 5931.734 9.4× 104 1.0× 106 1.3× 108

θ(q) p25 0.007 0.058 0.137 0.480 1.321 3.313 7.843 12.961 27.037
p50 0.008 0.080 0.269 0.975 1.856 4.823 10.258 15.960 43.551
p75 0.118 0.303 0.735 1.567 3.209 7.611 19.342 34.844 76.220

ν′(q) p25 −72.804 −20.151 −13.900 −5.614 −1.888 −0.883 −0.273 −0.117 −0.025
p50 −39.347 −14.474 −6.112 −2.895 −1.067 −0.295 −0.024 0.564 111.678
p75 −20.170 −8.431 −5.135 −1.763 −0.339 1.235 6.809 16.707 268.915

f(θ) p25 1.118 1.118 1.118 1.936 3.708 7.415 13.387 26.830 31.145
p50 5.000 5.809 6.778 8.588 12.196 16.657 27.177 28.657 50.236
p75 5.590 7.104 8.062 9.638 13.145 17.248 27.178 29.118 50.506

Table 13: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Beans (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 2.367 6.248 8.921 16.583 42.546 136.932 190.165 296.813 937.786

p50 13.283 28.548 39.386 58.733 119.021 278.601 422.660 615.719 9411.721
p75 48.148 79.329 136.522 246.220 526.747 1038.497 2927.352 5545.967 9.2× 104

θ(q) p25 0.000 0.135 0.254 0.642 1.596 3.182 6.343 12.835 16.059
p50 0.000 0.158 0.402 1.072 2.744 5.465 8.930 13.431 18.247
p75 0.000 0.443 0.894 1.813 3.948 6.954 11.479 17.412 21.527

ν′(q) p25 −17.318 −9.501 −7.744 −4.866 −2.612 −1.241 −0.614 −0.422 −0.010
p50 −10.875 −6.196 −4.865 −2.601 −1.313 −0.365 −0.010 0.419 9.995
p75 −10.453 −4.424 −2.919 −1.603 −0.464 1.225 5.346 11.147 39.453

f(θ) p25 1.118 1.581 1.809 3.162 5.208 8.761 12.247 16.508 33.015
p50 3.859 7.416 8.441 10.548 15.012 20.520 27.613 33.015 37.450
p75 7.583 9.014 10.061 12.748 17.212 21.689 27.613 33.015 37.450

Table 14: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Sugar (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.770 2.208 6.424 15.417 40.989 148.159 415.754 977.245 1.4× 105

p50 1.492 12.801 25.517 51.241 101.134 305.741 1783.323 5404.830 1.3× 106

p75 5.522 49.506 80.162 138.920 335.900 1076.368 8781.182 1.9× 104 1.5× 107

θ(q) p25 0.015 0.090 0.231 0.710 2.441 6.748 10.523 11.369 21.648
p50 0.015 0.190 0.429 1.573 4.178 7.736 14.294 18.344 28.485
p75 0.018 0.333 0.729 2.533 6.565 10.463 20.306 28.347 62.843

ν′(q) p25 −38.690 −21.273 −13.930 −8.272 −4.572 −1.676 −0.573 −0.198 −0.018
p50 −20.469 −10.970 −8.153 −4.534 −2.247 −0.953 −0.242 −0.084 0.488
p75 −11.598 −6.389 −4.141 −2.189 −0.759 −0.076 2.067 11.057 62.436

f(θ) p25 1.118 1.118 1.118 4.127 7.349 10.782 15.969 24.564 63.433
p50 5.509 6.519 7.983 11.883 15.906 21.125 26.972 36.573 63.498
p75 6.124 8.367 9.287 13.178 17.401 24.005 27.605 37.006 63.498
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B.3.2 Standard Model
In Figures 15-17, we plot the estimates of marginal cost, c′(Q), the distribution of types, as captured by its support,
θ(q), and its reverse hazard rate, f(θ)/F (θ), and the base marginal utility function, ν ′(q), when we set γ(θ(q)) equal
to one for all quantities in all villages, as in the standard model of Maskin and Riley (1984). For brevity, we use the
abbreviation “SM” to refer to the standard model. As mentioned, the range of the support of consumer types is less
wide, and base marginal utility is less convex, according to the standard model than according to our model.

Figure 15: Estimated Marginal Cost (SM)
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Figure 16: Estimated Distribution of Types (SM)
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Figure 17: Estimated Base Marginal Utility (SM)
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Table 15: Percentiles of t-Statistics across Quantities and Villages for Rice (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.029 0.465 1.569 5.737 13.606 24.958 46.042 57.108 123.646
γ(θ(q)) 1.177 3.891 6.062 22.413 112.474 1652.991 3.8× 104 3.6× 105 7.1× 107

θ(q) 0.045 0.113 0.363 0.967 2.735 7.174 22.840 46.671 138.463
ν′(q) −109.942 −26.071 −13.560 −3.979 −0.980 −0.008 10.468 32.654 189.972
f(θ) 1.118 1.118 1.118 3.665 9.671 15.163 24.950 29.262 50.702

Table 16: Percentiles of t-Statistics across Quantities and Villages for Beans (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.015 0.047 0.165 2.363 7.364 15.099 26.034 35.793 60.875
γ(θ(q)) 2.585 5.642 10.147 31.358 156.134 492.064 3603.320 2.2× 104 1.6× 105

θ(q) 0.000 0.135 0.519 1.458 3.513 7.078 11.241 15.223 23.309
ν′(q) −15.049 −9.306 −7.152 −3.434 −1.202 0.615 13.109 30.124 80.267
f(θ) 1.118 1.118 1.581 5.244 11.565 18.473 24.239 27.613 36.652

Table 17: Percentiles of t-Statistics across Quantities and Villages for Sugar (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.004 0.012 0.081 3.668 11.742 30.069 72.451 129.396 274.517
γ(θ(q)) 1.166 4.322 8.200 32.756 170.466 575.413 3649.744 1.8× 104 1.7× 106

θ(q) 0.002 0.225 0.414 1.127 2.683 5.862 12.785 18.854 49.134
ν′(q) −28.371 −12.893 −8.537 −4.123 −1.345 −0.326 2.810 9.445 51.105
f(θ) 1.118 1.118 1.118 6.800 12.942 18.874 24.520 27.407 35.777
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Table 18: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Rice (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.940 2.901 4.969 8.183 23.735 114.980 3113.801 2.9× 104 6.3× 105

p50 1.502 10.257 15.798 32.789 84.607 635.232 9581.298 1.9× 105 1.8× 106

p75 8.125 24.850 44.102 125.823 397.046 3299.666 7.4× 104 2.4× 106 2.2× 108

θ(q) p25 0.024 0.087 0.281 0.704 1.725 4.215 14.759 38.274 66.776
p50 0.082 0.155 0.495 1.171 2.541 6.509 18.461 58.424 99.308
p75 0.148 0.543 0.833 1.805 4.076 9.827 28.787 77.431 119.838

ν′(q) p25 −109.942 −49.192 −22.981 −6.238 −2.203 −0.848 −0.243 −0.125 1.199
p50 −83.125 −33.848 −13.560 −3.826 −0.928 −0.101 1.537 4.799 63.914
p75 −28.180 −16.361 −5.874 −1.777 −0.092 3.762 24.882 65.786 188.850

f(θ) p25 1.118 1.118 1.118 2.168 4.330 9.093 15.330 28.657 50.279
p50 2.739 5.000 6.120 8.281 11.307 15.163 27.161 31.031 50.727
p75 5.123 6.703 7.583 9.269 12.500 17.746 27.166 31.055 50.727

Table 19: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Beans (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 2.222 4.049 8.732 12.704 34.369 112.622 231.876 295.473 908.156

p50 4.337 12.143 21.240 41.340 107.275 231.221 436.778 626.987 3431.720
p75 20.332 65.232 115.150 172.986 411.486 1299.782 2837.624 6372.247 4.9× 104

θ(q) p25 0.001 0.120 0.384 0.927 2.628 5.160 8.517 10.301 15.412
p50 0.024 0.271 0.576 1.458 3.547 6.453 9.597 13.718 21.626
p75 0.024 0.438 0.907 2.165 4.421 8.372 13.787 17.482 24.552

ν′(q) p25 −15.421 −12.178 −9.057 −5.783 −2.612 −1.101 −0.306 −0.047 2.284
p50 −10.922 −7.841 −5.372 −2.967 −1.324 −0.185 1.481 2.389 35.157
p75 −7.341 −4.222 −3.387 −1.170 0.429 5.723 11.765 21.521 66.214

f(θ) p25 1.118 1.581 1.809 3.162 5.477 9.417 13.509 16.508 31.605
p50 4.183 6.349 7.804 10.094 15.026 20.520 27.060 32.365 36.646
p75 7.045 8.657 9.421 12.298 16.771 21.700 27.458 32.365 36.663

Table 20: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Sugar (SM)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 1.248 2.004 5.879 12.244 44.027 191.167 424.775 2054.426 6.9× 105

p50 3.344 12.293 20.236 38.504 119.964 289.418 888.764 6884.952 7.3× 105

p75 14.400 31.077 39.699 124.092 345.134 886.617 3358.916 6.0× 104 2.9× 106

θ(q) p25 0.000 0.144 0.281 0.906 2.001 3.989 8.619 10.142 22.735
p50 0.082 0.303 0.797 1.109 2.721 6.396 11.350 16.743 31.355
p75 0.111 0.402 0.978 1.869 3.790 8.155 17.517 25.216 113.818

ν′(q) p25 −95.314 −16.733 −12.057 −6.204 −2.784 −1.144 −0.564 −0.326 −0.094
p50 −21.357 −9.803 −7.400 −3.830 −1.654 −0.730 −0.208 0.014 0.810
p75 −11.786 −5.866 −4.410 −1.864 −0.635 0.474 3.811 8.184 70.169

f(θ) p25 1.118 1.118 1.350 3.873 6.982 10.062 13.229 19.170 23.372
p50 3.741 7.746 9.152 12.349 15.652 20.767 25.125 26.972 34.424
p75 6.801 8.056 9.485 13.038 17.045 22.220 27.407 32.215 36.552
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B.3.3 Estimates Based on Villages Defined as Mexican Localities
So far we have mostly focused on data and estimates from villages defined at the level of the Mexican municipality.
For a comparison, here we report statistics from the Progresa sample of Mexican localities as well as estimates of the
model’s primitives and the cumulative multiplier obtained when villages are defined at the level of the Mexican locality.
Note that the unit price schedules and the empirical cumulative distribution function of quantities for each good are
very similar across villages defined as localities and defined as municipalities, as apparent by comparing Figure 18 to
Figure 1. We successfully estimate the model’s primitives on 326, 333, and 316 of the villages defined as localities
for the linear specification of the index of the multiplier function and on 341, 342, and 351 of these villages for the
quadratic specification of the index of the multiplier function for rice, kidney beans, and sugar, respectively.

As apparent from Figures 19-23, compared to the analogous ones for villages defined as municipalities, estimation
results are similar across the two definitions of villages except for three main differences. First, marginal cost estimates
obtained from villages defined as localities are much less dispersed across villages than those obtained from villages
defined as municipalities. Second, the support of consumer types is less wide when villages are defined as localities than
when they are defined as municipalities. Third, the base marginal utility function for sugar is flatter for some villages,
when villages are defined as localities than when they are defined as municipalities. Also, estimates do not differ much
across the linear and quadratic specifications of the multiplier function when villages are defined as localities, as is
the case for villages defined as municipalities. Counterfactual results about the impact of nonlinear pricing relative to
first-best and linear pricing based on estimates from villages defined as localities are very similar to those from villages
defined as municipalities, and are therefore omitted for brevity. See the Supplementary Appendix for the estimates of
the probability density function of consumer types and for the t-statistics of the model’s estimates.

Figure 18: Unit Prices and Cumulative Distribution Function of Quantities from Localities
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C The Effect of Income Transfers
In Table B.3, we report the results of an exercise analogous to that discussed in Section 5.4, except that we now allow
for fixed effects in all regressions to capture the variability of marginal cost across localities—we also repeat Table 2
in the top panel for ease of comparison. As noted in Section 5.4, results obtained when fixed effects are included are
quite similar to those obtained when fixed effects are omitted. This finding is consistent with the relatively small range
of variation of estimated marginal cost across localities for each good; see Figure 19.
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Figure 19: Estimated Marginal Cost (Linear and Quadratic)
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Figure 20: Estimated Multiplier on Participation (or Budget) Constraints from Localities (Linear and Quadratic)
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Figure 21: Estimated Distribution of Types from Localities (Linear)
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Figure 22: Estimated Distribution of Types from Localities (Quadratic)
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Figure 23: Estimated Base Marginal Utility from Localities (Linear and Quadratic)
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