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 Many papers in the empirical literature compare the performance of different models in pricing 

test assets using metrics like the average absolute “alpha” or test results for the zero-alpha restriction.  

These papers often leave the impression that the model with smaller alphas is preferred. But can we 

necessarily conclude that the data favor such a model?  This question, though clearly one of great 

interest for asset pricing has not, to our knowledge, been thoroughly analyzed in the traditional time-

series alpha-based framework.  Surprisingly, for many important metrics, the answer is no.  Simply 

comparing pricing performance for test assets, while it may provide some useful descriptive 

information, cannot serve to identify a superior model and can even be misleading in this regard.   

Metrics for which this conclusion holds include classic ones like the general statistical criterion 

of model likelihood, as well as fundamental asset-pricing measures based on relative factor-portfolio 

efficiency (Sharpe ratio) or a related notion of distance for stochastic discount factors (HJ distance).  In 

fact, we prove that test assets tell us nothing about model comparison in these cases, beyond what we 

learn by examining the extent to which each model prices the factors in the other model.  This is the 

main message of our paper.  Most of our colleagues have, at first, found this counter-intuitive, as did 

we.  But the logical argument is straightforward once some simple algebraic pricing results are 

established and it applies to nested as well as non-nested models, the latter being the case in which 

each model contains factors not included in the other.   

The classic “alpha” of investment analysis is the intercept in the time-series regression of an 

asset’s excess returns on those of the market portfolio (Mkt).  The early paper by Jensen (1968) 

recognized the interpretation of alpha as an asset’s deviation from the capital asset pricing model 

(CAPM) expected return relation of Sharpe (1964) and Lintner (1965).  Over the decades, other 

benchmark factors have also been included in asset pricing models, notably the SMB (small minus big) 

size and HML (high minus low) value factors of the Fama-French (1993) three-factor model (FF3).  

With such “traded factors,” i.e., portfolio excess returns or spread portfolios, the time-series intercept 

can still be viewed as an asset’s deviation from the model.  

Alpha also plays a fundamental role in analyzing portfolio performance, as measured by the 

Sharpe ratio, a portfolio’s expected excess return divided by its standard deviation.  A non-zero alpha 

indicates that the Sharpe ratio can be improved and a more efficient portfolio obtained by 

complementing investment in the benchmark portfolios with a position in the given asset.2  If the 

                                                       
 

2 Strictly speaking, the square root of the squared Sharpe ratio can be increased in this case.  It is possible that the 
corresponding tangency portfolio will be inefficient and have a negative Sharpe ratio.  This case is rarely encountered in 
practice, however, and so we assume henceforth that the Sharpe ratio is positive. 
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factors already span the tangency portfolio, however, such improvement is not possible and alpha is 

zero.  Gibbons, Ross and Shanken (1989), henceforth GRS, examine the case of multiple assets and 

develop an F-test of the joint hypothesis that the alphas are all zero.   

Here, we address a different, but related question – the one posed in our initial discussion.  We 

suppose there are two pricing models of interest to be compared and the better model identified.  In 

addition to the two sets of factors, which may overlap, there is a set of test-asset returns (securities or 

portfolios) that can be used in evaluating the models.  Ideally, we want a model that will “price,” i.e., 

produce zero alphas for all of these investments, both test-asset and factor returns.  Equivalently, the 

factors in the model should span the tangency portfolio for the full investment universe and, therefore, 

maximize the Sharpe ratio.  The classic asset-pricing challenge is then to identify a small number of 

observable factors, as few as possible, that meet these equivalent objectives.  We do not presume that 

any of the models under consideration is perfect, however.  Instead, we explore several notions of 

which model is the “better” one.  

A number of papers provide empirical results on the pricing of test assets across different 

models, e.g., Fama and French (1993, 1996, 2015a,b), Avramov and Chao (2006), Hou, Karolyi and 

Kho (2011) and Hou, Xue and Zhang (2015a,b).  The recent papers also provide some evidence on 

each model’s ability to price the factors in the other model (also see Asness and Frazzini (2013)).  But 

the issue of how to combine the different kinds of evidence in comparing models is not addressed.  

And while a given model might perform well from both perspectives, this need not be so.  We provide 

several examples below, in which the model that does a better job of pricing test assets has more 

trouble pricing the excluded factors and, therefore, is not the better model.  As we will see, a traditional 

likelihood ratio finds such a model inferior. 

A related paper by Fama (1998) explores the pricing of state variables in an intertemporal 

CAPM context.  Fama argues that it is not necessary to test alternative ICAPMs on all assets for the 

purpose of identifying the state variables of concern to investors.  Cochrane (2005) also has a related 

result for nested models in the stochastic discount factor framework, but does not discuss its relevance 

for the comparison of standard alpha-based models with traded factors, nor does he consider non-

nested models.3  Thus, while the pricing relations that our conclusions are based on have antecedents in 

                                                       
 

3 Cochrane (Section 13.4) shows that “if you want to know whether factor i helps to price other assets, look at bi,” 
the coefficient on that factor in the linear specification for the SDF.  As he shows, the b vector equals the inverse of the 
factor covariance matrix times the price of risk vector λ in the expected-return/beta relation (also see Kan, Robotti and 
Shanken (2013)).  Test-asset irrelevance is not discussed by Cochrane and, indeed, is not immediately apparent since, in 



  4

the theoretical literature, we extend those results along several dimensions.  But, more importantly, we 

explore the implications for empirical analysis involving model comparison, as these issues do not 

seem to be recognized in the empirical asset pricing literature.   

Before continuing, it deserves emphasis that by “model comparison,” we mean here the 

determination of which model is the superior one according to a given metric.  A researcher may, 

nonetheless, be interested in exploring how various models price particular assets and this is certainly a 

form of comparison, as that term is used more generally.  But, as we demonstrate, it is not the same as 

identifying the better model based on well-established criteria.  In fact, the ability of models to price 

sets of test assets is irrelevant in this regard.  Thus, our paper highlights the differences between these 

notions of “comparison” and, hopefully, will contribute to a better understanding of the relation 

between the contrasting research objectives. 

We consider first the case of one model nested in a larger model.  While it may seem that 

additional factors can only improve on pricing and produce smaller test-asset alphas, this need not be 

true in general.  An expanded model can yield expected-return predictions that are farther from the 

actual test-asset means than the predictions of the nested model.  Although this is not a new insight, it 

deserves emphasis in the context of our analysis.  As a simple illustration, suppose we want to compare 

CAPM to a two-factor model with factors Mkt and SMB.  There is just one test asset, the loser decile 

portfolio based on past-year returns.  For 1963-2013, the annualized CAPM alpha for this portfolio is -

11.06% (the momentum effect of Jegadeesh and Titman (1993)), but the two-factor loser alpha, -

11.79%, is even larger in magnitude.  This occurs because losers load positively on SMB (many losers 

are small firms).  Given the positive SMB alpha (the size effect) relative to the Mkt, this raises the two-

factor model’s prediction for the expected loser return.  Consequently, the loser alpha, the difference 

between the actual and predicted values, is lowered.   

Thus, one set of restrictions favors CAPM (the loser test-asset restrictions) while another favors 

the two-factor model (the SMB excluded-factor restriction).  How do we choose between models in 

such a case?  We could think about specifying some metric that aggregates the various alphas; 

consistent estimators for each model and the difference might then provide the basis for a formal 

statistical comparison.  One concern, however, is that an ad hoc metric of this sort might be influenced 

by the number and choice of test assets in a somewhat arbitrary fashion.  The issue of conflicting asset-

                                                                                                                                                                                         
general, identification of  λ requires test assets, not just factors.   However, when the factors are traded, λ is the vector of 
expected factor returns and b depends on the factor moments only.  In fact, b is the vector of weights in the tangency 
portfolio based on the factors in this case.  Thus, factor i is needed if its tangency portfolio weight is non-zero.  We derive 
an equivalent result in terms of alphas later in the paper. 
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pricing restrictions is by no means an artifact of our simple example.  Fama and French (2015b) 

encounter this phenomenon as well.  The three-factor model cannot price the additional investment and 

profitability factors of their expanded five-factor model (FF5).  But while FF5 does about as well or 

better than FF3 in accounting for many anomalies, FF3 is better at pricing portfolios formed by 

independent sorts on size and accruals.     

These examples relate to a basic property of nested models.  Assume the nested model, M1, 

contains the factors f1 and the expanded model, M, contains the factors f1 and f2.  R is a vector of test-

asset returns.  Let R1  denote the alphas of the test assets relative to M1, 21 the alphas of the 

additional factors on f1, and R  the test-asset alphas relative to the larger model, M.  Suppose that M1 

improves on the pricing of test assets, in the sense that the magnitude of the elements of R1  is smaller 

than that of R  in some metric.  Ironically, it then follows that M1 must fail to price some or all of the 

excluded factors, i.e., 21  ≠ 0.  In fact, the same conclusion holds if there is any difference in the test-

asset alphas.   

The examples and observations above highlight the fact that, while it may be of some empirical 

interest to separately examine the pricing of test assets and excluded factors, it is essential to jointly 

consider both types of evidence in the ultimate evaluation of a model.  This can easily be carried out by 

letting test assets and factors serve simultaneously as “left-hand-side assets” in a standard GRS test.  

Comparing test statistics across models is problematic, however, and subject to the limitation that 

power will generally differ, making an evaluation based on p-values difficult to interpret.  In particular, 

a model with many factors and relatively low residual variance of left-hand-side returns might produce 

a more extreme test statistic and a lower p-value even if it does a better job of pricing (smaller alphas).  

This point has been made previously by Fama and French (1993).  So the question remains - how 

should we compare two models when evaluation of some restrictions points to the first model and 

evaluation of others points to the second model.   

Fortunately, a simple resolution is possible.  This follows directly from a basic equivalence that 

we establish: the nested model M1 holds in the usual sense that 21 = 0 and R1  = 0 if and only if     

21 = 0 and R = 0. 4  Thus, in characterizing M1, the test-asset restrictions can be formulated either 

                                                       
 

4 This equivalence is related to a result in Sharpe (1984), who provides a multibeta interpretation of the CAPM.  
Sharpe describes his result as an approximation.  However, one direction of our equivalence - that the usual CAPM 
restrictions imply the multifactor pricing model with restricted prices of risk - can be obtained using a variation on his 
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relative to f1 or in terms of the expanded set of factors, f1 and f2, as long as the excluded-factor 

constraints are also imposed.  For example, if M1 is CAPM and M is FF3, CAPM holds if and only if 

the one-factor alphas for SMB and HML are zero and the three-factor test-asset alphas are zero as 

well.  Hence, CAPM is seen to be a restricted version of FF3 in this representation and so comparing 

the models amounts to evaluating whether the excluded-factor CAPM restrictions hold.  The test assets 

are irrelevant in this regard since those restrictions are common to both models. 

If 21  = 0, the excluded-factor premia E(f2) are given by the betas on f1 times E(f1).  We can 

also show that R1 = R  in this case, so the same pricing of factors and test assets is achieved with the 

more parsimonious model M1.  The nested model is the “better” model in this sense.  Of course, if   

21 ≠ 0, the expanded model M is the superior model since it leaves E(f2) unrestricted, rather than 

imposing a constraint that is violated.  This is true even if the nested model M1 improves on the pricing 

of test assets, as compared to the larger model M.  From a portfolio perspective, 21 ≠ 0 means that the 

additional factors f2 allow for the attainment of a higher Sharpe ratio than would be possible based on 

f1 alone.  This simple efficiency criterion based solely on the factors is shown here to be valid for 

nested-model comparison, despite the availability of test-asset information; it is not an implicit 

assumption, as in some earlier work.   

With these observations in mind, consider again the common procedure of comparing models 

on the basis of their relative success in pricing a set of test assets.  In the simple two-factor loser 

example discussed earlier, CAPM would be judged superior since the loser portfolio CAPM alpha is 

smaller in magnitude than the loser two-factor alpha.  However, this conclusion would be contrary to 

that based on a comparison of Sharpe ratios or, equivalently, a version of the Hansen-Jagannathan 

(1997) distance.  These measures will favor the expanded model (higher Sharpe ratio, lower distance) 

whenever a nested model fails to price the excluded factors, regardless of how the addition of those 

factors affects the pricing of test assets.   

Although we have focused on nested models in the discussion thus far, similar conclusions 

about the role of test assets hold for a pair of non-nested models M1a and M1b.  Here, we can 

characterize each model in terms of its excluded-factor restrictions ( 21a = 0 and 21b = 0, 

respectively), together with the same test-asset restrictions ( R = 0).  The latter alphas are defined 

                                                                                                                                                                                         
argument.  To see this, consider the case in which all factors are traded and the market is one of the factors.  Then the 
factors will obviously span the market portfolio, so Sharpe’s equation (4) holds exactly.  Equation (5) then gives the desired 
result.  Assuming the factors are multifactor minimum-variance (MMV) portfolios in the sense of Fama (1996), Fama 
(1998) provides an alternative proof in this same direction.  We do not impose the MMV assumption.   
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relative to the combined model, M, that includes all of the factors and so, as earlier, the test assets are 

irrelevant for model comparison.  In other words, how well each model prices the excluded factors is 

all that matters in deciding which model is the better one – what we call a relative test.  Moreover, the 

logic would be the same even if the set of test-asset returns, together with the factors, spanned the 

entire investment universe.  Of course, the evidence on test assets is relevant for evaluating the 

validity of each model (an absolute test); it is just not needed for comparing the models.    

Later, we examine a non-nested models example from several perspectives.  The models are 

FF3 and a four-factor model that substitutes an alternative more timely value factor for HML and adds 

in a momentum factor UMD, along with Mkt and SMB.  As in past studies, UMD has a huge FF3 

alpha (nearly 11% annualized) and, consequently, the four-factor model does a much better job of 

pricing excluded factors.  In contrast, FF3 performs better in pricing 6 of 10 sets of test-asset 

portfolios, by several commonly-used criteria.  Nonetheless, we show that a standard likelihood ratio 

clearly favors the four-factor model, consistent with our basic message. 

When evaluating models in terms of statistical likelihood, test-asset irrelevance amounts to the 

observation that the likelihood ratio for a pair of models is independent of the test-asset returns.  

Interestingly, this is true regardless of the model parameterization, e.g., whether CAPM is represented 

in the usual way, in terms of restrictions on CAPM alphas only, or an equivalent combination of 

restrictions on CAPM alphas (excluded factors) and FF3 alphas (test assets).  Barillas and Shanken 

(2015) build on this observation, showing how to formally aggregate excluded-factor intercept 

evidence across several models in a Bayesian framework, permitting both nested and non-nested 

comparisons.   

The rest of the paper is organized as follows.  Section 1 establishes the equivalence result for 

nested models and discusses the implied test-asset irrelevance for both nested and non-nested models.  

Section 2 presents an example that illustrates the conflicting conclusions that can be obtained in 

comparing non-nested models based on test-asset alphas, instead of the excluded-factor alphas.  Test-

asset irrelevance in terms of model likelihoods is explored under estimation uncertainty in Section 3.  

Section 4 extends our results to model comparison based on a modified version of the HJ distance and 

Section 5 concludes. 

1.  Comparing Asset Pricing Models 

In this section, we develop our key result, that test assets are irrelevant for model comparison, 

given the factor returns.  We first address the evaluation of a factor-pricing model M1 relative to 
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another model M that contains all the factors in M1 as well as some additional factors.  For example, 

CAPM is nested in FF3 in this sense.   

We begin by laying out the model notation and assumptions. The factor model M is a 

multivariate linear regression with N excess returns, R, and K factor returns f: 

   RR f ,                           (1) 

where R ,   and   are Nx1,   is NxK and f  is Kx1.  The disturbance has zero mean and covariance 

matrix  .  As shown in in Gibbons, Ross and Shanken (1989), the following relation holds: 

     1 2 2
R R' Sh(f , R) Sh(f)    ,          (2) 

where 2Sh( )  denotes the maximum squared Sharpe ratio (mean excess return over standard deviation) 

obtainable from portfolios of the given returns.5  This Sharpe ratio corresponds to the tangency 

portfolio determined by the test-asset and factor returns, along with the risk-free rate. 

We now establish a basic proposition that will greatly simplify the task of comparing nested 

models.  In particular, think about CAPM as nested in the Fama-French (1993) three-factor model 

(henceforth FF3).  In this case, the proposition shows that the alpha restriction of the single-factor 

CAPM can be reformulated in terms of the usual one-factor alpha restriction for the excluded-factor 

returns (HML and SMB), together with the FF3 alpha restriction for the test-asset returns.  Since the 

models differ only with respect to the excluded-factor restrictions, we have the surprising (to us) 

conclusion that the test-asset returns do not play any role in comparing CAPM and FF3.  This 

conclusion holds under the assumption, which we maintain throughout, that there is no interaction in 

the chosen metric between the excluded-factor alphas and the expanded-model test-asset alphas.  We 

later show that this is true, in particular, for the standard measure of a model’s statistical likelihood, a 

basis for both classical and Bayesian modes of inference.  It is also true for several familiar asset-

pricing metrics. 

One can see the equivalence between zero-alpha restrictions as a direct consequence of 

standard portfolio algebra.  M is the pricing model with factors 1 2f (f , f ),  where 1f  consists of the 

factors in the nested model M1.  The key observation is that the tangency portfolio 1 2(f ,f ,R)  equals 

the tangency 1(f )  if and only if 1 1 2(f ) (f ,f )   and 1 2 1 2(f , f ) (f , f ,R)  .  In words, if the factors 1f  

                                                       
 

5 Also see related work by Jobson and Korkie (1982) 
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already span the tangency portfolio for the investment universe consisting of all the factors and test-

asset returns, then the additional f2 factors will not improve on this tangency portfolio, nor will adding 

test assets to the factors.  More formally, if the nested model M1 holds for the factors 2f  ( 21 0  ), 

then 2 2
1Sh(f ) Sh(f ) by (2).  Therefore, 2 2

1Sh(f, R) Sh(f ) if and only if 2 2Sh(f , R) Sh(f )  in this 

case and so, appealing to (2) again, we have:  

Proposition 1.  The nested pricing model M1 with factors 
1f  holds for both the test asset returns R and 

the excluded-factor returns 
2f  ( R1 210 and 0   ) if and only if those excluded-factor returns satisfy 

M1 ( 21 0  ) and the larger model M holds for the test asset returns ( R 0  ). 

Further insight can be obtained by deriving the proposition in terms of the statistical relation 

between the parameters in the regression models for M and M1.  Partitioning  1 2 ,      to conform 

with the factor partition 1 2f (f , f ),  we have 

   R 1 1 2 2R f f .                           (3) 

We are interested in the relation between these parameters and those in the regression of R on a 

constant and 
1f  only: 

   R 1 1R bf e   .           (4) 

This relation depends on the parameters in the “auxiliary regression”: 

    212 1f df u   .                                            (5) 

Substituting this expression for 
2f  in (3) gives 

     1 1 2 1 2 1 2 1 221 21R RR f ( df u) ( ) ( d)f ( u )                      .     

It follows from the standard regression orthogonality conditions that u and   have mean 0 and are 

uncorrelated with 1f .  Therefore, the regression on 
1f  satisfies: 

        
R 1 R 21 1 22 2d and, b e u          .                    (6) 
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Now suppose M1 holds for both the test asset returns and the excluded-factor returns, i.e., R 1 0   and 

21 0  .  Then R = 0 by (6).  Conversely, if R = 0 and 21 0   then R 1 0  , again establishing the 

proposition. 6 

Thus, a model M1 that is nested in a larger model M, in the sense that its factors are all included 

in M, is nested in the statistical sense that M1 may be obtained by imposing restrictions on M.  As 

noted above, it follows that the only condition relevant in distinguishing between M1 and M is the 

requirement that M1 hold for the excluded-factor returns f2 ( 21 0  ).  The test-asset restriction 

R 0)(   is common to both models and, therefore, cannot help in deciding which model performs 

better.  Hence, the test-asset returns are not relevant in comparing M1 and M, though they are, of 

course, important in assessing model validity.   

If 21 0  , the model predictions for the expected test-asset returns are identical for M1 and M.  

To see this, note that under M1, the prediction is bE(f1), while under M, it is 1 1 2 2E( ) E( )f f  .  Now 

21 0   implies that 2 1E( ) dE( )f f , so test-asset expected returns under M equal 

1 1 2 1 1 2 1E( ) dE( ) ( d)E( )f f f     , and this equals bE(f1) by the middle relation in (6).  Therefore, 

the more parsimonious M1 is favored in this case.  On the other hand, 21 0   implies that M is the 

better model since it does not impose the false restriction on 21 .  In this case, the factor-based 

tangency portfolio places some weight on the factors in f2.  

Equation (6) also yields the interesting implication that if 21 0   then R R1  , i.e., the test-

asset alphas on f1 and f2 equal those on f1, whether the models hold or not.  Thus, any difference 

between R  and R1  requires that 21 0  , which in turn implies that M is the better model.  This is 

true, even if the elements of R1  are smaller in magnitude than those of R  in some metric.  Thus, by 

focusing on test assets in isolation, a false inference about model comparison can be obtained.  These 

observations imply that it is essential to consider test-asset pricing jointly with the pricing of excluded 

factors in the evaluation of a model.  But if we do that, the test assets end up dropping out in the model 

comparison. 

As noted earlier, a metric that allows for interaction between the test-asset deviations from M 

and the excluded-factor deviations from M1 need not satisfy test-asset irrelevance.  From equation (6), 

                                                       
 

6 See Pastor and Stambaugh (2002) for a very different application of (6) to the estimation of mutual fund alphas.  
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we see that focusing on test-asset deviations from M1 involves such an interaction since the 

corresponding squared alphas (
R1

2 ) depend on products of elements of 
21
 and 

R  when .  Thus, test 

assets need not drop out in a comparison based on model-specific test-asset alphas.  But such a 

comparison would be inconsistent with the likelihood principle and asset-pricing metrics that will be 

discussed later. 

Under standard simplifying regression assumptions: i) constant parameters in the linear 

regression of f2 on f1 and ii) disturbances that are independent and identically normally distributed over 

time, the standard GRS F-test can be used to evaluate the hypothesis 21
 0 .  In independent work, 

Fama and French (2015b) note that FF5 performs better than FF3 for almost all portfolio sorts 

examined and consider whether the differences are statistically reliable.  They report that the GRS test 

for the investment and profitability factors regressed on the FF3 factors is highly significant and assert 

(without proof) that if some stocks have nonzero exposures to the additional factors, then those factors 

“add information about expected returns to the three-factor model.”  The first relation in equation (6) 

above formalizes this idea, showing that if we assume 2 0  , then a finding that 21 0   implies that 

the test-asset alpha vectors R1  and R  differ.  However, as we noted earlier, 21 0   does not ensure 

that the superior model M with factors (f1, f2) will do a better job of pricing the test assets; i.e., the 

added information can be detrimental to pricing. 

Now consider a pair of non-nested models M1a and M1b, with some factor overlap possible, and 

let M be the model corresponding to the union of the factors from these models.  For example,        

{Mkt SMB} and {Mkt HML} are non-nested in this sense and M is {Mkt SMB HML}.  In general,  

M1a and M1b are both nested in M, so Proposition 1 can be invoked with each model playing the role of 

M1.  Thus, M1a holds if and only if it prices the factors in M1b and M prices the test asset returns, R.  

Similarly, M1b holds if and only if it prices the factors M1a and M prices R.  Once again, the test-asset 

restrictions ( R = 0) are the same for each model and, therefore, the pricing of test-asset returns is 

irrelevant for comparing M1a and M1b.  We need only consider the pricing of the factors in each model 

relative to the factors in the other model (the common factors will automatically be priced).  For 

example, we need to ask how well {Mkt SMB} prices HML and {Mkt HML} prices SMB. 

Let us represent the excluded-factor restrictions as 21a 0   and 21b 0  .  Suppose 21a 0   is 

rejected, but we fail to reject 21b 0  .  Power issues aside, this evidence would be consistent with a 

scenario in which M1a is the better model - equivalent to the larger model M (which necessarily prices 
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all the factors), while M1b is not.  But more generally, both 21a  and 21b  could be nonzero, in which 

case the preferred model would not be obvious.  Thus, model comparison is less straightforward here 

than in the nested scenario, where 21  is either zero or not, leaving no ambiguity about the ranking of 

models (apart from estimation issues).  Nonetheless, in both the nested and non-nested cases, test 

assets are irrelevant. 

Asness and Frazzini (2013), Fama and French (2015a,b) and Hou, Xue and Zhang (2015a,b) 

report classical tests for the pricing of some factors relative to other factors.  Thus, they recognize the 

relevance of such procedures for model comparison.  They do not formalize this as we do in 

Proposition 1, though, nor do they discuss the irrelevance of test assets in comparing models.  To be 

clear, we are not questioning their empirical evidence, but rather seek to provide a more rigorous basis 

for interpreting such results.  Our analysis highlights important conditions under which model 

comparison should be based solely on excluded-factor alphas and not on test-asset alphas. 

We have already presented a simple nested-model example illustrating the possible pitfalls in 

comparing test-asset findings across models.  In the next section, we provide a non-nested example.  

The goal here is to further convey what can go wrong, not to identify the definitive empirical model. 

2. A Non-Nested Example 

We now consider a comparison of the non-nested models, FF3 = {Mkt SMB HML} and a four-

factor model 4FM = {Mkt SMB HMLm UMD}.  HMLm is an alternative version of the value factor due 

to Asness and Frazzini (2013), which is based on book-to-market rankings that use the most recent 

monthly stock price in the denominator.  This is in contrast to Fama and French (1993), who use 

annually updated lagged prices in constructing HML.  The up-minus-down factor UMD is the 

momentum factor of Carhart (1997), motivated by the work of Jegadeesh and Titman (1993).  

 As in the previous section, we nest both FF3 and 4FM in M = {Mkt SMB HML HMLm UMD}.  

Then, using Proposition 1, FF3 can be characterized in terms of zero restrictions on the three-factor 

alphas of the excluded factors, HMLm and UMD, and the five-factor alphas of the test assets.  

Similarly, 4FM amounts to zero restrictions on HML’s four-factor alpha and the five-factor alphas of 

the test assets.  Since the test-asset restrictions are the same for each model, that evidence is irrelevant 

for comparing the models. 

 Over the period July 1963 to December 2013, the relevant annualized alpha estimates are 

0.56%, 10.85% and 2.20% for HMLm, UMD and HML, respectively.  The alphas are, of course, zero 
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for the factors included in each model.  Therefore, the average absolute alpha over all five factors is 

(.56 + 10.85)/5 = 2.28% for FF3 and 2.2/5 = 0.44% for 4FM.  Alternatively, the square root of the 

average squared factor alpha is 4.86% for FF3 and 0.44% for 4FM.  These metrics clearly favor 4FM 

over FF3 (we ignore sampling variation).  On the other hand, Table 1 shows measures of performance 

on test assets for each model and FF3 provides the better fit for 6 of the 10 sets.  For example, the 

annualized average absolute alpha across 17 industry portfolios is 2.22% for FF3 and 2.40% for 4FM.  

Similarly, the GRS test statistic with these test assets, another basis of comparison that has been used 

previously, is 3.41 for FF3 and 4.96 for 4FM.   

Not surprisingly, when challenged to price the 25 portfolios based on independent size and 

momentum sorts, the 4FM that includes a momentum factor performs better, with an average absolute 

alpha of 1.30% compared to 3.90% for FF3.  Similar results are obtained with the alphas scaled by 

average deviations from the cross-sectional mean return, or if the GRS statistic is used.  Here, the 

inability of FF3 to explain momentum drives the excluded-factor alpha evidence as well as the size-

momentum test-asset evidence.  But for many other portfolios, the test-asset alphas and excluded-

factor alphas point to different conclusions.  Proposition 1 cuts through these sometimes confusing 

impressions, implying that only the excluded-factor evidence matters for a relative test of model 

comparison.   

To reflect common practice in the literature, our example has compared test-asset results 

relative to the factors in each model.  In contrast, the argument for test-asset irrelevance focuses on 

test-asset restrictions for the combined factor model M ( R = 0).  As we have emphasized, these 

restrictions are common to both models.  What then causes test-asset information relative to the factors 

in one model to sometimes provide a misleading indication of its performance relative to another 

model?  The answer can be found in equation (6), specifically the relation R1 R 212    .  This 

equation shows, for example, that test-asset alphas relative to FF3 equal those for the combined model 

{Mkt SMB HML HMLm UMD}, plus a multiple of the alphas of the excluded factors HMLm and 

UMD on FF3.7   

Thus, two kinds of information end up being mixed together in r1 : relevant evidence about the 

pricing of excluded factors and irrelevant (for model comparison) information about the pricing of test 

                                                       
 

7 The multiple depends on the elements of 
2
 , which can be positive or negative and can make 

r1
  larger or 

smaller than 
r

 .  If 
2
 = 0, the information about 21  is lost. 



  14

assets by the set of both included and excluded factors.  Examining information that pools what truly 

does matter with information that does not, ends up providing a “noisy signal” that ultimately can 

obscure the comparison, rather than clarifying it.  For the purpose of evaluating a single model in an 

absolute test, however, whether we focus on 21  and R  or 21  and R1  does not matter (apart from 

convenience) since the corresponding restrictions are equivalent by Proposition 1.  

3. Likelihoods and Estimation Uncertainty 

A natural approach to model comparison in the presence of estimation uncertainty relates the 

likelihoods for each model, given the observed data.  This notion plays a fundamental role in classical 

as well as Bayesian inference.  While the development of a detailed methodology of either sort is 

beyond the scope of this paper, we now apply the well-known Akaike information criterion (AIC), 

which is often used as a heuristic in model selection, though not in a formal hypothesis test.  Let L be 

the maximized value of the likelihood function and m be the number of parameters in a model.  To 

avoid overfitting with too many parameters, AIC incorporates a penalty that increases with m: 

AIC = -2ln(L) + 2m, 

where lower values of AIC provide more support for a model.  Accordingly, given several candidate 

models, nested or non-nested, the criterion favors the model with the lowest AIC value (highest 

adjusted likelihood).      

  The likelihood function is the joint density for the data, viewed as a function of the model 

parameters.  In our earlier notation for model M1 with factors f1 and excluded factors f2, we can 

express that joint density for the factor and test-asset returns as a product of three densities: the 

unrestricted density for f1, the restricted ( 21 0  ) conditional density for f2 given f1, and the restricted 

( r = 0) conditional density for the test asset returns R given f1 and f2.  All densities are taken to be 

multivariate normal in this example, although normality is not required for test-asset irrelevance.  It is 

important to note that this representation of the joint density parallels the alternative characterization of 

M1 in Proposition 1, with the restrictions imposed on 21  and R .  The corresponding likelihood 

under M1 can then be written as 

     L = L1 x L21 x LR. 

 Now let us return to the non-nested example of Section 2, comparing the models FF3 and 4FM.  

In computing the likelihood for FF3, f1 is {Mkt SMB HML} and f2 is {HMLm UMD}.  For 4FM, f1 is 
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{Mkt SMB HMLm UMD} and f2 is {HML}.  The test assets for this illustration are taken to be the 25 

portfolios formed on size and momentum.    Thus, we have  

   ln(LFF3) = 4253.0 + 3258.9 + 42251.5 = 49763.4 
and                 (7) 
   ln(L4FM) = 5564.5 + 1977.0 + 42251.5 = 49793.0 

Note that, for both models, the test-asset portion of the log-likelihood is the same.  Therefore, LR 

cancels out in the likelihood ratio for the two models, so it has no effect on the AIC comparison either.  

This is just our earlier test-asset irrelevance conclusion viewed in terms of the likelihood function.   

The number of parameters is 18 for FF3 (3 factor means, 6 factor variances/covariances, 3 

residual variances/covariances and 6 betas) and, similarly, 19 for 4FM.  The one additional parameter 

in the latter case reflects the fact that there is one less alpha constraint.  Empirically, the AIC values for 

FF3 and 4FM are -99490.9 and -99548.1, respectively, with a difference of 57.2.  The relative 

(adjusted) likelihood of 4FM to FF3 is, therefore, exp(57.2/2), overwhelmingly in favor of 4FM, 

largely due to the great difficulty FF3 has in pricing momentum.   

 Now suppose we were unaware of the equivalence in Proposition 1 and its implication for test-

asset irrelevance, but still wanted to compare the models above.  How would we go about that and 

would the outcome be the same or different?  In this case, we would again calculate the maximum 

likelihood values, only now employing the usual parameterization for each model and the associated 

factorization of the joint density of returns.  As emphasized earlier, it is essential to evaluate each 

model’s ability to simultaneously price the test assets and any factors excluded from the model.  

Hence, we start with the unrestricted density for f1, as before, but now multiply by the restricted 

21( 0  and R 0)   joint conditional density for (f2, R) given f1.  The corresponding likelihood under 

model M1 can then be written as 

L = L1 x L2R . 

The associated log-likelihoods are 

       ln(LFF3) = 4253.0 + 45510.4 = 49763.4 
and                 (8) 
       ln(L4FM) = 5564.5 + 44228.5 = 49793.0 
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identical to the values in (7).  This was inevitable, given the well-known invariance of the likelihood 

function to one-to-one transformation of the parameter space which, in this case, is induced by the 

different factorizations of the joint density of factor and test-asset returns. 

The conclusion for model comparison is that the same outcome is obtained, regardless of which 

model representation is employed.  In the end, both approaches evaluate the likelihood that each model 

is true, given all the returns.  Interestingly, though, the fact that test assets have no impact on this 

model comparison would not be apparent from (8) and the usual way of thinking about asset-pricing 

restrictions.  The reason is that, in this calculation, we only observe the joint impact of test assets and 

the different factors excluded from each model in the term L2R.   

We have illustrated these ideas using the AIC criterion based on maximum likelihood estimates.  

However, similar conclusions apply for model likelihoods calculated with fixed values of the 

parameters that are not restricted under the given model.  Barillas and Shanken (2015) develop this 

observation further in a Bayesian approach to inference about model comparison. 

 

4. Model Comparison with the Modified HJ Distance 

Using the stochastic-discount-factor (SDF) representation of an asset pricing model, Hansen 

and Jagannathan (1997) suggest a measure of model misspecification that involves the distance in the 

standard mean-squared norm between the proposed SDF and the set of valid SDFs.  This measure can 

be used to compare models.   

As shown by Kan and Zhou (2004), the HJ distance is closely related to the cross-sectional 

regression measure introduced in Shanken (1985), except for the manner in which the zero-beta rate is 

selected.  In the excess-return context adopted here, the zero-beta rate is constrained to be the risk-free 

rate.  In this case, Kan and Robotti (2008) suggest a modification to the HJ distance, explaining that 

this “amounts to requiring all competing SDFs to assign the same price to the risk-free asset, so that we 

only compare their performances based on their pricing errors on excess returns.”  When the factors are 

traded assets, they further note (footnote 9) that the GRS measure in equation (2) above is a version of 

the modified HJ (HJm) distance that imposes the restriction that the traded factors are priced without 

error.  This constraint parallels the standard assumption in the alpha-based framework that factor 

premia equal the expected factor values.   
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We have argued that all models should be compared in terms of their ability to price the same 

set of investment returns, both test assets and traded factors.  As before, let M1 be a model with factors 

f1, and let f2 be the factors excluded from the model.  The test-asset returns are denoted by R.  The 

alpha vector for evaluating the pricing of all these investments under M1 can be written as 
1M  =       

(0, 21 , R1 ), where the alphas of f1 on f1 are necessarily 0, 21  refers to the alphas of f2 on f1 and R1  

the alphas of R on f1.  Using the Kan and Robotti results, the corresponding squared HJm distance is 

then 

     
1 1 1

1 1
M M 21 R1 M 21 R1V ( , ) ( , ),                     (9) 

where V is the covariance matrix for (f1, f2, R) and 
1M  is the residual covariance matrix of (f2, R) on 

f1.  By (2), the right-hand-side of (9) is the difference between the squared Sharpe measure for all the 

investments and that for just the factors in M1, Sh2(f1, f2, R) - Sh2(f1).   

 Now consider another model corresponding to a different subset of the same factors, (f1, f2).  

We can derive a similar expression for its HJm distance and the equivalent difference of Sharpe ratios.  

Note, however, that the weighting matrix V and the Sharpe measure for all the investments will be 

unchanged (the set of factors is the same, regardless of which are included or excluded from the 

models).  It thus follows that selecting the model with the lower HJm distance is equivalent to choosing 

on the basis of the higher model Sharpe measure.  Thus, the HJm criterion turns out to be identical to 

the simple “efficiency criterion” discussed earlier.  It follows, of course, that test assets are again 

irrelevant for model comparison, as can be shown directly by a similar argument.8   

5. Conclusions 

It is natural to examine the performance of a given model in pricing test assets and traded 

factors that are not included in the model.  However, the question that we have addressed is how this 

information should be interpreted for the specific purpose of model comparison.  We have obtained a 

simple, yet unexpected answer to this question.  In comparing models on the basis of statistical 

likelihoods or commonly employed asset-pricing metrics, test assets tell us nothing beyond what we 

learn from the evidence on the pricing of factors excluded from each model.  In particular, when test-

                                                       
 

8 The squared GRS measure for M1 in (9) is the sum of the quadratic form for adding the factors f2 to f1 plus that 
for adding the test assets R to (f1, f2).  Therefore, the latter quadratic form drops out in comparing two models.  In other 
words, the GRS measure is a sum of separate functions of these excluded-factor and test-asset alphas, so there is no 
interaction of the sort discussed earlier.  Therefore, test assets are irrelevant. 
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asset performance favors one model, but the excluded-factor evidence favors the other, it is only the 

latter that is relevant in identifying the better model.  The point is that a proper evaluation of a model 

must consider the totality of the test-asset and factor-pricing evidence.  But when this is done, the test 

assets drop out in the model comparison.   
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Table 1 

Statistics for FF3 and 4F models: July 1963 to December 2013. 

This table presents statistics for the three-factor Fama-French (1993) model versus a four-factor model 

that adds the momentum factor UMD and replaces HML with a more timely version (HMLm).  The 

table shows (i) the factors in each regression model, (ii) the annualized average absolute value of the 

intercepts A|ai|, (iii) A|ai|/A|ri|, the average absolute value of the intercepts over the average absolute 

value of the average return deviation, which is the average return on portfolio i minus the cross-

sectional average of the time-series average portfolio returns, (iv) the GRS F-statistic testing whether 

the true intercepts are zero and (v) the p-value for the GRS statistic.  

Model Factors A|ai| A|ai|/A|ri| GRS p(GRS) 

25 Size-B/M 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.21 
1.30 

 
0.53 
0.57 

 
3.61 
4.00 

 
0.0000 
0.0000 

17 Industries 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
2.22 
2.40 

 
2.18 
2.37 

 
3.41 
4.96 

 
0.0000 
0.0000 

25 Size-UMD 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
3.90 
1.30 

 
1.13 
0.41 

 
4.72 
3.78 

 
0.0000 
0.0000 

25 Size-Inv 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.31 
0.94 

 
0.63 
0.44 

 
4.48 
3.35 

 
0.0000 
0.0000 

25 BM-Inv 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.31 
1.82 

 
0.83 
1.17 

 
1.96 
2.37 

 
0.0037 
0.0002 

25 Size-OP 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.31 
1.36 

 
0.68 
0.71 

 
2.40 
2.94 

 
0.0002 
0.0000 

32 Size-B/M-OP 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.84 
1.96 

 
0.61 
0.65 

 
2.52 
3.36 

 
0.0000 
0.0000 

32 Size-B/M-INV 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.54 
1.74 

 
0.63 
0.72 

 
2.75 
3.28 

 
0.0000 
0.0000 

32 Size-Prof-INV 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
2.20 
1.90 

 
0.80 
0.69 

 
4.36 
3.49 

 
0.0000 
0.0000 

16 Size-B/M-Prof-INV 
Mkt SMB HML 

Mkt SMB HMLm UMD 

 
1.66 
1.61 

 
0.62 
0.60 

 
4.88 
4.96 

 
0.0000 
0.0000 

 


