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1. Introduction

Models having multivariate probit and related structures arise often in applied
health economics (see Mullahy, 2011, for references). When the outcome dimensions of
such models are large, however, estimation can be challenging owing to numerical
computation constraints and/or speed.

This paper suggests the utility of estimating multivariate probit (MVP) models using
a chain of bivariate probit estimators. It will be seen that the proposed approach, based on
Stata's biprobit and suest procedures and driven by a Mata function bvpmvp(...), affords two
potential advantages over Stata's mvprobit procedure: significant reductions in
computation time; and essentially unlimited dimensionality of the outcome set (mvprobit's
limit is M=20 outcomes).! The time savings arise because, unlike mvprobit, bvpmvp(...) does
not rely simulation methods; the dimension advantage arises because only pairs of
outcomes are considered at each estimation stage. Importantly, the proposed bvpmvp(...)
approach provides a consistent estimator of all the MVP model's parameters under the
same assumptions required for consistent estimation via mvprobit, and simulation
exercises reported below suggest no loss of estimator precision relative to mvprobit.

The approach suggested here was inspired by the goal of embedding MVP
estimation in a large-replication bootstrap exercise. The simulation results presented in
Section 5 suggest that the computation time savings afforded by the bvpmvp(...) method

relative to mvprobit can be significant while numerical differences in the respective point

1 Stata SE's restriction that matsize cannot exceed 11,000 ultimately places a limit on the
size of the parameter vector that can be estimated. All references to Stata herein are to
Stata/SE, Version 13.1. Whether the results obtained here using Stata generalize to other
statistical packages is an open question.



estimates and estimated standard errors are trivial. Since the potential applicability of
MVP models is broad, it is valuable in practice that such potential not be thwarted by
computational challenges.

The plan for the remainder of the paper is as follows. Section 2 describes the MVP
model. Section 3 describes the bvpmyp(...) method. Section 4 describes the comparison
empirical exercises. Section 5 presents the comparative results. Section 6 considers
parallel issues involved in estimation of multivariate ordered probit models. Section 7

summarizes.

2. The Multivariate Probit Model

The multivariate probit model as typically specified is:

Vi =xp.+u, (1)
Y, :1(y;. >0) (2)

[0ty |[~-MVN(OR) or y;=[y,..yyy |~MVN(xBR)  (3)

=
Il

where i=1,..,N indexes observations, j=1,..,M indexes outcomes, x; is a K-vector of
exogenous covariates, the u; are assumed to be iid independent across i but correlated
across j for any i, and "MVN" denotes the multivariate normal distribution. (Henceforth the

"i" subscripts will be suppressed.) The standard normalization sets the diagonal elements

of R equal to 1 so that R is a correlation matrix with off-diagonal elements Ppq’



{p,q}e{l,...,M}, p#q.2 With standard full rank conditions on the x's and each ‘ppq‘<1

then Bz[Bl,...,BM] and R will be identified and estimable with sufficient sample variation

in the x's.

3. Estimation and Inference

Estimation of the M-outcome multivariate probit model using mvprobit requires
simulation of the MVN probabilities (Cappellari and Jenkins, 2003), with mvprobit
computation time increasing in M, K, N, and simulation draws (D).3 It turns out, however,
that all the parameters (B,R) can be estimated consistently using bivariate probit --
implemented as Stata's biprobit procedure -- while consistent inferences about all these
parameters are afforded via Stata's suest procedure. Since the proposed approach will be
seen to be significantly faster in terms of computation time with no obvious disadvantages,
this strategy may merit consideration in applied work.

The key result for the proposed estimation strategy is that the multivariate normal
distribution is fully characterized by the mean vector xB and correlation matrix R. For

present purposes, the key feature of the multivariate (conditional) normal distribution

2 This normalization rules out cases like heteroskedastic errors (Wooldridge, 2010, section
15.7.4). While this normalization is common -- normalizing each univariate marginal to be
a standard probit, for instance -- it is not the only possible normalization of the covariance
matrix.

3 Specifically, in the empirical exercises reported below as well as in some other
simulations not reported here, it is found that mvprobit computation time increases:
trivially in K; essentially proportionately in D; slightly more than proportionately in N; and
at a rate between 2M and 3M in M. Greene and Hensher, 2010, suggest that MVP
computation time would increase with 2M but the results obtained in the simulations
undertaken here suggest a somewhat greater rate of increase.



F(y;,...,ymx) is that all its bivariate marginals F(y}k,y:n’x) are bivariate normal with mean

vectors and correlation matrixes corresponding to the respective submatrixes of xB and R
(Rao, 1973, 8a.2.10).
Under the normalization that the diagonal elements of R are all one, the B

parameters are identified based on knowledge of all M (conditional) univariate marginals

F(yﬂx); there is no need to appeal to the multivariate features of F(y;,...,ymx) to identify

B. The .5M(M-1) bivariate marginals provide the additional information about the Ppq

parameters. As such, identification of the parameters of all the bivariate marginals implies

identification* of the parameters of the full multivariate joint distribution so that consistent

estimation of all the bivariate marginal probit models Pr(yp:tp,yq:tq|x) provides

consistent estimates of all the parameters (B,R) of the full multivariate probit model

Pr(y, =t,,..yy =ty|x) for t,e{0,1},j=1,..M.

Estimation via Bivariate Probit
The proposed approach, which can be implemented using the Mata function

bvpmvp(...) described below, is as follows. First, corresponding to each possible outcome

pair, .SM(M—l) bivariate probit models are estimated using biprobit yielding a single

4 As discussed below, identification of all the bivariate marginals implies overidentification
of B.



estimate> of each ppq and M-1 estimates of each [3]., j=1,..,M. Each of the M-1 estimates of

[3]. is itself consistent since each biprobit specification uses the same normalization on the

o~ o~~~

relevant submatrixes of R. Each of these estimates (Bp,Bq,ppq) , b=1,...,.5M(M—1), is
b

stored and then combined using Stata's suest procedure, which provides a consistent

estimate of the joint variance-covariance matrix of all M(M—l)(.SJrK) parameters

estimated with the .SM(M—l) biprobit estimates. Denote this vector of parameter

estimates and its estimated variance-covariance matrix as o and €, respectively.®

~ 1 ~
Second, the simple averages ﬁjAZKWJZZ{ﬂBim are computed. This gives a
- m#j

kxM matrix of estimated averaged coefficients, denoted BA:[[ilA,...,BMA] Since a

weighted average of consistent estimators is in general a consistent estimator, the resulting

B, will itself be consistent for B. This averaging arises because the B parameters in the

proposed approach are overidentified, i.e. there are M-1 consistent estimates of each [3].,

j=1,..,M. One could use some other rule to compute a single consistent estimate of each [3].

from among the M-1 candidates, but unless alternative strategies could boast significant

precision gains, computational simplicity recommends the simple average as an obvious

5 biprobit estimates directly the inverse hyperbolic tangent of or

.51n((1+ppq)/(1—ppq)).

6 o and Q are the suest stored matrix results e(b) (a row vector) and e(V), respectively.

ppq



solution. See the Appendix for further discussion.

Finally, let Q denote the .SM(M—l) vector of the tanh_l(pjk) estimated in each

~

T
—~\T ~T
biprobit specification, and define the M(.S(M—1)+K)><1 vector ©= vec(BA) Q } :

Define H as the M(.S(M—1)+K)><M(M—l)(.5+K) averaging and selection matrix that maps

~ ~ ~ ~T
o to ©, i.e. ®=Ho ; the elements of H are 1/(M-1), one, or zero.” The estimated

variance-covariance matrix of @, useful for inference, is given by Var((~)) —HQH".

bvpmvp(...): A Mata Function to Implement the Proposed Estimation Approach

The function bvpmvp(..) returns the M(k+.5(M—1))><(M(k+.5(M—1))+1) matrix

~T
whose  first column is © and whose remaining elements are the

M(k+.5(M—1))-dimension symmetric square matrix Var(é). bvpmvp(...) takes six

arguments: (1) a string containing the names of the M outcomes; (2) a string containing the

7 A general form of the H matrix is complicated to express concisely. As an example, for
M=3 and K=2 the 9x15 H matrix, computed internally by bvpmvp(...), is

o

=
1]
C oo oo oo ow

OO0 o oCc o0 oo Lo
OO0 oo oo U1 oo
oo ooCcout1ioo o
cor o000 oo
OO o0 OC o oo un
OO0 o oCc oo o WLlo
oo ooCcuUiloo oo
cooocouUiloo oo o
OrRr o000 o0 oOo
OO0 o oCc oo U1 oo
oo oo o ut1oo o
oo oo uU1lo oo

cooocouUiloo oo o
S I = B Sl R R B = Rl



names of the K-1 non-constant covariates; (3) a (possibly null) string containing any "if"
conditions for estimation; (4) a scalar indicating whether or not to display the interim
estimation results; (5) a scalar indicating the rounding level of presented results; and (6) a

scalar indicating whether or not to display the final results. For example:

bvi

bvpmvp("yl y2 y3 y4","x1 x2 x3 x4","if n<=10000",0,.001,1)

bv2

bvpmvp(yn,xn,ic,0,.001,1)

bvpmvp(...)'s summary report displays the B, estimates, their estimated standard errors,

and the estimated correlation matrix R; an example is provided in Exhibit 1. Of course,
suppression of these results may be useful, for instance, in simulation or bootstrapping
exercises. The do file containing the Mata code for bvpmvp(...) is available with this paper's

supplementary materials.

4. Simulation Exercises

To assess the relative performance of the proposed approach and the approach
based on mvprobit a simulation exercise was conducted. Three sample sizes (N=2,000,
N=10,000, N=50,000) are considered. The data structure corresponding to (1)-(3) has

either K=5 or K=9 covariates x (four or eight independently distributed uniform variates

plus a constant) and M=8 binary outcomes Vi (only four of which are used in some

) - " * = = -
specifications) corresponding to latent Vi having cross-outcome correlations Pik variously

in {.2, 1/\/5, .5} for all j#k, specifically



.5 107> 1 (symm.)
10° 2 10 1

5 10° 5 10° 1
10° 2 10° 2 107° 1

5 10° 5 10° 5 107° 1
10° 2 10° 2 107 2 10° 1

For mvprobit, the draws(.) option was set both at 10 and 20. The simulations are
performed using Stata/SE Version 13.1 on an iMac 3.4GHz Intel Core i7 processor and OS X

v10.8.8.

5. Simulation Results

Key results of the simulations are summarized in Tables 1-3. Table 1 displays the
absolute and relative computation times for mvprobit and bvpmvp(...) estimation across the
various combinations of the N, M, K, and D parameters. Enormous differences in
computation time are seen between the two estimation methods across all the different
parameter combinations (for reference, it may be useful to recall that there are 86,400
seconds in one day). Tables 2 and 3 present a side-by-side comparison of the point
estimates of B and R obtained in one select specification (N=10,000, M=4, K=5). For both B

and R the differences between the mvprobit and bvpmvp(..) point estimates and

8 The simulations set Stata's matsize parameter at 600 for all specifications. In some
preliminary investigation, it was observed that computation time for bvpmvp(...) increased
significantly when matsize was set much larger than necessary; this was not the case for
mvprobit.



corresponding estimated standard errors are trivial.
In light of these results, use of methods like bvpmvp(...) to estimate MVP models

merits consideration when computation time is an important consideration.’

6. Multivariate Ordered Probit Models

Analogous conceptual considerations arise in the context of multivariate ordered
probit (MVOP) models in which the observed ordered outcomes are Yo, e{O,...,GJ.} for finite
integers G]. >1. MVOP modeling involves estimation of and inference about the parameters

B and R as well as the vector of category cutpoints, C (for each outcome yo;j there are G;

cutpoints that delineate the Gj+1 categories).10

91t should be noted that these simulations paint what is in some sense a "worst-case"
picture for mvprobit estimation. The simulations use mvprobit "out of the box," i.e. without
specifying any options that might enhance estimation speed (see the Stata "help" file for
mvprobit and also Cappellari and Jenkins, 2003 and 2006). For instance, specifying a
smaller number of draws (e.g. draws(3) or draws(5)) would clearly result in faster
estimation times; any diminished performance of the mvprobit estimator relative to the
performance at greater number of draws would be a potential consideration, however.
Alternatively, using good starting values for R via mvprobit's atrho0(.) option might also be
expected to result in faster estimation times. One such approach would involve two stages:
(1) estimate the full model using mvprobit with a small number of draws, e.g. draws(1) or
draws(2); and (2) use the estimate of R thus obtained to provide starting values for a
second mvprobit estimation with a larger number of draws (e.g. draws(10) or draws(20))
being specified. This approach -- with draws(1) specified initially, followed by draws(10) --
was examined in some simulations. It was observed in this instance that the two-stage
approach resulted in roughly a 10% reduction in overall estimation time, due mainly to a
smaller number of iterations (three vs. four) required for convergence in the second stage.

This paper also has not considered how estimation using Stata's cmp procedure to
estimate the MVP model would compare with the bvpmvp(...) approach.

[ would like to thank Stephen Jenkins and an anonymous referee for their insights
and suggestions on these matters.

10 For the MVOP model B will not contain a parameter for the constant term since this is
absorbed into the cutpoints C.



An estimation strategy fully analogous to bvpmvp(..) is not available since the
bioprobit procedure (Sajaia, 2008) does not permit postestimation prediction with the
score option, as required by suest. However, an alternative, fully consistent, and
computationally efficient approach is available, as follows. First, estimate M univariate
ordered probit models using Stata's oprobit procedure and store these results using
estimates store. This provides consistent estimates of the B and C parameters. Second,
estimate a chain of bivariate binary probit models using biprobit -- as with bvpmvp(...) --
and store these estimates using estimates store. This provides a consistent estimate of R.11
Note that any thresholds used to map the ordered yoj; to their corresponding coarsened
binary outcomes should result in consistent estimates of R. biprobit uses the rule that a
nonbinary outcome is treated as zero for zero values and one otherwise; this is a
convenient mapping that minimizes programming burden. Third, combine all the
estimates stored in these two steps using suest. The estimates from suest can then be used
for inference. The do file containing the Mata code for the function bvopmvop(...) that
implements this approach is available with this paper's supplementary materials.? An

example of bvopmvop(...) output is presented in Exhibit 2.13

11 Note that this also provides consistent estimates of B, but these are unnecessary given
those obtained in the first step.

12 pyopmvop(...) accommodates ordered outcomes having different numbers of cutpoints,
including mixed ordered and binary outcomes. The single cutpoint estimated in oprobit for
binary outcomes is -1 times the corresponding constant term that would be estimated
using probit.

13 The outcomes in this example are ordered versions yo; of the y; used in the earlier

simulations in which the outcome value 2 is assigned if 1< y; <2 and 3 is assigned if y;.k >2.

Then y2 combines the top two categories and y3 combines the top three categories (i.e. y3 is
the original binary measure). Thus, the numbers of categories are G1=4, G2=3, G3=2, and
Gs=4.

10



7. Summary

This paper has presented a novel estimation strategy for consistent estimation of
and inference about the parameters of MVP and MVOP models. The straightforward
implementation of these approaches using available Mata programs recommends their
consideration in applied work, particularly in situations involving large numbers of
outcomes (M), large sample sizes (N), or in situations requiring repeated MVP estimation
like bootstrapping exercises.

In closing, it should be noted that the methods suggested here may prove useful in
many but not all applications of multivariate probit models. Ultimately the methods

proposed here -- as well as the mvprobit method -- permit estimation of the joint

conditional probability model Pr(y = k|x) for the M-vectors of outcomes y, all possible 2M

vectors k=[kn], kme{O,l}, and exogenous covariates X. As such, when these joint

conditional probabilities are per se the estimands of interest, when they are instrumentally
of interest in the estimation of other quantitites (see Mullahy, 2011, for discussion), or
when reduced forms of structural models are of interest, the approach suggested here may

prove useful. However in other MVN contexts with binary outcomes

-- e.g. where endogenous ym are RHS variables in the structural models for other latent y;

-- consistent estimation of the structural parameters will typically demand attention to the

full joint probability structure, not just its bivariate marginals.1#

14 Thanks are owed to an anonymous reviewer for emphasizing these points.

11
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Appendix: Additional Remarks on Combining biprobit Estimates
In general, the optimal approach to combining such multiple estimates in the
overidentified case is to use a minimum-distance estimator with an optimal weight matrix

(Wooldridge, 2010, section 14.5). In the present context this would amount to computing a

. . . . N M o .
weighted average for each point estimate, i.e. Bjszzmziwjkmﬁjkm' j=1,...M, k=1,..K.
mj

Implementing the minimum-distance approach can be computationally challenging,
however. For example, consider the simplest case, M=3. The optimal (variance-

minimizing) weights even in this instance are complicated functions of the estimates'
variances and covariances; suppressing the jk subscripts, for {p,q,r}e{l,Z,B}, p#qQ#r

these optimal weights are:

GG—GZ—GG—GG—GG—GG
W = PP 99 pPq qq pr pp 1rq pr _pq Pq 1rq

6 6 +6 6 _+6_ 06 _—0> —G> —Gf +2

q(56+06+(5(5—66—0(5—6(5)

pp T T qq PP qq pr Pq pr pq pPq rq pr rq pp 1q T pq qq pr

where o, are variances and covariances of the parameter estimates (the empirical

o~ o~

counterpart, w_, would use o,,). The algebraic complexity of these weights increases

rapidly as M increases.

The considerable additional computational complexity involved in implementing
such a minimum-distance approach is unlikely to provide much benefit (in terms of
precision) unless the optimal wjxm were to diverge dramatically from 1/(M-1). The
simulations undertaken here suggest this is unlikely to be the case. In general the optimal
weights will diverge from the equi-weighted case of 1/(M-1) to the extent that the
variances and covariances of and between the parameter point estimates differ

substantively across the (M-1) estimates.1>

15 Bill Greene suggested to me that a computationally straightforward middle-ground
weighting strategy would be to, in essence, ignore the cross-estimator covariances and
compute the variance-matrix-weighted quantities:

D | S

13



For illustrative purposes, selecting arbitrarily the (M-1) point estimates

corresponding to the parameter f3,, (outcome y1, covariate x1) for the N=10,000, M=8 and

—

K=5 specification, the range of the seven point estimates f3,, is [.3266, .3288], the range of

the corresponding seven estimated point estimate variances is [.001983, .001995], and the
range of the 28 estimated point estimate covariances is [.001983, .001993]. It is thus
unlikely that the optimal weights would diverge much from 1/(M-1).

The ultimately important result is that at least insofar as the simulations conducted
for this paper are concerned, the differences between the mvprobit and bvpmvp(...) point

estimates and estimated standard errors are inconsequentially small (see Tables 2 and 3).

14



Estimation Time Com

Table 1

parisons (in Seconds)

Parameters Computation Time Relative
Difference
N M K D mvprobit bvpmvp(...) (Ratio)
5 10 29 1 29
4 20 53 53
9 10 28 1 28
2000 20 54 54
’ 5 10 1,219 5 244
8 20 2,041 408
9 10 1,036 8 130
20 2,044 256
5 10 142 9 71
4 20 263 132
S : a6
20 2
10,000 5 10 4,628 14 331
8 20 10,469 748
9 10 4,669 19 246
20 9,833 518
10 986 82
4 > 20 1,937 12 161
9 10 995 18 55
50000 20 1,970 109
’ 5 10 35,833 65 551
8 20 72,406 1114
9 10 36,647 86 426
20 73,204 851
Legend

N: Number of sample observations
M: Number of outcomes

K: Number of covariates (including constant term)

D: Number of draws for mvprobit

Note: Stata's matsize parameter is set at 600 for all specifications.

15




Table 2

myprobit and bvpmvp(...) Comparison: B and B, Point Estimates, One Example
(N=10,000, M=4, K=5; Estimated Standard Errors in Parentheses)

—

mvprobit
Outcome Covariate (draws=20) bvpmvp(...)
Ny 0.3265 3279
(.0448) (.0446)
o -0.3301 -3314
(.0447) (.0447)
0.3184 3198
y1 X3 (.0447) (.0449)
-0.3902 -3916
x4 (.0448) (.0447)
Constant 0.3901 3909
(.0466) (.0464)
-0.4487 -4487
X1 (.0456) (.0455)
o 0.5624 5620
(.0458) (.0456)
-0.3998 -3977
y2 %3 (.0457) (.0457)
0.4000 3961
x4 (.0456) (.0457)
Constant -0.5086 -5079
(.0474) (.0474)
Ny 0.3102 3151
(.0445) (.0446)
0.3846 3875
X2 (.0445) (.0449)
-0.3188 -.3206
ys X3 (.0446) (.0447)
-0.3462 -.3496
x4 (.0446) (.0447)
Constant 0.3230 3210
(.0463) (.0463)
. 0.4567 4573
! (.0455) (.0457)
-0.4438 -4408
X2 (.0455) (.0457)
-0.4489 -4516
ya %3 (.0456) (.0457)
0.4555 4499
x4 (.0456) (.0453)
Constant -0.4552 -4524
(.0472) (.0472)

16




Table 3

mvprobit and bvpmyp(...) Comparison: R Point Estimates, One Example
(N=10,000, M=4, K=5; Estimated Standard Errors in Parentheses)

mvprobit
R (draws=20) bvpmvp(...)
3190 3308
P12 (.0158) (.0159)
4942 5073
P13 (.0134) (.0134)
2766 2872
P14 (.0160) (0161)
3356 3424
P23 (.0156) (.0158)
2000 2034
P24 (.0163) (.0167)
3059 3086
P34 (0157) (.0160)

17




Exhibit 1: Sample Output from bvpmvp(...) (N=10,000, M=4, K=5)

: yn="yl y2 y3 y4"

: xn="x1 x2 x3 x4"

: ic="if n<=10000"

: bvl=bvpmvp(yn,xn,ic,1,.001,1)

kkhkkhkhkkhkhkhkkhhkkhhkhkhhkhkhhkhkhhkhhkkhkhkhkhhkkhhkhkhhkhkhkkikkk**x

* *
* Multivariate Probit: Results *
* *

R SR S SR SR S S S S S S S R R R R R R R S R R R S R R R R R R I
N. of Observations (from suest): 10000

Estimation Sample: if n<=10000

Averaged Beta-Hat Point Estimates and Estimated Standard Errors

1 2 3 4 5
ey Sy Sy Sy iy Sy Sy iy Sy Sy Ry Sy S Sy SRy Sy +
1| yl y2 y3 v4 |
2 | |
3 x1 .328 -.449 .315 .457
4 (.045) (-046) (.045) (-046)
5
6 X2 -.331 .562 .388 -.441
7 | (.045) (.046) (.045) (-046) |
8
9 %3 .32 -.398 -.321 -.452
10 (.045) (-046) (.045) (-046)
11
12 | x4 -.392 .396 -.35 .45 |
13 (.045) (-046) (.045) (-045)
14
15 _cons .391 -.508 .321 -.452
16 (.046) (-047) (.046) (-047)
17 | |
ey Sy Sy Sy iy Sy Sy iy Sy Sy Ry Sy S Sy SRy Sy +
(continued)

18



Exhibit 1 (continued)

Estimated Correlation (Rho) Matrix and Estimated Standard Errors

1 2 3 4 5
ey Sy Sy Sy iy Sy Sy iy Sy Sy Ry Sy S Sy SRy Sy +
1| yl y2 y3 v4 |
2
3 yl 1 .331 .507 .287
4 | (.016) (.013) (-016) |
5
6 y2 .331 1 .342 .203
7 (.016) (.016) (.017)
8
9 | y3 .507 .342 1 .309 |
10 (.013) (.016) (.016)
11
12 y4 .287 .203 .309 1
13 (.016) (.017) (.016)
14 | |
ey Sy Sy Sy iy Sy Sy iy Sy Sy Ry Sy S Sy SRy Sy +

Cut & Paste Matrix, Averaged Beta-Hat Point Estimates

(.328 , -.449 , .315 , .457) \
(-.331 , .562 , .388 , -.441) \
(.32 , -.398 , -.321 , -.452) \
(-.392 , .396 , -.35 , .45) \
(.391 , -.508 , .321 , -.452)

Cut & Paste Matrix, Estimated Correlation Matrix
(L, .331 , .507 , .287) \
(.331 , 1, .342 , .203) \

(.507 , .342 , 1 , .309) \
(.287 , .203 , .309 , 1)
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Exhibit 2: Sample Output from bvopmvop(...) (N=10,000, M=4, K=5)

yn="ylo y2o0 y3o y4o"

xn="x1 x2 x3 x4"

ic="if n<=10000"
bv2=bvopmvop(yn,xn,ic,1,.001,1)

kkhkkhkhkkhkhkhkkhhkhkhhkhhhkhhkkhhkhkhhkhkhhkhhhkhkhkkhkhkkhhkkhhkkhhkhk ki, kk*%*x

* *
* Multivariate Ordered Probit: Results *
* *

kkhkkhkkhkkhkhkhkhhkhkhhkhhhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhkhkkrhkkhhkkhhkk kkk*xk*%*%

N. of Observations (from suest): 10000
Estimation Sample: if n<=10000

Beta-Hat and Cutpoint Point Estimates and Estimated Standard Errors
(Note: SEs are from suest ests.)

1 2 3 4 5
- +
1| ylo y20 y3o0 ydo |
2
3 x1 .379 -.457 .316 .464
4 (.038) (.043) (.045) (.043)
5
6 | X2 -.325 .53 .388 -.44 |
7 (.038) (.044) (.045) (.043)
8
9 x3 .338 -.404 -.321 -.471
10 (.038) (-043) (.045) (-043)
11 | |
12 x4 -.393 .397 -.348 .45
13 (.038) (-043) (.045) (-043)
14
15 cutl -.354 .485 -.319 .447
16 | (.04) (.045) (.046) (-045) |
17
18 cut2 .356 1.379 - 1.305
19 (-04) (.047) (-047)
20
21 | cut3 1.079 - - 2.18 |
22 (.041) (-054)
23
- +
(continued)
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Exhibit 2 (continued)

Estimated Correlation (Rho) Matrix and Estimated Standard Errors

1 2 3 4 5
- +
1| ylo y20 y3o0 ydo |
2
3 ylo 1 .331 .507 .287
4 | (.016) (.013) (-016) |
5
6 y20 .331 1 .342 .203
7 (.016) (.016) (.017)
8
9 | y3o .507 .342 1 .309 |
10 (.013) (.016) (.016)
11
12 y4o .287 .203 .309 1
13 (.016) (.017) (.016)
14 | |
- +

Cut & Paste Matrix, Beta-Hat and Cutpoint Point Estimates

(.379 , -.457 , .316 , .464) \
(-.325 , .53 , .388 , -.44) \
(.338 , -.404 , -.321 , -.471) \
(-.393 , .397 , -.348 , .45) \
(-.354 , .485 , -.319 , .447) \
(.356 , 1.379 , . , 1.305) \
(1.079 , . , . , 2.18)

NS N N~

Cut & Paste Matrix, Estimated Correlation Matrix

(L, .331, .507 , .287) \
(.331 , 1, .342 , .203) \
(.507 , .342 , 1 , .309) \
(.287 , .203 , .309 , 1)
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