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ABSTRACT

The mix of public and private research funding investments in alternative energy presents a challenge
for isolating the effect of government R&D funding.  Factors such as energy prices and environmental
policy influence both private and public R&D decisions. Moreover, because government R&D is further
upstream from the final commercialized product, it may take several years for its effect on technology
to be realized.  Combining data on scientific publications for alternative energy technologies with
data on government R&D support for these technologies, we address these challenges.  First, we ask
how long it takes for energy R&D to provide successful research outcomes. We both provide information
on the lags between research funding and new publication and link these articles to citations in U.S.
energy patents.  One million dollars in additional government R&D funding leads to 1-2 additional
publications, but with lags as long as ten years between initial funding and publication.  Second, we
ask whether adjustment costs associated with large increases in research funding result in diminishing
returns to government R&D.  There is no evidence of diminishing returns on the level of publication
output, but some evidence that additional funding leads to lower quality publications, using citations
as a measure of publication quality.
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I. Introduction 

Because of the long-term, uncertain nature of climate change, government R&D funding 

plays an important role in long-term strategies to reduce greenhouse gas emissions.  The mix of 

public and private research funding for technologies to reduce emissions presents a challenge for 

estimating the effect of government-funded R&D.  Because it is further upstream from the final 

commercialized product, government R&D should take longer to have an observable effect on 

outcomes than private R&D.  At the same time, both private and public R&D are driven by the 

same demand-side influences, such as energy prices and environmental policy, making it difficult 

to disentangle the effect of each. 

Such funding is particularly important for alternative energy sources, many of which are 

still too costly to be competitive with fossil fuels without policy support.  Generation of electricity 

and heat is the largest source of carbon emissions, accounting for 42% of carbon emissions 

worldwide in 2012 (IEA 2014).  Meeting the climate policy goals currently under consideration, 

such as European Union discussions to reduce emissions by 40 percent below 1990 levels by 2030, 

will not be possible without replacing much of this electric generating capacity with alternative, 

carbon-free energy sources.1 

In this paper, we use data on scientific publications to assess the effect of government-

sponsored energy R&D.  While many economists now use patent data to evaluate energy R&D 

(Popp 2001, 2002, 2006; Johnstone et al. 2010 Verdolini and Gaelotti, 2011), publication data are 

used less frequently within the field.  For evaluating public research funding efforts, publication 

data provide a more appropriate outcome measure than patents.  Moreover, while direct evidence 

on the relationship between public R&D funding and energy costs is desirable, the long lags 

1 These limits come from http://ec.europa.eu/clima/policies/international/negotiations/future/index_en.htm, accessed 
January 7, 2015. 
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between basic research support and commercial outcomes make measuring the final impact of 

basic research difficult (Lane, 2009).  For example, the costs of renewable energy sources depend 

not only on knowledge accumulated from public R&D, but also on advances due to private R&D, 

both of which are driven by many of the same demand signals.  By looking at the effect of public 

R&D funding on publications, this paper attempts to isolate the effect of public R&D to shed light 

on the process through which public R&D helps develop scientific knowledge.  In addition, 

publication data are available for a wide range of countries and technologies.  In contrast, studies 

using direct measures of energy research outcomes, such as changes in renewable energy costs, 

use data from only a few countries (e.g. Söderholm and Klaasen 2007). 

However, compared to patents, publication data bring additional challenges to evaluate 

properly.  Scientific publications are observed for papers that have been accepted by a journal 

editor.  Editors not only judge the potential article for quality, but also must consider whether it 

will be of interest to readers.  Thus, our econometric model accounts for factors influencing both 

the willingness of scientists to study renewable energy and the willingness of editors to publish 

such articles.  Using this framework, we combine data on scientific publications for alternative 

energy technologies, such as wind and solar power, with data on government R&D support for 

specific energy technologies and controls such as energy prices and the nature of electricity 

production in each country.  Such controls are important to assess the marginal impact of additional 

government R&D.   We use these data to address two research questions.   

First, we ask how long it takes for energy R&D to provide successful research outcomes.  

Within the energy R&D literature, most studies consider only a single year of energy R&D or 

construct aggregated stocks of past R&D efforts using predetermined rates of decay.  By focusing 

on both inputs and outputs of the research process, this study provides new evidence on the timing 
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of these flows and suggests that simply focusing on a single year of energy R&D omits longer run 

effects from R&D spending.  Using both finite distributed lag and polynomial distributed lag 

models, we provide information on the lags between research funding and new publications.  Then, 

we link these articles to citations in U.S. energy patents.  Asking how long it takes for publications 

to be cited by a patent helps illuminate the lags between basic science and applied work.   

Second, we ask whether adjustment costs associated with large increases in research 

funding result in diminishing returns to government R&D.  Despite concerns raised about the 

adjustment costs of dramatic changes in funding for medical science (Freeman and van Reenen 

2009), Schulke-Leech (2014) provides evidence of similar experiences for energy R&D budgets, 

raising the concern that such volatility may be particularly problematic for energy technology 

research, which requires large capital investment.  As scientists’ time is limited and the supply of 

researchers able and willing to work on a given topic is inelastic in the short run, large increases 

in funding may not lead to corresponding increases in scientific output (e.g. Goolsbee 1998).  

Moreover, assuming that funding agencies support the highest quality projects first, as funding 

increases and governments provide support to a greater number of projects, the additional projects 

supported may be of lower quality than those supported in leaner budget years.  In this paper, we 

use counts of publications to ask whether there are diminishing returns to the quantity of 

publications produced from new energy R&D funding, and citation data to ask whether the quality 

of publications fall as research output increases.  

 

II. Literature Review 

Within the field of economics, there is a long tradition of evaluating the research process 

using econometric techniques that provide a theoretical framework for analysis.  However, until 
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recently, most of this analysis has used patent data, rather than publication data, as the measure of 

research output.2  While the use of publication data within the economic research community has 

recently increased, the focus has primarily been on using publication data to measure knowledge 

flows, rather than evaluating the effectiveness of research inputs.3  Research using publication data 

to examine the returns to research includes Jacob and Lefgren (2011), who find  that receiving an 

National Institutes of Health (NIH) NIH grant leads to just one additional publication over five 

years.  Jacob and Lefgren suggest that the small effect of NIH funding comes from non-recipients 

simply switching to other sources of funding.  The potential for other sources of funding to serve 

as substitutes raises questions about the true marginal effects of government research funds.  Using 

university level data, Rosenbloom et al. (2014) find a larger return on public chemistry R&D 

funding at U.S. universities.  However, they do not provide estimates of the lag structure of R&D.  

Showing the importance of other demand factors, Bhattacharya and Pachalen (2011) use 

publication data to examine medical research across related technological areas.  They link 

scientific opportunity, measured by the availability of new drugs, to scientific publications 

referencing both these ingredients and these medicines.  While they find that both research 

opportunities and potential market size matter, they do not directly evaluate the effects of research 

inputs, such as public R&D spending. 

Within the energy innovation literature, most studies evaluating the effect of publicly 

funded energy R&D focus on the effect of public R&D on new energy patents or on the cost of 

2 Early exceptions include Pardey (1989), who finds that long-term trends in agricultural R&D spending matter more 
than short-run, year-to-year variation within states; Adams (1990), who uses publications as an explanatory variable, 
linking scientific knowledge, as represented by an accumulated stock of publications, to output growth; and Adams 
and Griliches (1996), who estimate a production function of knowledge produced by 110 top U.S. research 
universities, finding a positive relationship between R&D and publications, but an even stronger link between 
employment of scientists and engineers at universities and publication counts.   
3 Examples include Adams, Clemmons, and Stephan ( 2004, 2006), Adams and Clemmons (2008), Jones et al. 
(2008), Wuchty et al. (2007), Azoulay, Zivin, and Wang (2010), Zucker et al. (2007), and Furman et al. (2012) . 
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alternative energy sources.  Looking at patents, Popp (2002) uses a distributed lag framework and 

finds a limited role for government R&D, with government energy R&D serving as a substitute 

for private energy R&D during the 1970s, but as a complement to private energy R&D afterwards.  

Other papers consider just a single year of public R&D data, either contemporary or lagged (e.g. 

Johnstone et al 2010, Verdolini and Gaelotti 2011, Dechezleprêtre and Glachant 2014, Nesta et al. 

2014).  While these studies typically find a positive effect of public R&D on patenting, the short 

lags raise questions about what is truly being identified. 

Similarly, a second line of research explores the role of both R&D investment and 

experience using two-factor learning curves, modeling cost reductions as a function of both 

cumulative capacity (learning-by-doing, or LBD) and R&D (learning-by-searching, or LBS).  

Examples include Klaasen et al. (2005), Söderholm and Sundqvist (2007), Söderholm and Klaasen 

(2007) and Ek and Söderholm (2010).  To be comparable with the notion of cumulative capacity, 

R&D is typically aggregated into a stock of R&D capital.4  Thus, endogeneity is a concern, as both 

investments in capacity and past R&D expenditures are simultaneously determined.  Ek and 

Söderholm model R&D choice directly, treating public R&D as a function of the real investment 

cost of wind, the opportunity cost of public R&D, measured by real rate of return on long-term 

treasury bonds, and the share of total government debt.  They estimate a learning-by-searching rate 

of about 20 percent, but find it is only significant at the 12 percent level. 

As these papers show, our understanding of the timing of energy R&D’s potential benefits 

remains limited.  Most studies consider only a single year of energy R&D or construct aggregated 

stocks of past R&D efforts using predetermined rates of decay.  Related research in other fields 

offers some evidence, but remains incomplete.  Research on the productivity of publicly funded 

4 Söderholm’s work typically lags the R&D stock by two-years and assumes a depreciation rate of three percent. 
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health R&D illustrates the challenges of identifying the effect of public R&D funding that comes 

at the beginning of a long, uncertain research process.  In medical research, the discovery of a 

potential new drug is followed by years of clinical studies and human testing.  The average lag 

between the beginning of human testing to FDA application is nine years, and R&D to explore 

potential new drugs occurs years before testing can begin.  Toole (2012) studies the effect of public 

basic research funding from the U.S. National Institutes of Health (NIH) on applications for new 

molecular entities (NMEs) approved by the Food and Drug Administration (FDA).  To make the 

regressions manageable given the long lags necessary to develop a new treatment, Toole creates 

separate stocks of accumulated private and public R&D.  His results confirm that the lag between 

public R&D funding and new product development can be large, estimating a lag between initial 

public R&D investment and NME application between 17 and 24 years.  Similarly, Blume-Kohout 

(2012) examines the links between NIH funding and the number of drugs entering clinical testing 

for a range of diseases, controlling for potential market size.  Unlike Toole, she uses a finite 

distributed lag model, including up to 12 years of lagged R&D funding.  Because of 

multicollinearity concerns, she focuses on the aggregate long-run effect of NIH R&D funding, 

with a 10 percent increase in NIH funding leading to a 4.5 percent increase in clinical trials after 

12 years, but does not provide information on the how the effect of R&D from a particular year 

varies over time.   

Using macro-level data, Crespi and Geuna (2008) find an optimal lag length between 6 and 

7 years in their study of higher education research and development spending on publications 

across 14 OECD countries from 1981-2002.  However, their study includes research on a wide 

range of topics, and does not consider differences among fields, nor other demand factors that may 

influence scientific research.  In contrast, in this paper I both provide estimates of the year-by-year 
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effect of energy R&D on publications, similar to Crespi and Geuna, while also controlling for other 

market-driven and policy forces that affect the direction of basic research.  This allows me to assess 

the extent to which increases to public energy R&D funding within a specific field lead to increased 

scientific output within that field.  

 

III. Estimation 

We estimate the effects of public R&D on scientific publications for each of four 

technologies: biofuels, energy efficiency, solar energy, and wind energy.  While many economists 

now use patent data to evaluate R&D, publication data are used less frequently within the field for 

this purpose.  Both patents and publications are the outcome of a research process.  To observe 

either, the researcher must have a successful project and the appropriate authority (patent examiner 

or journal editor) must decide to accept the completed project to patent or publish.  For patents, 

the only threshold is a legal threshold.  In contrast, the acceptance process for a research paper is 

more complex.  The number of publications observed in a given year is the equilibrium outcome 

of a demand process, in which editors choose desired articles based on the perceived importance 

to their readers, and a supply process, in which researchers produce articles to submit in response 

to incentives provided by research funding and perceived prestige.  Editors not only judge the 

potential article for quality, but also must consider whether it will be of interest to readers.  This 

complicates analyzing the effect of public R&D spending on publications, as many of the same 

factors determining public R&D decisions likely affect reader interest, and thus the editor’s 

decision to publish  

Controlling for other factors influencing research interest in a given technology is also 

important, as it affects the supply of articles available to publish.  For instance, even researchers 

7 
 



without public funding are likely to find alternative energy an attractive area of research when 

energy prices are high.  While we do not observe alternative funding sources that may be available 

to researchers, we do observe other factors affecting the availability of these funds, such as energy 

prices and policy. Omitting these variables erroneously assumes that all new research is the result 

of government R&D funding.  However, controlling for such factors complicates the model, as the 

same factors that provide scientists incentives to work on alternative energy may also influence 

government research funding decisions.   

We use two alternative approaches to address this concern. First, the regressions include 

both country and year fixed effects.  Many of the factors influencing both R&D spending and 

publication on a specific technology will be country-specific.  For example, countries with 

abundant sunshine should both be willing to support solar R&D and have researchers actively 

publishing on solar energy.  Similarly, year fixed effects account for both changes in the research 

opportunities available to scientists at a given time, which fluctuate as advances in science make 

some areas of research look more or less fruitful, and for the competing submissions from other 

fields that editors may have to choose from at any given time.  

Second, to control for any remaining omitted variable bias that does vary over time, we 

also use instrumental variables for contemporaneous energy R&D.  Potential instruments must be 

correlated with research spending, but not the publication decision.  Thus, we include instruments 

for R&D spending on related technologies (e.g. using biofuels R&D as an instrument for solar 

energy R&D spending), as well as instruments that model the political process determining R&D 

funding: tax revenues (excluding social security) as a percentage of GDP, general government 

expenditure as a percentage of GDP, and a set of dummy variables representing the political 

leanings of the government.  Specific instruments for each technology are discussed in section IV. 

8 
 



Because the research process takes place over time, lagged effects for the variables 

described above will be important.  Articles are first observed on their publication date, t, and thus 

contribute to publication counts in this year.  However, publication occurs at the end of a long 

process.5  Indexing countries by i, we estimate the following model: 

(1)    𝑄𝑄𝑖𝑖,𝑡𝑡 = ∑ 𝛽𝛽𝑡𝑡−𝑠𝑠𝑅𝑅𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇
𝑠𝑠=0 + ∑ 𝛄𝛄𝐭𝐭−𝐬𝐬𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇

𝑠𝑠=0 + ∑ 𝛅𝛅𝐭𝐭−𝐬𝐬𝐗𝐗𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇
𝑠𝑠=0 + 𝛼𝛼𝑖𝑖 +  𝜂𝜂𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡  

In equation (1), Qi,t represents the number of publications from authors in country i published in 

year t and Ri,t-s represents government R&D spending on a given technology by country i in year 

t-s.  We separate the variables measuring interest in each energy source into two parts: POLICYi,t-s 

represents policies relevant to the technology and Xi,t-s represents various control variables that 

affect demand for alternative energy sources in each country, such per capita GDP and the share 

of energy coming from hydropower and nuclear. Both the policy variables and other controls used 

vary by technology, and are discussed in the next section.  αi and ηt, represent the country and year 

fixed effects described above. 

We use first-differenced panel data techniques to estimate equation (1).  First differencing 

has two advantages over a fixed effect model for this estimation.  Most importantly, first 

differencing avoids the problem of spurious regressions in the case where explanatory variables 

have a unit root (Wooldridge, 2012).  I find evidence of unit roots for R&D using the IPS test (Im, 

Pesaran and Shin, 2003) both with and without a trend included.  In all cases, I reject the null 

hypothesis of a unit root when using first-differenced data.  In addition, first differencing does not 

depend on strict exogeneity of the explanatory variables.  Strict exogeneity will not hold in the 

case of R&D funding if, for example, a positive shock to R&D productivity leads to more funding 

5 In the patent literature, researchers traditionally use the patent application date to avoid delays due to the 
examination process.  Unfortunately, that is not possible with publication data, as the submission date is not known, 
and articles may need to be submitted at multiple journals before finding one to accept it. 
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in future years.  In contrast, the first difference model only requires that E[∆Xi,t ∆εi,t] = 0 (Cameron 

and Trivedi, 2009).  By using instruments for contemporaneous R&D, I am able to test whether 

this assumption holds and avoid bias by using instrumental variables for ∆RDi,t if necessary.  The 

instruments used vary by technology and are discussed in the next section.   

Finally, because of multicollinearity concerns when using multiple lagged variables, I also 

estimate equation (1) using a polynomial distributed lag (PDL) model (e.g. Almon 1965).  Rather 

than impose structure on the lag process, the PDL model uses polynomials of various degrees to 

proxy for the effect of the lagged variables.  I retain the use of first-differenced variables and 

instruments for ∆RDi,t in the PDL model.  

 

IV. Data 

The publication data come from the Thomson Reuters Web of Science database.  Using a 

series of keyword searches of article titles, abstracts, and keywords, provided in Appendix A, we 

identified journal publications for each of our technologies.  We focus on publications in scientific 

journals by dropping articles such as reviews, editorials, or news items.  We do include proceedings 

papers that are included in the Web of Science database.  The publication data run from 1991-

2011, as complete records of titles, abstracts, and keywords begin in 1991.  Once we identified 

appropriate keywords, Thomson Reuters provided a custom database containing all publications 

from 1991-2011 for our four technologies.  The database includes descriptive information on each 

paper, including the date of publication and addresses for each author, which we use to assign 

articles to each country.  For each technology, articles are aggregated by year and country.  In the 

case of articles with multiple authors from multiple countries, we use weighted counts, assigning 

articles proportionately by the number of countries represented.  For example, an article with 2 US 
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authors and 1 Japanese author counts as 0.67 for the US and 0.33 for Japan.6  In addition, the 

database also includes descriptive data on each article citing these energy articles, which we use 

as a proxy for article quality in section VE. 

When developing keyword searches, there is a tradeoff between using broad searches that 

identify as many relevant articles as possible but also include some irrelevant articles or using 

narrower searches that filter out irrelevant articles but may miss some relevant ones.  We devised 

searches that would be narrow, so as to avoid irrelevant articles, as these articles would respond 

differently to alternative energy R&D trends and thus bias our results downward. As such, our 

database does not necessarily include, for example, every article related to wind energy published 

since 1991.  However, as long as there is no change in the share of relevant articles identified over 

time, our results will still be an unbiased indicator of the effect of R&D spending on research 

outputs.  This simply requires assuming that our searches consistently identify a fixed percentage 

of wind articles published in any given year.  In contrast, using broader search terms that identified 

more wind articles but also included irrelevant articles would require assuming that the irrelevant 

articles responded in the same way as actual wind publications to the variables in our model. 

Government R&D data by country and technology are taken from the International Energy 

Agency (IEA).  IEA data include technology-specific government energy technology R&D 

budgets for 26 IEA member countries.  While annual data are available, the time series are 

incomplete for some countries.  As such, the available R&D limit the number of countries included 

in the analysis.  R&D data go back as far as 1974 for some countries.  Using a starting date of 1992 

for the publication data, we select countries with at least 10 years of lagged R&D data for a given 

6 We also ran models using unweighted counts, where we assign a full article to each country represented.  The 
results do not change.  It is not possible to assign a primary country by identifying the first or last author listed, as 
the order of addresses and authors in the database are not linked. 

11 
 

                                                 



technology.  Table 1 lists the countries included in the regressions for each technology.7 

Table 2 provides descriptive statistics for both R&D and the weighted publications.  R&D 

data are shown in millions of 2010 dollars.  Evaluated at the means, for most technologies we see 

a bit less than one million dollars of R&D spending per publication.  The exception is energy 

efficiency, for which a little over $3 million of R&D is spent per publication.  While this may 

indicate that energy efficiency R&D is less productive than other R&D spending, it may also 

indicate that our keyword searches identify a lower percentage of relevant energy efficiency 

articles than for other technologies.  Table 3 shows the top 10 sources of publications for each 

technology.  While our sample includes most of the top publishing countries, note that some 

emerging economies such as China and Brazil are also actively publishing on alternative energy. 

Figure 1 shows the aggregate trends in both energy R&D and publications for all countries 

in each regression.  Not surprisingly, both R&D and publications have been increasing over time.  

The large increase in energy R&D in 2009 is primarily a result of the US stimulus spending and is 

a one-time shock to R&D.  Figures 2 and 3 illustrate these trends for each country for solar and 

wind energy.  Note that there is variation both across times and across countries, which is important 

for separately identifying the effect of energy R&D, as opposed to simply finding that publications 

increase due to increased global attention to climate change.  For example, prior to the 2009 

stimulus, the U.S. experiences two peaks in wind energy R&D – one after the 1970s energy crises, 

and another in the mid-1990s.  In contrast, Denmark and the Netherlands have relatively flat R&D 

budgets, with the exception of the Netherlands in 1985.  Note also that countries also choose to 

7 One complication with the R&D data is that the reported national data of European countries omits funding from 
the European Commission (IEA 2011).  Fortunately, such funding represents a small percentage of overall public 
energy funding in Europe (Dechezleprêtre and Popp, 2015). Nonetheless, to insure that missing European-wide 
funding efforts do not affect our results, we include EU-specific year effects in the regressions to account for any 
EU-wide changes in R&D funding.  These year effects have little effect on the final results, as shown in Appendix 
B, which compares the results with and without these EU-specific year fixed effects. 

12 
 

                                                 



emphasize different technologies.  For example, in 2010 the United States spent over ten times as 

much on wind energy as Japan in 2007, but nearly twice as much over twice as much on biofuels 

research as on solar energy, whereas Japan spent more on solar energy R&D than on biofuels.  

These figures also show the importance of lagged R&D effects, as within individual countries, 

R&D spending generally peaks several years before publication counts.  Examples include wind 

energy in Germany, Italy, and Japan. 

Table 4 lists the policy variables, controls, and instruments used to estimate equation (1) 

for each technology.  The columns indicate which variables are included for each technology.  

Policies include gasoline taxes (for biofuels) and the level of renewable energy mandates and feed-

in tariffs used to promote wind or solar energy.8  In addition to per capita GDP, which is included 

in all regressions, other controls include gasoline prices for biofuels and energy efficiency.  We do 

not include electricity prices in the model for solar or wind energy, as increased usage of solar and 

wind would lead to higher energy prices.  Instead, for solar and wind we consider other factors 

influencing its demand, including the prevalence of clean energy substitutes (e.g. hydropower and 

nuclear) and the growth rate of electricity consumption.  The extent to which a country needs such 

policies to reduce emissions depends on the carbon-intensity of electricity generation.  Countries 

already making extensive use of other carbon-free energy sources, such as hydro or nuclear power, 

are expected to make less effort to promote renewable energy, and thus have lower interest in 

research on these technologies.9 Similarly, when electricity consumption is growing more quickly, 

more investment in new electricity capacity will be needed, making investments in renewables 

more likely. 

8 Continuous variables are constructed for selected policy instruments based on the OECD Renewable Energy Policy 
Database (OECD-EPAU 2013) – an update and extension of the dataset originally used in Johnstone et al. (2010). 
9 For instance, Popp et al. (2011) shows that investment in renewable energy capacity is lower in countries using 
more nuclear or hydro power.   
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As noted earlier, our instruments include two categories of variables.  We include 

instruments for R&D spending on related technologies, with the specific technologies chosen for 

each technology indicated in the table.10  Overidentification tests were used to verify the validity 

of all technologies included and to rule out invalid instruments.  In addition, since all energy R&D 

decisions are a result of a political process, we also include instruments that model the political 

process determining R&D funding.  Overidentification tests assume that at least one instrument is 

valid.  Since all energy R&D decisions are made through similar political processes, additional 

instruments that control for the political pressures that shape R&D decisions help ensure the 

validity of the overidentification tests.  The policy instruments control for a country’s general 

proclivity for government spending and for the political leanings of the government.11   

 

V. Results   

Our results focus on the two questions posed in the introduction.  First, we consider the 

optimal number of years of lagged energy R&D to include for each technology.  With this 

information in hand, we then examine the impact of both energy R&D and our control variables 

on energy publications.  Next, we link the publications in our data to references on U.S. patents, 

allowing us to estimate the time it takes for new energy R&D to impact applied research.  Finally, 

we consider the possibility of diminishing returns to large increases in energy R&D, looking both 

at the quantity of publications (e.g. Does the marginal effect of R&D fall with large increases?) 

and the quality of publications. 

10 Any related technologies are not used as instruments.  For example, nuclear R&D is only used as an instrument 
for biofuels, a transportation-based technology, but not for any technologies pertaining to electricity.  Note, for 
example, that the share of nuclear energy is a control for solar and renewable energy.  As such, decisions on nuclear 
R&D cannot be considered exogenous for these technologies.   
11 For example, Baccini and Urpelainen (2012) show that political shifts affect the volatility of public energy R&D. 
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A. Estimating the Lag Length   

We employ several strategies to identify the appropriate lag length.  First, as is common in 

the literature, the primary criterion is finding the minimum AIC statistic across a range of models 

(e.g. Crespi and Geuna, 2008).12  One complication is that our model includes not only lagged 

values of the R&D variables, but also of several control variables.  These controls are often 

individually insignificant.  Thus, we also run models including only a single year of the control 

and policy variables, to see if this changes the recommended number of lags.  We initially examine 

models including up to ten lags of R&D.  Adding additional lags is problematic when the model 

includes renewable energy policy variables as only two countries in our sample adopted renewable 

energy certificates before 2003, so that estimates of the lagged value of the REC variable beyond 

eight years are unreliable.  However, adding up to 11 years of lags is possible for biofuels and 

energy efficiency.13   

In addition, even collinearity among the R&D variables themselves may cause the AIC 

statistic to favor smaller lags.  Thus, we also run both the full and single control models using a 

polynomial distributed lag model (PDL).  The PDL models provide similar results to the main first 

differenced models, but by requiring fewer parameters to estimate multiple lags, they offer the 

potential for lower standard errors on the R&D coefficients.  Appendix C presents the AIC 

statistics and a discussion of their implications for the optimal lag length. 

12 Alternatively, we also calculated the BIC statistic for each model, which includes a greater penalty for including 
irrelevant variables.  As a result, collinearity among the lagged R&D values often leads the BIC to recommend 
fewer lags than the AIC.  However, in the case of collinear lagged R&D values, we can still estimate long-run 
effects that are jointly significant, even when individual year coefficients are estimated imprecisely.  Moreover, 
leaving out relevant lags would lead to omitted variable bias.  Thus, I focus on the findings of the AIC statistic in the 
discussion that follows. 
13 The first US states to adopt REC limits do so in 1998, and Italy adopts an REC limit in 2002.  Most states first 
limits appear in the data in 2003. 
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In some cases, these strategies recommend different lag lengths.  Thus, we also consider 

the cumulative long-run effect of R&D when evaluating the lag length.  These long-run effects, 

illustrated in Figure 4, tend to be similar across the various estimation techniques, so we focus on 

the results using first differenced instrumental variables.  When the AIC statistic conflicts across 

models, we use the pattern of cumulative effects as an additional guide.  In particular, we consider 

the lag length at which the cumulative effect of government energy R&D spending levels out, as 

this is evidence that all relevant lags have been included.  Based on these results, we identify an 

optimal lag length of ten years for biofuels and energy efficiency, six years for solar energy, and 

seven for wind. 

 
B. Effects of Energy R&D  
 

Having identified the appropriate lag length, Tables 5-6 present results for the first 

differenced models for each technology.  Table 5 shows the results for government R&D for both 

individual years and the cumulative effect.  Table 6 shows the cumulative effects of the various 

controls included in each model.  In each table, the first column for each technology includes 

results using instruments for current R&D and the second includes results assuming all variables 

are exogenous.  All results include robust standard errors that have been corrected for both 

heteroskedasticity and autocorrelation.14 

Before turning to technology-specific results, we first discuss general trends across all 

models.  Public sponsored energy R&D generally leads to increases in publications, although the 

magnitude of the effect varies across technologies.  Other demand characteristics appear less 

important, as most controls are insignificant, both individually and in the cumulative effects over 

14 Because of the similarities across models, I focus on the first-differenced panel estimates, which avoid imposing 
any structure on the lag process.  Results using the PDL models are included in Appendix D. 
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time.  This contrasts with most research focusing on private sector research efforts, where policy 

plays an important role (e.g. Johnstone et al. 2010, Verdolini and Gaelotti 2011, Dechezleprêtre 

and Glachant 2014, Nesta et al. 2014).  Given the long term nature of basic R&D, it is not 

necessarily surprising that demand factors such as policy shocks have less influence on research 

supported by the public sector.  However, these results also suggest that public R&D funding is 

not simply replicating support that would otherwise be provided by the private sector.  We discuss 

exceptions to these findings in the technology-by-technology results below. 

Turning to the quality of our instruments, the Hansen J test reveals that the instruments are 

valid in all cases. Each table also presents the p-value of the endogeneity test, where the null 

hypothesis is that the current value of energy R&D is exogenous.  We fail to reject the null for all 

technologies except solar energy.  However, as the results are generally unchanged across 

endogenous and exogenous specifications, we choose to be conservative and focus on the IV 

results when presenting the various robustness checks that follow. 

Energy R&D has the largest cumulative effect in biofuels.  One million dollars of additional 

government R&D support results in slightly more than two new publications over ten years.  One 

reason for the stronger biofuels effect is the long lag length.  While the effect of public R&D levels 

out for other technologies after six or seven years, for biofuels we find a strong effect even in years 

nine and ten.  There is a strong contemporary effect, with 0.376 publications being induced in year 

t-1.  The FD results suggest a cyclical pattern, with strong effects also found in years two and four 

in the first differenced model before picking up again in year t-9.  One possibility that the long 

range effects suggest is that public R&D leads to increases in the supply of scientific personnel 

and infrastructure devoted to biofuels research.  While verifying such an explanation is beyond the 

scope of the current data set, such questions about the long run impact of public R&D are a fruitful 
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avenue for further study.  While most individual controls are insignificant, gasoline prices net of 

taxes have a large positive impact on publications.  Higher prices make substitutes such as biofuels 

look more attractive and researchers seem sensitive to the market potential of biofuels when 

deciding on research projects.  Also, while the cumulative effect of per capita oil reserves is 

insignificant, individual year effects have a significant positive effect in years t-3, t-7, and t-8. 

Similar to biofuels, the lagged effect for energy efficiency R&D is long. While the largest 

single year effect occurs in year t-2, the magnitudes in year t-10 are similar.  Compared to the other 

technologies, the magnitude of both the individual year effects and cumulative effects for energy 

efficiency are much smaller, with one million of energy efficiency R&D generating just under 0.2 

new publications in the long run.  Compared to the other technologies in this study, energy 

efficiency covers a wider range of potential applications, including specific equipment for 

production, vehicles, and even high technology applications such as computers and server farms.  

Thus, the smaller magnitude may be an artifact of our data, which relies on keyword searches to 

identify relevant articles and may miss some of these broader applications.  However, it is also 

possible that, because of the broader nature of energy efficiency research, the costs of generating 

new energy efficiency results is larger, as the ability to stand on the shoulders of past researchers 

may be lower in a more diverse research field.  Also, while the cumulative effect of per capita oil 

reserves is insignificant, individual year effects have a significant effect in years t-3 through t-7, 

with a positive effect in all years except t-5. 

Solar energy is the one case in which instrumental variables lead to changes in the results.  

We reject the null hypothesis that current energy R&D expenditures are exogenous, as the p-value 

of the endogeneity test is just 0.049.  The cumulative effect of energy R&D falls from 2.742 to 

2.078 when using instruments for current R&D. The differences are largely driven by changes in 
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the contemporary effect of R&D, which is much larger when exogenous.  Recall from the theory 

section that current variables not only pick up the supply of research projects, but also the demand 

of editors to publish research on a given topic.  As this unobserved demand may be correlated with 

energy R&D, and that we would expect some time to pass before R&D led to a new publication, 

it is likely using instrumental variables helps correcting for such demand effects. Policy also plays 

a role in the case of solar, with larger renewable energy targets inducing more publications. 

Finally, for wind energy, the results are consistent across all specifications.  In the long-

run, a million dollars of energy R&D leads to approximately one new publication.  Unlike biofuels, 

the effect is quick, with most new publications occurring within the first three years.  After a brief 

leveling off, the cumulative effect continues to rise in years six and seven, after which it levels off 

again, as shown in Figure 4.  While none of the controls have a significant cumulative effect, the 

immediate lag is significant for both the percentage of electricity from hydro and nuclear, although 

unexpectedly positive for both. 

 

C. Linking basic and applied research – citations by patents 

As the ultimate goal of government energy R&D funding is not a publication, but rather a 

new technology, any evaluation of government R&D should also ask whether any resulting 

increase in basic science outputs leads to new applications.  For this, we link our publication data 

to patent data, which reflect the output of applied research efforts.  Patents contain citations to 

scientific publications, allowing direct linkages to be made.  Moreover, recent work by Roach and 

Cohen (2013) shows that references to non-patent literature (NPL) such as journal articles are 

better measures of knowledge flows from public research to patents than are citations to other 

patents.  Using references to non-patent literature found on patents, we gain new information on 
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the speed of diffusion by asking how long it takes energy publications to be cited by patents for 

new energy technology.  The results of this work can thus inform other studies where assumptions 

about the rate of diffusion of public R&D must be made.  

The major challenge for this analysis is linking the publication data used in the previous 

sections to patents.  Due to data constraints, the focus will be on citations made by U.S. patents.  

Using the International Patent Classification (IPC) system to identify patents pertaining to specific 

technologies, we identify patents related to biofuels, solar energy, and wind.15   Data on relevant 

patents come from the on-line database provided by Delphion (http://www.delphion.com/).  We 

obtained the NPL references for these patents, identifying those referencing journal articles.  As 

there is no standard form for citing articles in a patent, matching articles and patents was done 

manually. 

Table 7 shows the percentage of articles receiving an NPL citation. Because we focus on 

citations made by U.S. patents, the table separates articles by US and foreign authors, using the 

same author weights as in the previous section.  While the total percentage of articles is about 2 

percent, the low number is in because of the large number of articles published in recent years that 

have yet to be cited.  Still, even looking back to articles from earlier five year intervals, the share 

of articles receiving an NPL citation is always below 10 percent.  Moreover, even among articles 

receiving an NPL citation, the average number of citations received is two or less.  Also important 

is that the opportunity for citation increases over time.  Figure 5 shows the total number of patents 

in each technology by year.  For each technology, patenting has increased during the 2000s, as 

government interest in renewable energy increases (see, e.g. Johnstone et al. 2010).   

15 There are no IPC classifications dedicated solely to energy efficiency. 
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Because of these truncation issues, and because the count of citations is low, we use a 

hazard regression to focus on the time until the first NPL citation is received.  To allow time for 

articles to be cited, we only consider articles published in 2009 or earlier.  Our patent data extends 

through 2011.  The model includes the citation lag, calculated using the publication year of both 

the cited article and citing patent, a set of country by cited year fixed effects (denoted YCi,t in the 

equation below), which control for the different opportunities for future citations available to 

articles from different countries and from different times, and a dummy variable to control for 

articles with authors from multiple countries.  As we explicitly model the effect of time using the 

citation lag, we use an exponential baseline hazard: 

(2) ℎ(𝑡𝑡) = exp(𝛼𝛼0 + 𝛼𝛼1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  +𝛼𝛼3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛄𝛄𝛄𝛄𝐂𝐂𝐢𝐢,𝐭𝐭) 

As articles published early in the sample had fewer opportunities for immediate citation, we expect 

their citation lag to be longer.  Thus, in addition to estimating the model using the full sample of 

articles published between 1991-2009, we also estimate a second model using only articles 

published from 2000-2009, to ascertain whether the time to citation is faster when citing 

opportunities increase.   

Table 8 presents the regression results, showing that the coefficients on citation lags are 

significant at the one percent level, except for the squared term on wind energy.  To interpret the 

time to citation, panel A of Figure 6 illustrates how the annual probability of citation changes over 

time.  For the post-2000 sample (shown using solid lines), the annual probability peaks between 

8-10 years after publication. The peak shifts out to 11-14 years when considering the full sample 

(dashed lines).  As both the average and median lag between initial application and grant for 

patents in our sample is 5 years, this means that patents citing these articles are filed 3-5 after 

publication of the article in the post-2000 sample.  Panel B shows the cumulative probability of 
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citation, which begins to grow rapidly 4-6 years after publication, and levels out about 12-14 years 

afterwards in the post-2000 sample. 

While it may take just a few years for an article to be cited by a patent, it also takes a few 

years for R&D funding to generate new articles.  To assess the full time it takes for new energy 

R&D funding to influence technology development, Figure 7 traces the increased probability of 

an NPL citation resulting from an additional $1 million R&D funding in year t.  This calculation 

combines the regression results from Table 5 to determine the number of new articles induced by 

additional R&D funding with the results above, predicting the probability of citation to each of 

these new articles in different years.  Appendix E describes the methodology in more detail.  

Allowing for the lags between initial funding and publication, the probability of a citation resulting 

from new R&D funding peaks from 10-12 years after funding in the post-2000 sample, and 13-19 

years in the full sample.  Looking at the cumulative effect, we see little increase in citation until 

approximately 6 years after funding, with the effect not leveling out until almost 18 years after 

funding.  Again considering a five year window for processing patents, this suggests that new 

patent applications begin appearing about one year after funding and continue for 13 years.  While 

these lags are shorter than those found by Toole (2012) in his study linking NIH research funding 

to applications for new molecular entities, as clinical testing prolongs the development of new 

medicines, these figures still demonstrate that the effect of public energy R&D funding will not be 

felt until several years after the funding occurs.  This finding suggests that papers using just a 

single value of contemporary or one-year lagged energy R&D to evaluate the effect of public 

energy R&D spending, such as those cited in section II, do not sufficiently control for the lagged 

effects between R&D and patenting.  While many of these papers do find a positive correlation 

between current or one-year lagged values of public energy R&D and patenting, the lack of a 

22 
 



proper lag structure suggests that these papers are merely picking up endogenous relationships 

between the factors determining energy R&D funding and those driving renewable energy 

innovation in the private sector, such as changes in energy prices. 

 

D.  Are there diminishing returns to government R&D? 

While the previous results provide new information on both the magnitude and duration of 

the effect of energy R&D, finding a positive effect of public energy R&D funding on related 

scientific publications is not surprising.  However, large increases in energy R&D may come at a 

cost.  Government research funding often fluctuates dramatically.  U.S. public energy R&D 

spending rose from $2.5 billion to $7.8 billion between 1975 and 1982 before leveling of near $3 

billion by the mid-1980s.  Because researchers have a limited amount of time, and the supply of 

researchers able and willing to work on a given topic is inelastic in the short run, such large 

increases may have adjustment costs that limit the potential of large surges in energy R&D funding.   

In this section, we consider two additional model specifications to test for the possibility 

of diminishing returns to research funding: one adding a quadratic term for R&D, and a second 

including a dummy variable for large increases in R&D.  Table 9 presents the cumulative effect 

for each coefficient, with the model including R&D squared in columns 1-4, and the model using 

the interaction term in columns 5-8.  All models treat current R&D as endogenous16.  When adding 

a quadratic term, the marginal effect of R&D will be a function of the R&D spending in a given 

year.  Figure 8 evaluates the marginal effect of energy R&D for a given year for various lags, and 

Figure 9 shows the cumulative effect.  In each, these effects are evaluated for average levels of 

energy R&D spending, as well as for the 25th, 75th, and 90th percentile.  If diminishing returns are 

16 The results are virtually identical if we instead treat current R&D as exogenous. 

23 
 

                                                 



a concern, we should expect to see lower marginal effects in the upper percentiles. 

Our results provide almost no support for diminishing returns. While the quadratic term is 

negative and significant in a few individual years, the cumulative effect is never negative and 

significant (columns 1-4 of Table 9).  Moreover, it is significant and positive for both biofuels and 

solar energy raising the possibility of positive spillovers from additional R&D.17  In Figure 8, we 

see slightly higher annual marginal effects for the 90th quantile of solar energy R&D for most 

years, and for biofuels and energy efficiency in the later years.  Only for wind do we see the annual 

marginal effects fall for the highest quantiles, and only in the middle years. 

Figure 9 provides more insight, showing how the cumulative effect of energy R&D varies 

over time for various levels of R&D funding.  For biofuels and energy efficiency, the cumulative 

effect is nearly identical across quantiles until the later years.  This would be consistent with the 

notion that large increases in R&D result in positive spillovers providing dividends in future years, 

such as by attracting more researchers into the field.  For energy efficiency R&D, the cumulative 

effect for the 90th percentile is below those of other percentiles through year three before catching 

up, raising the possibility of a period of adjustment for large increases in energy R&D.   

Solar energy provides evidence of positive spillovers from large energy increases, with a 

significant positive quadratic terms.  As shown in Figure 9, the cumulative effect of R&D is lowest 

for the 25th percentile, increasing significantly for each higher percentile. Finally, the only 

technology showing any evidence of long run diminishing returns is wind.  Here, we see that the 

cumulative effect of wind energy is slightly larger in the 90th percentile in early years, but soon 

becomes lower than the cumulative effect of other percentiles.   

17 Individual years with significant negative coefficients on the quadratic term include lags 9 and 10 (both positive) 
for biofuels, lags 2 (positive), 3 (negative), and 8 (positive) for energy efficiency, lags 0, 1, 2, and 5 (all positive) for 
solar energy, and years 1, 2 (both positive) and 4 (negative) for wind. 
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Second, we ask specifically whether rapid increases in energy R&D funding are less 

effective (columns 5-8 of Table 9). We include a dummy variable equal to one if energy R&D 

increases by 100% or more in a given year, and interact this variable with the level of energy R&D 

funding.  Thus, a negative coefficient on this interaction indicates that the marginal effect of R&D 

is lower in years with a doubling or more of R&D.  As Figure 10 shows, the number of countries 

choosing to double energy R&D in a given year is generally equally dispersed across time, with 

one or two countries per year experiencing such increases.  The one exception is the large number 

of countries choosing to double energy R&D as part of stimulus packages in 2009 and 2010.  

Overall, between 6 and 12 percent of all country/year observations from 1981-2011 include a 

doubling of energy R&D. 

The results confirm that diminishing returns and adjustment costs are not a significant 

concern given the current levels of energy R&D funding and provide some support for positive 

spillovers.  The coefficient on the interaction term is positive for all technologies except solar, with 

statistically significant results for biofuels and wind.  For individual years, the interaction is 

positive and significant at the 5% level for several years in the biofuels and wind regressions.  

Thus, despite concerns about diminishing returns to R&D, we instead find evidence that a doubling 

of energy R&D creates potential positive spillovers that makes energy R&D spending more 

productive.  

 

E. Does Quality Change: Citation Analysis 

While we find little evidence of diminishing returns regarding the number of publications 

generated from increased government R&D, these results tell us nothing about the quality of those 

publications.  Even if publication counts increase as funding increases, those projects only able to 
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win support during periods of ample funding would be expected to have lower quality than those 

projects earning support even when available funding is low.  Thus, diminishing returns to research 

may be exhibited not in the quantity of publications, but in the quality of publications.  To assess 

publication quality, we turn to citation data.  The assumption made is that more frequently cited 

articles are of higher quality.  Using citations as an indicator of article quality is a common 

technique in bibliometric analyses (see, for example, National Science Board, 2008).  Within 

economics, patent citations have been used in a similar way (e.g. Trajtenberg 1990, Lanjouw and 

Schankerman 2004, Popp 2002, 2006).    

As in the patent citation literature, simple counts of citations received are not sufficient to 

evaluate the quality of an article.  The number of citations that an article receives depends not only 

on the quality of the article, but also on the number of opportunities for citation.  Let i represent 

an article, j represent the home country of the article’s authors, and t represent the publication year 

of the article.  The number of citations received by an article from country j and published in year 

t can be described by the following relationship: 

(2) NumCitei,j,t = f(ln(NUMPubsj,t),  ln(NUMPubsj,t)2,  αj, βt). 

αj and βt represent country and year fixed effects.  We expect articles to receive more citations 

from other authors in the same country.  Country fixed effects acknowledge that the number of 

citing opportunities may vary by country.  Year fixed effects capture the number of citing 

opportunities that occur in the years after publication.  For energy publications, we would expect 

the raw number of citations to be higher during periods of intense research activity, such as when 

energy prices are highest.   

Our variable of interest is NUMPubsj,t.  This represents the total number of articles 

published on a given topic in country j in a given year, t.  If additional research leads to marginal 
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articles being published, we would expect the number of citations to fall when more articles are 

published.  To allow for the possibility of positive spillovers at moderate levels of research, we 

also estimate a model using a squared term.  If positive spillovers exist at moderate levels of 

research, we would expect the linear term to be positive, with the squared term being negative.  

Because the average number of publications per year varies by country, we use the log of 

publications in the regressions that follow.  Because many articles receive zero citations, we use a 

generalized negative binomial regression to estimate equation (4).  All standard errors are clustered 

by article. 

One final complication is that just over 25% of all articles include authors from multiple 

countries.  For these cases, we include a separate observation for each article/country pair, using 

weighted regression to weight each article/country pair by the share of authors from that country.  

For example, if an article has two authors from the United States and one from Canada, we would 

include observations for both the United States and Canada, with a weight of 0.67 for the U.S. 

observations and a weight of 0.33 for the Canadian observations.  We include a separate dummy 

variable for these articles, as we expect them to receive more citations than single-country authors, 

since the authors of these articles are exposed to multiple research networks.18   

Table 10 presents the results.  Publication counts are in logs, so that the coefficients can be 

interpreted as elasticities.  For all technologies except solar energy, we find evidence of 

diminishing returns, with an elasticity between publications and citations ranges from -0.167 to -

0.186.  Results are significant at the 5% level for each of these three technologies.  Including a 

squared term provides no evidence of increasing returns for smaller numbers of publication.  As 

18 As a robustness check, we also run our regressions dropping all multicountry articles.  General trends are the same 
in both models, although the results for wind are no longer significant when dropping multicountry articles.  These 
results are available upon request. 
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expected, multicountry articles are 17-24% more likely to be cited than articles with authors from 

a single country.   

 

VI. Conclusion   

Although government R&D support for alternative energy and energy efficiency 

improvements is seen as an important component of climate change policy, empirical evidence on 

the effectiveness of such R&D is limited.  Attempts to assess the effectiveness of government 

energy R&D support are complicated by the long lags between initial funding and the final 

research outcomes, as well as by the challenge of isolating the effect of public R&D funding from 

demand-side influences, such as energy prices and environmental policy, that influence both public 

and private R&D activity.  In this paper, we use scientific publications as an indicator of basic 

research output to assess the effectiveness of energy R&D.  Using a panel of OECD countries, we 

control for other factors that may influence the direction of research and use instrumental variables 

to separately identify the effect of publicly funded R&D on publications. 

The results show that, even controlling for other energy policies and energy prices that will 

influence private R&D funding decisions, government R&D support does increase the number of 

related energy publications.  In general, an additional million dollars of energy R&D leads to 1-2 

additional publications.  Moreover, factors found to influence private R&D activity in other papers, 

such as energy prices and policy, have little impact on publications.  Thus, it does not appear that 

public R&D merely substitutes for other sources of funding.  

This effect of energy R&D occurs over a period of years, with lags as long as 10 years in 

the case of biofuels and energy efficiency.  Moreover, as the ultimate goal of public R&D is to 

provide the building blocks for new innovation, we use citations to link the publication data to 
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U.S. patents, providing evidence of the time it takes for public R&D to stimulate private sector 

innovation.  Related patent applications begin soon after funding and continue for up to 13 years.  

That long lags matter is important to the evaluation of energy R&D, as many studies evaluating 

the effect of government R&D on innovation consider just contemporary or one-year lagged 

energy R&D. While these studies often find little effect of energy R&D on private sector 

innovation, failure to consider sufficient lags call these results into question. 

Importantly, we also find little evidence of diminishing returns to public energy R&D.  We 

find no evidence that the marginal increase in publications from new R&D funding declines 

following large increases in energy R&D.  We do find some evidence of diminishing quality, as 

citations to new articles fall by approximately 1.7% when energy R&D increases by 10 percent for 

three of the four technologies studied.  Thus, while the number of publications induced continues 

to increase as energy R&D expands, large increases in funding may simply provide support for 

marginal projects of less overall value to society.  Overall, the lack of evidence for diminishing 

returns to energy funding suggests that there is room to expand current public energy R&D efforts, 

and that the constraints for funding are likely to come from other sources, such as macroeconomic 

constraints or the  pool of scientist and engineering personnel currently available to work on energy 

projects.  In particular, the long-run effects particularly evident in the case of biofuels and energy 

efficiency suggest that increases in public funding have positive spillovers, either through 

increasing the amount of research on which to build or by increasing the number of researchers in 

the field.  Additional research to better understand the mechanisms behind these long run effects 

is warranted. 
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Figure 1 – Trends in Energy R&D and Publications – All Countries 

 

 

35 
 



Figure 2 – Trends in Energy R&D and Publications by Country: Solar Energy 
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Figure 3 – Trends in Energy R&D and Publications by Country: Wind Energy 
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Figure 4 – Cumulative effect of energy R&D on publications  
 

 
 
Figure shows the cumulative effect of energy R&D on publications through year t-x, where x is the year shown on the x-axis.  Calculated 
using the first differenced model with instrumental variables for contemporary energy R&D.
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Figure 5 – Alternative energy patents over time 

 

 

Figure shows the total number of patents granted in the U.S. for biofuels, solar, and wind energy.  
Patents are dated using their priority year. 
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Figure 6 – Probability of NPL citation over time  

A. Annual probability of NPL citation 

 
 
B. Cumulative probability of NPL citation 
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Figure 7 – Increased probability of NPL citation from additional energy R&D 

A. Annual probability of NPL citation 

 
 
B. Cumulative probability of NPL citation 
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Figure 8 – Marginal effect of R&D per year: Models including R&D squared  
 

 
 
Figure shows the marginal effect of energy R&D on publications in year t-x, where x is the year shown on the x-axis.  Calculated at 
different percentiles of energy R&D spending, using the first differenced model including R&D2 with instrumental variables for 
contemporary energy R&D. 
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Figure 9 – Cumulative effect of R&D: Models including R&D squared   

 
 
Figure shows the cumulative marginal effect of energy R&D on publications through year t-x, where x is the year shown on the x-axis.  
Calculated at different percentiles of energy R&D spending, using the first differenced model including R&D2 with instrumental 
variables for contemporary energy R&D. 
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Figure 10—Number of countries doubling energy R&D per year 
 

 
 
Figure shows the number of countries whose energy R&D budget for a given technology is at least double that of the previous year.
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Table 1 – Countries included for each technology 

  Biofuels 
Energy 

Efficiency 
Solar 

Energy Wind 
Austria X X X X 
Canada X X X X 
Denmark X X  X 
France X X X X 
Germany X X X X 
Italy X X X X 
Japan X X X X 
Netherlands X X X X 
New Zealand  X   
Norway X X X X 
Portugal X X X  
Spain X X X X 
Sweden X  X X 
Switzerland X X X X 
United Kingdom X  X X 
United States X X X X 
TOTAL 15 14 14 14 

 

Table 2 – Descriptive Statistics for R&D and Publications 

technology variable N mean sd min max 
biofuels R&D 315 25.48 86.02 0.00 1186.90 
  weighted publications 315 35.06 96.38 0.00 1138.25 
energy efficiency R&D 294 102.31 216.09 0.01 2149.17 
  weighted publications 294 29.94 55.95 0.00 493.99 
solar energy R&D 294 33.49 51.17 0.00 401.70 
  weighted publications 294 74.66 128.47 0.00 1208.84 
wind R&D 294 10.69 17.54 0.00 187.19 
  weighted publications 294 11.83 20.03 0.00 188.20 
Total R&D 1197 42.69 123.79 0.00 2149.17 
  weighted publications 1197 37.82 88.68 0.00 1208.84 

NOTES: R&D in millions of 2010 US $ 
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Table 3 – Top 10 publication sources, by technology 

Biofuels    Energy Efficiency   
United States 4428.62  United States 3753.56 
Peoples R China 1817.09  Peoples R China 1932.32 
India 1279.08  Japan 1308.66 
Brazil 949.75  South Korea 839.05 
Turkey 793.54  United Kingdom 834.05 
Japan 761.61  Germany 719.78 
United Kingdom 749.06  Canada 634.77 
Canada 735.17  Italy 613.12 
Germany 735.05  Taiwan 545.87 
Spain 714.40  France 477.72 

     
     

Solar Energy    Wind   
United States 6323.95  United States 916.47 
Peoples R China 5044.19  United Kingdom 571.13 
Japan 4314.37  Denmark 337.15 
Germany 3525.28  Germany 290.77 
South Korea 2415.65  Spain 268.43 
India 2123.81  Peoples R China 255.60 
Taiwan 1506.67  Canada 251.87 
United Kingdom 1409.72  Japan 222.81 
France 1219.91  Greece 200.63 
Spain 1187.10  Turkey 197.62 
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Table 4 – Other variables and data sources 

Variable Source Biofuels 
Energy 

Efficiency Solar Wind 
Policy Variables      

Gasoline taxes (2010 US $ per liter) IEA X    
% renewables required by RPS OECD-EPAU   X X 
Feed-in tariff, solar PV (2010 US $ per kWh) OECD-EPAU   X  
Feed-in tariff, wind (2010 US $ per kWh) OECD-EPAU    X 

Control Variables      
ln(per capita GDP) (2005 US$) OECD X X X X 
Gasoline prices, w/out taxes (2010 US $ per liter) IEA X    
Gasoline prices, inc. taxes (2010 US $ per liter) IEA  X   
Household electricity price (2010 US$ per MWh) IEA  X   
Crude oil proved reserves per capita (million barrels) EIA/OECDa X X   
Natural gas proved reserves per capita (billion cu. ft.) EIA/OECDa  X   
Coal production per capita (short tons) EIA/OECDa  X   
% electricity from hydropower EIA   X X 
% electricity from nuclear  EIA   X X 
growth rate of electricity consumption EIA   X X 

Instruments      
Dummy: is executive branch party orientation right-wing DPI X X X X 
Dummy: is executive branch party orientation center DPI X X X X 
Tax revenue (excluding social security), % of GDP OECD X X X X 
General government consumption expenditure, % of GDP OECD X X X X 
Government energy R&D: biofuels IEA   X X 
Government energy R&D: energy efficiency IEA X   X 
Government energy R&D: energy storage IEA X X   
Government energy R&D: nuclear fusion IEA X    
Government energy R&D: solar energy IEA  X   
Government energy R&D: wind IEA X X   

DPI: Database of Political Institutions 2012 (Beck et al 2001); EIA: US Energy Information Administration; IEA: International 
Energy Agency Energy Prices and Taxes Database (IEA 2006); OECD: OECDStat; OECD-EPAU: OECD Renewable Energy Policy 
Database (OECD-EPAU 2013) , an update and extension of the dataset originally used in Johnstone et al. (2010). 
a: Reserve data from Energy Information Administration; population data to calculate per capita values from OECDStat 
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Table 5 – First-differenced panel regression results: Government R&D  
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  IV exog IV exog IV exog IV exog 
RD                             0.152*** 0.152*** 0.0197*** 0.0113** -0.0267 0.372*** 0.0983** 0.124*** 
                               (0.0153) (0.0151) (0.00649) (0.00524) (0.276) (0.0839) (0.0440) (0.0246) 
RD(t-1)                        0.376*** 0.376*** 0.0460*** 0.0443*** 0.601*** 0.663*** 0.197*** 0.212*** 
                               (0.0259) (0.0245) (0.00675) (0.00705) (0.167) (0.150) (0.0520) (0.0462) 
RD(t-2)                        0.429*** 0.429*** 0.0722*** 0.0697*** 0.483** 0.331* 0.335*** 0.348*** 
                               (0.0196) (0.0196) (0.00886) (0.00845) (0.246) (0.200) (0.0547) (0.0549) 
RD(t-3)                        0.00719 0.00721 -0.0128 -0.0185 0.154 0.312** 0.0313 0.0525 
                               (0.0719) (0.0720) (0.0296) (0.0294) (0.144) (0.127) (0.0580) (0.0587) 
RD(t-4)                        0.176** 0.176** 0.0141 0.0190 0.447** 0.601*** 0.0263 0.0287 
                               (0.0891) (0.0891) (0.0253) (0.0253) (0.191) (0.225) (0.0585) (0.0575) 
RD(t-5)                        -0.101 -0.100 -0.0303 -0.0324 0.0350 0.116 0.0130 0.0216 
                               (0.109) (0.109) (0.0255) (0.0253) (0.243) (0.225) (0.0532) (0.0523) 
RD(t-6)                        0.0940 0.0942 0.0167 0.00891 0.385** 0.347* 0.0618 0.0639 
                               (0.104) (0.104) (0.0176) (0.0165) (0.194) (0.186) (0.0519) (0.0515) 
RD(t-7)                        0.0585 0.0588 0.000165 0.00361   0.121*** 0.127*** 
                               (0.0965) (0.0956) (0.0229) (0.0222)   (0.0451) (0.0436) 
RD(t-8)                        0.0884 0.0882 -0.0329 -0.0331     
                               (0.118) (0.116) (0.0255) (0.0249)     
RD(t-9)                        0.558*** 0.558*** 0.0381 0.0408     
                               (0.160) (0.162) (0.0268) (0.0266)     
RD(t-10)                       0.318** 0.319** 0.0598*** 0.0616***     
                               (0.152) (0.151) (0.0211) (0.0212)         
Cumulative effects:                   
 R&D                           2.155*** 2.158*** 0.191*** 0.175*** 2.078*** 2.742*** 0.883*** 0.977*** 
                               (0.348) (0.353) (0.0520) (0.0511) (0.599) (0.573) (0.225) (0.202) 
N                              300 300 280 280 280 280 280 280 
AIC                            2351.3 2351.3 2110.7 2108.3 2676.4 2648.1 1766.5 1765.3 
BIC                            2703.2 2703.2 2535.9 2533.5 2999.9 2971.5 2115.5 2114.3 
F RD 1st stage                 32.51  18.01  11.40  38.49  
Hansen J p-value               0.293  0.183  0.491  0.502  
Endog. test p-value       0.979   0.240   0.0459   0.258   
Standard errors in parentheses.  All models use robust standard errors with correction for autocorrelation.   
*: significant at 10% level. **: significant at 5% level.  ***: Significant at 1% level.    
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Table 6 – First differenced panel regression results: Controls 
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  IV exog IV exog IV exog IV exog 
Cumulative effects:                   
 R&D                           2.155*** 2.158*** 0.191*** 0.175*** 2.078*** 2.742*** 0.883*** 0.977*** 
                               (0.348) (0.353) (0.0520) (0.0511) (0.599) (0.573) (0.225) (0.202) 
 lnGDP                         -6.353 -6.549 53.815 60.706 -290.964* -217.063 -47.685 -48.347 
                               (74.85) (74.97) (73.49) (72.62) (174.4) (162.4) (33.00) (33.09) 
 gas price no taxes            240.449*** 240.23***       
                               (81.66) (81.56)       
 gas tax                       -3.763 -3.752       
                               (25.22) (25.21)       
 gas price                       -16.821 -17.865     
                                 (19.50) (19.66)     
 oil per capita                7211.473 7235.793 -7884.717 -9278.706     
                               (10175.8) (10120.7) (17329.9) (17305.9)     
 gas per capita                 -1413.198 -1245.722     
                                 (2200.3) (2181.3)     
 coal per capita                -10.85* -12.21*     
                                 (6.385) (6.566)     
 electric price                  0.099 0.107     
                                 (0.121) (0.122)     
 grow_elec                        -5.258 -3.77 -0.872 -0.802 
                                   (5.688) (5.039) (0.920) (0.929) 
 % hydro                           0.629 1.627 1.043 0.98 
                                   (2.065) (1.788) (0.718) (0.737) 
 % nuclear                        -4.819* -4.592* -0.499 -0.421 
                                   (2.493) (2.454) (0.678) (0.681) 
 FIT wind                            9.827 12.061 

       (25.86) (26.07) 
 FIT pv                            18.874 39.523   
                                   (60.28) (53.99)   
 REC levels                       15.092** 13.524** 2.133 2.102 
                                       (7.234) (6.352) (1.376) (1.352) 
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Table 7 – Share of articles receiving NPL citations 
 
  Biofuels Solar Wind 

  N 

% with 
NPL 

citation N 

% with 
NPL 

citation N 

% with 
NPL 

citation 
USA       

1991-1995 168.8 4.1% 618.0 4.2% 56.3 8.9% 
1996-2000 318.1 7.8% 669.3 6.7% 96.3 4.2% 
2001-2005 408.9 4.9% 981.4 4.4% 163.4 6.1% 
2006-2011 3532.9 0.7% 4055.2 0.6% 600.6 0.3% 

Total 4428.6 1.7% 6323.9 2.2% 916.5 2.3% 
foreign       

1991-1995 630.2 0.6% 2054.0 2.8% 264.7 3.0% 
1996-2000 959.9 1.2% 3669.7 4.2% 406.8 3.2% 
2001-2005 1783.1 1.1% 6172.6 2.3% 758.7 2.2% 
2006-2011 12847.1 0.2% 23055.8 0.2% 3268.4 0.2% 

Total 16220.4 0.4% 34952.1 1.2% 4698.5 0.9% 
 
Note: Table uses weighted shares, weighting each article by the share of U.S. and foreign authors 
 
 
 
Table 8 – Time to first NPL citation hazard regression 
 
  full sample   articles from 2000 or later 

 Biofuels Solar  Wind  Biofuels Solar Wind 
citation lag 0.706*** 0.333*** 0.531***  1.359*** 0.691*** 0.973** 

 (0.142) (0.0500) (0.157)  (0.326) (0.109) (0.480) 
(citation lag)^2 -0.0249*** -0.0167*** -0.0191***  -0.0682*** -0.0412*** -0.0562 

 (0.00754) (0.00331) (0.00731)  (0.0231) (0.00866) (0.0377) 
Multiple country dummy -0.0301 -0.0294 -1.234**  -0.0478 -0.0821 -1.775* 

 (0.282) (0.123) (0.626)  (0.322) (0.151) (1.058) 
Constant -8.987*** -7.500*** -7.353***  -11.22*** -8.621*** -8.283*** 
  (0.948) (0.597) (1.096)  (1.324) (0.659) (1.655) 
N 55790 164957 21895  35568 95725 13670 
AIC 1407.3 4306.9 831.2  881.6 2444.9 487.3 
BIC 3827.1 6930.5 2709.8  2170.4 3780.1 1525.5 
log likelihood -432.6 -1891.5 -180.6   -288.8 -1081.5 -105.6 

* p<0.10, ** p<0.05, *** p<0.01 
Standard errors in parentheses.  All standard errors clustered by article.  
All regressions include publication year x country fixed effects, with publications from 2001 in 
the US as the base category. 
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Table 9 -- Tests for diminishing returns to government R&D 
 

  Biofuels 
Energy 

Efficiency 
Solar 

Energy 
Wind 

Energy   Biofuels 
Energy 

Efficiency 
Solar 

Energy 
Wind 

Energy 
Cumulative effects:                                                                                                
      R&D                      0.168 0.093 -1.386* 0.975 1.39*** 0.21*** 1.694 0.518* 
                               (0.840) (0.155) (0.799) (0.623) (0.439) (0.0614) (1.066) (0.275) 
      R&Dsq 0.0189*** 0.0003 0.0113*** -0.0062     

 (0.00670) (0.000237) (0.00314) (0.00843)     
      R&Dx100%      3.461*** 0.177 -0.358 1.715*** 
                                        (1.189) (0.400) (2.725) (0.437) 
N                              300 280 280 280  300 280 280 280 
AIC                            2263.2 2171.6 2542.5 1730.7 2300.5 2101.9 2583.7 1717.7 
BIC                            2655.8 2636.9 2891.5 2108.7 2693.1 2567.2 2932.6 2095.7 
F RD 1st stage                 162.3 237.4 68.98 114.9 40.91 33.11 4.411 45.95 
F RDsq 1st stage               3043.6 1876.7 452.6 777.4     
F RDx100% 1st stage                   42.3 22.55 56.3 30.25 
Hansen J p-value               0.143 0.0135 0.0632 0.263 0.254 0.232 0.257 0.491 
Endog. test p-value               0.689 0.527 0.477 0.845 0.917 0.0557 0.415 0.262 

Robust standard errors with correction for autocorrelation in parentheses. * p<0.1, ** p<0.05, *** p<0.01   
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Table 10 –Does the quality of publications change? 
 
 
  (1) (2) (3) (4)   (5) (6) (7) (8) 

Biofuels Biofuels 
Energy 

Efficiency Solar Wind  Biofuels 
Energy 

Efficiency Solar Wind 
ln(publications, cited year) -0.170** -0.186* 0.0321 -0.167*  -0.0351 -0.0451 -0.220 -0.263* 

 (0.0537) (0.0894) (0.0774) (0.0784)  (0.0803) (0.121) (0.153) (0.112) 
ln(publications, cited year)2     -0.0136* -0.0312 0.0300* 0.0221 

      (0.00667) (0.0174) (0.0132) (0.0177) 
multicountry 0.228*** 0.220*** 0.167*** 0.238***  0.227*** 0.218*** 0.168*** 0.238*** 
  (0.0347) (0.0595) (0.0337) (0.0645)  (0.0347) (0.0596) (0.0335) (0.0644) 
cited year fixed effects Yes Yes Yes Yes  Yes Yes Yes Yes 
country fixed effects Yes Yes Yes Yes  Yes Yes Yes Yes 
N 13347 10163 27697 4232  13347 10163 27697 4232 
log likelihood -32424.9 -22919.8 -74139.3 -8534.9   -32421.9 -22917.0 -74128.9 -8534.2 
Dependent variable is total citations received by each article after publication.  For articles with authors from multiple 
countries, each country/article observation is weighted by the share that country in the total number of authors. 
Standard error, clustered by article, in parentheses       
* p<0.05, ** p<0.01, *** p<0.001         
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Appendix A: Web of Science Keyword Searches 

Our publication data were provided as a custom database from Thomson Reuters, created 

using keyword searches in Web of Science developed by the researchers in consultation with 

experts at Thomson Reuters.  As noted in the text, we devised searches that would be narrow, so 

as to avoid irrelevant articles, as such articles would respond differently to alternative energy R&D 

trends and thus bias our results downward.  Thus, for each category, we devised keyword searches 

that are refined by focusing on specific subject categories in the Web of Science database 
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Biofuels 

#11 TS = ("biomass" NEAR/5 "electricit*" OR "biomass fuel*" OR 
"biomass heat*" OR "biomass energy" OR "Bio feedstock*" OR 
"biofeedstock*" OR "Hydrotreated vegetable oil*" or "lignocellulosic 
biomass*" OR "cellulosic ethanol*" or "biomass to liquid*" OR "bio 
synthetic gas*" OR "algae-based fuel*" OR "landfill gas*" or 
"Biohydrogen production*" or "Biological hydrogen production*" or 
"bio energy" or "bioenergy" or "biofuel*" or "bio fuel*" or "biodiesel*" 
or "bio diesel*" or "biogas*" or "bio gas*" OR "Bio syngas*" or "bio 
oil" or "bio ethanol*" or "bioethanol*" OR "fuel ethanol*" OR 
"Biomethanol*" OR "bio methanol*") NOT TS = ("co-combust*" or 
"cocombust*" or "co-fir*" or "cofir*" or "multi-combust*" or 
"multicombust*" or "multi-fir*" or "multifir*" or "fuel cell*" or 
"biofuel cell*")  
Refined by: Web of Science Categories=( ENERGY FUELS OR 
SPECTROSCOPY OR BIOTECHNOLOGY APPLIED 
MICROBIOLOGY OR ENTOMOLOGY OR ENGINEERING 
CHEMICAL OR ENVIRONMENTAL SCIENCES OR POLYMER 
SCIENCE OR AGRICULTURAL ENGINEERING OR 
ENGINEERING ENVIRONMENTAL OR GEOSCIENCES 
MULTIDISCIPLINARY OR CHEMISTRY MULTIDISCIPLINARY 
OR TRANSPORTATION SCIENCE TECHNOLOGY OR FOOD 
SCIENCE TECHNOLOGY OR CHEMISTRY PHYSICAL OR 
CHEMISTRY APPLIED OR GENETICS HEREDITY OR 
BIOCHEMISTRY MOLECULAR BIOLOGY OR BIOLOGY OR 
WATER RESOURCES OR THERMODYNAMICS OR CHEMISTRY 
ORGANIC OR AGRONOMY OR PHYSICS ATOMIC 
MOLECULAR CHEMICAL OR GEOCHEMISTRY GEOPHYSICS 
OR PLANT SCIENCES OR ENGINEERING MECHANICAL OR 
CHEMISTRY ANALYTICAL OR MULTIDISCIPLINARY 
SCIENCES OR METEOROLOGY ATMOSPHERIC SCIENCES OR 
MATERIALS SCIENCE BIOMATERIALS OR AGRICULTURE 
MULTIDISCIPLINARY OR DEVELOPMENTAL BIOLOGY OR 
MICROBIOLOGY OR ECOLOGY OR MECHANICS OR 
ENGINEERING INDUSTRIAL OR FORESTRY OR 
HORTICULTURE OR BIOCHEMICAL RESEARCH METHODS OR 
NANOSCIENCE NANOTECHNOLOGY OR ENGINEERING 
MULTIDISCIPLINARY OR SOIL SCIENCE OR MATERIALS 
SCIENCE PAPER WOOD OR METALLURGY METALLURGICAL 
ENGINEERING OR MATERIALS SCIENCE TEXTILES OR 
ELECTROCHEMISTRY OR ENGINEERING CIVIL OR 
MATERIALS SCIENCE MULTIDISCIPLINARY )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off    
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Energy Efficiency 

Note: The energy efficiency search strategy uses the three separate searches below, and excludes 
publications included in other energy categories, 
 
#1 TS = ("waste heat" NEAR/3 (recover* OR convert* OR utilize* OR 

use)) OR TS = ("district heat*" OR "district cool*") OR TS = (("LED" 
OR "light emitting diode") NEAR/1 (lighting OR lightbulb* OR "light 
bulb*" OR lamp* OR “solid state light*” OR “solid state lamp*”)) OR 
TS = (("CFL" OR "compact fluorescent") NEAR/1 (lighting OR 
lightbulb* OR "light bulb*" OR lamp*)) OR TS = "solid state light*" 

#2 (TS = ((electric OR hybrid OR “electric drive” OR “hybrid drive”) 
NEAR/0 (vehicle* OR automobile* OR "auto" OR "autos" OR"car" 
OR "cars")) NOT TS = (“fuel cell*” OR “fuel-cell*” OR “Hybrid Car-
Parrinello”))  
Refined by: [excluding] Web of Science Categories=( ASTRONOMY 
ASTROPHYSICS OR DERMATOLOGY OR INFECTIOUS 
DISEASES OR LITERATURE BRITISH ISLES OR MEDICINE 
GENERAL INTERNAL OR PHARMACOLOGY PHARMACY OR 
HISTORY PHILOSOPHY OF SCIENCE OR SPECTROSCOPY OR 
VETERINARY SCIENCES OR CLINICAL NEUROLOGY )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off  
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#3 (TS=((energy OR fuel OR gas* OR electric* OR petrol*) NEAR/1 
(consum* OR use OR using OR usage OR burn*) NEAR/1 (reduc* OR 
less OR lower OR decreas*)) OR TS=((energy OR fuel OR gas* OR 
petrol) NEAR/1 (efficien* OR economy OR mileage OR productivity) 
NEAR/1 (improv* OR increas* OR better OR greater OR more)) OR 
TS=((energy OR fuel OR gas* OR electric* OR petrol*) NEAR/1 
(saving* OR save OR saves OR saved))) NOT TS = ("fuel cell*" OR 
“fuel-cell*”) 
Refined by: [excluding] Web of Science Categories=( 
ENVIRONMENTAL STUDIES OR FOOD SCIENCE 
TECHNOLOGY OR ZOOLOGY OR NUTRITION DIETETICS OR 
PHYSIOLOGY OR BIOCHEMISTRY MOLECULAR BIOLOGY OR 
BIOLOGY OR METEOROLOGY ATMOSPHERIC SCIENCES OR 
CARDIAC CARDIOVASCULAR SYSTEMS OR ASTRONOMY 
ASTROPHYSICS OR MATHEMATICS APPLIED OR ROBOTICS ) 
AND Web of Science Categories=( ENERGY FUELS OR 
ENGINEERING CHEMICAL OR ENGINEERING ELECTRICAL 
ELECTRONIC OR ENGINEERING MECHANICAL OR 
THERMODYNAMICS OR ENVIRONMENTAL SCIENCES OR 
CONSTRUCTION BUILDING TECHNOLOGY OR MATERIALS 
SCIENCE MULTIDISCIPLINARY OR ENGINEERING 
ENVIRONMENTAL OR METALLURGY METALLURGICAL 
ENGINEERING OR TELECOMMUNICATIONS OR COMPUTER 
SCIENCE INFORMATION SYSTEMS OR COMPUTER SCIENCE 
HARDWARE ARCHITECTURE OR COMPUTER SCIENCE 
THEORY METHODS OR TRANSPORTATION SCIENCE 
TECHNOLOGY OR ENGINEERING MULTIDISCIPLINARY OR 
MATERIALS SCIENCE PAPER WOOD OR AGRICULTURAL 
ENGINEERING OR AUTOMATION CONTROL SYSTEMS OR 
MATERIALS SCIENCE CERAMICS OR COMPUTER SCIENCE 
SOFTWARE ENGINEERING OR MINING MINERAL 
PROCESSING OR ENGINEERING INDUSTRIAL OR COMPUTER 
SCIENCE ARTIFICIAL INTELLIGENCE OR AGRONOMY OR 
MATERIALS SCIENCE COMPOSITES OR MATERIALS SCIENCE 
TEXTILES OR OPERATIONS RESEARCH MANAGEMENT 
SCIENCE OR ENGINEERING MARINE OR ENGINEERING 
OCEAN OR URBAN STUDIES ) 
Databases=SCI-EXPANDED Timespan=1991-2010 
Lemmatization=Off   
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Solar Energy 

The solar energy search combines searches for specific types of solar energy (e.g. solar PV) and a 
more general search strategy: 
 
Solar Thermal Power 
#1 (TS = (solar NEAR/2 thermoelectr*) OR TS = (solar NEAR/2 “power 

plant”) OR TS = (“concentrat* solar” NEAR/2 power) OR TS= (“solar 
thermal” NEAR/2 (power OR electric*)) OR TS=(parabolic* NEAR/2 
trough*) OR TS=((parabolic NEAR/2 dish*) AND solar) OR TS = 
(stirling NEAR/2 dish*) OR TS=((Fresnel NEAR/2 (reflector* OR 
lens*)) AND solar)) NOT (TS = (cell* OR photovoltaic* OR PV) OR 
TS = (hydrogen NEAR/1 (generat* or product*)) OR TS = (battery OR 
batteries) OR TS = (storage OR store OR storing))  
Refined by: [excluding] Web of Science Categories=( ENGINEERING 
AEROSPACE OR ASTRONOMY ASTROPHYSICS )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off   

#2 TS=(solar NEAR/2 tower) NOT (TS = (cell* OR photovoltaic* OR 
PV) OR TS = (hydrogen NEAR/1 (generat* or product*)) OR TS = 
(battery OR batteries) OR TS = (storage OR store OR storing))  
Refined by: [excluding] Web of Science Categories=( ASTRONOMY 
ASTROPHYSICS OR NUCLEAR SCIENCE TECHNOLOGY OR 
METEOROLOGY ATMOSPHERIC SCIENCES )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off 

Solar Photovoltaic 
#3 TS = ("photovoltaic energ*" OR "solar cell*" OR "photovoltaic power 

*" OR "photovoltaic cell*" OR  "photovoltaic solar energy*") NOT 
(TS = (hydrogen NEAR/1 (generat* or product*)) OR TS = (battery 
OR batteries) OR TS = (storage OR store OR storing)) 
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Solar General 
#4 TS = (“solar panel*” OR “solar array*” OR “solar resource*” OR 

“solar potential” OR “solar energy” OR “solar collector*”) NOT (#5 
OR #8 OR #9 OR TS = (hydrogen NEAR/1 (generat* or product*)) 
OR TS = (battery OR batteries) OR TS = (storage OR store OR 
storing))  
Refined by: Web of Science Categories=( AUTOMATION 
CONTROL SYSTEMS OR CHEMISTRY ANALYTICAL OR 
CHEMISTRY INORGANIC NUCLEAR OR CHEMISTRY 
MULTIDISCIPLINARY OR CHEMISTRY ORGANIC OR 
CHEMISTRY PHYSICAL OR CONSTRUCTION BUILDING 
TECHNOLOGY OR ELECTROCHEMISTRY OR ENERGY FUELS 
OR ENGINEERING CIVIL OR ENGINEERING ELECTRICAL 
ELECTRONIC OR ENGINEERING MULTIDISCIPLINARY OR 
ENVIRONMENTAL SCIENCES OR IMAGING SCIENCE 
PHOTOGRAPHIC TECHNOLOGY OR MATERIALS SCIENCE 
CERAMICS OR MATERIALS SCIENCE COATINGS FILMS OR 
MATERIALS SCIENCE MULTIDISCIPLINARY OR MECHANICS 
OR METALLURGY METALLURGICAL ENGINEERING OR 
MINING MINERAL PROCESSING OR NANOSCIENCE 
NANOTECHNOLOGY OR OPTICS OR PHYSICS APPLIED OR 
PHYSICS CONDENSED MATTER OR PHYSICS NUCLEAR OR 
POLYMER SCIENCE OR THERMODYNAMICS OR WATER 
RESOURCES ) AND [excluding] Web of Science Categories=( 
METEOROLOGY ATMOSPHERIC SCIENCES OR 
ENGINEERING AEROSPACE OR ASTRONOMY 
ASTROPHYSICS)  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off   
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Wind Energy 

#1 TS = ("wind power" OR "wind energy" OR "wind turbine*" OR "wind 
farm*" OR "wind park*" OR "wind plant*") NOT TS = (battery OR 
batteries OR storage OR store OR storing OR "hydrogen production*" 
OR "wind" NEAR "hydrogen" OR "grid integration*" OR "load 
management" OR "offshore" NEAR/5 ("connect*" OR "link*" OR 
"electric*" OR "grid*"))  
Refined by: Web of Science Categories=( ENERGY FUELS OR 
MATERIALS SCIENCE COMPOSITES OR ENGINEERING 
ELECTRICAL ELECTRONIC OR ORNITHOLOGY OR 
ENGINEERING MECHANICAL OR ENVIRONMENTAL 
SCIENCES OR COMPUTER SCIENCE ARTIFICIAL 
INTELLIGENCE OR MECHANICS OR MATERIALS SCIENCE 
CHARACTERIZATION TESTING OR ENGINEERING CIVIL OR 
PHYSICS MULTIDISCIPLINARY OR THERMODYNAMICS OR 
STATISTICS PROBABILITY OR MATHEMATICS 
INTERDISCIPLINARY APPLICATIONS OR METEOROLOGY 
ATMOSPHERIC SCIENCES OR ENGINEERING MARINE OR 
ENGINEERING MULTIDISCIPLINARY OR ECOLOGY OR 
METALLURGY METALLURGICAL ENGINEERING OR 
AUTOMATION CONTROL SYSTEMS OR INSTRUMENTS 
INSTRUMENTATION OR MATERIALS SCIENCE 
MULTIDISCIPLINARY OR MULTIDISCIPLINARY SCIENCES OR 
BIOLOGY OR PHYSICS APPLIED OR COMPUTER SCIENCE 
THEORY METHODS OR ENGINEERING AEROSPACE OR 
CONSTRUCTION BUILDING TECHNOLOGY OR REMOTE 
SENSING OR ENGINEERING OCEAN OR OPERATIONS 
RESEARCH MANAGEMENT SCIENCE OR ACOUSTICS OR 
COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS 
OR MARINE FRESHWATER BIOLOGY OR ENGINEERING 
INDUSTRIAL OR ZOOLOGY OR PHYSICS MATHEMATICAL OR 
MATHEMATICS APPLIED ) AND [excluding] Web of Science 
Categories=( ASTRONOMY ASTROPHYSICS OR GEOSCIENCES 
MULTIDISCIPLINARY )  
Databases=SCI-EXPANDED Timespan=1991-2010 
Lemmatization=Off   
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Appendix B: Results without European Union fixed effects 

To account for unreported energy R&D support from the European Union to its member 

countries, the results in the text include separate year fixed effects for EU countries.  Table B1 of 

this appendix compares the results from the first-differenced instrumental variables model with 

and without the EU- specific fixed effects for the R&D coefficients, and Table B2 compares the 

results for the controls.   

Dechezlepretre and Popp (2015) report that the EU’s share of renewable energy R&D 

funding is small, so that unaccounted for EU spending is unlikely to be a major factor in scientific 

productivity.  For example, EU RD&D investments dedicated to the six technologies covered by 

the EU Strategic Energy Technology Plan (wind, solar (photovoltaics and concentrated solar 

power), electricity grids, bioenergy, carbon capture and storage, fuel cells and hydrogen and 

nuclear fission) accounted for just 11 percent of public R&D spending on these technologies in 

2010.   Tables B1 and B2 confirm that the effect of any omitted EU-wide R&D is minimal, as the 

results are virtually the same when excluding the EU-specific year effects.  The cumulative effects 

of energy R&D range from 6 to 15 percent higher without the EU-specific year trends, which is 

consistent with the expected bias, assuming that EU funding follows similar trends as country-

level funding. F-tests for the joint significance of all EU-specific year fixed effects fail to reject 

the null hypothesis for all technologies except wind.  Nonetheless, to avoid any bias from 

unreported EU-wide energy R&D spending, the results in the main text include EU-specific year 

fixed effects.  
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Table B1 – Effect of EU-specific year effects on first-differenced IV panel regression results: Government R&D 
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  EU x year no EU EU x year no EU EU x year no EU EU x year no EU 
RD                             0.152*** 0.159*** 0.0197*** 0.0197*** -0.0267      0.00768    0.0983** 0.0956**  
                               (0.0153)     (0.0178)    (0.00649)    (0.00688)    (0.276)      (0.313)    (0.0440)     (0.0469)    
RD(t-1)                        0.376*** 0.361*** 0.0460*** 0.0442*** 0.601*** 0.609*** 0.197*** 0.196*** 
                               (0.0259)     (0.0296)    (0.00675)    (0.00764)    (0.167)      (0.216)    (0.0520)     (0.0571)    
RD(t-2)                        0.429*** 0.397*** 0.0722*** 0.0732*** 0.483**        0.566*   0.335*** 0.338*** 
                               (0.0196)     (0.0229)    (0.00886)    (0.00965)    (0.246)      (0.301)    (0.0547)     (0.0635)    
RD(t-3)                        0.00719       0.0726    -0.0128      -0.0153    0.154        0.141    0.0313       0.0412    
                               (0.0719)     (0.0789)    (0.0296)     (0.0323)    (0.144)      (0.172)    (0.0580)     (0.0613)    
RD(t-4)                        0.176** 0.294**  0.0141       0.0105    0.447**        0.390*   0.0263       0.0222    
                               (0.0891)      (0.121)    (0.0253)     (0.0273)    (0.191)      (0.220)    (0.0585)     (0.0662)    
RD(t-5)                        -0.101      -0.0270    -0.0303      -0.0132    0.0350        0.136    0.0130      0.00634    
                               (0.109)      (0.118)    (0.0255)     (0.0284)    (0.243)      (0.303)    (0.0532)     (0.0594)    
RD(t-6)                        0.0940        0.139    0.0167       0.0149    0.385**        0.374*   0.0618       0.0942    
                               (0.104)      (0.127)    (0.0176)     (0.0182)    (0.194)      (0.219)    (0.0519)     (0.0596)    
RD(t-7)                        0.0585       0.0587    0.000165       0.0136      0.121*** 0.145*** 
                               (0.0965)      (0.121)    (0.0229)     (0.0246)      (0.0451)     (0.0510)    
RD(t-8)                        0.0884      0.00444    -0.0329      -0.0355        
                               (0.118)      (0.147)    (0.0255)     (0.0280)        
RD(t-9)                        0.558***      0.559*** 0.0381       0.0426        
                               (0.160)      (0.209)    (0.0268)     (0.0318)        
RD(t-10)                       0.318**        0.365*   0.0598***   0.0646***     
                               (0.152)      (0.214)    (0.0211)     (0.0192)            
Cumulative effects:                   
 R&D                           2.155***     2.383***    0.191***     0.219***    2.078***     2.223***    0.883***     0.939***    
                               (0.348)      (0.444)    (0.0520)     (0.0535)    (0.599)      (0.727)    (0.225)      (0.246)    
N                              300          300    280          280    280          280    280          280    
AIC                            2351.3       2367.0    2110.7       2099.1    2676.4       2682.1    1766.5       1760.1    
EU x year p-value 0.284  0.458  0.155  0.0220  
F RD 1st stage                 32.51        29.82    18.01        20.31    11.40        13.44    38.49        32.07    
Hansen J p-value               0.293        0.411    0.183        0.197    0.491        0.632    0.502        0.540    
Endog. test p-value       0.979        0.737    0.240        0.267    0.0459        0.124    0.258        0.192    
Standard errors in parentheses.  All models use robust standard errors with correction for autocorrelation.   
*: significant at 10% level. **: significant at 5% level.  ***: Significant at 1% level.    
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Table B2 – Effect of EU-specific year effects on first-differenced IV panel regression results: Controls 
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  IV exog IV exog IV exog IV exog 
Cumulative effects:                   
 R&D                           2.155***     2.383***    0.191***     0.219***    2.078***     2.223***    0.883***     0.939***    
                               (0.348)      (0.444)    (0.0520)     (0.0535)    (0.599)      (0.727)    (0.225)      (0.246)    
 lnGDP                         -6.353       -41.66    53.815       64.658    -290.964*     -231.318    -47.685      -40.879    
                               (74.85)      (87.24)    (73.49)      (71.41)    (174.4)      (175.7)    (33.00)      (34.85)    
 gas price no taxes            240.449*** 293.545***          
                               (81.66)      (94.19)          
 gas tax                       -3.763        -8.82          
                               (25.22)      (28.14)          
 gas price                       -16.821      -10.405        
                                 (19.50)      (21.33)        
 oil per capita                7211.473 5833.289    -7884.717 9947.448        
                               (10175.8)     (8473.9)    (17329.9)    (13063.0)        
 gas per capita                 -1413.198 -1353.485        
                                 (2200.3)     (2104.4)        
 coal per capita                -10.85*       -7.408        
                                 (6.385)      (7.198)        
 electric price                  0.099        0.108        
                                 (0.121)      (0.108)        
 grow_elec                        -5.258        2.215    -0.872       -0.033    
                                   (5.688)      (4.959)    (0.920)      (0.888)    
 % hydro                           0.629        1.102    1.043        1.236    
                                   (2.065)      (2.335)    (0.718)      (0.794)    
 % nuclear                        -4.819*       -1.843    -0.499       -0.163    
                                   (2.493)      (2.551)    (0.678)      (0.677)    
 FIT wind                            9.827       16.495    

       (25.86)      (27.57)    
 FIT pv                            18.874      -70.981      
                                   (60.28)      (66.22)      
 REC levels                       15.092**        7.073    2.133        1.753    
                                       (7.234)      (7.325)    (1.376)      (1.440)    
Standard errors in parentheses.  All models use robust standard errors with correction for autocorrelation.   
*: significant at 10% level. **: significant at 5% level.  ***: Significant at 1% level.    
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Appendix C: Determining the Optimal Lag Length 

As noted in the text, we employ several strategies to identify the appropriate lag length.  

First, as is common in the literature, the primary criterion is finding the minimum AIC statistic 

across a range of models (e.g. Crespi and Geuna, 2008).19  One complication is that our model 

includes not only lagged values of the R&D variables, but also of several control variables.  These 

controls are often individually insignificant.  Thus, we also run models including only a single year 

of the control and policy variables, to see if this changes the recommended number of lags.  We 

initially examine models including up to ten lags of R&D.  Adding additional lags is problematic 

when the model includes renewable energy policy variables as only two countries in our sample 

adopted renewable energy certificates before 2003, so that estimates of the lagged value of the 

REC variable beyond eight years are unreliable.  However, adding up to 11 years of lags is possible 

for biofuels and energy efficiency.20   

In addition, even collinearity among the R&D variables themselves may cause the AIC 

statistic to favor smaller lags.  Thus, we also run both the full and single control models using a 

polynomial distributed lag model (PDL).  The PDL models provide similar results to the main first 

differenced models, but by requiring fewer parameters to estimate multiple lags, they offer the 

potential for lower standard errors on the R&D coefficients.  Table C1 presents the AIC statistics. 

In some cases, these strategies recommend different lag lengths.  Thus, we also consider 

the cumulative long-run effect of R&D when evaluating the lag length.  These long-run effects, 

19 Alternatively, we also calculated the BIC statistic for each model, which includes a greater penalty for including 
irrelevant variables.  As a result, collinearity among the lagged R&D values often leads the BIC to recommend 
fewer lags than the AIC.  However, in the case of collinear lagged R&D values, we can still estimate long-run 
effects that are jointly significant, even when individual year coefficients are estimated imprecisely.  Moreover, 
leaving out relevant lags would lead to omitted variable bias.  Thus, I focus on the findings of the AIC statistic in the 
discussion that follows. 
20 The first US states to adopt REC limits do so in 1998, and Italy adopts an REC limit in 2002.  Most states first 
limits appear in the data in 2003. 
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illustrated in Figure 4, tend to be similar across the various estimation techniques, so we focus on 

the results using first differenced instrumental variables.  When the AIC statistic conflicts across 

models, we use the pattern of cumulative effects as an additional guide.  In particular, we consider 

the lag length at which the cumulative effect of government energy R&D spending levels out, as 

this is evidence that all relevant lags have been included. 

Turning first to biofuels, we see relatively consistent recommendations across models.  

Using the AIC criterion we find an optimal lag length of ten years using the full model and eleven 

years using a single year of controls.  The PDL results suggest an optimal lag length of nine years 

in the full model and ten when using a single year of controls.  As the AIC is lowest for the full 

FD model, which has an optimal lag of ten years, I use a lag length of ten years for analyzing the 

biofuels results. 

The results for wind demonstrate the potential advantages of the PDL model and for 

looking at the results of models with a single year of controls.  Using the standard first differenced 

model, the AIC suggests an optimal lag length of just two years.  Using just a single year of 

controls, the AIC suggests using seven years of lagged data.  In contrast, the PDL model suggests 

ten year lags in the full model and four lags when using a single year of controls.  This difference, 

however is not caused by adding lags of energy R&D, but rather lags of the tradable permit policy 

variable, which becomes large and significant beginning with the ninth lagged variable.  However, 

beyond nine years of lags, this coefficient is identified off of just one country, as only the United 

States had renewable credit trading before 2002.  Thus, we turn to the cumulative effect of energy 

R&D to help sort through the options.  In all four models (FD, FD single control, PDL, PDL single 

control), the cumulative effect grows significantly between years 6 and 7 before leveling off, 

suggesting a lag of seven years (as suggested by the FD model with a single year of controls) is 
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appropriate.  Indeed, the eighth and ninth lags of energy R&D are insignificant and close to zero.  

Thus, I use a lag length of seven years for analyzing the wind energy results. 

For solar energy, shorter lags appear to suffice, although the choice using the AIC statistic 

varies across models.  In the FD model, the AIC statistic is minimized with just four lags in the 

full model and with nine lags when using just a single year of controls.  In contrast, the AIC 

suggests ten years of lags in the PDL model with full controls, and eight when using just a single 

year of controls.   

Thus, again we turn to the estimated cumulative effects for more information.  Here, we 

see a large increase in the cumulative effect between years three and four, and again between years 

five and six.  While the individual coefficient for year t-6 is only significant at the 10 percent level, 

both the large size of the coefficient, as well as the continued growth in the cumulative effect 

through year six, suggests that six years should be included in the solar energy models.  There is 

little value to adding additional lags of energy R&D in the PDL models.  Indeed, results in year 

10 seem to be largely driven by changes in the REC variable, as the sign of the effect of R&D 

becomes negative in the model with full controls.  In contrast, the cumulative effect of energy 

R&D remains level beyond year 6 in the model using a single year of control variables. 

The appropriate lag length is more difficult to identify in the case of energy efficiency, as 

the effect of energy R&D itself is smaller.  In the FD model, the AIC statistic suggest a lag of two 

years using the full model but ten years when using a single year of controls.  In the PDL model, 

the AIC is minimized using a lag of five years using a full set of controls, and four lagged years 

with a single year of controls.  Given these divergent results, we turn to the cumulative effect of 

energy R&D.  The cumulative effect levels off after year six before rising again beginning in year 
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9.  Among models with 9 to 11 lags, the AIC is minimized in the main FD model when using 10 

lags.  Thus, I use ten years of lagged R&D when evaluating energy efficiency. 
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Table C1 – AIC statistic for alternative number of years of lagged R&D 
Biofuels       Energy Efficiency     

  FDIV   PDL IV    FDIV   PDL IV 

 
all 

controls 
single 
year  

all 
controlsc 

single 
yearb   

all 
controls 

single 
year  

all 
controlsa 

single 
yearc 

AIC lag 1: 2811.9 2806.3     AIC lag 1: 2183.4 2173    
AIC lag 2: 2406.5 2400.5     AIC lag 2: 2060.2 2045.4    
AIC lag 3: 2408 2402.4     AIC lag 3: 2071.4 2047.3    
AIC lag 4: 2401.2 2401.9  2401.2 2435.8  AIC lag 4: 2079.9 2047.8  2076.7 2047.8 
AIC lag 5: 2397.2 2403.8  2425.6 2434.8  AIC lag 5: 2083.9 2044.7  2071.9 2054.0 
AIC lag 6: 2401.6 2399  2425.6 2428.4  AIC lag 6: 2091.5 2046.8  2086.6 2054.4 
AIC lag 7: 2394.1 2400.7  2421.9 2428.5  AIC lag 7: 2098 2049  2096.9 2062.5 
AIC lag 8: 2378.3 2400.2  2413.7 2427.5  AIC lag 8: 2106.5 2049.2  2093.6 2069.7 
AIC lag 9: 2356 2372.6  2388.8 2417.5  AIC lag 9: 2114.7 2048.4  2114.4 2067.9 
AIC lag 10: 2351.3 2356.9  2389.8 2397.2  AIC lag 10: 2110.7 2038.6  2130.9 2062.4 
AIC lag 11: 2351.5 2352.3   2408.2 2420.1  AIC lag 11: 2114.6 2039.2   2133.7 2063.4 

Solar Energy      Wind Energy     

  FDIV   PDL IV    FDIV   PDL IV 

 
all 

controls 
single 
year  

all 
controlsb 

single 
yeara   

all 
controls 

single 
year  

all 
controlsb 

single 
yearc 

AIC lag 1: 2742.8 2732.5     AIC lag 1: 1839.5 1844.9    
AIC lag 2: 2704.1 2688.2     AIC lag 2: 1738.7 1742.5    
AIC lag 3: 2714.2 2689.9     AIC lag 3: 1748.1 1744    
AIC lag 4: 2672.9 2641.2  2652.6 2632.9  AIC lag 4: 1750.8 1745  1764.3 1745.0 
AIC lag 5: 2674.6 2643.2  2657.3 2636.6  AIC lag 5: 1756.5 1746.9  1771.8 1758.3 
AIC lag 6: 2676.4 2640.4  2654.2 2625.5  AIC lag 6: 1763.3 1747.8  1773.2 1765.3 
AIC lag 7: 2676.8 2641  2644.7 2624.6  AIC lag 7: 1766.5 1737.3  1770.6 1760.5 
AIC lag 8: 2682.4 2640.3  2638.9 2623.7  AIC lag 8: 1777.1 1739.3  1788.2 1767.7 
AIC lag 9: 2689.1 2636.9  2631.8 2626.0  AIC lag 9: 1747.7 1740.2  1758.6 1768.7 
AIC lag 10: 2760.2 2639.4   2623.8 2626.0  AIC lag 10: 1746.3 1737.7   1741.3 1768.7 

a: 2nd degree polynomial; b: 3rd degree polynomial; c: 4th degree polynomial 
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Appendix D: Polynomial Distributed Lag Results 

The following tables present results using the polynomial distributed lag (PDL) model.  To 

accommodate instrumental variables for current energy R&D, I used the following steps: 

1. Estimate a first-stage model for R&D using the same number of lagged controls as 

in the final PDL regression to be estimated. 

2. Obtain predicted energy R&D from this regression. 

3. Use the predicted current R&D, along with actual values of lagged R&D, to 

construct first differenced data. 

4. Use first differenced data to construct the polynomials for estimation.  Polynomials 

from degree 2-4 were used, as were lags from 4-10 years. 

As noted in the text, there are few differences between the PDL results and those simply 

including all lags in the model.  Moreover, there is little gain in efficiency from using the PDL 

model, but it does hele to identify the appropriate lag length for each technology.  Thus, except for 

the discussion of lag length, I focus on the unrestricted model in the discussion in the text.  For 

reference, complete PDL results are presented here.  Table D1 shows the results for government 

R&D for both individual years and the cumulative effect, and Table D2 shows the cumulative 

effects of the various controls included in each model. 

The main differences between the unrestricted results and the PDL results are as follows. 

First, for biofuels, the FD results suggest a cyclical pattern, with strong effects also found in years 

two and four in the first differenced model before picking up again in year t-9. In contrast, the PDL 

model suggests a more gradual effect of energy R&D, with the effect initially peaking in year t-2, 

and gradually fading until recurring in years nine and ten.  Similarly, for energy efficiency, the 
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largest single year impact does not occur until year t-10 in the PDL mode, compared to year t-2 in 

the FD model.  However, the long-run cumulative effects are similar in both models.   
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Table D1 – Polynomial distributed lag regression results: Government R&D  
 
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  IV exog IV exog IV exog IV exog 
RD                             0.1435*** 0.1449*** 0.0152** 0.0100 0.2678** 0.3909*** 0.1085* 0.1276*** 
                               (0.0123) (0.0143) (0.0067) (0.0073) (0.1228) (0.0852) (0.0568) (0.0323) 
RD(t-1)                        0.3121*** 0.3127*** 0.0440*** 0.0410*** 0.3872*** 0.4460*** 0.2507*** 0.2647*** 
                               (0.0278) (0.0283) (0.0045) (0.0053) (0.1041) (0.1013) (0.0451) (0.0411) 
RD(t-2)                        0.3822*** 0.3826*** 0.0523*** 0.0506*** 0.4532*** 0.4692*** 0.2658*** 0.2764*** 
                               (0.0181) (0.0181) (0.0085) (0.0084) (0.1431) (0.1405) (0.0514) (0.0551) 
RD(t-3)                        0.3768*** 0.3774*** 0.0457*** 0.0447*** 0.4655*** 0.4604*** 0.2021*** 0.2104*** 
                               (0.0366) (0.0365) (0.0104) (0.0100) (0.1620) (0.1549) (0.0555) (0.0604) 
RD(t-4)                        0.3210*** 0.3219*** 0.0298*** 0.0291*** 0.4243*** 0.4198*** 0.1078* 0.1147* 
                               (0.0614) (0.0615) (0.0107) (0.0104) (0.1518) (0.1461) (0.0552) (0.0594) 
RD(t-5)                        0.2415*** 0.2426*** 0.0102 0.0095 0.3295** 0.3472** 0.0312 0.0370 
                               (0.0729) (0.0736) (0.0106) (0.0104) (0.1355) (0.1419) (0.0497) (0.0523) 
RD(t-6)                        0.1669** 0.1681** -0.0074 -0.0083 0.1811 0.2428 0.0204 0.0252 
                               (0.0720) (0.0737) (0.0104) (0.0103) (0.1797) (0.1966) (0.0397) (0.0397) 
RD(t-7)                        0.1274* 0.1287* -0.0175* -0.0183*   0.1237** 0.1271** 
                               (0.0717) (0.0744) (0.0102) (0.0101)   (0.0517) (0.0497) 
RD(t-8)                        0.1553* 0.1564* -0.0145 -0.0149     
                               (0.0855) (0.0884) (0.0103) (0.0102)     
RD(t-9)                        0.2843** 0.2854** 0.0073 0.0078     
                               (0.1175) (0.1195) (0.0135) (0.0134)     
RD(t-10)                       0.5502*** 0.5515*** 0.0535** 0.0556**     
                               (0.1971) (0.1978) (0.0231) (0.0230)         
        
 R&D                           3.0612*** 3.0723*** 0.2186*** 0.2067*** 2.5085*** 2.7764*** 1.1101*** 1.1830*** 
                               (0.4413) (0.4611) (0.0627) (0.0633) (0.6621) (0.7313) (0.2765) (0.2792) 
N                              300 300 280 280 280 280 280 280 
AIC                            2389.8 2389.8 2085.2 2084.1 2641.1 2637.1 1770.6 1770.0 
BIC                            2630.5 2630.5 2332.3 2331.3 2862.8 2858.8 2017.8 2017.1 
Standard errors in parentheses.  All models use robust standard errors with correction for autocorrelation.   
*: significant at 10% level. **: significant at 5% level.  ***: Significant at 1% level.    
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Table D2 – Polynomial distributed lag regression results: Controls 
                               Biofuels Energy Efficiency Solar Energy Wind Energy 
  IV exog IV exog IV exog IV exog 
Cumulative effects:                   
 R&D                           3.0612*** 3.0723*** 0.2186*** 0.2067*** 2.5085*** 2.7764*** 1.1101*** 1.1830*** 
                               (0.4413) (0.4611) (0.0627) (0.0633) (0.6621) (0.7313) (0.2765) (0.2792) 
 lnGDP                         -2.1057 -2.8775 53.2447 51.4496 -1.9e+02 -1.7e+02 -41.2015 -41.6738 
                               (82.2929) (81.7642) (69.5854) (69.2378) (169.4939) (168.1542) (33.6773) (33.8759) 
 gas price no taxes            221.8810*** 221.2094***       
                               (84.4800) (83.8467)       
 gas tax                       -3.1941 -3.1393       
                               (27.2391) (27.1973)       
 gas price                       -5.2159 -6.8539     
                                 (21.2337) (21.2315)     
 oil per capita                7.1e+03 7.1e+03 -1.2e+04 -1.2e+04     
                               ( 1.1e+04) ( 1.1e+04) ( 8.5e+03) ( 8.4e+03)     
 gas per capita                 -1.4e+03 -1.5e+03     
                                 ( 2.2e+03) ( 2.2e+03)     
 coal per capita                -11.4431** -12.0952**     
                                 (5.2265) (5.2584)     
 electric price                  0.0753 0.0774     
                                 (0.1234) (0.1238)     
 grow_elec                        -3.2878 -2.7047 -0.7717 -0.7167 
                                   (5.1424) (1.0026) (1.0169) (1.0026) 
 % hydro                           -0.0743 0.0766 0.4473 0.4144 
                                   (1.6134) (1.5613) (0.8803) (0.8923) 
 % nuclear                        -3.6867 -3.6852 -0.0177 0.0323 
                                   (2.5755) (2.5097) (0.7553) (0.7685) 
 FIT wind                            25.0600 25.8369 

       (26.4234) (26.5270) 
 FIT pv                            55.4779 55.7739   
                                   (60.0910) (59.4518)   
 REC levels                       14.4206** 13.5407* 2.6813* 2.6451* 
                                       (7.2394) (6.9293) (1.5560) (1.5268) 
Standard errors in parentheses.  All models use robust standard errors with correction for autocorrelation.   
*: significant at 10% level. **: significant at 5% level.  ***: Significant at 1% level.     
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Appendix E: Detailed methodology for NPL citation calculations 

The increased probability of an NPL citation resulting from an additional one million dollars 

of new energy R&D funding depends on both the number of articles induced by this R&D each 

year and on the probability of an article from any given year being cited in the future.  Thus, 

Figures 6 and 7 use the results of both our R&D estimation and the NPL citation regression: 

(1) 𝑄𝑄𝑖𝑖,𝑡𝑡 = ∑ 𝛽𝛽𝑡𝑡−𝑠𝑠𝑅𝑅𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇
𝑠𝑠=0 + ∑ 𝛄𝛄𝐭𝐭−𝐬𝐬𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇

𝑠𝑠=0 + ∑ 𝛅𝛅𝐭𝐭−𝐬𝐬𝐗𝐗𝑖𝑖,𝑡𝑡−𝑠𝑠𝑇𝑇
𝑠𝑠=0 + 𝛼𝛼𝑖𝑖 +  𝜂𝜂𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 

(2) ℎ(𝑡𝑡) = exp(𝛼𝛼0 + 𝛼𝛼1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  +𝛼𝛼3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛄𝛄𝛄𝛄𝐂𝐂𝐢𝐢,𝐭𝐭) 

Let 𝛃𝛃 = [𝛽𝛽𝑡𝑡 𝛽𝛽𝑡𝑡−1  ⋯  𝛽𝛽𝑡𝑡−𝑇𝑇] represent a row vector of coefficients on contemporary and 

lagged R&D from equation (1).  Using the results of (2), the annual probability that a publication 

from year t receives a citation in year t + s can be written as: 

𝑤𝑤𝑠𝑠 = exp {𝛼𝛼0 + 𝛼𝛼1𝑠𝑠 + 𝛼𝛼2𝑠𝑠2} 

Next, define a matrix WAnnual representing the annual probability that an article published 

in year t, represented by the rows of the matrix, will be cited in year t + s, represented by the 

columns of the matrix: 

𝐖𝐖𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0 𝑤𝑤1 𝑤𝑤2

 𝑤𝑤0 𝑤𝑤1
  𝑤𝑤0

⋯  𝑤𝑤𝑀𝑀
  𝑤𝑤𝑀𝑀−1
      

   
   

   
 ⋱  
  𝑤𝑤0 ⎦

⎥
⎥
⎥
⎤

 

Similarly, the cumulative probability of a publication in year t receiving a citation by year t + s is 

given by the following matrix: 

𝐖𝐖𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑤0 𝑤𝑤0 + 𝑤𝑤1 𝑤𝑤2 + 𝑤𝑤1 + 𝑤𝑤0

 𝑤𝑤0 𝑤𝑤1 + 𝑤𝑤0
  𝑤𝑤0

⋯  𝑤𝑤𝑀𝑀 + 𝑤𝑤𝑀𝑀−1 + … + 𝑤𝑤0
  𝑤𝑤𝑀𝑀−1 + 𝑤𝑤𝑀𝑀−2 +  … + 𝑤𝑤0
      

   
   

   
 ⋱  
  𝑤𝑤0 ⎦

⎥
⎥
⎥
⎤
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Using these matrices, the product βWAnnual yields a row matrix with the increase in the 

annual probability of an NPL citation each year after an additional one million dollars of energy 

R&D, and the product βWCumulative yields a row matrix with the increase in the cumulative 

probability resulting from an additional one million dollars energy R&D.  
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