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Abstract

To understand the elasticity of employment to local labor demand shocks, we develop a quantita-
tive general equilibrium model that incorporates spatial linkages in goods markets (trade) and factor
markets (commuting and migration). We show that local employment elasticities differ substantially
across U.S. counties and commuting zones in ways that are not well explained by standard empirical
controls but are captured by commuting measures. We provide independent evidence for these pre-
dictions from million dollar plants and find that empirically-observed reductions in commuting costs
generate welfare gains of around 3.3 percent and employment reallocations from -20 to 30 percent.
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1 Introduction

Agents spend about 8% of their workday commuting to and from work.1 They make this significant
daily investment, to live and work in different locations, so as to balance their living costs and residential
amenities with the wage they can obtain at their place of employment. The ability of firms in a location to
attract workers depends, therefore, not only on the ability to attract local residents through migration, but
also on the ability to attract commuters from other, nearby, locations. Together, migration and commut-
ing determine the response of local employment to a local labor demand shock, which we term the local

employment elasticity. This elasticity is of great policy interest since it determines the impact of local
policies, such as transport infrastructure investments, local taxation and regional development programs.
Estimating its magnitude has been the subject of a large empirical literature on local labor markets, which

∗Much of this research was undertaken while Ferdinando Monte was visiting the International Economics Section (IES) at
Princeton. We are grateful to the IES and Princeton more generally for research support. We are also grateful to the editor, four
anonymous referees, and conference and seminar participants for helpful comments and suggestions.
†McDonough School of Business, 37th and O Streets, NW, Washington, DC 20057. ferdinando.monte@georgetown.edu.
‡Dept. Economics and WWS, Fisher Hall, Princeton, NJ 08544. 609 258 4016. reddings@princeton.edu.
§Dept. Economics and WWS, Fisher Hall, Princeton, NJ 08544. 609 258 4024. erossi@princeton.edu.
1See for example Redding and Turner (2015).
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has considered a variety of sources of local labor demand shocks, including sectoral composition (Bartik
shocks), productivity, international trade, natural resource abundance and business cycle fluctuations, as
discussed further below.2 In this paper we explore the determinants and characteristics of the local em-
ployment elasticity (and the corresponding local resident elasticity) using a detailed quantitative spatial
equilibrium theory.

We develop a quantitative spatial general equilibrium model that incorporates spatial linkages between
locations in both goods markets (trade) and factor markets (commuting and migration). We show that there
is no single local employment elasticity. Instead the local employment elasticity is an endogenous variable
that differs across locations depending on their linkages to one another in goods and factor markets. Cali-
brating our model to county-level data for the United States, we find that the elasticity of local employment
with respect to local productivity shocks varies from around 0.5 to 2.5. Therefore an average local employ-
ment elasticity estimated from cross-section data can be quite misleading when used to predict the impact
of a local shock on any individual county and can lead to substantial under or overprediction of the effect
of the shock. We use our quantitative model to understand the systematic determinants of the local em-
ployment elasticity and show that a large part of the variation results from differences in commuting links
between a location and its neighbors. We then propose variables that can be included in reduced-form
regressions to improve their ability to predict the heterogeneity in local employment responses without
imposing the full structure of our model.

Our theoretical framework allows for an arbitrary number of locations that can differ in productivity,
amenities and geographical relationship to one another. The spatial distribution of economic activity is
driven by a tension between productivity differences and home market effects (forces for the concentration
of economic activity) and an inelastic supply of land and commuting costs (dispersion forces). Commuting
allows workers to access high productivity employment locations without having to live there and hence
alleviates the congestion effect in such high productivity locations. We show that the resulting commuting
flows between locations exhibit a gravity equation relationship with a much higher distance elasticity
than for goods flows, suggesting that moving people is more costly than moving goods across geographic
space. We discipline our quantitative spatial model to match the observed gravity equation relationships
for trade in goods and commuting flows as well as the observed cross-section distributions of employment,
residents and wages across U.S. counties. Given the observed data on wages, employment by workplace,
commuting flows and land area, and a parameterization of trade and commuting costs, we show that our
model can be used to recover unique values of the unobserved location fundamentals (productivity and
amenities) that exactly rationalize the observed data as an equilibrium of the model. We show how the
values of these observed variables in an initial equilibrium can be used to undertake counterfactuals for the
impact of local labor demand shocks (captured by productivity shocks in our model) and for the impact of
changes in trade or commuting costs.

An advantage of our explicitly modeling the spatial linkages between locations is that our framework
can be taken to data on local economic activity at different levels of spatial aggregation. In contrast,

2For a survey of this empirical literature, see Moretti (2011).
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existing research that does not explicitly model the spatial linkages between locations is faced with a
trade-off when studying local labor markets. On the one hand, larger spatial units have the advantage
of reducing the unmodeled spatial linkages between locations. On the other hand, larger spatial units
have the disadvantage of reducing the ability to make inferences about local labor markets. Furthermore,
there exists no choice of boundaries that eliminates commuting between spatial units. For example, should
Princeton, NJ be considered part of New York’s or Philadelphia’s local labor market? Some of its residents
commute to New York, but others commute to Philadelphia. Our approach overcomes these problems by
explicitly modeling the geographic linkages between the spatial units. In our baseline specification, we
report results for counties, because this is the finest level of geographical detail at which commuting data
are reported in the American Community Survey and Decennial Census, and several influential papers in
the local labor markets literature have used county data (such as Greenstone, Hornbeck and Moretti, 2010,
henceforth GHM, 2010).3 In robustness tests, we also report results for commuting zones (CZs), which are
aggregations of counties by the U.S. Department of Agriculture designed to minimize commuting flows
between locations.

We demonstrate both theoretically and empirically the robustness of our findings of heterogeneous
local employment elasticities. From a theoretical perspective, we show that heterogeneous local employ-
ment elasticities are not specific to our theoretical model, but rather are a more generic prediction of an
entire class of theoretical models consistent with a gravity equation for commuting flows. This prediction
holds across a range of different versions of our model, including incorporating heterogeneous land supply
elasticities across locations, non-traded goods, congestion in commuting costs, heterogeneity in effective
units of labor rather than in amenities, and different assumptions about the ownership of land. These dif-
ferent theoretical specifications can affect the elasticity of wages with respect to productivity, but as long
as these specifications yield a gravity equation for commuting flows, they imply the same elasticity of
employment with respect to wages. This elasticity can be derived directly from the gravity equation for
commuting flows, which we show to be a strong empirical feature of the data.

From an empirical perspective, we show that we continue to find substantial heterogeneity in these
local employment elasticities when we incorporate the variable land supply elasticities from Saiz (2010).
Introducing this second source of heterogeneity generates more variation in local resident elasticities but
does not reduce the variation in local employment elasticities. Furthermore, we continue to find substantial
differences between local employment and local residents elasticities, where the only reason that these two
elasticities can differ from one another is commuting. We also continue to find substantial heterogeneity
in local employment elasticities when we replicate our analysis for CZs rather than counties. The reason is
that there are substantial differences across CZs in the extent to which they capture commuting links in a
geographic area, and it is these differences that generate the heterogeneity in local employment elasticities.

To provide further evidence of heterogeneous local employment elasticities without using the structure
of our model, we use the natural experiment of million dollar plants (MDP) from GHM (2010), one of

3The LEHD Origin-Destination Employment Statistics (LODES) reports commuting data for more disaggregated spatial
units than counties, but there is substantial interpolation, and data are missing for some state-year combinations.
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the most influential papers in the local labor markets literature. We compare “winner” and “runner-up”
counties that are similar to one another, except that the winner counties were ultimately successful in
attracting a MDP. We confirm the findings of a positive average treatment effect of MDPs from GHM
(2010). Additionally, we find that this average treatment effect masks considerable heterogeneity across
counties, which takes exactly the form predicted by our model. We find that winner counties that are
more open in commuting linkages experience substantially and statistically significantly larger increases
in employment than other winner counties.4 To provide additional independent evidence in support of
the mechanism in our model, we also show that changes in net commuting accounted for a substantial
proportion of the observed changes in employment from 1990-2010, with substantial heterogeneity across
counties in this relative contribution from commuting.

Having established the importance of commuting for local employment responses to local labor de-
mand shocks, we next show that our model provides a platform for evaluating the counterfactual effects
of changes in trade and commuting costs. Building on approaches in the international trade literature (e.g.
Head and Ries, 2001), we show how observed data on commuting flows over time can be used to back out
the empirical distribution of implied changes in commuting costs. We use this empirical distribution to
undertake counterfactuals for empirically-plausible changes in commuting costs. For example, reducing
commuting costs by the median reduction from 1990-2010 (a reduction of 12 percent), we find an increase
in welfare of 3.3 percent. The commuting technology facilitates a separation of workplace and residence,
enabling people to work in high productivity locations and live in high amenity locations. Therefore re-
ducing commuting costs increases the concentration of employment in locations that were net importers of
commuters in the initial equilibrium (e.g. Manhattan) and enhances the clustering of residents in locations
that initially were net exporters of commuters (e.g. parts of New Jersey). This logic seems to suggest that
commuting might be important only for larger cities in the U.S., but this is in fact not the case. Although
the changes in employment as a result of eliminating commuting are well explained by initial commuting
intensity, this intensity cannot be easily proxied for using standard empirical controls, such as land area,
size or housing supply elasticities. These results again underscore the relevant information embedded in
commuting links.

Our paper is related to several existing literatures. In international trade, our work relates to quantita-
tive models of costly trade in goods following Eaton and Kortum (2002) and extensions. Our research also
contributes to the economic geography literature on costly trade in goods and factor mobility, which typi-
cally uses variation across regions or systems of cities, including Krugman (1991), Hanson (1996, 2005),
Helpman (1998), Fujita et al. (1999), Rossi-Hansberg (2005), Redding and Sturm (2008), Moretti and
Klein (2014), Allen and Arkolakis (2014), Caliendo, et al. (2014), Desmet and Rossi-Hansberg (2014)
and Redding (2016). Our work also contributes to the urban economics literature on the costly move-
ment of people (commuting), which typically uses variation within cities, including Alonso (1964), Mills
(1967), Muth (1969), Lucas and Rossi-Hansberg (2002), Desmet and Rossi-Hansberg (2013), Behrens,

4These results are consistent with the empirical findings, in another context, of Manning and Petrongolo (2011), which
shows that local development policies are fairly ineffective in raising local unemployment outflows, because labor markets
overlap, and the associated ripple effects in applications largely dilute the impact of local stimulus across space.
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et al. (2014), Ahlfeldt, et al. (2015), Allen, Arkolakis and Li (2015) and Monte (2016). In contrast, we
develop a framework in which an arbitrary set of regions are connected in both goods markets (through
costly trade) and labor markets (through migration and commuting), and which encompasses both within
and across-city interactions. Although incorporating costly goods trade and commuting is a natural idea,
our first main contribution is to develop a tractable framework that is amenable to both analytic and quan-
titative analysis, and for which we provide general results for the existence and uniqueness of the spatial
equilibrium. Our second main contribution is to quantify this framework using disaggregated data on
trade and commuting for the United States and to show how it provides a platform for evaluating a range
of counterfactual interventions. Our third main contribution is to establish the importance of spatial inter-
actions between locations (in particular through commuting) in determining the local economic effects of
local labor demand shocks.

Our paper is also related to the large empirical literature on local labor markets, which has estimated
the effects of local labor demand shocks: (a) GHM (2010)’s analysis of million dollar plants; (b) Autor,
Dorn and Hanson (2013), which examines the local economic effects from the international trade shock
provided by China’s emergence into global markets; (c) the many empirical studies that use the Bartik
(1991) instrument, which interacts aggregate industry shocks with locations’ industry employment shares,
including Diamond (2016) and Notowidigdo (2013); (d) research on the geographic incidence of macroe-
conomic shocks, such as the 2008 Financial Crisis and Great Recession, including Mian and Sufi (2014)
and Yagan (2016); and (e) work on the impact of natural resource discoveries on the spatial distribution of
economic activity, as in Michaels (2011) and Feyrer, Mansur and Sacerdote (2015).5 Each of these papers
is concerned with evaluating the local impact of economic shocks using data on finely-detailed spatial
units. However, these spatial units are typically treated as independent observations in reduced-form re-
gressions, with little attention paid to the linkages between these spatial units in goods and labor markets,
and hence with little consideration of the distinction between employment and residents introduced by
endogenous commuting decisions. A key contribution of our paper is to show that understanding these
spatial linkages is central to evaluating the local impact of these and other economic shocks.

The remainder of the paper is structured as follows. Section 2 develops our theoretical framework.
Section 3 discusses the quantification of the model using U.S. data and reports summary statistics on
commuting between counties. Section 4 shows both theoretically and empirically the heterogeneity of
local employment elasticities. Section 5 studies the effect of changes in commuting costs and Section 6
summarizes our conclusions. A web appendix contains the derivations of theoretical results, the proofs of
propositions, additional robustness tests, and a description of the data sources and manipulations.

5Other related research on local labor demand shocks includes Blanchard and Katz (1992), Bound and Holzer (2000), and
Busso, Gregory and Kline (2013).
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2 The Model

We develop a spatial general equilibrium model in which locations are linked in goods markets through
trade and in factor markets through migration and commuting. The economy consists of a set of locations
n, i ∈ N . Each location n is endowed with a supply of land (Hn). Following the new economic geogra-
phy literature, we begin by interpreting land as geographical land area, which is necessarily in perfectly
inelastic supply. We later extend our analysis to interpret land as developed land area, which has a posi-
tive supply elasticity that we allow to differ across locations. The economy as a whole is populated by a
measure L̄ of workers, each of whom is endowed with one unit of labor that is supplied inelastically.

2.1 Preferences and Endowments

Workers are geographically mobile and have heterogeneous preferences for locations. Each worker chooses
a pair of residence and workplace locations to maximize their utility taking as given the choices of other
firms and workers.6 The preferences of a worker ω who lives and consumes in location n and works in
location i are defined over final goods consumption (Cnω), residential land use (Hnω), an idiosyncratic
amenities shock (bniω) and commuting costs (κni), according to the Cobb-Douglas form,7

Uniω =
bniω
κni

(
Cnω
α

)α(
Hnω

1− α

)1−α

, (1)

where κni ∈ [1,∞) is an iceberg commuting cost in terms of utility.8 The idiosyncratic amenities shock
(bniω) captures the idea that individual workers can have idiosyncratic reasons for living and working in
different locations. We model this heterogeneity in amenities following McFadden (1974) and Eaton and
Kortum (2002).9 For each worker ω living in location n and working in location i, idiosyncratic amenities
(bniω) are drawn from an independent Fréchet distribution,

Gni(b) = e−Bnib
−ε
, Bni > 0, ε > 1, (2)

where the scale parameter Bni determines the average amenities from living in location n and working in
location i, and the shape parameter ε > 1 controls the dispersion of amenities. This idiosyncratic amenities
shock implies that different workers make different choices about their workplace and residence locations

6Throughout the following, we use n to denote a worker’s location of residence and consumption and i to denote a worker’s
location of employment and production, unless otherwise indicated.

7For empirical evidence using U.S. data in support of the constant housing expenditure share implied by the Cobb-Douglas
functional form, see Davis and Ortalo-Magne (2011).

8Although we model commuting costs in terms of utility, they enter the indirect utility function multiplicatively with the
wage, which implies that they are proportional to the opportunity cost of time. Therefore, similar results hold if commuting
costs are instead modeled as a reduction in effective units of labor, as discussed in Subsection B.15 of the web appendix.

9A long line of research models location decisions using preference heterogeneity, as in Artuc, Chaudhuri and McClaren
(2010), Kennan and Walker (2011), Grogger and Hanson (2011), Moretti (2011) and Busso, Gregory and Kline (2013). Mod-
eling individual heterogeneity in terms of productivity rather than preferences results in a similar specification, as discussed in
Section B.14 of the web appendix.
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when faced with the same prices and wages. All workers ω residing in location n and working in location
i receive the same wage and make the same consumption and residential land choices. Hence we suppress
the implicit dependence on ω except where important.10

To isolate the implications of introducing commuting, we model goods consumption as in the new
economic geography literature. The goods consumption index in location n is a constant elasticity of sub-
stitution (CES) function of consumption of a continuum of tradable varieties sourced from each location
i,

Cn =

[∑
i∈N

∫ Mi

0

cni(j)
ρdj

] 1
ρ

, σ =
1

1− ρ
> 1. (3)

Utility maximization implies that equilibrium consumption in location n of each variety sourced from
location i is given by cni(j) = αXnP

σ−1
n pni (j)

−σ, where Xn is aggregate expenditure in location n; Pn
is the price index dual to (3), and pni (j) is the “cost inclusive of freight” price of a variety produced in
location i and consumed in location n.11

Utility maximization also implies that a fraction (1−α) of worker income is spent on residential land.
We assume that this land is owned by immobile landlords, who receive worker expenditure on residential
land as income, and consume only goods where they live. This assumption allows us to incorporate general
equilibrium effects from changes in the value of land, without introducing a mechanical externality into
workers’ location decisions from the local redistribution of land rents.12 Using this assumption, total
expenditure on consumption goods equals the fraction α of the total income of residents plus the entire
income of landlords (which equals the fraction (1− α) of the total income of residents):

PnCn = αv̄nRn + (1− α) v̄nRn = v̄nRn (4)

where v̄n is the average labor income of residents across employment locations; and Rn is the measure of
residents. Land market clearing determines the land price (Qn) as a function of the supply of land (Hn):

Qn = (1− α)
v̄nRn

Hn

. (5)

10Our baseline specification focuses on a single worker type with a Fréchet distribution of idiosyncratic preferences for
tractability, which results in similar choice probabilities to the logit model. In Subsection B.9 of the web appendix, we generalize
our analysis to multiple worker types z with different Fréchet scale and shape parameters, which results in similar choice
probabilities to the mixed logit model of McFadden and Train (2000).

11In Subsection B.11 of the web appendix, we show how this standard specification can be further generalized to introduce
non-traded consumption goods.

12In Subsection B.12 of the web appendix, we show that the model has similar properties if landlords consume both con-
sumption goods and residential land, although expressions are less elegant. In the web appendix, we also report the results of a
robustness test, in which we instead assume that land is partially owned locally and partially owned by a national portfolio that
redistributes land rents to workers throughout the economy (as in Caliendo et al. 2014).
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2.2 Production

Again to isolate the implications of introducing commuting, we also model production as in the new eco-
nomic geography literature. Tradeable varieties are produced using labor under monopolistic competition
and increasing returns to scale. To produce a variety, a firm must incur a fixed cost of F and a constant
variable cost that depends on a location’s productivity Ai.13 Therefore the total amount of labor (li(j))
required to produce xi(j) units of a variety j in location i is li(j) = F + xi(j)/Ai.14

Profit maximization implies that equilibrium prices are a constant mark-up over marginal cost: pni(j) =(
σ
σ−1

)
dniwi
Ai

, where wi is the wage in location i. Combining profit maximization and zero profits, equilib-
rium output of each variety is equal to a constant: xi(j) = AiF (σ − 1). This constant equilibrium output
of each variety and labor market clearing together imply that the total measure of produced varieties (Mi)
is proportional to the measure of employed workers (Li),

Mi =
Li
σF

. (6)

2.3 Goods Trade

The model implies a gravity equation for bilateral trade between locations. Using the CES expenditure
function, the equilibrium pricing rule, and the measure of firms in (6), the share of location n’s expenditure
on goods produced in location i is

πni =
Mip

1−σ
ni∑

k∈N Mkp
1−σ
nk

=
Li (dniwi/Ai)

1−σ∑
k∈N Lk (dnkwk/Ak)

1−σ . (7)

Therefore trade between locations n and i depends on bilateral trade costs (dni) in the numerator (“bilat-
eral resistance”) and on trade costs to all possible sources of supply k in the denominator (“multilateral
resistance”). Equating revenue and expenditure, and using zero profits, workplace income in each location
equals total expenditure on goods produced in that location, namely,15

wiLi =
∑
n∈N

πniv̄nRn. (8)

13We assume a representative firm within each location. However, it is straightforward to generalize the analysis to introduce
firm heterogeneity with an untruncated Pareto productivity distribution following Melitz (2003).

14In Subsection B.13 of the web appendix, we generalize the production technology to include intermediate inputs (as in
Krugman and Venables 1995 and Eaton and Kortum 2002), commercial land use and physical capital. As heterogeneous local
employment elasticities are a generic prediction of gravity in commuting, they also hold under this production structure.

15Although a location’s total workplace income equals total expenditure on the goods that it produces, total residential
income can differ from total workplace income (because of commuting). Therefore total workplace income need not equal total
residential expenditure, which implies that total exports need not equal total imports. When we take the model to the data, we
also allow total residential expenditure to differ from total residential income, which provides another reason for trade deficits.
Within the model, these two variables can diverge if landlords own land in different locations from where they consume. This
is how we interpret trade deficits in the empirical section.
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Using the equilibrium pricing rule and labor market clearing (6), the price index dual to the consumption
index (3) can be expressed as

Pn =
σ

σ − 1

(
1

σF

) 1
1−σ
[∑
i∈N

Li (dniwi/Ai)
1−σ

] 1
1−σ

=
σ

σ − 1

(
Ln

σFπnn

) 1
1−σ dnnwn

An
. (9)

where the second equality uses (7) to write the price index (9) as in the class of models considered by
Arkolakis, Costinot and Rodriguez-Clare (2012) and Allen, Arkolakis and Takahashi (2014).

2.4 Labor Mobility and Commuting

Workers are geographically mobile and choose their pair of residence and workplace locations to maximize
their utility. Given our specification of preferences (1), the indirect utility function for a worker ω residing
in location n and working in location i is

Uniω =
bniωwi

κniPα
nQ

1−α
n

. (10)

Indirect utility is a monotonic function of idiosyncratic amenities (bniω) and these amenities have a Fréchet
distribution. Therefore, the indirect utility for a worker living in location n and working in location i also
has a Fréchet distribution: Gni(U) = e−ΨniU

−ε
, where Ψni = Bni (κniP

α
nQ

1−α
n )

−ε
wεi . Each worker selects

the bilateral commute that offers her the maximum utility, where the maximum of Fréchet distributed
random variables is itself Fréchet distributed. Using these distributions of utility, the probability that a
worker chooses to live in location n and work in location i is

λni =
Bni (κniP

α
nQ

1−α
n )

−ε
wεi∑

r∈N
∑

s∈N Brs (κrsPα
r Q

1−α
r )−εwεs

≡ Φni

Φ
. (11)

Therefore the idiosyncratic shock to preferences bniω implies that individual workers choose different
bilateral commutes when faced with the same prices (Pn, Qn, wi), commuting costs (κni) and location
characteristics (Bni). Other things equal, workers are more likely to live in location n and work in location
i, the lower the consumption goods price index (Pn) and land prices (Qn) in n, the higher the wages (wi)
in i, the more attractive average amenities (Bni), and the lower the commuting costs (κni).

Summing these probabilities across workplaces i for a given residence n, we obtain the overall prob-
ability that a worker resides in location n (λRn). Similarly, summing across residences n for a given
workplace i, we obtain the overall probability that a worker works in location i (λLi). So,

λRn =
Rn

L̄
=
∑
i∈N

λni =
∑
i∈N

Φni

Φ
, and λLi =

Ln
L̄

=
∑
n∈N

λni =
∑
n∈N

Φni

Φ
, (12)

where national labor market clearing corresponds to
∑

n λRn =
∑

i λLi = 1.
The average income of a worker living in n depends on the wages in all the nearby employment
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locations. To construct this average income of residents, note first that the probability that a worker
commutes to location i conditional on living in location n is

λni|n =
Bni (wi/κni)

ε∑
s∈N Bns (ws/κns)

ε . (13)

Equation (13) implies a commuting gravity equation, with an elasticity of commuting flows with respect to
commuting costs (κni) of −ε. Therefore, the probability of commuting to location i conditional on living
in location n depends on the wage (wi), amenities (Bni) and commuting costs (κni) for workplace i in the
numerator (“bilateral resistance”), as well as the wage (ws), amenities (Bns) and commuting costs (κns)
for all other possible workplaces s in the denominator (“multilateral resistance”). This gravity equation
prediction is consistent with the existing empirical literature on commuting and migration, including Mc-
Fadden (1974), Grogger and Hanson (2011) and Kennan and Walker (2011). In Subsection B.8 of the web
appendix, we show that heterogeneous local employment elasticities are a generic prediction of the class
of models consistent with a gravity equation for commuting flows.

Using these conditional commuting probabilities, we obtain the following labor market clearing condi-
tion that equates the measure of workers employed in location i (Li) with the measure of workers choosing
to commute to location i, namely,

Li =
∑
n∈N

λni|nRn, (14)

where Rn is the measure of residents in location n. Expected worker income conditional on living in
location n is then equal to the wages in all possible workplaces weighted by the probabilities of commuting
to those workplaces conditional on living in n, or

v̄n =
∑
i∈N

λni|nwi. (15)

Hence expected worker income (v̄n) is high in locations that have low commuting costs (low κni) to high-
wage employment locations.16

Finally, population mobility implies that expected utility is the same for all pairs of residence and
workplace and equal to expected utility for the economy as a whole. That is,

Ū = E [Uniω] = Γ

(
ε− 1

ε

)[∑
r∈N

∑
s∈N

Brs

(
κrsP

α
r Q

1−α
r

)−ε
wεs

] 1
ε

all n, i ∈ N, (16)

where E is the expectations operator and the expectation is taken over the distribution for the idiosyncratic
component of utility and Γ(·) is the Gamma function.

Although expected utility is equalized across all pairs of residence and workplace, real wages differ as
a result of preference heterogeneity. Workplaces and residences face upward-sloping supply functions for

16We treat agents and workers as synonymous, which abstracts from a labor force participation decision, and enables us to
isolate the implications of introducing commuting into the standard new economic geography model.
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workers and residents respectively (the choice probabilities (12)). Each workplace must pay higher wages
to increase commuters’ real income and attract additional workers with lower idiosyncratic amenities for
that workplace. Similarly, each residential location must offer a lower cost of living to increase com-
muters’ real income and attract additional residents with lower idiosyncratic amenities for that residence.
Bilateral commutes with attractive characteristics (high workplace wages and low residence cost of living)
attract additional commuters with lower idiosyncratic amenities, until expected utility (taking into account
idiosyncratic amenities) is the same across all bilateral commutes.

2.5 General Equilibrium

The general equilibrium of the model can be referenced by the following vector of six variables {wn,
v̄n, Qn, Ln, Rn, Pn}Nn=1 and a scalar Ū . Given this equilibrium vector and scalar, all other endoge-
nous variables of the model can be determined. This equilibrium vector solves the following six sets
of equations: income equals expenditure (8), average residential income (15), land market clearing (5),
workplace choice probabilities ((12) for Ln), residence choice probabilities ((12) for Rn), and price in-
dices (9). The last condition needed to determine the scalar Ū is the labor market clearing condition,
L̄ =

∑
n∈N Rn =

∑
n∈N Ln.

Proposition 1 (Existence and Uniqueness) If 1 + ε < σ (1 + (1− α) ε) there exists a unique general

equilibrium of this economy.

All the proofs of propositions are contained in the web appendix. This condition for the existence
of a unique general equilibrium in Proposition 1 is a generalization of the condition in the Helpman
(1998) model to incorporate commuting and heterogeneity in worker preferences over locations. Defining
α̃ = α/(1 + 1/ε), this condition for a unique general equilibrium can be written as σ(1 − α̃) > 1.
Assuming prohibitive commuting costs (κni → ∞ for n 6= i) and taking the limit of no heterogeneity in
worker preference over locations (ε → ∞), this reduces to the Helpman (1998) condition for a unique
general equilibrium of σ(1− α) > 1.

We follow the new economic geography literature in modeling agglomeration forces through love
of variety and increasing returns to scale. But the system of equations for general equilibrium in our
new economic geography model is isomorphic to a version of Eaton and Kortum (2002) and Redding
(2016) with commuting and external economies of scale or a version of Armington (1969) with commuting
and external economies of scale (as in Allen and Arkolakis 2014 and Allen, Arkolakis and Li 2015), as
summarized in the following proposition.

Proposition 2 (Isomorphisms) The system of equations for general equilibrium in our new economic

geography model with commuting and agglomeration forces through love of variety and increasing returns

to scale is isomorphic to that in a version of the Eaton and Kortum (2002) model with commuting and

external economies of scale or that in a version of the Armington (1969) model with commuting and

external economies of scale.
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2.6 Computing Counterfactuals

We use our quantitative framework to solve for the counterfactual effects of changes in the exogenous
variables of the model (productivity An, amenities Bni, commuting costs κni, and trade costs dni) without
having to necessarily determine the unobserved values of these exogenous variables. Instead, in the web
appendix, we show that the system of equations for the counterfactual changes in the endogenous variables
of the model can be written solely in terms of the observed values of variables in an initial equilibrium
(employment Li, residents Ri, workplace wages wn, average residential income v̄n, trade shares πni, and
commuting probabilities λni). This approach uses observed bilateral commuting probabilities to capture
unobserved bilateral commuting costs and amenities. Similarly, if bilateral trade shares between locations
are available, they can be used to capture unobserved bilateral trade frictions (as in Dekle, Eaton and
Kortum 2007). However, since bilateral trade data are only available at a higher level of aggregation than
the counties we consider in our data, we make some additional parametric assumptions to solve for implied
bilateral trade shares between counties, as discussed below. Throughout this theoretical section, we assume
for simplicity that trade is balanced, so that income equals expenditure. However, when taking the model
to the data, we allow for intertemporal trade deficits that are treated as exogenous in our counterfactuals,
as in Dekle, Eaton and Kortum (2007) and Caliendo and Parro (2015), as discussed further below.

3 Data and Measurement

Our empirical analysis combines data from a number of different sources for the United States. From
the Commodity Flow Survey (CFS), we use data on bilateral trade and distances shipped for 123 CFS
regions. Data on commuting probabilities between counties come from the American Community Survey
(ACS) 2006-10 and U.S. Census 1990. From the Bureau of Economic Analysis (BEA), we use data on
employment and wages by workplace. We combine these data sources with a variety of other Geographical
Information Systems (GIS) data. We use our data on employment and commuting to calculate the implied
number of residents and their average income by county. First, from commuter market clearing (14), we
obtain the number of residents (Rn) using data on the number of workers (Ln) and commuting probabilities
conditional on living in each location (λni|n). Second, we use these conditional commuting probabilities,
together with county wages, to obtain average residential income (v̄n) as defined in equation (15).

3.1 Gravity in Goods Trade

In the Commodity Flow Survey (CFS) data, we observe bilateral trade flows and distances shipped between
123 CFS regions and trade deficits for each these CFS regions.17 To quantify the model at the county level,
we allocate the deficit for each CFS region across the counties within that region according to their shares

17Other recent studies using the CFS data include Caliendo et. al (2014), Duranton, Morrow and Turner (2014) and Dingel
(2015). The CFS is a random sample of plant shipments within the United States (foreign trade shipments are not included).
CFS regions are the smallest geographical units for which this random sample is representative, which precludes constructing
bilateral trade flows between smaller geographical units using the sampled shipments.
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of CFS residential income (as measured by v̄iRi). Using the resulting trade deficits for each county (Di),
we solve the equality between income and expenditure (8) for unobserved county productivities (Ai):

wiLi −
∑
n∈N

Li (dniwi/Ai)
1−σ∑

k∈N Lk (dnkwk/Ak)
1−σ [v̄nRn +Dn] = 0, (17)

where we observe (or have solved for) wages (wi), employment (Li), average residential income (v̄i),
residents (Ri) and trade deficits (Di).

Given the elasticity of substitution (σ), our measures for (wi, Li, v̄i, Ri, Di) and a parameterization of
trade costs (d1−σ

ni ), equation (17) provides a system of N equations that can be solved for a unique vector
of N unobserved productivities (Ai). We prove this formally in the next proposition.

Proposition 3 (Productivity Inversion) Given the elasticity of substitution (σ), our measures of wages,

employment, average residential income, residents and trade deficits {wi, Li, v̄i, Ri, Di}, and a param-

eterization of trade costs (d1−σ
ni ), there exist unique values of the unobserved productivities (Ai) for each

location i that are consistent with the data being an equilibrium of the model.

The resulting solutions for productivities (Ai) capture characteristics (e.g. natural resources) that make
a location more or less attractive for employment conditional on the observed data and the parameterized
values of trade costs. These characteristics include access to international markets. To the extent that
such international market access raises employment (Li), and international trade flows are not captured in
the CFS, this will be reflected in the model in higher productivity (Ai) to rationalize the higher observed
employment.18 Having recovered these unique unobserved productivities (Ai), we can solve for the im-
plied bilateral trade flows between counties (Xni) using equation (7) and Xni = πniv̄nRn. We use these
solutions for bilateral trade between counties in our counterfactuals for changes in the model’s exogenous
variables, as discussed above.

To parameterize trade costs (d1−σ
ni ), we assume a central value for the elasticity of substitution between

varieties from the existing empirical literature of σ = 4, which is in line with the estimates of this parameter
using price and expenditure data in Broda and Weinstein (2006).19 We model bilateral trade costs (dni)
as a function of distance. For bilateral pairs with positive trade, we assume that bilateral trade costs are
a constant elasticity function of distance and a stochastic error (dni = distψniẽni). For bilateral pairs with
zero trade, the model implies prohibitive trade costs (dni → ∞).20 Taking logarithms in the trade share

18We find that measured productivity (Ai) is correlated with observable proxies for productivity, such as access to natural
water. Regressing logAi on a dummy indicating if a county is in the 10% of counties closest to the ocean or a navigable river
we find a positive and statistically significant estimated coefficient (standard error) of 0.21 (0.02) for the ocean and 0.04 (0.02)
for a navigable river. The data on distances are from Rappaport and Sachs (2003).

19This assumed value implies an elasticity of trade with respect to trade costs of −(σ − 1) = 3, which is close to the central
estimate of this parameter of 4.12 in Simonovska and Waugh (2014).

20One interpretation is that trade requires prior investments in transport infrastructure that are not modeled here. For bilateral
pairs for which these investments have been made, trade can occur subject to finite costs. For other bilateral pairs for which
they have not been made, trade is prohibitively costly. We adopt our specification for tractability, but other rationalizations for
zero trade flows include non-CES preferences or granularity.

13



-5
0

5
10

Lo
g 

T
ra

de
 F

lo
w

s 
(R

es
id

ua
ls

)

-8 -6 -4 -2 0 2
Log Distance (Residuals)

Dashed line: linear fit; slope: -1.29

Figure 1: Gravity in Goods Trade Between CFS Regions

(7) for pairs with positive trade, the value of bilateral trade between source i and destination n (Xni) can
be expressed as

logXni = ζn + χi − (σ − 1)ψ log distni + log eni, (18)

where the source fixed effect (χi) controls for employment, wages and productivity (Li, wi, Ai); the
destination fixed effect (ζn) controls for average income, v̄n, residents, Rn, and multilateral resistance (as
captured in the denominator of equation (7)); and log eni = (1− σ) log ẽni.

Estimating the gravity equation (18) for all bilateral pairs with positive trade using OLS, we find a
regression R-squared of 0.83. In Figure 1, we display the conditional relationship between the log value
of trade and log distance, after removing source and destination fixed effects from both log trade and log
distance. Consistent with the existing empirical trade literature, we find that the log linear functional form
provides a good approximation to the data, with a tight and approximately linear relationship between the
two variables. We estimate a coefficient on log distance of − (σ − 1)ψ = −1.29. For our assumed value
of σ = 4, this implies an elasticity of trade costs with respect to distance of ψ = 0.43. The tight linear
relationship in Figure 1, makes us confident in this parametrization of trade costs as d1−σ

ni = dist−1.29
ni as a

way of using equation (17) to solve for unobserved productivities (Ai).
To provide an alternative check on our specification, we aggregate the model’s predictions for trade

between counties within pairs of CFS regions, and compare these predictions to the data in Figure 2. The
only way in which we used the data on trade between CFS regions was to estimate the distance elasticity
− (σ − 1)ψ = −1.29. Given this distance elasticity, we use the goods market clearing condition (17)
to solve for productivities and generate predictions for bilateral trade between counties and hence CFS
regions, as discussed above. Therefore, the model’s predictions and the data can differ from one another.
Nonetheless, we find a strong and approximately log linear relationship between the model’s predictions
and the data, which is tighter for the larger trade values that account for most of aggregate trade.
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Figure 2: Bilateral Trade Shares in the Model and Data

3.2 The Magnitude and Gravity of Commuting Flows

We start by providing evidence on the quantitative relevance of commuting as a source of spatial linkages
between counties and CZ’s. To do so, we use data from the American Community Survey (ACS), which
reports county-to-county worker flows for 2006-2010. To abstract from business trips that are not between
a worker’s usual place of residence and workplace, we define commuting flows as those of less than 120
kilometers in each direction (a round trip of 240 kilometers).21

In Table 1, we report some descriptive statistics for these commuting flows. We find that commut-
ing beyond county boundaries is substantial and varies in importance across locations. For the median
county, around 27 percent of its residents work outside the county (first row, fifth column) and around
20 percent of its workers live outside the county (second row, fifth column). For the county at the 90th
percentile, these two figures rise to 53 and 37 percent respectively (seventh column, first and second rows
respectively). Consequently, we find substantial dispersion across counties in the ratio of employment to
residents (Li/Ri), which captures the extent to which a county is an importer of commuters (Li/Ri < 1)
or an exporter of commuters (Li/Ri > 1). This ratio ranges from 0.67 at the 10th percentile to 1.11 at the
90th percentile (third row, columns three and seven respectively). In Subsection C.1 of the web appendix,
we show that this commuting measure is not only heterogeneous across counties, but is also hard to explain
with standard empirical controls, such as land area, size or supply elasticities for developed land.

One might think that using commuting zones (CZs) circumvents the need to incorporate commuting
into the analysis, since the boundaries of these areas are drawn to minimize commuting flows. Neverthe-
less, we find that CZ’s provide an imperfect measure of local labor markets, with substantial commuting

21The majority of commutes are less than 45 minutes in each direction (Duranton and Turner 2011). In our analysis, we
measure distance between counties’ centroids. We choose the 120 kilometers threshold based on a change in slope of the
relationship between log commuters and log distance at this distance threshold. See the web appendix for further discussion.
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Min p5 p10 p25 p50 p75 p90 p95 Max Mean

Commuters from Residence 0.00 0.03 0.06 0.14 0.27 0.42 0.53 0.59 0.82 0.29
Commuters to Workplace 0.00 0.03 0.07 0.14 0.20 0.28 0.37 0.43 0.81 0.22
Employment/Residents 0.26 0.60 0.67 0.79 0.92 1.02 1.11 1.18 3.88 0.91

Outside CZ — Total (Res) 0.00 0.02 0.04 0.14 0.33 0.58 0.79 0.89 1.00 0.37
Outside CZ — Total (Work) 0.00 0.03 0.08 0.19 0.37 0.55 0.73 0.82 1.00 0.39
CZ Employment/Residents 0.63 0.87 0.91 0.97 1.00 1.01 1.03 1.04 1.12 0.98

Tabulations on 3,111 counties and 709 commuting zones. The first row shows the fraction of residents that work outside the
county. The second row shows the fraction of workers who live outside the county. The third row shows the ratio of county
employment to county residents. The forth row shows the fraction of residents that work outside the county who also work
outside the county’s CZ. The fifth row shows the fraction of workers that live outside the county who also live outside the
county’s CZ. The sixth row shows the ratio of CZ employment to CZ residents across all 709 CZ. p5, p10 etc refer to the 5th,
10th etc percentiles of the distribution.

Table 1: Commuting Across Counties and Commuting Zones

beyond CZ boundaries that again varies in importance across locations. For the median county, around 33
percent of the workers who commute outside their county of residence also commute outside their CZ of
residence (fourth row, fifth column), while around 37 percent of the workers who commute outside their
county of workplace also commute outside their CZ of workplace (fifth row, fifth column). For the CZ at
the 90th percentile, these two figures rise to 79 and 73 percent respectively (seventh column). Although
the ratio of employment to residents (L/R) by construction varies less across CZs than across counties, we
still find substantial variation from 0.63 to 1.12, which we show below is sufficient to generate substantial
heterogeneity in local employment elasticities.

To provide further evidence on commuting that is independent of our model, we decompose changes in
employment in each county over the period 1990-2010 into the percentage contributions of migration and
commuting (as shown in Subsection C.2 of the web appendix). For the median county, around 39 percent
of the observed changes in employment are due to changes in commuting patterns, with this percentage
varying substantially across counties from close to zero to close to one. For more than one third of counties,
the contribution from commuting is larger than that from migration. Therefore these results confirm the
quantitative importance of commuting in accounting for observed changes in employment over time.

Using land market clearing (5) and the price index (9), the gravity equation for the commuting proba-
bility (11) in the model can be written as

λni −
Bni
(
Ln
πnn

)− αε
σ−1

Aαεn w
−αε
n v̄

−ε(1−α)
n

(
Rn
Hn

)−ε(1−α)

wεi∑
r∈N

∑
s∈N Brs

(
Lr
πrr

)− αε
σ−1

Aαεr w
−αε
r v̄

−ε(1−α)
r

(
Rr
Hr

)−ε(1−α)

wεs

= 0, (19)

where Bni ≡ Bniκ
−ε
ni is a composite parameter that captures the ease of commuting. The commuting

probabilities (19) provide a system of N ×N equations that can be solved for a unique matrix of N ×N
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values of the ease of commuting (Bni). The next proposition shows this formally.

Proposition 4 (Amenities Inversion) Given the share of consumption goods in expenditure (α), the het-

erogeneity in location preferences (ε), the observed data on wages, employment, trade shares, average

residential income, residents and land area {wi, Li, πii, v̄i, Ri, Hi}, there exist unique values of the ease

of commuting (Bni ≡ Bniκ
−ε
ni ) for each pair of locations n and i that are consistent with the data being an

equilibrium of the model.

The resulting solutions for the ease of commuting (Bni) capture all factors that make a pair of res-
idence and workplace locations more or less attractive conditional on the observed wages, employment,
trade shares, average residential income, residents and land area (e.g. attractive scenery, distance and trans-
port infrastructure). Together productivity (Ai) and the ease of commuting (Bni) correspond to structural
residuals that ensure that the model exactly replicates the observed data given the parameters.

To estimate the heterogeneity in location preferences (ε), we model the determinants of the bilateral
ease of commuting. For bilateral pairs with positive commuting flows, we partition the ease of commuting
(Bni) into four components: (i) a residence component (Bn), (ii) a workplace component (Bi), (iii) a
component that is related to distance (dist−φni ), and (iv) an orthogonal component (Bni)

logBni ≡ log(Bniκ
−ε
ni ) = logBn + logBi − φ log (distni) + logBni. (20)

We can always undertake this statistical decomposition of the ease of commuting (logBni), where the
error term (logBni) is orthogonal to distance by construction, because the reduced-form coefficient on
log distance (−φ) captures any correlation of either log bilateral amenities (logBni) and/or log bilateral
commuting costs (log(κ−εni )) with log distance. For bilateral pairs with zero commuting, the model implies
negligible amenities (Bni → 0) and/or prohibitive commuting costs (κni →∞).22

In the first step of our gravity equation estimation, we use this decomposition (20) and our expression
for commuting flows (11) to estimate the reduced-form distance coefficient (−φ):

log λni = g0 + ηn + µi − φ log distni + logBni, (21)

where the residence fixed effect (ηn) captures the consumption goods price index (Pn), the price of resi-
dential land (Qn), and the residence component of the ease of commuting (Bn); the workplace fixed effect
(µi) captures the wage (wi) and the workplace component of the ease of commuting (Bi); the constant
g0 captures the denominator of λni and is separately identified because we normalize the residence and
workplace fixed effects to sum to zero; and the error term (logBni) is orthogonal to log distance, because
all effects of log distance on the composite ease of commuting are captured in the reduced-form distance
coefficient (−φ).23

22As for goods trade above, one interpretation is that commuting requires prior investments in transport infrastructure that
are not modeled here. We adopt our specification for tractability, but other explanations for zero commuting flows include a
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Figure 3: Gravity in Commuting Between Counties

Estimating the gravity equation (21) for all bilateral pairs with positive commuters using OLS, we find
a regression R-squared of 0.80. In Figure 3, we display the conditional relationship between log com-
muters and log distance, after removing residence and workplace fixed effects from both log commuters
and log distance. Consistent with the existing empirical literature on commuting, we find that the log
linear functional form provides a good approximation to the data, with a tight and approximately linear
relationship between the two variables, and an estimated coefficient on log distance of −φ = −4.43.
This estimated coefficient is substantially larger than the corresponding coefficient for trade in goods of
− (σ − 1)ψ = −1.29, which is consistent with the view that transporting people is considerably more
costly than transporting goods, in line with the substantial opportunity cost of time spent commuting.

To identify the Fréchet shape parameter (ε), the second step of our gravity equation estimation uses
additional structure from the model, which implies that the workplace fixed effects µi depend on wages
(wi) and the workplace component of the ease of commuting (Bi):

log λni = g0 + ηn + ε logwi − φ log distni + log uni, (22)

where the error term is given by log uni ≡ logBi + logBni.
We estimate the gravity equation (22) imposing φ = 4.43 from our estimates above and identify ε

from the coefficient on wages. Estimating (22) using OLS is potentially problematic, because workplace
wages (wi) depend on the supply of commuters, which in turn depends on amenities that appear in the
error term (log uni). Therefore we instrument logwi with the log productivities logAi that we recovered
from the condition (17) equating income and expenditure above, using the fact that the model implies that

support for the distribution of idiosyncratic preferences that is bounded from above or granularity.
23In Subsection B.10 of the web appendix, we generalize this specification to introduce congestion that is a power function of

the volume of commuters. We show that this generalization affects the interpretation of the estimated coefficients in the gravity
equation, but leaves the model’s prediction of heterogeneous local employment elasticities unchanged.
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productivity satisfies the exclusion restriction of only affecting commuting flows through wages. Our Two-
Stage-Least-Squares estimate of the Fréchet shape parameter for the heterogeneity of worker preferences
is ε = 3.30.24 The tight fit shown in Figure 3 makes us confident that our parametrization of the composite
ease of commuting in terms of distance fits the data quite well.

For the one remaining parameter of the model, the share of housing in consumer expenditure, we as-
sume a central value from Bureau of Economic Analysis of 1−α = 0.40 percent.25 Using our assumption
of Cobb-Douglas utility and our interpretation of land as geographical land area, in Subsection C.3 of the
web appendix, we show that the model’s predictions for land prices are strongly positively correlated with
observed county median housing values. In the next section, we also relax these assumptions to introduce
a positive supply elasticity for developed land.

4 Local Employment Elasticities

Having quantified the model, we now explore its implications for local employment elasticities. In Sub-
section 4.1, we undertake counterfactuals to evaluate the elasticity of local employment in each county
with respect to a local labor demand shock (a productivity shock in the model). We find that the model
predicts substantial heterogeneity in this elasticity across counties. In Subsection 4.2, we show that this
heterogeneity is not well explained by standard empirical controls, but is well explained by measures of
connections to other counties in commuting networks. In Subsection 4.3, we show that these results are
robust to introducing heterogeneity in the supply of developed land across locations. In Subsection 4.4,
we demonstrate that these heterogeneous local employment elasticities correspond to heterogeneous treat-
ment effects in reduced-form regressions for the impact of local labor demand shocks. In Subsection 4.5,
we provide independent evidence in support of these predictions of the model using the natural experiment
of million dollar plants (MDPs), as examined in GHM (2010). We find heterogeneous treatment effects
that take exactly the form implied by the model, such that the opening of MDPs has larger effects on
employment in counties more open to commuting.

24We find that the Two-Stage-Least-Squares estimates are larger than the OLS estimates, consistent with the idea that bilateral
commutes with attractive amenities have a higher supply of commuters and hence lower wages. The first-stage F-Statistic for
productivity is 228.1, confirming that productivity is a powerful instrument for wages. Note that one could have estimated jointly
φ and ε from the restricted equation (22) directly. Our approach, however, imposes only the minimal set of necessary restrictions
at every step: we estimate a flexible gravity structure to identify φ in (21), and a slightly less general specification (where
workplace fixed effects are restricted to capture only variation in workplace wages) to identify ε. Estimating the restricted
equation (22) directly would yield very similar results: we find ε = 3.19 and φ = 4.09.

25Using these assumed parameter values, we correlate our measures of residential amenities with observable proxies for this
variable. We regress the solutions for the bilateral ease of commuting (Bni) from equation (19) on residence and workplace
fixed effects and bilateral distance. We use the residence fixed effect as our measure of residential amenities. Regressing this
measure on violent crimes per resident, we find a negative and statistically significant coefficient (standard error) of -0.48 (0.10).
Crime data is from the U.S. Department of Justice (2007).
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Figure 4: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across counties

4.1 Heterogeneity in Local Employment Elasticities

To provide evidence on local employment elasticities, we compute 3,111 counterfactual exercises where
we shock each county with a 5 percent productivity shock (holding productivity in all other counties and
holding all other exogenous variables constant).26 Figure 4 shows the estimated kernel density for the
distribution of the general equilibrium elasticity of employment with respect to the productivity shock
across these treated counties (solid blue line). We also show the 95 percent confidence intervals around
this estimated kernel density (gray shading). The mean estimated local employment elasticity of around
1.52 is greater than one because of home market effects and commuting. Around this mean, we find
substantial heterogeneity in the predicted effects of the productivity shock, which vary from close to 0.5
to almost 2.5. This variation is surprisingly large. It implies that taking a local employment elasticity
estimated for one group of counties and applying that elasticity to another group of counties can lead to
substantial discrepancies between the true and predicted impacts of a productivity shock.

To provide a point of comparison, Figure 4 also includes the general equilibrium elasticity of residents
in a county with respect to the same 5 percent productivity shock in that county (again holding other pa-
rameters constant). Again we show the estimated kernel density across the 3,111 treated counties (dashed
red line) and the 95 percent confidence intervals (gray shading). We find substantial differences between
the employment and residents elasticities, with the residents elasticity having less dispersion and ranging
from around 0.2 to 1.2. Since employment and residents can only differ through commuting, this by itself

26We have experimented with shocks of 1% and 10% as well, with essentially unchanged results.
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suggests that the heterogeneity in the local employment elasticity is largely driven by commuting links
between counties. In Section C.8 of the web appendix, we provide further evidence that this is indeed the
case by simulating productivity shocks in a counterfactual world without commuting between counties.
Even in such a counterfactual world, we expect local employment elasticities to be heterogeneous, because
counties differ substantially in terms of their initial shares of US employment. However, we find substan-
tially less heterogeneity in local employment elasticities in this counterfactual world than in the actual
world with commuting. In fact, the resulting distribution of employment (and residential) elasticities is
similar to the one for residential elasticities in Figure 4.

In Subsection C.6 of the web appendix, we show that this heterogeneity in local employment elastic-
ities remains if we shock counties with patterns of spatially correlated shocks reproducing the industrial
composition of the U.S. economy. In Subsection C.10 of the web appendix, we find a similar pattern of
results if we replicate our entire quantitative analysis for CZs rather than counties. Both sets of results
are consistent with the fact that heterogeneous local employment elasticities are a generic prediction of a
gravity equation for commuting (as shown in Subsection B.8 of the web appendix). Although CZ bound-
aries are drawn to minimize commuting, they inevitably cannot perfectly capture the rich geography of
commuting flows implied by the gravity equation.

4.2 Explaining the Heterogeneity in Local Employment Elasticities

We now use the model to provide intuition on the determinants of the general equilibrium local employ-
ment elasticities, dLi

dAi

Ai
Li

. We also use the structure of the model to determine a set of variables that can
be used empirically to account for the estimated heterogeneity in the distribution of local employment
elasticities. To do so, we compute partial equilibrium elasticities of own wages and own employment
with respect to the productivity shock. These partial equilibrium elasticities capture the direct effect of a
productivity shock on wages, employment and residents in the treated location, holding constant all other
endogenous variables at their values in the initial equilibrium.27 Hence, although potentially useful to pro-
vide intuition, or as empirical controls, they do not account for all the rich set of interactions in the model
captured by the general equilibrium elasticities presented in Figure 4.

If we hold constant all variables except for wi, Li, and Ri in the treated county i, the partial elasticity
of employment with respect to the productivity shock is the product of the partial elasticity of employment
with respect to wages and the partial elasticity of wages with respect to the productivity shock28

∂Li
∂Ai

Ai
Li

=
∂Li
∂wi

wi
Li
· ∂wi
∂Ai

Ai
wi
. (23)

From the equality between income and expenditure (8), the partial elasticity of wages with respect to the

27See Section B.7 in the web appendix for the derivation of these partial equilibrium elasticities.
28Note that we use the partial derivative symbol, ∂Li

∂Ai

Ai

Li
, to denote the partial equilibrium elasticity when we allow wi, Li

,
and Ri to change but keep other variables in all other counties fixed.
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productivity shock is given by

∂wi
∂Ai

Ai
wi

=
(σ − 1)

∑
n∈N (1− πni) ξni[

1 + (σ − 1)
∑

n∈N (1− πni) ξni
]

+
[
1−

∑
n∈N (1− πni) ξni

]
∂Li
∂wi

wi
Li
− ξii ∂Ri∂wi

wi
Ri

. (24)

where ξni = πniαv̄nRn/wiLi is the share of location i’s revenue from market n.
The intuition for the response of wages to the productivity shock can be seen most clearly for the case

when ∂Li
∂wi

wi
Li
≈ 0 and ∂Ri

∂wi

wi
Ri
≈ 0. From the terms in (σ − 1)

∑
n∈N (1− πni) ξni, the elasticity of wages

with respect to productivity is high when location i accounts for a small share of expenditure (small πni) in
markets n that account for a large share of its revenue (high ξni). In these circumstances, the productivity
shock reduces the prices of location i’s goods and results in only a small reduction in the goods price
indices (small πni) in its main markets (high ξni).29 Therefore the productivity shock leads to a large
increase in the demand for location i’s goods and hence in its wages. Thus

∑
n∈N (1− πni) ξni provides a

measure of location i’s linkages to other locations in goods markets.
From the commuter market clearing condition (14), the partial elasticity of employment with respect

to wages is
∂Li
∂wi

wi
Li

= ε
∑
n∈N

(
1− λni|n

)
ϑni+ϑii

(
∂Ri

∂wi

wi
Ri

)
, (25)

where ϑni = λni|nRn/Li is the share of commuters from residence n in workplace i’s employment.
The intuition for the response of employment to wages can be seen most clearly for the case when

∂Ri
∂wi

wi
Ri
≈ 0. From the term in ε

∑
n∈N

(
1− λni|n

)
ϑni, the elasticity of employment with respect to wages

is high when workplace i employs a small share of commuters (small λni|n) from residences n that supply
a large fraction of its employment (high ϑni). In these circumstances, location i’s wage increase makes it
a more attractive workplace and results in only a small increase in commuter market access (small λni|n)
in its main sources of commuters (high ϑni).30 Therefore the increase in wages leads to a large increase in
commuters to workplace i and hence in its employment. Thus

∑
n∈N

(
1− λni|n

)
ϑni provides a measure

of workplace i’s linkages to other locations through commuting. In Subsection B.8 of the web appendix,
we show that this partial elasticity takes the same form in the class of theoretical models consistent with a
gravity equation for commuting flows.

Using (12), the partial elasticity of residents with respect to wages is

∂Ri

∂wi

wi
Ri

= ε

(
λii
λRi
− λLi

)
, (26)

which also has an intuitive interpretation. A higher wage in location imakes it a more attractive workplace
and increases its employment. Whether this increase in location i’s employment leads to an increase in its

29These price indices summarize the price of competing varieties in each market. Note that the elasticity of the price index
(9) in location n with respect to wages in location i is (∂Pn/∂wi) (wi/Pn) = πni.

30Commuter market access appears in the numerator of the residential choice probabilities (λRn in (12)) and summarizes
access to employment opportunities: Wn =

[∑
s∈N Bns (ws/κns)

ε]1/ε. Note that the elasticity of commuter market access in
location n with respect to wages in location i is (∂Wn/∂wi) (wi/Wn) = λni|n.
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share of residents depends on the fraction of residents who work locally (λii/λRi) relative to location i’s
overall share of employment (λLi). Thus (λii/λRi − λLi) provides a measure of location i’s linkages to
other locations through migration.

Combining the three elasticities in equations (24), (25), and (26), we obtain closed-form solutions for
the partial equilibrium elasticities of wages, employment and residents to a productivity shock. These par-
tial equilibrium elasticities depend solely on the observed values of variables in the initial equilibrium: res-
idential employment shares (λRi), conditional commuting probabilities (λni|n), employment shares (ϑni),
trade shares (πni) and revenue shares (ξni).

When we undertake our counterfactuals, we solve for the full general equilibrium effect of the pro-
ductivity shock to each county. But these partial equilibrium elasticities in terms of observed variables
have substantial explanatory power in predicting the impact of the productivity shock across locations, as
now shown in Table 2. In Column (1) we regress our general equilibrium elasticities on a constant, which
captures the mean employment elasticity across the 3,111 treated counties. In Columns (2) through (4) we
attempt to explain the heterogeneity in local employment elasticities using standard county controls. In
Column (2) we include log county employment as a control for the size of economic activity in a county.
In Column (3) we also include log county wages and log county land area. In Column (4) we also include
the average wage and total employment in neighboring counties. Although these controls are all typically
statistically significant, we find that they are not particularly successful in explaining the variation in em-
ployment elasticities. Adding a constant and all these controls yields an R-squared of only about 0.5 in
Column (4). Clearly, there is substantial variation not captured by these controls.

In the remaining columns of the table we attempt to explain the heterogeneity in local employment
elasticities using the partial equilibrium elasticities derived above. In Column (5) we first use the intuition
(obtained by comparing the distributions in Figure 4) that commuting is important. As a summary statistic
of the lack of commuting links of a county we use λii|i, namely, the share of workers that work in i

conditional on living in i. The weaker the commuting links of a county, the higher λii|i, which reduces
the local employment elasticity of that county. This is exactly what we find in Column (5). Furthermore,
this variable alone yields an R-squared of 0.89, nearly double the R-squared in the regression where we
include all the standard controls.31 Therefore, although the model incorporates several forms of spatial
linkages (including trade and migration), we find that the heterogeneity in local employment elasticities is
mainly explained by commuting linkages, which is consistent with our gravity equation estimates, where
commuting is substantially more local (higher distance coefficient) than goods trade.32

The partial equilibrium local elasticities computed above allow us to do better than just adding a
summary measure of commuting links as the explanatory variable. In Column (6) we relate the vari-

31To provide further evidence on the magnitude of these effects, Table C.3 in Section C.4 of the web appendix reports the
same regressions as in Table 2 but using standardized coefficients. We find that a one standard deviation change in the own
commuting share (λii|i) leads to around a one standard deviation change in the local employment elasticity.

32In Subsection B.8 of the web appendix, we report kernel density estimates for the distribution of the partial equilibrium
measure of commuting linkages

∑
n∈N

(
1− λni|n

)
ϑni that is a generic prediction of any commuting gravity equation. We

show a similar distribution of heterogeneous local employment elasticities to that in Figure 4 above, again confirming that this
heterogeneity is driven by commuting linkages.
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ation in local employment elasticities to the measure of commuting linkages suggested by the model,∑
n∈N

(
1− λni|n

)
ϑni. We also add the measures of migration and trade linkages suggested by the model,

(λii/λRi − λLi) and ∂wi
∂Ai

Ai
wi

. Including these partial equilibrium measures of linkages further increases the
R-squared to around 93 percent of the variation in the general equilibrium elasticity. Counties that account
for a small share of commuters (small λni|n) from their main suppliers of commuters (high ϑni) have higher
employment elasticities. In Column (7), we use the product of ∂wi

∂Ai

Ai
wi

and the first two terms rather than
each term separately. This restriction yields similar results and confirms the importance of commuting
linkages and, to a lesser extent, the interaction between migration and goods linkages. Finally, in the last
two columns we combine these partial equilibrium elasticities with the standard controls we used in the
first four columns. Clearly, although all variables are significant, these standard controls add little once we
control for the partial equilibrium elasticities.

In sum, Table 2 shows that the heterogeneity in partial equilibrium elasticities is not well explained by
standard county controls. In contrast, adding a summary statistic of commuting, or the partial equilibrium
elasticities we propose above, can go a long way in explaining this heterogeneity.

4.3 Positive Developed Land Supply Elasticities

In the baseline version of the model, we interpret the non-traded amenity as simply land, which is in
perfectly inelastic supply. In this section, we develop an extension of the model, in which we interpret the
non-traded amenity as “developed” land and allow for a positive developed land supply elasticity that can
differ across locations.

We continue to assume the same specification of preferences, production and commuting decisions as
in Section 2 above. We introduce a positive developed land supply elasticity by following Saiz (2010) in
assuming that the supply of land (Hn) for each residence n depends on the endogenous price of land (Qn)
as well as on the exogenous characteristics of locations (H̄n):

Hn = H̄nQ
ηn
n , (27)

where ηn ≥ 0 is the developed land supply elasticity, which we allow to vary across locations; ηn = 0

is our baseline specification of a perfectly inelastic land supply; and ηn → ∞ is the special case of a
perfectly elastic land supply.

Introducing a positive and heterogeneous developed land supply elasticity only affects one of the con-
ditions for general equilibrium in the model, namely the land market clearing condition. Using the supply
function for land (27) in the land market clearing condition (5), we obtain the following generalization of
our earlier expression for the equilibrium price of land (Qn):

Qn =

(
(1− α)

v̄nRn

H̄n

) 1
1+ηn

, (28)

where our baseline specification corresponds to the special case in which η = 0. Therefore, when under-
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1 2 3 4 5 6 7 8 9

Dependent Variable: Elasticity of Employment

logLi -0.003 0.009* -0.054** 0.037** 0.033**
(0.005) (0.004) (0.005) (0.002) (0.002)

logwi -0.201** -0.158** -0.257** -0.263**
(0.028) (0.027) (0.009) (0.009)

logHi -0.288** -0.172** 0.003 0.009**
(0.006) (0.009) (0.003) (0.003)

logL,−i 0.118** -0.027** -0.027**
(0.007) (0.003) (0.003)

log w̄−i 0.204** 0.163** 0.207**
(0.047) (0.015) (0.015)

λii|i -2.047**
(0.013)∑

n∈N
(
1− λni|n

)
ϑni 2.784** 2.559**

(0.092) (0.098)

ϑii

(
λii

λRi
− λLi

)
0.915** 0.605**
(0.090) (0.096)

∂wi

∂Ai

Ai

wi
-1.009** -0.825**
(0.046) (0.053)

∂wi

∂Ai

Ai

wi
·
∑
r∈N

(
1− λrn|r

)
ϑrn 1.038** 1.100**

(0.036) (0.048)
∂wi

∂Ai

Ai

wi
· ϑii

(
λii

λRi
− λLi

)
-0.818** -0.849**
(0.036) (0.047)

constant 1.515** 1.545** 5.683** 1.245** 2.976** 0.840** 1.553** 1.861** 2.064**
(0.007) (0.044) (0.275) (0.437) (0.009) (0.084) (0.035) (0.171) (0.152)

R2 0.00 0.00 0.40 0.51 0.89 0.93 0.93 0.95 0.95
N 3,111 3,111 3,111 3,081 3,111 3,111 3,111 3,081 3,081

In this table, L,−i ≡
∑
n:dni≤120,n6=i Ln is the total employment in i neighbors whose centroid is no more than 120km away;

w̄−i ≡
∑
n:dni≤120,n6=i

Ln

L,−i
wn is the weigthed average of their workplace wage. * p < 0.05; ** p < 0.01.

Table 2: Explaining the general equilibrium local employment elasticities to a 5 percent productivity shock

taking counterfactuals in this extension of the model, we replace the land market clearing condition (5)
from Section 2 above with the modified land market clearing condition (28) in the system of equations for
the counterfactual equilibrium.

We use the empirical estimates of developed land supply elasticities from Saiz (2010), which are based
on physical and regulatory constraints to the geographical expansion of developed land area. Physical
constraints are measured using Geographical Information Systems (GIS) data on the location of bodies of
water (oceans and lakes) and wetlands and the elevation of terrain (the fraction of surrounding land that
has a slope above 15 percent). Regulatory constraints are measured using the Wharton Residential Urban
Land Regulation Index, which captures the stringency of residential growth controls. Using these data,
Saiz (2010) estimates developed land supply elasticities for 95 Metropolitan Statistical Areas (MSAs) in
the United States. The population-weighted average of these land supply elasticities is 1.75, and they
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range from 0.76 for the 10th ranked MSA (San Jose, CA) to 3.09 for the 85th ranked MSA (Charlotte-
Gastonia-Rock Hill, NC-SC).

To incorporate these estimates into our quantitative analysis, we need to map these MSA-level esti-
mates to our county-level data. Therefore we need to decide how to treat counties within multi-county
MSAs and what to assume about counties that are not part of MSAs. We start by using the estimated
Saiz elasticities where we have them (assuming the same elasticity for all counties within an MSA) and
retaining our baseline specification of a zero elasticity for all other counties. One limitation of this speci-
fication is that the Saiz estimates are based on the expansion of the geographical boundaries of developed
land for the MSA as a whole. However, in MSAs that consist of multiple counties, central counties that
are surrounded by other already-developed counties cannot expand this geographical frontier. Another
limitation is that counties outside MSAs typically can expand this geographical frontier. To address these
limitations, in Subsection C.7 of the web appendix we consider a second specification in which we assume
a land supply elasticity of zero for central counties within multi-county MSAs, the Saiz estimate for other
counties in these MSA’s and for single-county MSAs, and the median Saiz estimate across MSAs of 1.67
for all other counties. In further robustness checks, we considered variations in these assumptions, and
found the same pattern of heterogeneous local employment elasticities in each of these variations.33
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Note: For counties in the 95 MSAs for which Saiz (2010) estimates a housing supply elasticity, we use the elasticity estimated
by Saiz. For counties outside the 95 MSAs, we use an elasticity of zero as in our benchmark case.

Figure 5: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across counties (Positive housing supply elasticity)

33For example, we modified the second specification by assuming that central counties in multi-county MSAs have the
minimum housing supply elasticity across MSAs (0.6), and again found the same pattern of results.
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For each of these two specifications, we replicate our 3,111 counterfactual exercises where we shock
each county with a 5 percent productivity shock (holding productivity in all other counties and holding all
other exogenous variables constant). Figure 5 displays the results, and is analogous to Figure 4 in the paper.
The figure shows the estimated kernel density for the distribution of the general equilibrium elasticity of
both employment (blue solid line) and residents (red dashed line) with respect to the productivity shock
across the treated counties. We also show the 95 percent confidence intervals around these estimated
kernel densities (gray shading). Consistent with the results for our baseline specification, we continue to
find substantial heterogeneity in local employment elasticities, confirming the robustness of our findings
to allowing for a variable developed land supply elasticity. Relative to our baseline specification, both the
employment and resident elasticities are somewhat larger in magnitude, as the elastic land supply dampens
the congestion effect from increased residents, and allows both employment and residents to increase
more than with a perfectly inelastic land supply. Compared with our baseline specification, we find more
heterogeneity in the resident elasticity. This pattern of results is also intuitive. Our baseline specification
focuses on one source of heterogeneity (commuting), which mainly affects local employment elasticities.
In this robustness test, we introduce a second source of heterogeneity (through variable developed land
supply elasticities), which mainly affects local resident elasticities (via residential land use). Therefore
the main consequence of adding this second source of heterogeneity is to generate greater dispersion
in residential elasticities. Nevertheless, the dispersion in employment elasticities remains of around the
same magnitude as in our baseline specification. Furthermore, we continue to find substantial differences
between the elasticities for residents and employment, where the only way that these two elasticities can
differ from one another is through commuting.

4.4 Measuring the Incidence of Local Labor Demand Shocks

A large empirical literature is concerned with estimating the elasticity of local employment with respect
to local labor demand shocks. The central specification in this empirical literature is a “differences-in-
differences” specification across locations i and time t given by

∆ lnYit = a0 + a1Iit + a2Xit + uit, (29)

where Yit is the outcome of interest (e.g. employment by workplace); Iit is a measure of the local demand
shock (treatment); Xit are controls; and uit is a stochastic error. The coefficient on the treatment a1

corresponds to the log change in the outcome of interest with respect to the local labor demand shock.
This specification has a differences-in-differences interpretation, because the first difference is over time
(before and after the shock), and the second difference is between treated and control counties.

We now compare the general equilibrium elasticities of employment with respect to the productivity
shock in the model to the results of this type of reduced-form “differences-in-differences” estimates of the
local average treatment effects of the productivity shock. In particular, we construct a regression sample
including both treated and untreated counties from our 3,111 counterfactuals in which we shock each
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county in turn with a 5 percent productivity shock (3, 1112 = 9, 678, 321 observations). We use these data
to estimate a “differences-in-differences” specification of a similar form to (29):

∆ lnYit = a0 + a1Iit + a2Xit + a3 (Iit ×Xit) + uit,

where i denotes the 3,111 counties and t indexes the 3,111 counterfactuals; ∆ lnYit is the change in log
employment between the counterfactual and actual equilibria; Iit is a (0,1) indicator for whether a county
is treated with a productivity shock; and Xit are controls. We again consider two sets of controls (Xit):
the model-suggested measures of linkages in goods and factor markets and more standard econometric
controls (log employment, log wages and land area). We include both the main effects of these controls
(captured by a2) and their interactions with the treatment indicator to capture heterogeneity in the treatment
effects (captured by a3).

A key difference between this regression specification and the above results for the general equilibrium
elasticities for the treated counties is that this regression specification differences relative to the untreated
counties. The empirical literature has argued for the need to difference relative to untreated counties given
the likely presence of other shocks or events, beyond the treatment, that can affect the treated counties
simultaneously and can confound the true treatment effect. Of course, our synthetic dataset was generated
without including any of these alternative shocks and so differencing is not needed in order to calculate
the correct treatment effects.

In a specification without the controls (a2 = a3 = 0), the average effect of the productivity shock on
the untreated counties is captured in the regression constant (a0), and the local average treatment effect (a1)
corresponds to the difference in means between the treated and untreated counties. We compare estimating
this regression specification including (i) a random untreated county in the control group, (ii) only the
nearest untreated county in the control group, (iii) only neighboring counties within 120 kilometers of the
treated county in the control group, (iv) only non-neighboring counties located from 120-240 kilometers
from the treated county, and (v) all untreated counties in the control group.

We compare the predicted treatment effect from the “differences-in-differences” specification to the
general equilibrium employment elasticity in the model by computing the following deviation term for the
treated county:

βi =
a1 + a3Xit

0.05
− dLi
dAi

Ai
Li
, (30)

which corresponds to the difference between the predicted treatment effect, scaled by the size of the
productivity shock, and the general equilibrium employment elasticity in the model. In Figure 6 we show
kernel densities of the distribution of this deviation term across the 3,111 counterfactuals for productivity
shocks to each county. We show the deviation term using model-suggested controls (solid lines) and
reduced-form controls (dashed lines). We display these results for each of the alternative control groups
considered above ((i) to (v)).
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Figure 6: Distribution of the deviation term βi across counties i, for different estimations

As shown in the figure, none of the “differences-in-differences” specifications completely captures
the general equilibrium employment elasticity, as reflected in the substantial mass away from zero in
these distributions. However, taking into account commuting linkages with the model-suggested controls
substantially increases the predictive power of the “differences-in-differences” specification, as shown
by substantial reduction in the mass away from zero using model-suggested rather than reduced-form
controls. In general, we find similar results across the different control groups, with the results using
random counties ((i) above) and non-neighbors ((iv) above) visually indistinguishable in the right-hand
panel. However, we find a substantially larger deviation term using the nearest county as a control, because
employment in the nearest untreated county is typically negatively affected by the increase in productivity
in the treated county. While the use of contiguous locations as controls is often motivated based on similar
unobservables (as in regression discontinuity designs), this pattern of results highlights that contiguous
locations are also likely to be the most severely affected by spatial equilibrium linkages in goods and
factor markets.

In Subsection C.5 of the web appendix, we provide further evidence that the model-suggested controls
are more successful in explaining the heterogeneity in treatment effects than the standard controls. In
Subsection C.6 of the web appendix, we show that we find a similar pattern of results if we use spatially
correlated shocks reproducing the industrial composition of the U.S. economy, and in Subsection C.10 of
the web appendix, we show that we obtain the same pattern of findings if we replicate our entire quan-
titative analysis using CZs rather than counties. Therefore, while capturing the full general equilibrium
effects of the productivity shocks requires solving the model-based counterfactuals, we find that augment-
ing “difference-in-difference” regressions with measures of commuting linkages substantially improves
their ability to predict the heterogeneity in the estimated treatment effects.
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4.5 Million Dollar Plants Natural Experiment

Having established the heterogeneity of local employment elasticities in our quantitative model, due to
differences in commuting linkages across counties, we now use evidence from a natural experiment to
provide independent verification of this prediction in the data. In particular, we use the natural experiment
of million dollar plants (MDP) from GHM (2010), one of the most influential papers in the local labor mar-
kets literature. The identification strategy compares employment in “winning” and “runner-up” counties
before and after the opening of a MDP. As the runner-up counties are those that survived a long selection
process, but narrowly lost the competition to winning counties, one would expect the two groups to have
similar initial characteristics. Consistent with this, GHM show that winning and runner-up counties are
similar along a range of observables before a MDP opening. In contrast, GHM show that the two groups
exhibit sharply different trajectories following a MDP opening: winning counties experience larger plant-
level increases in total factor productivity (TFP), and have larger county-level increases in the number of
manufacturing plants and total manufacturing employment and output.

For our empirical analysis, we start with a list of 82 MDP announcements (“cases”) containing winner
and runner-up counties from the corporate real estate journal Site Selection, as reported in Greenstone and
Moretti (2004). Only a subset of 47 of these MDP announcements could be located in confidential census
data by GHM (2010), in part because not all of the announced plants were necessarily ultimately opened.
To be conservative (and because the census data are confidential), we use the full list of 82 announcements,
where the fact that some of these plants may not have actually opened (or may have opened some time after
the announcement date) will make it harder for us to find discernible effects. We begin by estimating the
average treatment effect of a MDP announcement. Consistent with the reduced-form specification from
the previous subsection, we estimate a “differences-in-differences” regression, where the first difference is
before and after the announcement, and the second difference is between winning and runner-up counties.
For each year τ > 0 after the announcement of a MDP, we difference log county employment relative to
its value in the year of the announcement (τ = 0) and estimate a specification given by

∆ lnYikτ = ατ Iikτ + µkτ + uikτ (31)

where i again indexes counties and k denotes cases (instances of winner and runner-up counties); we
estimate this regression separately for each year τ > 0; ∆ lnYikτ is the change in log employment between
the announcement and year τ ; the first differencing over time has eliminated any county fixed effect in the
level of log employment; Iikτ is a treatment indicator that equals one if a county i for case k has an
announced MDP in year τ and zero otherwise; µkτ is a case fixed effect that captures average employment
growth up to year τ for both the winner and runner-up counties in case k; ατ is the key coefficient of
interest and corresponds to the average treatment effect of a MDP announcement.

We next examine the extent to which the treatment effect of a MDP announcement is heterogeneous
across counties depending on their commuting linkages, as predicted by our quantitative model. Motivated
by the results of our counterfactuals in the previous section, we measure these commuting linkages using
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each county’s own commuting share. We augment the “differences-in-differences” regression in (31)
with both the main effect of the own commuting share (λii|i) and the interaction term between the MDP
announcement and the own commuting share (λii|i × Iikτ ). So we estimate

∆ lnYikτ = ατ Iikτ + βτλii|i + γτ
(
λii|i × Iikτ

)
+ µkτ + uikτ , (32)

where the coefficient βτ on the main effect allows for the possibility that counties open versus closed to
commuting could differ in employment growth for other reasons besides the MDP announcement; the key
coefficient of interest is γτ on the interaction term, which captures heterogeneity in the response of local
employment to the MDP announcement. Based on our quantitative model, we expect γτ to be negative and
statistically statistically significant, such that counties more closed to commuting (higher own commuting
shares λii|i) have smaller local employment responses.

In Table 3, we report the estimation results. To provide a point of comparison, Panel A estimates equa-
tion (31) including only the case fixed effects (without the treatment indicator). Across periods ranging up
to five years after the MDP announcement, we find that the case fixed effects alone explain around 18 to
29 percent of the variance in county employment growth. In Panel B, we estimate the average treatment
effect of the MDP announcement using our baseline specification (31) (including the treatment indicator).
We find strong confirmation of the empirical results in GHM (2010), with a positive and statistically sig-
nificant average treatment effect. The magnitude of this treatment effect is substantial, ranging from 2.6
percent to more than 6 percent as we move from one to five years after the announcement. We also find
that the MDP announcement has substantial explanatory power for county employment growth, with the
regression R-squared rising to a range of 27 to 29 percent.

In Panel C, we estimate heterogeneous treatment effects using our augmented specification (32) (in-
cluding the own commuting share terms). Confirming our model’s predictions, the estimated coefficient
on the interaction term (γτ ) is negative and statistically significant, implying that the MDP announcement
has smaller employment effects in counties more closed to commuting. The implied magnitude of this
heterogeneity is large compared to the average treatment effect of 2 to 6 percent from Panel B. For a
county with an own commuting share at the 75th percentile the predicted employment effect is between
23.6 and 26.6 percent (depending on the number of years after the treatment) smaller than for a county
with a commuting share at the 25th percentile. In fact, in our quantitative model, the same exercise using
simulated data yields a slightly smaller reduction in the predicted employment effect (18.2 percent). If
we compare the 90th and 10th percentile of own commuting shares the difference in employment effects
ranges between 49% and 43% (again depending on the number of years after treatment). In our quanti-
tative model, the same difference is 31.7%. We conclude that the impact of commuting linkages on the
employment response to the MDP is statistically significant and large in economic terms. The reductions
in the employment effect of the treatment that result from higher own commuting shares are of the same
magnitude, but somewhat larger, than the ones predicted by our quantitative model. So, if anything, our
model seems to underplay the importance of commuting compared to the data.
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Panel A : Case Fixed Effects Only
τ years after Adj R2

1 0.21
2 0.29
3 0.25
4 0.22
5 0.18

Panel B : Average Treatment Effect and Case Fixed Effects
τ years after Adj R2 Coefficient Std. Error

1 0.31 0.026∗∗∗ 0.006
2 0.39 0.038∗∗∗ 0.008
3 0.36 0.050∗∗∗ 0.010
4 0.31 0.053∗∗∗ 0.013
5 0.27 0.062∗∗∗ 0.015

Panel C : Heterogeneous Treatment Effects and Case Fixed Effects
Treatment Openness Interaction

τ years after Adj R2 Coefficient Std. Error Coefficient Std Error Coefficient Std Error
1 0.40 0.117∗∗ 0.028 -0.027 0.026 -0.124∗∗∗ 0.036
2 0.50 0.133∗∗ 0.037 -0.084∗∗∗ 0.035 -0.133∗∗∗ 0.048
3 0.46 0.149∗∗ 0.048 -0.130∗∗∗ 0.045 -0.140∗∗∗ 0.062
4 0.41 0.159∗ 0.059 -0.167∗∗∗ 0.056 -0.151∗∗ 0.077
5 0.39 0.213∗ 0.071 -0.191∗∗∗ 0.067 -0.213∗∗ 0.092

This table reports estimates of versions of equations (31) and (32). Case fixed effects are never reported. Panel A estimates
equation (31) including only the case fixed effects µkτ (i.e. without the treatment indicator Iikτ ). Panel B estimates the average
treatment effect of the MDP announcement using specification (31). Panel C estimates heterogeneous treatment effects using
specification (32). In Panel C, “Treatment” refers to the coefficient ατ , “Openness” refers to the coefficient βτ , and “Interaction”
refers to the coefficient γτ as in equation (32). * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 3: Million Dollar Plants Natural Experiment

We also find a negative and statistically significant main effect (βτ ) of the own commuting share,
consistent with counties that are more closed to commuting growing more slowly on average. Comparing
Panels C and B, allowing for heterogeneous treatment effects leads to a substantial further increase in
the regression R-squared to 40-50 percent. Therefore the increase in explanatory power from allowing
for treatment heterogeneity depending on commuting links is around as large as that from allowing for
average treatment effects (Panels A-B).

Finally, the results in Table 3 also indicate that the average treatment effects estimated by GHM (2010)
depend on the average amount of commuting in the economy at the time of the treatment. An economy
with larger average own commuting shares generates smaller average treatment effects than an economy
with smaller own commuting shares. This elasticity is governed by γτ , which is highly significant and
increases in absolute magnitude (declines from −0.124 to −0.213) over the first five years after treatment.

Taking the results of this section together, using the natural experiment of million dollar plants (MDP)
as an independent source of variation, we find strong confirmation of our model’s prediction of hetero-
geneous local employment elasticities depending on commuting networks. Comparing counties that are
otherwise similar, except for whether they were ultimately fortunate enough to attract a MDP, we find sub-
stantially larger increases in employment in winner counties than in runner-up counties, and this increase
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in employment is considerably greater for those winner counties that are more open to commuting.

5 Changes in Commuting Costs

In the previous sections, we have shown the importance of commuting for the effects of local labor demand
shocks. We now show that it also matters in the aggregate for the spatial distribution of economic activity
across locations and welfare. Commuting enables workers to access high productivity locations without
having to pay the high cost of living in those locations. Increasing the cost of commuting restricts the
opportunity set available to firms and workers and hence is expected to reduce welfare. Locations that
were previously net exporters of commuters in the initial equilibrium become less attractive residences,
while locations that were previously net importers of commuters in the initial equilibrium become less
attractive workplaces. As agents relocate in response to the restricted opportunity set, we also expect a
decline in the specialization of counties as residential or business locations.

We begin by using the observed commuting data to back out implied values of the composite parameter
capturing the ease of commuting (Bni ≡ Bniκ

−ε
ni ). Following Head and Ries (2001) in the international

trade literature, we use the flows of commuters between locations n and i in both directions relative to their
own commuting flows. Using the commuting gravity equation (11), and taking the geometric mean of
these relative flows in both directions, we obtain the following measure of the average ease of commuting
between locations n and i relative to the ease of commuting to themselves:

B̃ni ≡
(
Bni
Bnn
Bin
Bii

)1/2

=

(
Lni
Lnn

Lin
Lii

)1/2

. (33)

We compute this measure for both 1990 and 2010. Between these two years, both miles of paved roads and
vehicle kilometers travelled increased substantially.34 Consistent with this, we find a substantial increase
in the relative ease of commuting from 4 percent ( ˆ̃Bni = 0.96) at the 25th percentile, to 12 percent
( ˆ̃Bni = 0.88) at the median, and 21 percent ( ˆ̃Bni = 0.79) at the 75th percentile.

We use this distribution of implied changes in the relative ease of commuting to undertake counterfac-
tuals for empirically-realistic changes in commuting costs. We assume a common reduction or increase
in the costs of commuting for all counties equal to percentiles of this distribution (e.g. we assume that
all counties experience a reduction in commuting costs equal to the median value of ˆ̃Bni). Given this
assumption, we use the system of equations for general equilibrium in the model to solve for the new
counterfactual equilibrium after the reduction in commuting costs, as discussed in Section 2.6 above. Us-
ing the commuting probability (11), expected utility (16), the price index (9) and land market clearing (5),
the change in the common level of welfare across all locations from the shock to commuting costs can be

34Between 1990 and 2010, kilometers of paved public roads in the United States increased by over 20 percent (from 3.6 to
4.4 million), and vehicle kilometers travelled increased by more than 38 percent (from 3,451,016 to 4,775,352 million). For
further discussion of this expansion in transport use, see for example Duranton and Turner (2011).
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decomposed as follows: ̂̄U =

(
1

λ̂ii

) 1
ε
(

1

π̂ii

) α
σ−1
(
ŵî̄vi
)1−α

L̂
α
σ−1

i

R̂1−α
i

, (34)

where we have used the fact that {κii, Bii, Ai, dii} are unchanged; the first term in λ̂ii captures the impact
through changes in openness to commuting; the second term in π̂ii captures the effect through adjustments
in openness to goods trade; the remaining terms capture the influence of changes in the spatial distribution
of wages (ŵi), expected residential income (v̄i), employment (L̂i) and residents (R̂i).

Decrease by p75 Decrease by p50 Decrease by p25 Increase by 1/p50

Implied ˆ̃Bni 0.79 0.88 0.96 1.13
Welfare Change 6.89% 3.26% 0.89% -2.33%

This table shows the percentage change in welfare for different counterfactual changes in commuting costs. Each column reports
a different counterfactual exercise; p75, p50 and p25, respectively, are the 75th, 50th and 25th percentiles of the empirical
distribution of changes in the ease of commuting ˆ̃Bni from 1990-2010. The first row reports the implied ˆ̃Bni for all counties.
The second row reports the percentage change in welfare for each counterfactual.

Table 4: Welfare Impacts for different Changes in Commuting Costs

As shown in Table 4, we find substantial effects of the reductions in commuting costs on aggregate
welfare. Reducing commuting costs by the median proportional change observed over our time period
from 1990 to 2010 is predicted to increase welfare by around 3.3 percent (second column). In contrast,
raising commuting costs by the same proportional amount decreases welfare by around 2.3 percent. As we
scale up the reduction in commuting costs to the 75th percentile observed over our time period, we amplify
the welfare gain to 6.9 percent (first column). As we scale down the reduction in commuting costs to the
25th percentile, we diminish the welfare gain to 0.89 percent (third column). These proportional changes
in welfare from empirically-realistic changes in commuting costs are large relative to standard empirical
estimates of the welfare gains from opening the closed economy to international trade, which for example
range from less than 1 percent for the United States to just over 10 percent for Belgium in Eaton and
Kortum (2002). While commuting flows typically occur at much smaller spatial scales than international
trade flows, these results clearly highlight that commuting not only shapes the impact of local shocks but
is also consequential for aggregate welfare.35

These empirically-realistic changes in commuting costs also result in substantial changes in the spatial
distribution of employment and residents across locations. In Figure 7, we show the counterfactual change
in employment in each county from reducing commuting costs by the median proportional change ob-
served over our time period from 1990 to 2010. We display these counterfactual changes in employment

35Smaller (larger) values for the Fréchet shape parameter (ε) imply more (less) heterogeneity in preferences for residence-
workplace pairs, which magnifies (diminishes) the effects of changes in commuting costs on welfare. For example, in a world
with a 50 percent lower (higher) value of ε, reducing commuting costs by the median proportional change increases welfare by
6.9 (2.1) percent, while increasing commuting costs by the same amount reduces welfare by 4.8 (1.5) percent.
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Figure 7: Counterfactual relative change in county employment (L̂) for median decrease in commuting
costs throughout U.S. against initial employment to residents ratio (L/R).

against each county’s initial commuting intensity Li/Ri, where Li/Ri > 1 implies that a county is a net
importer of commuters and Li/Ri < 1 implies that a county is a net exporter of commuters. We find
substantial changes in employment for individual counties, which range from increases of 28 percent to
reductions of 19 percent, and are well explained by initial commuting intensity. As discussed in Subsec-
tion 3.2 above and shown in Subsection C.1 of the web appendix, initial commuting intensity is itself hard
to explain in terms of standard empirical controls, such as land area, size and housing supply elasticities,
and hence cannot easily be proxied by these variables.

In Subsection C.10 of the web appendix, we provide further evidence that the importance of commuting
is by no means restricted to large cities. We undertake counterfactuals for reductions in commuting costs
for CZs rather than counties (replicating our entire quantitative analysis for CZs). We show that the
counterfactual changes in CZ employment from reductions in commuting costs are well explained by
measures of the extent to which the CZ uses the commuting technology in the initial equilibrium. In
contrast, these counterfactual changes in CZ employment are not well explained by initial CZ employment
or residents size, confirming the importance of measures of commuting linkages.

Given this importance of commuting links in shaping the distribution of economic activity across lo-
cations, it is natural to expect that these links also determine the magnitude of the impact of reductions in
trade costs. In Subsection C.9 of the web appendix, we explore this interaction between trade and com-
muting costs. We compare the counterfactual effects of a 20 percent reduction of trade costs in the actual
world with commuting to the effects in a hypothetical world without commuting. In general, reductions
in trade costs lead to a more dispersed spatial distribution of economic activity in the model. But this dis-
persal is smaller with commuting than without commuting. As trade costs fall, commuting increases the
ability of the most productive locations to serve the national market by drawing workers from a suburban
hinterland, without bidding up land prices as much as would otherwise occur. These results further under-
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score the prominence of commuting linkages in shaping the equilibrium spatial distribution of economic
activity, and the necessity of incorporating them in models of economic geography.

6 Conclusions

The economic effects of local labor demand shocks have been the subject of an extensive empirical liter-
ature on local labor markets, which has considered a wide range of such shocks, including industry com-
position, international trade, macro and financial crises, and natural resource discoveries, among others.
To understand the impact of these types of shocks, we develop a quantitative spatial general equilibrium
model that incorporates spatial linkages between locations in both goods markets (trade) and factor mar-
kets (commuting and migration). Although we allow for a large number of locations and a rich geography
in both goods and factor markets, we provide analytical results for the existence and uniqueness of the
general equilibrium. We show how the model can be quantified using available data to match the observed
gravity equation relationships for trade in goods and commuting, as well as the observed cross-section
distributions of employment, residents and wages. Thus, our framework provides a tractable platform for
undertaking a range of counterfactuals for realistic changes in trade and commuting costs.

Whereas previous research has largely treated local labor markets as independent observations in cross-
section regressions, we explicitly model the spatial linkages between these locations, which enables us to
undertake our analysis at different levels of spatial aggregation. Through modeling these linkages, we
overcome a trade-off faced in existing research, namely that choosing larger spatial units reduces un-
modeled spatial linkages between locations, but also reduces the ability to make inferences about local
labor markets. We show that commuting flows are substantial and heterogeneous across both counties
and commuting zones (CZs) in the United States. Although the boundaries of CZs are chosen to mini-
mize commuting, no choice of boundaries is able to fully capture the rich geography of commuting flows
implied by the gravity equation.

Commuting allows workers to separate their workplace and residence, thereby introducing a quantita-
tively relevant distinction between the effects of local labor demand shocks on employment and residents.
We find substantial heterogeneity across both counties and CZs in the elasticity of local employment to a
productivity shock, which ranges from around 0.5 to 2.5. Therefore an average local employment elasticity
estimated in one context can be quite misleading if applied in another context without controlling for this
heterogeneity. We show that this heterogeneity is hard to explain with standard empirical controls, such as
area and size, but is well explained by measures of linkages in commuting networks. We use our model
to highlight a simple summary statistic of the share of residents that work locally that can be included in
reduced-form regressions to control for this heterogeneity.

We show that our finding of heterogeneous local employment elasticities is robust across a wide range
of different specifications, including the introduction of differences in supply elasticities for developed
land. These findings are consistent with such heterogeneity being a generic prediction of a commuting
gravity equation, which is a strong empirical feature of the data. We also use the natural experiment of
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million dollar plants (MDPs) to provide further independent empirical support for our model’s predictions.
We compare counties that are otherwise similar, except for whether they were ultimately fortunate enough
to attract a MDP. We find substantially larger increases in employment in winner counties than in runner-up
counties, and this increase in employment is considerably greater for those winner counties more open to
commuting. Finally, as well as shaping the effects of local labor demand shocks, we show that commuting
also matters in the aggregate for the spatial distribution of economic activity and welfare. We use observed
commuting flows between pairs of counties over time to back out the empirical distribution of implied
reductions in commuting costs from 1990-2010. Reducing commuting costs for all counties by the median
of this empirical distribution, we find an increase in welfare of 3.3 percent, and employment changes across
counties that range from increases of 28 percent to reductions of 19 percent.

The quantitative model we propose is, we believe, ambitious and rich, yet its core insights are also rela-
tively general. So we hope that our results are used to motivate the inclusion of measures of commuting in
future estimation of local employment elasticities. Their inclusion is simple, practical, and well grounded
in theory.
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