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1 Introduction

How small shocks are amplified and propagated through the economy to cause sizable fluc-

tuations is at the heart of much macroeconomic research. Potential mechanisms that have

been proposed range from investment and capital accumulation responses in real business cy-

cle models (e.g., Kydland and Prescott, 1982), to Keynesian multipliers (e.g., Diamond, 1982,

Kiyotaki, 1988, Blanchard and Kiyotaki, 1987, Hall, 2009, Christiano, Eichenbaum and Re-

belo, 2011), to credit market frictions facing firms, households or banks (e.g., Bernanke and

Gertler, 1989, Kiyotaki and Moore, 1997, Guerrieri and Lorenzoni, 2012, Mian and Sufi, 2013),

to the role of real and nominal rigidities and their interplay (Ball and Romer, 1990), and to

the consequences of (potentially inappropriate or constrained) monetary policy (e.g., Friedman

and Schwartz, 1971, Eggertsson and Woodford, 2003, Farhi and Werning, 2013).

A class of potentially-promising approaches based on the spread of small shocks from firms

or disaggregated sectors through their economic and other links to other units in the economy

has generally been overlooked, however. The idea is simple. A shock to a single firm (or

sector) could have a much larger impact on the macroeconomy if it reduces the output of

not only this firm (or sector), but also of others that are connected to it through a network

of input-output linkages. The macroeconomic importance of this idea was downplayed by

Lucas’s (1977) famous essay on business cycles on the basis of the argument that if shocks

that hit firms or disaggregated sectors are idiosyncratic, they would then wash out when

we aggregate across these units and look at macroeconomic fluctuations – due to a law of

large numbers-type argument. Despite this powerful dismissal, this class of approaches has

attracted recent theoretical attention. An important paper by Gabaix (2011) showed that

when the firm-size distribution has very fat tails, so that shocks hitting the larger firms cannot

be balanced out by those affecting smaller firms, the law of large numbers need not apply,

opening the way to sizable macroeconomic fluctuations from idiosyncratic firm-level shocks.1

Carvalho (2008), Acemoglu, Ozdaglar and Tahbaz-Salehi (2010, 2014), Acemoglu, Carvalho,

Ozdaglar and Tahbaz-Salehi (2012) and Baqaee (2015) built on the multi-sector framework first

developed by Long and Plosser (1983) to show how input-output linkages can also neutralize the

force of the law of large numbers because shocks hitting sectors that are particularly important

as suppliers to other sectors will not wash out and can translate into aggregate fluctuations.

One attractive aspect of these network-based approaches to the amplification and propaga-

tion of shocks is that they naturally lend themselves to an empirical analysis that can inform

the importance of the proposed mechanisms, and the current paper undertakes such an empir-

ical investigation. We are not the first to empirically study these interactions. One branch of

1Earlier contributions on this theme include Jovanovic (1987) and Durlauf (1993) who showed how idiosyn-
cratic shocks can accumulate into aggregate risk in the presence of strong strategic complementarities, and Bak,
Chen, Scheinkman and Woodford (1993) who proposed a model of macroeconomic “self-organized criticality”
capable of generating macroeconomic fluctuations from small shocks due to nonlinear interactions between firms
and industries.
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existing research has provided model-based quantitative evaluation of the importance of these

interactions (e.g., Horvath, 1998, 2000, Carvalho, 2008, Foerster, Sarte and Watson, 2011). A

number of recent papers have instead focused on observable large shocks to a set of firms or

industries and have traced their impact through the input-output network. Acemoglu, Autor,

Dorn, Hanson and Price (2015) do this focusing on the spread of the impact of increased Chi-

nese competition into the U.S. economy through input-output linkages and local labor markets,

though focusing on 10-year or 20-year effects. Boehm, Flaaen and Nayar (2014), Barrot and

Sauvagnat (2014), and Carvalho, Nirei and Saito (2014) focus on the transmission of natural

disasters, such as the 2011 Japanese earthquake, over the global input-output network.2 Our

paper contributes to this literature by studying the spread of four different types of shocks

through the U.S. input-output network at business cycle frequencies. We also add to this by

evaluating the contribution of the “geographic network”of industries – which measures the

collocation patterns of industries across different commuting zones – to the inter-industry

propagation of macroeconomic shocks.3

We begin by developing some theoretical implications of the propagation of shocks through

the input-output linkages. Most notably, theory predicts that supply-side (productivity) shocks

propagate downstream much more powerfully than upstream – meaning that downstream

customers of directly-hit industries are affected more strongly than their upstream suppliers.

In contrast, demand shocks (e.g., from imports or government spending) propagate upstream

– meaning that upstream suppliers of directly hit industries are affected more strongly than

their downstream customers. This pattern results from the fact that supply-side shocks change

the prices faced by customer industries, creating powerful downstream propagation, while

demand-side shocks have much more minor (or no) effects on prices and propagate upstream

as affected industries adjust their production levels and thus input demands. In the simplified

benchmark model studied in much of the literature, where both production functions and

consumer preferences are Cobb-Douglas (so that income and substitution effects cancel out),

these effects emerge particularly clearly: there is no upstream effect from supply-side shocks

and no downstream effect from demand-side shocks. In addition, we show that there is a

restriction on the quantitative magnitudes of the own effect (measuring how a shock to an

industry affects that industry) and the network effects.

Our empirical work focuses on four different types of industry-level shocks, all propagating

through the input-output linkages at the level of 392 industries as measured by the Bureau

of Economic Analysis input-output tables. Our four shocks are: (1) variation from the exoge-

nous component of imports from China; (2) changes in federal government spending (affecting

industries differentially on the basis of their dependence on demand from the federal govern-

2Acemoglu, Akcigit and Kerr (2015) look at the medium-run spread of new ideas through the innovation
(knowledge-flow) network of the U.S. economy.

3Though our evidence shows that microeconomic (industry-level) shocks are important and propagate
strongly, it does not directly speak to the issues discussed in the previous paragraph, that is, to whether a
law of large numbers-type argument will ensure that they wash out at the macro level.
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ment); (3) total factor productivity (TFP) shocks; and (4) knowledge/productivity stimuli

coming from variation in foreign industry patents. For each one of these shocks, we construct

downstream and upstream network effects by using information from the input-output tables

– namely by taking the inner product of the corresponding row or column of the input-output

matrix with a vector of shocks at the industry level. We then estimate parsimonious models of

industry-level value added, employment and productivity growth on their own lags, an indus-

try’s own shocks, and downstream and upstream effects from shocks hitting other industries.4

A brief summary of our results is as follows. For each one of these four shocks, we find

propagation through the input-output network to be statistically and economically important,

and broadly consistent with theory. In particular, for the two demand-side shocks – Chinese

imports and federal government spending – we find that upstream propagation is substan-

tially stronger than downstream effects, which are often zero or of opposite sign. In contrast,

for the two supply-side shocks – TFP and foreign patenting – there is strong downstream

propagation, and limited or no upstream effects. In addition, the quantitative restrictions

between own effects and network effects implied by theory are often verified. We also find the

general patterns to be quite robust to different weighting schemes, additional controls, longer

time scales, different lag structures, and so on.

The quantitative network effects are sizable and typically larger than the quantitative

impact of own shocks. Figure 1a gives an indication of the magnitude of network effects by

graphing the impulse response functions that result from a one-time one standard-deviation

shock to every manufacturing industry.5 The different panels show that network effects are

more pronounced than own effects. For example, one standard-deviation increase in imports

from China will have a direct (own) effect of reducing value added growth by 3.46% in 10

years. Factoring in the (upstream) network effects, the total impact of the same shock is a

22.1% decline in value added growth. This implies a sizable “network multiplier”(defined as

the size of the total impact relative to the direct impact of the shock) of 22.1/3.46 ' 6.4. The

implied employment multiplier is similar, approximately 5.9.

We finally consider the effect of geographic collocation (“overlay”) of industries. The geo-

graphic overlay of industries reflects the importance of localized networks, as industries with

4We should add at this point that despite our use of the term “shocks,” we would like to be cautious in
claiming that our estimates correspond to causal effects of purely exogenous shocks on endogenous economic
outcomes. Even though we specify our regression equations to guard against the most obvious forms of endo-
geneity (contemporaneous shocks affecting both left- and right-hand side variables and Manski’s (1993) reflection
problem that would result from having grouped endogenous variables on the right-hand side), our shocks them-
selves may be endogenous to economic decisions in the recent past. For imports from China, because we are
focusing on the exogenous component of the variation, we are fairly confident that our estimates are informative
about causal effects. The same applies, perhaps with some additional caveats, to federal spending shocks, since
we exploit variation across industries in their differential responsiveness to such aggregate changes. For the TFP
and foreign patenting measures, the endogeneity concerns are more severe. Nevertheless, even in these cases we
believe that our regressions are informative about the propagation of these “pre-determined” shocks through
the input-output and geographic networks.

5Here, consistent with theory, “network effects” refer to downstream effects for supply-side shocks and
upstream effects for demand-side shocks. The details of how Figure 1 is constructed are provided below.
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substantial exchanges frequently locate near each other to reduce transportation costs and

facilitate information transfer (e.g., Fujita, Krugman and Venables, 1999).6 After deriving a

theoretically-motivated measure of how industry-level shocks should propagate through the

geographic overlay of industries, we show that geographic effects add another dimension of

network-based propagation. While our main results are robust to these additional controls for

geographic patterns, which demonstrates that input-output networks are operating above-and-

beyond localized factors like regional business cycles, the geographic network also turns out

to be a powerful transmitter of shocks from one industry to others. In fact, even though our

estimates of the spread of shocks across collocating industries are slightly less robust than our

baseline results, the effects appear quantitatively as large or even larger.

Overall, we interpret our results as suggesting that network-based propagation, particu-

larly but not exclusively through the input-output linkages, might be playing a sizable role in

macroeconomic fluctuations, and certainly a more important one than typically presumed in

modern macroeconomics.

The rest of the paper proceeds as follows. Section 2 presents the theoretical model on input-

output networks and shock propagation. Section 3 describes our data and provides descriptive

statistics. Section 4 presents our empirical results focusing exclusively on national input-output

connections, and Section 5 further adds in the geographic overlay. The last section concludes,

while Appendix A and Online Appendices B and C contain further results and omitted proofs.

2 Theory

In this section, we develop some simple theoretical implications of input-output linkages, and

then turn to a discussion of the macroeconomic consequences of the geographic concentration

of industries in certain areas.

2.1 Input-Output Linkages

We start with a model closely related to Long and Plosser (1983) and Acemoglu, Carvalho,

Ozdaglar and Tahbaz-Salehi (2012), which will clarify the role of input-output linkages.

Consider a static perfectly competitive economy with n industries, and suppose that each

industry i = 1, ..., n has a Cobb-Douglas production function of the form:

yi = ezi li
αli

n∏
j=1

x
aij
ij . (1)

Here xij is the quantity of goods produced by industry j used as inputs by industry i, li is

labor, and zi is a Hicks-neutral productivity shock (representing both technological and other

6Recent work looking at the local coagglomeration of industries includes Ellison, Glaeser and Kerr (2010),
Greenstone, Hornbeck and Moretti (2010), and Helsley and Strange (2014).
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factors affecting productivity). We assume that, for each i, αli > 0, and aij ≥ 0 for all j (where

aij = 0 implies that the output of industry j is not used as an input for industry i), and

αli +

n∑
j=1

aij = 1,

so that the production function of each industry exhibits constant returns to scale.7

As equation (1) makes clear, the output of each industry is used as input for other industries

or consumed in the final good sector. Incorporating the demand from other industries, the

market-clearing condition for industry i can be written as

yi = ci +

n∑
j=1

xji +Gi, (2)

where ci is final consumption of the output of industry i, and Gi denotes government purchases

of good i, which are assumed to be wasted or spent on goods households do not directly care

about. We introduce government purchases to be able to model demand-side shocks in a simple

fashion.

The preference side of this economy is summarized by a representative household with a

utility function

u(c1, c2, ..., cn, l) = γ(l)
n∏
i=1

c
βi
i , (3)

where βi ∈ (0, 1) designates the weight of good i in the representative household’s prefer-

ences (with the normalization
∑n

i=1 βi = 1), and γ(l) is a decreasing (differentiable) function

capturing the disutility of labor supply.

The government imposes a lump-sum tax, T , to finance its purchases. Denoting the price

of the output of industry i by pi, this implies T =
∑n

i=1 piGi. Since its income comes only

from labor, wl, the representative household’s budget constraint can be written as

n∑
i=1

pici = wl − T.

We focus on the competitive equilibrium of this static economy, which is defined in the

usual fashion, so that all firms maximize profits and the representative household maximizes

7The main results we emphasize do not depend on the absence of physical capital, for example, with a
production function that takes the form

yi = ezi li
αlik

αki
i

n∏
j=1

x
aij
ij .

We suppress capital to simplify the notation and discussion.
More consequential is our assumption that this is a static economy where each industry simultaneously buys

inputs from others. Long and Plosser (1983), instead, assumed that an industry at time t uses as inputs
products produced by other industries at date t− 1. We discuss the implications of our timing assumption and
the robustness of our results to this structure in Appendix C, available online.
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its utility, in both cases taking all prices as given, and the market-clearing conditions for each

good and labor are satisfied. The amount of government spending and taxes are taken as given

in this competitive equilibrium. We also choose the wage as the numeraire (i.e., set w = 1).

The Cobb-Douglas production functions in (1), combined with profit maximization, imply

pjxij
piyi

= aij . (4)

In preparation for our main results we will present, let A denote the matrix of aij’s,

A =


a11 a12 ...
a21 a22

. . .

ann

 .

We also define

H ≡(I−A)−1 (5)

as the Leontief inverse of the input-output matrix A, and denote its typical entry by hij .

Proposition 1 The impact of sectoral productivity (supply-side) shocks on the output of sector
i is

d ln yi = dzi︸︷︷︸
own eff ect

+

n∑
j=1

(hij − 1j=i)× dzj︸ ︷︷ ︸
network eff ect

, (6)

where hij is the ij-th element of H (the Leontief inverse of A), and 1j=i is the indicator

function for j = i. This equation implies that in response to productivity shocks, there are

no upstream effects (i.e., no effects on suppliers of affected industries) and only downstream

effects (i.e., only effects on customers of affected industries).

Suppose γ(l) = (1− l)λ. Then the impact of government spending (demand-side) shocks on
the output of sector i is

d ln yi =
dG̃i
piyi︸︷︷︸

own eff ect

+
n∑
j=1

(ĥji − 1j=i)×
1

pjyj
× dG̃j︸ ︷︷ ︸

network eff ect

−
n∑
j=1

ĥji ×
1

pjyj
×

βj
1 + λ

×
n∑
k=1

dG̃k︸ ︷︷ ︸
resource constraint eff ect

, (7)

where G̃j = pjGj is nominal government spending on sector j’s output, ĥij is the ij-th element

of the Leontief inverse matrix Ĥ = (I − Â)−1, and Â is the matrix with entries given by

âij =
pjxij
pjyj

(i.e., sales from industry j to industry i normalized by sales of industry j). This

implies that demand-side shocks do not propagate downstream (i.e., to customers of affected

industries), only upstream (i.e., only to suppliers of affected industries).
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This proposition is proved in Appendix A. Equations (6) and (7) form the basis of our

empirical strategy, and link the output of sector i to its own “shock,” dzi, and to “shocks”

hitting all other industries working through the input-output linkages of the economy. In

particular, in equation (6), dzi is the own shock, while
∑n

j=1(hij − 1j=i)dzj is the network

effect. Notice that this expression includes the propagation of the own shock through the

input-output linkages, hii − 1, together with the network effect, and then subtracts the own

effect (via the indicator function 1j=i, which takes the value 1 when j = i and the value 0

otherwise), so as not to double count this direct effect.8 Similarly, in equation (7), dG̃ipiyi
is the

own shock and
∑n

j=1(ĥji − 1j=i)
1

pjyj
dG̃j is the network effect.9 These equations have several

important implications.

First, what matters for the network effects is not directly the entries of the input-output

matrix, A or Â, but its Leontief inverse. The intuition is instructive about the workings of the

model. For example, a negative productivity shock to industry j will reduce its production and

increase its price. This will adversely impact all of the industries that purchase inputs from

industry j. But this direct impact will be further augmented in the competitive equilibrium

because these first-round-affected industries will change their production and prices, creating

indirect negative effects on other customer industries (“downstream effects”). The Leontief

inverse captures these indirect effects

Second, the network effects in response to the demand-side and supply-side shocks are

rather different. For supply-side shocks, the network effect,
∑n

j=1(hij − 1j=i)dzj , implies that

the impact goes downstream (and not at all upstream). For demand-side shocks, the net-

work effect is given by the term
∑n

j=1(ĥji − 1j=i)
1

pjyj
dG̃j , indicating upstream propagation

– the ĥji term signifies the spread of a shock to industries that are suppliers of the af-

fected industries. Equation (7), in addition, includes the resource constraint effect, the term∑n
j=1 ĥji

1
pjyj

βj
1+λ

∑n
k=1 dG̃k, which reflects the impact of government spending on the represen-

tative household’s budget constraint – the government’s spending, financed by taxes, leaves

fewer resources for private consumption. The parameter βj here captures the fact that the

impact of the lower net income of the representative household on the consumption of sector j

depends on the share of this sector in consumption, given by βj . When γ
′ = 0 so that there is

no labor supply response and thus λ = 0, this impact is maximized. On the other hand, when

there is a positive labor supply response, this effect is partially offset by increased production

across the economy. It is also worth noting that these effects are still propagated through the

input-output matrix as shown by the ĥji terms, because a decline in the consumption of good

j causes sector j to cut production and its input purchases from other sectors, leading to the

upstream transmission of the direct implications of the resource constraint.

The next two examples illustrate in greater detail why supply-side or productivity shocks

8The diagonals of the Leontief inverse matrix, H, are no less than 1, so that hii − 1 is nonnegative.
9 In this case, the functional form assumption γ(l) = (1− l)λ is imposed to simplify the expressions.
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propagate downstream, while demand shocks propagate upstream.

Example 1 (Downstream propagation of supply-side shocks) Consider an economy
with three sectors, with the input-output network as shown in Panel A of Figure 2. Sector 1 is

the sole customer of sector 2, sector 2 is the sole customer of sector 3 and sector 3 is the sole

customer of sector 1. The sectoral production functions are therefore given as

y1 = ez1 l
αl1
1 x

a12
12 , y2 = ez2 l

αl2
2 x

a23
23 , and y3 = ez3 l

αl3
3 x

a31
31 ,

and are all assumed to satisfy constant returns to scale. It follows from Proposition 1 that

sector 1’s output is:10

d ln y1 =
dz1 + a12dz2 + a12a23dz3

1− a12a23a31
.

This expression shows that sector 1’s output depends on the shocks to all three sectors. However,

this is purely because of the propagation of productivity (supply-side) shocks downstream. For

example, sector 3’s productivity shock, z3, affects y1 not because of upstream propagation, but

because of the chain of downstream propagation: sector 1 is a customer of sector 2, and sector 2

is a customer of sector 3. Indeed, the coeffi cient of z3 in this expression, a12a23, illustrates this

indirect effect. To see further that there is no upstream propagation, consider a modification

of this input-output network as shown in Panel B of Figure 2, where the link between sector 2

and sector 3 is severed (i.e., a23 = 0). The output of sector 1 then becomes

d ln y1 = dz1 + a12dz2,

with no impact from z3. This verifies that it was the indirect downstream transmission of sector

3’s productivity shock that impacted sector 1. With the link between sectors 2 and 3 severed,

this indirect transmission ceases, and there is no longer any impact of z3 on sector 1. Had it

been the upstream propagation of productivity shocks, we would have seen a similar dependence

of sector 1’s output on z3 since the input linkage between these two sectors has not changed.

The intuition for why there are no economic effects working upstream through the input-

output network – as shown in Proposition 1 and Example 1 – is related to the Cobb-Douglas

nature of the production functions and preferences. Any impact on upstream industries will

depend on the balance of a quantity effect (less is produced in industry j after an adverse

productivity shock) and price effect (each unit produced in industry j is now more expensive).

With Cobb-Douglas technologies and preferences from households, these two effects exactly

cancel out.11 Downstream propagation, on the other hand, is a consequence of the fact that an

10Detailed derivations for this and the next example are provided in Appendix C, available online.
11Clearly Cobb-Douglas is an approximation, though arguably not a bad one since the U.S. input-output

matrix appears to be fairly stable over time, as shown, for example, in Acemoglu et al. (2012) (and with non-
Cobb-Douglas technologies this would not be the case). Our empirical results also give additional credence to
the notion that Cobb-Douglas is a useful approximation for our purposes. In any case, it should be emphasized
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adverse productivity shock to a sector leads to an increase in the price of that sector’s output,

encouraging its customer industries to use this input less intensively and thus reduce their own

production. This downstream propagation is also the reason why the impact of a shock depends

only on input-output linkages, and not on the consumption shares, the βj’s. The consumption

shares influence the level of production in different sectors, but not the proportional responses

to productivity shocks; productivity shocks translate into proportional declines in prices and

thus proportional downstream transmission, regardless of consumption shares.

The next example illustrates the propagation of demand-side shocks.

Example 2 (Upstream propagation of demand-side shocks) Consider again the econ-
omy depicted in Panel A of Figure 2, but now with government spending shocks, expressed

in nominal terms as dG̃1, dG̃2, and dG̃3, rather than productivity shocks (and thus setting

dz1 = dz2 = dz3 = 0). We also set β1 = β2 = β3 = 1/3. In this case, the change in the

nominal output of sector 1 (with tildes again denoting nominal variables) can be derived as

dỹ1 =
1

1− a12a23a31


dG̃1 + a23a31dG̃2 + a31dG̃3

− (1+a31+a23a31)3(1+λ)

[
dG̃1 + dG̃2 + dG̃3

]


Once again, shocks to all three sectors influence the nominal output of sector 1, but this time

it is because of the cumulative indirect effects working upstream. In particular, the effect of

the shock to sector 2, dG̃2, on sector 1 is working upstream through its impact on sector 3 and

then sector 3’s impact on sector 1, as can be seen from the fact that this term is multiplied

by a23a31 in the first line. The resource constraint effect is shown in the second line. Similar

to our analysis in the previous example, we can verify that the network effects shown in the

first line are not working through downstream propagation by considering Panel B of Figure 2.

When the link between sectors 2 and 3 is severed (or equivalently when a23 = 0), the change

in the nominal output of sector 1 becomes

dỹ1 = dG̃1 + a31dG̃3 −
(1 + a31)

3 (1 + λ)

[
dG̃1 + dG̃2 + dG̃3

]
,

where the second term is again the indirect effect working through the household budget con-

straint. The absence of an impact from the government spending shock to sector 2 now confirms

that all propagation of demand-side shocks is upstream.

The intuition for why demand-side shocks propagate only upstream, as demonstrated in

Proposition 1 and Example 2, is also instructive. With government spending shocks, affected

that the qualitative nature of the results emphasized in the proposition – that supply shocks will have larger
downstream effects than upstream effects – holds true with non-Cobb-Douglas technologies and preferences,
since even in this case quantity and price effects would at least partially offset each other (and in fact, Acemoglu,
Ozdaglar and Tahbaz-Salehi, 2015b, show that similar results to those in Proposition 1 can be obtained as first-
order approximations under general production technologies).
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industries have to increase their production to meet the increased demand from the government.

But given that they are using inputs from other supplier industries, this is only possible if

industries supplying inputs to them also expand their inputs (proportionately to the role of

these inputs in the production function of the affected industries). This is the logic for upstream

propagation of demand-side shocks. Why is there no downstream propagation? Since all sectors

have constant returns to scale, prices in this economy are entirely independent of the demand

side. Government spending shocks change quantities but not prices (see Appendix A). But

this implies that the channel through which downstream propagation took place in response

to productivity shocks – changing relative prices – is entirely absent, accounting for the lack

of downstream propagation in response to demand-side shocks.

A third implication of equations (6) and (7) concerns the magnitudes of the coeffi cients of

the own and network effects. The simplest way of seeing this is to reorganize these equations

so that equation (6) becomes

d ln yi = hii × dzi +
∑
j 6=i

hij × dzj ,

which implies that if the indirect impacts of the own shock are included with the direct effect

(and excluded from the network effect), then the coeffi cients of the own and the network effects,

when properly scaled by the entries of the Leontief inverse, should be equal.12 The same is

true for the demand-side shocks in equation (7), which can be rearranged as

d ln yi = ĥii
dG̃i
piyi

+
∑
j 6=i

ĥji
dG̃j
pjyj

−
n∑
j=1

ĥji
βj

1 + λ

n∑
k=1

dG̃k,

again showing the equality of the coeffi cients of the properly scaled own and network effects

(the first two terms). These results readily extend to the employment equation by observing

that the employment effects are derived from the output effects, and are thus proportional to

them.

Fourth, equations (6) and (7) also imply that what matters in our theoretical framework are

the contemporaneous shocks (e.g., dzi), not some future anticipated shocks.13 This motivates

our use of current (or one-period lagged) shocks on the right-hand side of our estimating

equations.

Finally, we further note that the implications of import shocks are also very similar to

government spending shocks, since a decline in imports (without imposing trade balance) is

12 In fact, this equation implies that the coeffi cients of the own and network effects should both be equal to
one, though this prediction depends on the choice of units of the shocks, the dz’s. In practice, the coeffi cients
will be different than one but still equal to each other depending on the specific choices of units for measuring
our shocks.
13This can be seen straightforwardly by considering a dynamic version of the model (without additional

intertemporal linkages), in which case equations (6) and (7) would apply with time subscripts, with only dzit
being relevant for time t outcomes. In the presence of irreversible investments and/or other intertemporal
linkages at the sectoral level, expectations of future shocks would also matter.
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analogous to an increase in government spending on the same sectors, and for this reason, we

have not separately introduced these shocks in our theoretical model.

2.2 The Effects of the Geographic Network

Another important set of interlinkages, which could be represented as network effects, relates

to geographic overlay over industries (corresponding to how industries collocate in various

local labor markets, for example as measured by commuting zones). Thinking through these

geographic interactions is important to ensure that our empirical work can distinguish input-

output network effects from these geographic interlinkages; moreover, these local linkages are

also of direct interest as another transmitter of industry-level shocks.

Let us start with a simple reduced-form model capturing local demand effects

d ln yr,i = η
∑
j 6=i

yr,j
yr
d ln yr,j + dzi, (8)

where yr,i is the output of industry i in region r, and dzi is an industry shock normalized to

have a unit impact on the industry’s output (in a region). In what follows, take η to be small

(and in particular less than 1).

This equation captures the idea that if industries in a given region (local labor market)

are hit by negative shocks, this will reduce economic activity and adversely affect output and

employment in other industries, which is consistent with empirical evidence reported in Autor,

Dorn and Hanson (2013) and Mian and Sufi(2015). For example, if a large employer in a given

local labor market shuts down, this will reduce the demand and thus employment and output

of other local employers. The most obvious channel for this is through some local demand

effects, though other local linkages would also lead to a relationship similar to (8).

The functional form in this equation is intuitive and implies that the impact of a propor-

tional decline in industry j on industry i in the same region will be scaled by the importance

of industry j in the region’s output (yr,j/yr). Note also that, for simplicity’s sake, we ignore

the network effects coming from input-output linkages in this subsection.

The next step is to solve the within-region equilibrium implied by (8). Doing this with

matrix algebra, we can write

d ln yr,i = (I−B)−1 dzi, (9)

where

B =


0 η

yr,2
yr

η
yr,3
yr

...

0
0

0
0


Given our analysis of input-output models, it is not surprising that a Leontief inverse type

matrix is playing a central role here. But in this instance, it is useful for us to go beyond
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this matrix representation. In particular, when η is small as we have assumed, second- and

higher-order terms in η can be ignored, and the within-region equilibrium can be expressed in

the following form:14

d ln yr,i ≈ dzi + η
∑
j 6=i

yr,j
yr
dzj .

Intuitively, this equation describes the within-region equilibrium as a function of shocks to all

industries (solving out all “endogenous”terms from the right-hand side). Now using the fact

that d ln yr,i = dyr,i/yr,i, and summing across regions, we obtain

dyi =
∑
r

dyr,i ≈ yidzi + η
∑
r

∑
j 6=i

yr,iyr,j
yr

dzj ,

which then enables us to obtain a simple representation of the geographic effects:

d ln yi ≈ dzi + η
∑
j 6=i

geographic_overlayi,jdzj , (10)

where

geographic_overlayi,j ≡
∑
r

yr,iyr,j
yiyr

is the non-centered cross-region correlation coeffi cient of industries i and j, normalized by their

national levels of production, and represents their tendency to collocate.

Intuitively, this equation captures the fact that industries will be impacted not only by

their direct shocks but also by the shocks of other industries that tend to collocate with them.

For example, if coal and steel industries are always in the same few regions, the steel industry

will be negatively affected nationally not only when there is a negative shock to itself but

also when there is a negative shock to the coal industry, because when the coal industry is

producing less in the region, other industries in that region are also adversely affected, and

steel is overrepresented among these industries that happen to be in the same region as coal.

Though the term we have for geographic overlay is simple and intuitive, it is based on

an approximation that involves ignoring all terms that are second or higher order in η, thus

posing the natural question of whether including some of these additional terms would lead

to additional insights. To provide a partial answer to this question, we now include second-

order terms (thus ignoring only third- or higher-order terms in η), which leads to a natural

generalization of (10). In particular, the within-region equilibrium can now be expressed as

d ln yr,i ≈ dii + η
∑
j 6=i

yr,j
yr
dzj + η2

∑
j 6=i

yr,j
yr

∑
k 6=j

yr,k
yr

dzk.

14More formally, when η is small, the inverse (I−B)−1 necessarily exists, and thus has an infinite series
expansion of the form:

(I−B)−1 = I+B+B2 +B3 + ...

Moreover, when η is small, we can also approximate this inverse with the first two terms, which leads to the
next equation. We describe below calculations and empirical tests with higher-order terms.
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Now summing across regions and repeating the same steps as above, we obtain

d ln yi = dzi + η
∑
j 6=i

geographic_overlayi,jdzj + η2
∑
j 6=i

∑
k 6=j,i

geographic_overlayi,j,kdzj

where the additional geographic overlay term, which includes triple collocation patterns, is

geographic_overlayi,j,k ≡
∑
r

yr,iyr,jyr,k
yiy2r

. (11)

3 Data and Descriptive Statistics

This section describes our various data sources and the construction of the key measures of

downstream and upstream effects and the geographic network.

3.1 Data Sources

Our core industry-level data for manufacturing come from the NBER-CES Manufacturing

Industry Database (Becker, Grey and Marvakov, 2013). We utilize data for the years 1991-

2009. Using the first change as a baseline, our estimations cover 17 changes from 1992-1993

to 2008-2009. In the first four changes, we have 392 four-digit industries; thereafter, we have

384 industries for 6560 total observations. Though the theoretical predictions derived in the

previous section are in terms of total industry output (shipments), our baseline analysis focuses

on (real) value added due to its adjustment for energy costs, non-manufacturing inputs, and

inventory changes which are all outside of our model. We show similar results using real and

nominal shipments in Appendix B, available online.

To construct our linkages between industries, we use the Bureau of Economic Analysis’1992

Input-Output Matrix and the 1991 County Business Patterns database as described further

below. In the next section, we describe the data used for each shock when introducing it.

3.2 Upstream and Downstream Networks

The construction of downstream and upstream effects follows Acemoglu et al. (2015). We

construct the matrix A introduced in Section 2 from the 1992 “Make” and “Use”Tables of

the Bureau of Economic Analysis. This matrix has input share entries corresponding to

aij ≡
Salesj→i
Salesi

.

As emphasized in Section 2, this quantity measures the total sales of inputs from industry

j to industry i, normalized by the total sales (or equivalently the total costs) of industry i.

Intuitively, it corresponds to how many dollars worth of the output of sector j (say tires) sector

i (say the car industry) needs to purchase to produce one dollar worth of its own output. When

production functions are Cobb-Douglas, as we have assumed in our theoretical analysis, these
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input shares are constant regardless of prices. Equation (6) shows that network effects from

supply-side shocks directly depend on these input shares. The Leontief inverse of the input-

output matrix is then computed from the matrix of these input-output shares as (I−A)−1

to give our downstream network measure. In what follows, we use the notation Input%j→i to

represent the elements of the Leontief inverse of the input-output matrix.15

For constructing the network effects from demand-side shocks, we again follow equation

(7), which decomposes the response of a sector into an own effect, a network effect and the

resource constraint effect. We first ignore the last one and focus on the network effect. The

presence of the ĥji (or âji) terms in this equation underscores the different aspects of input-

output linkages involved in upstream propagation. The empirical counterparts of the âij terms

are
Salesi→j
Salesi

≡ aji
Salesj
Salesi

,

which we use to compute the upstream network measures. We use Output%i→j to represent

these Leontief inverse terms. We return to the resource constraint effect later.

3.3 Geographic Overlay

We also measure the geographic overlay of two industries using the metric developed in the

theory section,

geographic_overlayi,j ≡
∑
r

yr,iyr,j
yiyr

.

We define regions through BEA commuting zones and utilize 1991 County Business Patterns

data to measure the overlay. We also calculate the higher-order geographic overlay term (11).

In practice, however, we observe very little additional explanatory power with the second

metric and thus focus simply on the direct collocation case.

3.4 Correlation Matrices

Table 1a shows the correlation matrix of these interconnections, excluding own-industry inter-

connections (i.e., network diagonals). Upstream and downstream material flows are moderately

correlated at 0.4 and somewhat less strongly correlated with geographic overlay, indicating that

input-output linkages operate, for the most part, beyond common geographies.

Table 1b depicts the correlation of our four measures of shocks with each other, and shows

that our different shocks are only weakly correlated, assuaging concerns that we may be tracing

the effects of omitted shocks when modeling the effect of each shock one at the time. Col-

umn 5 of Table 1b reports the average between-industry correlation for each shock (e.g., how

correlated is, say, the federal spending shock of an industry with the federal spending shocks

of other industries). This is relevant in part because a high between-industry correlation of

15We use this notation rather than hij as in Section 2 to emphasize that these are the empirical counterparts
of the theoretical notions developed above.
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shocks might create spurious network effects in the presence of an omitted higher-order im-

pact of own shocks. The relatively low between-industry correlations, except for the federal

spending shock, are comforting in this regard. The higher between-industry correlation for the

federal spending shock is unsurprising since it is constructed from the interaction of aggregate

time-series variation in federal spending with a time-invariant measure of federal spending

dependency of each industry (as detailed further below).

4 Results: The Input-Output Network

This section provides our primary empirical results that quantify shock propagation through

the input-output networks, leaving the analysis of the geographic network to the next section.

We focus on four shocks: (1) import penetration; (2) federal spending changes; (3) TFP growth;

and (4) foreign patenting growth. The first two correspond to demand-side shocks, while the

latter two are supply-side, approximating productivity shocks. We first consider each shock by

itself, describing how we measure it, and studying its empirical properties in isolation. After

cycling through all four shocks independently, we jointly model them and provide an extended

discussion of economic magnitudes.

4.1 Empirical Approach

Throughout, our main estimating equations are direct analogs of equations (6) and (7) in the

theory section, and take the following form:

∆ lnYi,t = δt + ψ∆ lnYi,t−1 + βownShocki,t−1 (12)

+βupstreamUpstreami,t−1 + βdownstreamDownstreami,t−1 + εi,t,

where i indexes industries, δt denotes a full set of time effects, εi,t is an error term, and Yi,t
stands for one of three industry-level variables from the NBER manufacturing database: real

value added (using the industry’s shipments deflator), employment, and real labor productivity

(real value added divided by employment).

In our baseline results, time periods correspond to years. We start with a model that only

considers the core regressors outlined in equation (12), and then we show robustness checks

that add extra controls. We allow only a single lag of the dependent variable on the right-hand

side for parsimony. The role of additional lags is taken up in robustness checks.

The key regressors are Shocki,t−1, the industry’s own direct shock (taken from one of

the four shocks introduced above), and Upstreami,t−1 and Downstreami,t−1 which stand for

the shocks working through the network. These network shocks are always computed from

the interaction of the vector of shocks hitting other industries and a vector representing the

interlinkages between the focal industry and the rest (e.g., the row or the column of the input-

output matrix); we provide exact details below.
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The upstream and downstream terminology in network analyses has some ambiguity. In

the remainder, we follow our usage in Section 2 and label “upstream effects”as those arising

from shocks to customers of an industry that flow up the input-output chain; in parallel, we

describe “downstream effects”as those arising from shocks to suppliers of an industry that flow

down the input-output chain. Henceforth, for clarity, we use “upstream”and “downstream”

terms to describe exclusively the effects. When there is a need to describe where the shock

originates, we will use the terms “customer”and “supplier”to avoid confusion.

Thus, we measure downstream effects (due to supplier shocks) and upstream effects (due

to customer shocks) closely mimicking the theoretical equations, (6) and (7). In particular,

these are given by the weighted averages of shocks hitting all industries using entries of the

Leontief inverse matrices as weights:

Downstreami,t =
∑

j
(Input%1991

j→i − 1j=i) · Shockj,t, (13)

and

Upstreami,t =
∑

j
(Output%1991

i→j − 1j=i) · Shockj,t, (14)

where 1j=i is an indicator function for j = i, and the summation is over all industries, including

industry i itself. Thus as in the equations (6) and (7), when computing the downstream effect

for sector i, we take into account the indirect linkages from this industry to itself (e.g., the fact

that industry i supplies to industry j, which is also a supplier to i), but we subtract the direct

effect of the shock, since in our regressions we will directly control for the shock to sector i.

Several other points are worth noting. First, as already observed, input-output linkages

(and thus the Leontief inverse entries) are pre-determined and measured in 1991. Thus, down-

stream and upstream effects are simply a function of shocks in connected industries working

through a pre-determined input-output network.

Second, we lag both own and network shocks by one period, simply to avoid any concern

about contemporaneous measurement issues from our dependent variables to shocks (e.g.,

in the case of TFP) and about contemporaneous joint determination. It should be stressed,

however, that we do not claim that this timing will enable us to estimate causal effects. Rather,

we rely on the plausible exogeneity of shocks, especially for imports from China and federal

government spending, and caution that this exogeneity is likely to be absent in the case of the

TFP and foreign patenting shocks.

Third, equation (12) is formulated in changes, and shocks are always specified in changes

as detailed below. The specification could have alternatively been written in levels together

with an industry fixed effect. The advantage of the current formulation is that it both follows

more directly from and connects to our theoretical model, and imposes that the error term is

stationary in differences, which is generally a better description of macro time series.

Finally, in what follows, unless otherwise stated, we standardize the Shocki,t−1 variable so

that a unit increase corresponds to a one standard-deviation change in the positive direction
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(e.g., decrease in imports or increase in TFP), and the Upstreami,t−1 and Downstreami,t−1

variables are constructed in the same units. This implies that the coeffi cient on the Shocki,t−1
variable will measure the impact of a one standard-deviation increase in the industry’s own

shock, whereas the coeffi cients on Upstreami,t−1 andDownstreami,t−1 will measure the impact

of a one standard-deviation increase in the shock of all customers and suppliers of an industry.

Moreover, all of these coeffi cients are directly comparable and are expected to be positive where

theory predicts a network-based effect.

4.2 China Import Shocks

Our first shock relates to the growth of imports from China and follows Autor et al. (2013)

and Acemoglu et al. (2015). Acemoglu et al. (2015) show this pattern for decade-long

adjustments, and we extend this analysis to shorter frequencies considered in macroeconomics.

As highlighted in Section 2, this demand-side shock should have greater upstream effects than

downstream effects, and in the case of Cobb-Douglas, downstream effects should not be present

at all.

We first define ChinaTrade to capture this industry exposure to rising Chinese trade,

ChinaTradej,t = −
U.S. Imports from Chinaj,t
U.S. market sizej,1991

.

This variable, however, is clearly endogenous, as it will tend to be higher when the industry

in question has lower productivity growth for other reasons, creating greater room for a rise

in imports, and is thus not a good measure of shocks for our analysis. To deal with this

endogeneity concern, we follow Autor et al. (2013) and Acemoglu et al. (2015) and instrument

this variable with its exogenous component, defined as the change in import penetration from

China to eight major non-U.S. countries relative to 1991 U.S. market volume, with the nations

being Austria, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland:

ChinaTradeIVj,t = −
Non-U.S. Imports from Chinaj,t

U.S. market sizej,1991
.

This instrument has the advantage of not being directly affected by changes in productivity or

demand in the U.S. economy.16

The downstream and upstream effects are calculated from (13) and (14) adapted to this

case. For example, for the downstream effects coming from supplier industries, we model the

shock:

DownstreamTrade
i,t =

∑
j
(Input%1991

j→i − 1j=i) ·∆ChinaTradej,t. (15)

16First-stage equations naturally also control for all other covariates from the second stage, including the
lagged dependent variable, to ensure consistent estimation. But of course, the only excluded instrument is the
exogenous component of the change in import penetration.
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We also construct the network instruments using the same reasoning as in (13) and (14). For

example, for the downstream effects this simply takes the form of

DownstreamTradeIV
i,t =

∑
j
(Input%1991

j→i − 1j=i) ·∆ChinaTradeIVj,t .

In summary, we have three endogenous variables, ChinaTradej,t, DownstreamTrade
i,t

and UpstreamTrade
i,t , and three instruments, ChinaTradeIVj,t , DownstreamTradeIV

i,t and

UpstreamTradeIV
i,t . The first stages for these three variables are shown in Appendix Table

1 (all appendix tables are included in Appendix B).

Table 2a presents our estimates of own and network effects from this exercise, using a table

format which we replicate for each subsequent shock. Table 2a presents our baseline results

for the three outcome variables, considering one and three lags for the dependent variable, and

shows strong upstream effects on supplier industries (similar to Acemoglu et al. 2015).

More specifically, recall that we have standardized (in terms of standard-deviation units)

and normalized all of our shocks to be positive, so that an increase in imports from China

corresponds to a negative value of the shocks, and thus positive coeffi cients imply that rising

imports from China reduce value added and employment in the affected industries. In this light,

the results in Column 1 indicate that a one standard-deviation own-industry shock reduces the

focal industry’s value added growth by 3.4%.17 More interestingly given our focus, they also

indicate that a similar one standard-deviation change in customers of an industry leads to

a 7.6% decline in value added growth through upstream effects. Downstream effects are of

opposite sign and statistically insignificant, though they are sometimes quantitatively sizable.

Lack of (same-signed) significant downstream effects in response to demand-side shocks is

consistent with our main theoretical implications outlined in Section 2. Finally, the bottom

row of the table tests the other implication from the theory highlighted in Proposition 1,

that the relevant diagonal entry from the Leontief inverse matrix (i.e., the coeffi cient on hii ·
∆ChinaTradei,t−1) should be equal to the upstream effect from other industries. For value

added, this restriction is marginally rejected at 10%, though it is not rejected in any of the

other columns.18

Column 2 shows that the overall pattern is similar when two more lags of the dependent

variable are included on the right-hand side, even though these lags show some evidence of

additional persistence. In particular, the quantitative implications are very similar, and it is

again the upstream effects that are significant while the downstream ones are not.

Our regression specifications follow directly from Proposition 1 (for example, in the case of

17The unweighted standard deviation in industry growth rates for our sample is 0.15 for log value added
growth and 0.10 for log employment growth.
18This restriction is not tested directly from the reported regression, but from the related regression described

in Section 2, following Proposition 1, where own effects reflect the diagonal elements of the Leontief inverse
matrix. We report specifications in which the own effects are not scaled in this manner to maintain transparency
about the direct first-order effects of own-industry shocks. In any case, the coeffi cient estimates when we
undertake this scaling are similar to those reported in the tables in the paper.
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the China import shocks, equation (7)). The coeffi cient estimates in these regression equations

do not directly translate into quantitative effects for “multipliers,”however. This is because

the upstream effect (the relevant dimension of the network effects in this case) corresponds to

the impact of the shock of all other industries, weighted by their upstream linkages, on the

focal industry. Instead, to obtain an economically meaningful multiplier, measuring how large

the total impact of a shock is relative to its direct effect, we need to measure its impact on all

other industries. To achieve this, we convert upstream and downstream effects into a weighted

average of shocks in other industries using the Leontief inverse elements of weights.19 We use

these adjusted estimates to construct the impulse response functions depicted in Figure 1a

and for computing the relevant multipliers. Panel A of Figure 1a depicts the impulse response

of value added to a one standard-deviation Chinese import shock obtained from this exercise

(with a specification corresponding to Column 2 of Table 2a). These impulse responses show

that the quantitative magnitude of the network effects (in this case, upstream effects, since we

are focusing on demand-side shocks) are considerably larger than the direct effect: the direct

effect (from the own shock) after ten periods is a 3.46% increase in value added growth, while

the total impact is a 22.09% (3.46 + 18.64) increase in value added. This yields a multiplier of

6.4 (' 22.09/3.46), and implies that input-output linkages more than double the direct effects

of demand-side shocks. It can be seen from the figure that the implied multipliers are very

similar at different horizons.

Columns 3 and 4 turn to employment. The overall pattern and even the quantitative

magnitudes are very similar, with clear upstream effects and no downstream effects, and the

theory-implied restrictions receive support from our estimates. Panel A of Figure 1b depicts

the impulse response of employment to the same shock as in Figure 1a. The implied multiplier

in this case (for employment changes) is 5.86.

Columns 5 and 6 turn to labor productivity. Here we find no robust patterns, which is

not surprising since Columns 1-4 document that the numerator and denominator move in the

same direction and by similar amounts.

Table 2b reports multiple robustness checks. Our results are very similar without the own-

19More specifically, focusing on upstream effects, recall that Upstreami,t =
∑

j
(Output%1991

i→j − 1j=i) ·
Shockj,t, whereas for this term to capture the quantitative impact of shocks on supplier industries, we would
need it to take the form ∑

j

(Output%1991
i→j − 1j=i)∑

k
(Output%1991

i→k − 1k=i)
· Shockj,t,

so that it corresponds to a weighted average of shocks hitting industries.
The simplest and most transparent approach to make this adjustment is to divide our coeffi cient estimates by

the average of the
∑

k
(Output%1991

i→k −1k=i)’s, i.e., by 1
n

∑
i

∑
k
(Output%1991

i→k −1k=i) (where n is the number
of industries). The adjustment for the downstream effect is very similar. From the U.S. input-output matrix,
this adjustment factor is 2.156.
An alternative method would be to rerun all of our specifications using the adjusted upstream and down-

stream measures (computed as weighted averages as indicated above). This method yields estimates of network
multipliers for value added and employment of 5.9 and 8.0, respectively, which are comparable to the 6.4 and
5.9 multipliers estimated by the direct adjustment method outlined here and reported below.
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shock term. Our baseline estimates are unweighted, and we obtain similar results when we

weight observations by log 1991 value added or by 1991 employment levels. We also consider a

series of more demanding specifications where we include a full set of two-, three- and four-digit

SIC dummies. Since our specification in equation (12) is in changes, this amounts to including

linear time trends for these industry groupings. The results are generally robust, although

the downstream effects do move around and sometimes become larger, even if still far from

significance.

The final column of Table 2b returns to the resource constraint effect identified in Propo-

sition 1. As noted above, our baseline specifications focusing on demand-side shocks have

ignored this resource constraint effect, corresponding to the third term in equation (7). To the

extent that this term is correlated with our network effect, it may lead to biased estimates.

We compute the empirical equivalent of this third term following equation (7) closely. We sum

nominal manufacturing imports from China to obtain the term
∑n

k=1 dG̃k, multiply it with an

estimate of βj , computed as the value added share of industry j, divide it by pjyj , and then

multiply it with the corresponding entries of the Leontief inverse of the upstream linkages to

obtain
∑n

j=1 ĥji
1

pjyj
βj
∑n

k=1 dG̃k (ignoring the term 1 + λ in the denominator). We then add

this term as an additional regressor instrumented by an additional instrument computed in the

same way from Chinese imports by the same eight non-U.S. advanced economies. The final

column of Table 2b shows that this specification leads to somewhat larger network effects, but

the overall picture remains unchanged.

Appendix Table 2a repeats this analysis with log real shipments growth as the outcome

variable, and also shows similar results.

An additional issue is that the presence of the lagged dependent variable on the right-hand

side of our estimating equation, (12), introduces the possibility of biased estimates when the

time dimension is short due to the challenges of obtaining consistent estimates of the persistence

parameter, ψ, with short panels as noted by Nickell (1981). We further investigate this issue

in Appendix Table 2b. In particular, our main concern here is with the network effects, which

may inherit the bias of the parameter ψ in short panels. One way of ensuring that this bias

is not responsible for our results is to impose different values for the parameter ψ and verify

that this has no or little impact on our results (see Acemoglu, Naidu, Restrepo and Robinson,

2014). Appendix Table 2b performs this exercise for the China trade shock and documents

that both own and upstream effects are highly significant and similar to our baseline estimates

for any value of ψ between our estimate of this parameter in Table 2a (ψ = 0) and the full

unit root limit (ψ = 1), becoming only a little weaker at the full unit root case of ψ = 1 (while

downstream effects remain insignificant except marginally at ψ = 1).

Appendix Table 2c considers longer time periods, thus linking our results more closely to

Acemoglu et al. (2015), who focused on a decadal panel. For two-year periods, we prepare

nine time periods from 1991−1993 to 2007−2009. For three-year periods, we consider six time
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periods from 1991− 1994 to 2006− 2009. For four-year periods, we consider four time periods

from 1991−1995 to 2003−2007. For five-year periods, we consider 1991−1996, 1996−2001, and

2001− 2006. In each case, the first period is used to create the network lags. The downstream

customer effects and own-industry effects tend to grow with longer time periods.

In addition to these robustness checks, Appendix Table 6 shows very similar outcomes when

we consider nominal value added and shipments growth instead of our baseline real value added

growth and the real shipments shown in Appendix Table 2a. Appendix Table 7 also reports

results where we vary the number of lags included for own-industry shocks and network shocks.

We report in the table the sums of the coeffi cients across the deeper lags and their statistical

significance. These variants yield quite similar conclusions to our reported estimations.

4.3 Federal Spending Shocks

The next analysis considers changes in U.S. federal government spending levels, which are an-

ticipated to operate similar to trade shocks by affecting industries through heightened demand

from industrial customers. We first calculate from the 1992 BEA Input-Output Matrix the

share of sales for each industry that went to the federal government,

FedSales%i =
Salesi→Fed
Salesi

.

This share ranges from zero dependency for about 10% of industries to over 50% for the top

percentile of industries in terms of dependency. Some prominent examples and their share

of sales include 3731 Ship Building and Repairing (76%), 3761 Guided Missiles and Space

Vehicles (74%), 3482 Small Arms Ammunition (65%), and 3812 Search, Detection, Navigation,

Guidance, Aeronautical and Nautical Systems and Instruments (51%).

We interact this measure with the log change in federal government expenditures,

FederalShocki,t = FedSales%1991
i ·∆ lnFederalSpendingt−1,

holding fixed the industry dependency at its 1991 level. Intuitively, the specification anticipates

greater “shocks”from aggregate federal budget changes for industries that have larger initial

shares of sales to the federal government. The change in federal spending is lagged one year

to reflect the fact that procurement frequently extends into the following year. Once again

following (13) and (14), the downstream effects in this case are defined as

DownstreamFederal
i,t =

∑
j
(Input%1991

j→i − 1j=i) · FederalShockj,t.

A similar approach is taken for the other network metrics.

Because this variable focuses on federal spending changes in the aggregate (driven by,

among other things, swings in political moods, ideology, identity of the government, wars and

budget exigencies), and is then constructed with the interaction of these aggregate changes

with the time-invariant and pre-determined dependency of each industry on federal spending,
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we believe that it can be taken as plausibly exogenous to the contemporaneous productivity

or supply-side shocks hitting the focal industry.

The structure of Table 3a is identical to those examining trade shocks. The results are also

similar. For example, in Table 3a, upstream effects are again significant and quantitatively

sizable (about three to five times as large as own effects). Downstream effects are now of the

same sign as the upstream effect, but continue to be statistically insignificant. The theory-

implied restriction reported in the bottom row is again broadly supported (it is never rejected

at 5%). In addition, the own effect is insignificant when we only control for one lag of the

dependent variable, but significant both in Columns 2 and 4 when we control for three lags.

Table 3b and Appendix Tables 3a-3c, 6 and 7 perform the same robustness checks as

those discussed for trade shocks and show that the above-mentioned patterns are generally

quite robust. All in all, the propagation of this very different demand-side shock appears

remarkably similar to the propagation of the import shocks, and in both cases in line with the

theory we have used to motivate our approach.

The economic magnitudes are once more far from trivial. Panel B of Figures 1a and 1b

depict the impulse response functions for own and upstream effects computed in the same way

as for Panel A, and indicate that there are once again sizable network effects. The implied

network multipliers for value added and employment at the 10-year horizon are 6.42 and 5.00,

respectively.

4.4 TFP Shocks

We next turn to supply-side shocks, starting with TFP. Baseline TFP shocks for manufactur-

ing industries are the lagged change in four-factor TFP taken from the NBER Productivity

Database. Importantly, these TFP measures control for materials, and thus should not be

mechanically a function of downstream effects (changes in prices and quantities in industries

supplying inputs to the focal industry).

Similar to our other network-based measures, these are constructed by aggregating these

industry-level log components of TFP in connected industries. Continuing our illustration

using downstream effects from shocks to supplier industries and again following on (13) and

(14), we model

DownstreamTFP
i,t =

∑
j
(Input%1991

j→i − 1j=i) ·∆ lnTFPj,t.

We should caution that the case for the exogeneity of the TFP shocks is weaker, because

past TFP may be endogenous to other shocks (e.g., to capacity utilization or labor hoarding)

which have a persistent impact on value added and factor demands. With this caveat, we still

believe that predetermined TFP shocks are informative about how supply-side shocks spread

through the input-output network.

The structure of Table 4a is identical to those examining trade and federal spending shocks.

Consistent with theory, it is now downstream effects that are more sizable and important,
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though in this case there are some statistically significant estimates of upstream effects as well.

For example, in Column 1 of Table 4a, downstream effects are estimated to have a coeffi cient

of 0.060 (standard error = 0.020), while upstream effects come in at 0.024 (standard error =

0.011). Interestingly, own effects are small and imprecise for value added, but more precisely

estimated (though still about half of the upstream effects) for employment. The theoretical

restriction tested in the bottom row is now rejected for value added, where the own effects are

small, but is in closer alignment for employment. The robustness checks reported in Appendix

B confirm this overall pattern.20

Economic magnitudes can again be gleaned from Panel C of Figures 1a and 1b; the implied

multipliers are 15.56 and 4.43 for value added growth and employment growth over ten years,

respectively. The larger multiplier for value added in this case reflects the smaller direct (own)

impact.

4.5 Foreign Patenting Shocks

Our final shock represents changes in patented technology frontiers. Since this shock also

captures supply-side changes in productivity, responses to it should be similar to those to TFP

shocks.

Baseline patent shocks for manufacturing industries in Table 5a are the lagged log change in

USPTO granted patents filed by overseas inventors associated with the industry. We measure

foreign patent shocks using USPTO granted patents through 2009. We develop a new con-

cordance of patent classes to four-digit manufacturing industries that extends the earlier work

of Silverman (1999), Johnson (1999), and Kerr (2008). Continuing our downstream effects

example, we have

DownstreamForeignPatent
i,t =

∑
j
(Input%1991

j→i − 1j=i) ·∆ lnPatentsForeignj,t .

These foreign patents quantify technology changes in the world technology frontier external

to the U.S. economy (e.g., patents filed by car manufacturers in Germany and Japan signal

advances in automobile technologies that have not originated in the United States). There

are two additional diffi culties in this case, however. First, foreign patenting may be correlated

with past technological improvements in the U.S. sectors, which might have persistent effects.

Second, improved technology abroad may directly impact U.S. firms through fiercer product

market competition, not just through technology and productivity spillovers (e.g., Bloom,

Shankerman and Van Reenen, 2013).21 These concerns make us more cautious in interpreting

the foreign patenting shocks, especially for own effects, though we believe that this analysis is

still informative about network-based propagation.

20However, in this case, Appendix Table 4b shows that the results are sensitive to the exact value of the
persistence parameter, ψ.
21Bloom et al. (2013) develop a strategy for controlling for this competition effect, but the implementation

of their strategy is not feasible given our industry-level data.
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Table 5a shows strong downstream effects with again no evidence of sizable upstream ef-

fects. The theory-implied restrictions in the bottom row of the table are typically rejected,

reflecting the very small and sometimes incorrectly-signed estimates of own effects. One possi-

ble explanation for this pattern of own effects is that, as already noted, an increase in foreign

patents in one’s own industry likely signals fiercer competition from international competitors.

The network effects, which should be less impacted by these considerations, are again quite

similar to our theory’s predictions.

Panel D of Figures 1a and 1b again depict the impulse responses of value added and em-

ployment. We do not compute multipliers in this case, since the own effects are imprecisely

estimated and potentially biased for the reasons explained above, thus making multiplier esti-

mates harder to interpret.

4.6 VAR Analysis

Our empirical specification, (12), directly builds on our theoretical model (in particular, equa-

tions (6) and (7)), and expresses the endogenous response of value added and employment to

shocks hitting all industries. An alternative is to follow vector auto regression (VAR) models

and express endogenous variables as a function of own shocks and the values of the endogenous

variables of linked industries. The analog of equation (12) in this case would be

∆ lnYi,t = δt + ψ∆ lnYi,t−1 + βownShocki,t−1 (16)

+βupstream∆ lnY Upstream
i,t−1 + βdownstream∆ lnY Downstream

i,t−1 + εi,t,

which only features the shock hitting sector i, and models upstream and downstream ef-

fects from the changes in value added of linked industries – the terms ∆ lnY Upstream
i,t−1 and

∆ lnY Downstream
i,t−1 . This equation could also be derived from our theoretical framework. Rela-

tive to our baseline empirical model, (12), this specification faces two related problems. First,

the terms ∆ lnY Upstream
i,t−1 and ∆ lnY Downstream

i,t−1 generate a version of Manski’s well-known re-

flection problem (Manski, 1993), as outcome variables of one industry are being regressed on

the contemporaneous (or one-period lagged) outcomes of other industries, creating the possi-

bility of spurious correlation. Second, these terms are also more likely to be correlated with

each other, potentially leading to multicollinearity, which will make distinguishing these various

effects more diffi cult.

These problems notwithstanding, we now estimate equation (16) to show that the re-

sults from this complementary approach are broadly similar. To avoid the most severe form

of the reflection problem, throughout we instrument for the upstream and downstream ef-

fects, ∆ lnY Upstream
i,t−1 and ∆ lnY Downstream

i,t−1 , using the first and second lags of each shock as

experienced in the network (i.e., our instruments are the core regressors in equation (12),

Upstreami,t−1 and Downstreami,t−1). We report two specifications per shock. In the first,

we model and instrument the focal part of the network relevant for each shock (e.g., upstream
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effects for supply-side shocks and downstream effects for demand-side shocks). In the second

specification, we include and instrument for both upstream and downstream effects. Also, in

the case of China trade shocks, we continue to instrument for the own shock, Shocki,t−1 as

well.

The results of this exercise are reported in Table 6 and are quite consistent with our baseline

findings. Even though this empirical specification is more demanding for the reasons explained

above, the specifications focusing on China trade and TFP shocks give similar results, and

specifications using federal spending shocks also lead to similar results for value added, though

not for employment. Foreign patenting results do not hold with this approach, however.22

4.7 Combined Shock Analysis

Table 7 estimates own, upstream and downstream effects simultaneously from several of the

shocks so far analyzed in isolation. This is relevant for two related reasons. First, we would like

to verify that our downstream and upstream effects indeed capture network-based propagation

of different types of shocks rather than some other omitted characteristics, and attempting to

simultaneously estimate these effects provides some information on this concern. Second, it

is important to quantify whether the simultaneous operation of all of these networked effects

creates attenuation, which is relevant for our quantitative evaluation.

Table 7 shows the estimates of upstream and downstream effects in this joint analysis are

remarkably similar to our previous results. Appendix Table 8 also shows this similarity when

we exclude the foreign patenting shocks due to the concerns about own effects discussed above.

These results bolster our confidence in the patterns documented so far and also suggest that

the quantitative magnitudes of the propagation through these input-output networks is larger

when we consider all four shocks simultaneously.

To quantify impacts from this joint exercise, we now consider one standard-deviation

changes of the three shocks, imports from China, federal spending and TFP, simultaneously.

The impulse response functions from this exercise are shown in Figure 2 in Appendix B, and

the combined multipliers for value added and employment growth in Panels A and B are 11.47

and 8.23, respectively. Thus, the network elements jointly continue to account for more fluc-

tuation than direct components. The lower panels show similar results when including foreign

patenting shocks.

22Appendix Figure 1 reports impulse response functions akin to Figures 1a and 1b using the results from
Table 6, where we trace out a one-standard deviation upstream or downstream network component in terms of
value added or employment, as instrumented by each shock, alongside the direct effect of the shock. For brevity,
we only plot the stable and theory-consistent estimates, which are the ones that are meaningful to compare
to our baseline results. The resulting magnitudes are comparable to, though somewhat larger than, our main
estimates.

25



4.8 Monte Carlo Verification

Though our empirical strategy so far has closely followed our theoretical model, there are

several aspects in which the true data generating process might be more complicated than the

one implied by our model. First, our model abstracted from dynamic interactions between

sectors, whereas the original Long and Plosser (1983) paper assumed that an industry could

only use as inputs at time t the output produced by other industries at time t−1. This dynamic

structure implies that rather than shocks being transmitted through the Leontief inverse of

the input-output matrix as in our equations (6) and (7), they would be transmitted from one

period to the next directly through the input-output matrix. Over time, this transmission

would still lead to a cumulative impact as summarized by the Leontief inverse (as we show in

Appendix C). Nevertheless, we might be concerned that this type of slow adjustment would

lead to significant misspecification in our empirical work, where we impose equations (6) and

(7). In Appendix C, we conduct a Monte Carlo exercise where data are generated at quarterly

frequency using the Long and Plosser (1983) timing (and shocks are serially correlated), and

regressions are run at the annual frequency using the specifications we have utilized so far

(thus filtering the observed shocks through the Leontief inverse of the input-output matrix).

We find that the time averaging of the higher frequency data to annual observations ensures

that specifications based on the Leontief inverse do not lead to any major misspecification. In

particular, our results, described in detail in Appendix Figures 4-7, indicate that regressions

run time-averaged data can recover whether upstream or downstream linkages are important.

A second concern is whether measurement error in the input-output matrix might be sig-

nificantly amplified when we compute the Leontief inverses. Another Monte Carlo exercise we

perform in Appendix C verifies that even if the input-output matrix is measured with error,

regressions of the sort we have used are capable of recovering the correct parameters. We take

these two Monte Carlo exercises as useful confirmation of the robustness and informativeness

of our empirical strategy.

5 Additional Results: The Geographic Network

We next turn to an analysis of the geographic network’s impact on the propagation of shocks.

The theory in Section 2 describes how shocks to an industry can also propagate regionally

(e.g., within commuting zones) because they expand or depress economic activity, impacting

the decisions of other industries in the area. Though a full analysis of these local interactions

is beyond the scope of the present effort (see, for example, the treatment of Acemoglu et al.

(2015) for medium-frequency import shocks on local economies), we can nonetheless get a sense

of the importance of these channels of propagation by looking at the impact of a shock to a

particular industry on other industries that tend to collocate with it. This is essentially the

idea of the geographic network introduced above.
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Table 8 considers all four geographic effects simultaneously, which is particularly relevant

since they are all working through the same local geographic networks. In Columns 1 and 3

we only model own-industry effects and geographic spillovers, while Columns 2 and 4 add the

downstream and upstream network effects as well. Our most important observation from this

analysis is the stability of the network effects compared to Table 7. The latter continues to

adhere to theory and shows that our network effects are not proxying for regional spillovers

or similar local conditions. The second observation is that the geographic effects are almost

always precisely estimated and are quite substantial in size for demand-side shocks.

Appendix Table 9a shows that these joint patterns are robust to the specification checks

considered earlier for input-output linkages. Appendix Table 9b considers each of the four

shocks in isolation rather than jointly modeling them. Similar to the results presented in

Table 8, the inclusion of geographic effects has little impact on our estimates of downstream

and upstream network effects, which continue to adhere to theory. On the other hand, the

geographic effects themselves are less stable and often substantially smaller when measured in

isolation compared to the joint format. We thus remain cautious about strong interpretations

of the size of the geographic effects compared to the overall stability that these specifications

show for our network components.

With these caveats, the economic magnitudes of Table 8’s effects are substantial. Figure

3 in Appendix B shows the impulse response functions including own and network effects in

response to a one standard-deviation shock in specifications that also include geographic effects,

further reported in Appendix Table 9c. The implied magnitudes of some of these geographic

effects are quite large and suggest a fruitful and important area for deeper investigation.23

6 Conclusion

Idiosyncratic firm- or industry-level shocks could spread through a network of interconnections

in the economy, propagating and amplifying their initial impact. Though their potential im-

port was initially downplayed because of the belief that their aggregation across many units

(disaggregated industries or firms) would limit their macroeconomic impact, there has been a

recent revival of interest in such network-based propagation of microeconomic shocks. This

paper contributes to an empirical investigation of the role of such propagation, focusing pri-

marily on input-output linkages but also on connections through the geographic collocation

patterns of industries.

One feature that makes propagation through the input-output network particularly at-

tractive for empirical study is that theory places fairly tight restrictions on the form of the

transmission of these effects. In particular, in response to demand-side shocks, upstream
23Following Autor et al. (2013), Acemoglu et al. (2015) estimate an aggregate reduction of over 1.5 million

manufacturing jobs through direct and network effects from the China trade shocks. In terms of our framework,
their estimates correspond to a combination of own effects and geographic spillovers; they also control for
changes in the underlying population in regions in their econometric specification.
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propagation (to the suppliers of the directly affected industries) should be more pronounced

than downstream propagation (to the customers of the directly affected industries), whereas

in response to supply-side shocks, the reverse ordering should hold. In fact, when production

technologies and consumer preferences are Cobb-Douglas, there should only be upstream prop-

agation with demand-side shocks and only downstream propagation with supply-side shocks.

Moreover, the quantitative magnitudes of the direct effects and the downstream/upstream

effects are pinned down by theory.

After reviewing these theoretical basics, we turn to an empirical investigation of the propa-

gation of four different types of shocks – China import shocks and federal government spend-

ing shocks on the demand side, and TFP and foreign patenting shocks on the supply side.

In each case, we study these shocks first in isolation and then in combination with the other

shocks, and separately estimate own (direct) effects as well as downstream and upstream effects.

Throughout, our focus is on annual variation, which appears more relevant for the question of

macroeconomic fluctuations, though we verify the robustness of our results to lower-frequency

analysis.

Our empirical results paint a fairly uniform pattern across the different types of shocks.

In each case, the patterns are consistent with theory – in the case of demand-side shocks,

upstream effects strongly overshadow downstream effects, which are often zero or in the oppo-

site direction, and the converse is true with supply-side shocks. Moreover, the theory-implied

quantitative restrictions are often verified, excepting the foreign patenting shocks. Equally

important, we also find the network-based propagation of shocks to be quantitatively sizable,

and in each case, more important than the direct effect of the shock – sometimes more than

five times as important. These patterns appear to be fairly robust across specifications and

different control strategies.

In addition to the propagation of shocks through the input-output network, the geographic

spread of economic shocks could potentially be important. For example, many economic trans-

actions, particularly for non-tradables, take place within the local economy (e.g., a county or

commuting zone). If so, a negative shock to an industry concentrated in an area will impact

firms and workers in that area. Though a full analysis of this geographic dimension requires

detailed data with geography/industry breakdown, we also undertake a preliminary investiga-

tion of these linkages by focusing on the collocation patterns of industries. The idea is simple:

if two industries tend to collocate strongly, meaning that wherever one industry plays a major

role in the local economy, the other industry is also likely to be overrepresented, then shocks

to the first industry will tend to be felt more strongly by this collocating industry than other,

geographically less-connected industries. We derive a theoretical relationship showing how

industry-level shocks spread to other industries depending on collocation patterns and then

empirically investigate this linkage.

Our results in this domain are somewhat less robust, but still indicate a fairly sizable
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impact of the propagation of shocks through the geographic collocation network. In fact,

quantitatively this channel appears to be, if anything, somewhat more important than the

transmission of shocks to the input-output network. Interestingly, however, controlling for this

geographic channel does not attenuate or weaken the evidence we find for the propagation of

shocks with input-output network.

Though ours is not the first paper showing that certain shocks spread through the network

of input-output linkages (and also of geographic connections), we still consider our paper as

part of the early phase of this emerging literature documenting the empirical power of network-

based propagation of shocks. Several areas of future work look promising from our vantage

point. First, as already noted, the geographic spread of shocks can be better studied by using

data and empirical methods that cover multiple geographic scales and levels of interaction, and

even better would be to incorporate measures of the geographic span of the operations and

plants of multi-unit firms using the Census Bureau’s Longitudinal Business Database.

Second, the input-output network we utilize is still fairly aggregated. The theoretical logic

applies at any level of disaggregation, and even at the level of firms. Though firm input-

output linkages require some care (since many such relations may be non-competitive due to

the presence of relationship-specific investments or holdup problems), the same ideas can also

be extended to the firm-level network of input-output linkages. Atalay, Hortacsu and Syverson

(2014) and Atalay, Hortacsu, Roberts and Syverson (2011) take first steps in constructing such

firm-level networks, which can then be used for studying this type of propagation.

Third, the simple but powerful nature of the theory we have already exploited in this paper

also suggests that more structural approaches could be quite fruitfully applied in this domain,

which will enable more rigorous testing of some of the theoretical predictions of this class of

models. For example, the Leontief inverse matrix also puts a considerable amount of discipline

about the co-movement of value added and employment across industries resulting from shocks

spreading through the input-output network, which can be formally investigated.

Fourth, the role of the input-output and the geographic networks in the propagation of

industry-level (micro) shocks suggests that these networks may also be playing a role in the

amplification of macro shocks – such as aggregate demand, monetary and financial shocks –

which appears a generally understudied area.

Fifth, the two types of networks we have focused on are by no means the only ones that

may matter for macroeconomic outcomes. Two others that have recently been investigated are

the financial network, which can lead to the propagation and contagion of shocks hitting some

financial institutions to the rest of the financial system (e.g., Allen and Gale, 2000, Acemoglu,

Ozdaglar and Tahbaz-Salehi, 2015a, Elliott, Golub and Jackson, 2014, Cabrales, Gottardi and

Vega-Redondo, 2014), and the idea/innovation network, which can lead to the spread of new

knowledge, innovations and practices (studied, e.g., in Acemoglu, Akcigit and Kerr, 2015, as

well as indirectly in Bloom et al., 2013). Our decision to abstract from these was partly because

29



of our empirical frame, which centers on industry-level shocks, and also because of our focus

on shorter-run fluctuations (whereas the propagation of new ideas and innovations through

the innovation network is likely to be more important at five- or ten-year frequencies or even

longer). Nevertheless, combining these various types of network linkages may be a fruitful area

for future research.

Finally, in addition to the propagation of shocks to other industries or firms, the network

linkages emphasized here can also fundamentally change the nature of macroeconomic outcomes

and their volatility. For example, Acemoglu, Ozdaglar and Tahbaz-Salehi (2014) show how tail

macroeconomic risk can be created from the propagation of microeconomic shocks through the

input-output network, while Schennach (2013) suggests that these types of network effects

may change the persistence properties of macroeconomic time-series. These new areas also

constitute fruitful directions for future research.
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Figures and Tables

Notes: Figure plots estimated response to a one standard-deviation shock taken in isolation. Trade shocks are presented in positive terms to be visually 
comparable to the other shocks considered. Network effects focus on upstream contributions for the demand-side shocks of trade and federal spending and 
downstream contributions for the productivity shocks of TFP and foreign patenting. Responses are measured through log growth rates per the estimating 
equation and translated into levels off of a base initial level of one. The lag structure for the dependent variables includes three lags.

Figure 1a: Responses to a one standard-deviation shock taken in isolation, value-added

A. Chinese imports (reduction) B. Federal government spending

C. TFP D. Foreign patenting
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Notes: See Figure 1a.

Figure 1b: Responses to a one standard-deviation shock taken in isolation, employment

A. Chinese imports (reduction) B. Federal government spending

C. TFP D. Foreign patenting
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Figure 2: Theoretical examples

A. Complete cycle B. Incomplete cycle



Downstream Leontief
Upstream Leontief
Geographic overlay

China trade shock
Federal spending shock
TFP shock
Foreign patenting shock

Notes: Baseline trade shocks for manufacturing industries are the lagged change in imports from China relative to 1991 US market volume, following Autor et al. (2013). A 
negative value is taken such that positive coefficients correspond to likely beneficial outcomes, similar to other shocks.  All trade analyses instrument US imports with the rise in 
Chinese imports in eight other advanced countries, and this table reports the correlation of the IV component. Baseline federal spending shocks for manufacturing industries are 
the lagged log change in national federal spending interacted with the 1992 share of sales from industries that went to the federal government. Baseline TFP shocks for 
manufacturing industries are the lagged log change in four-factor TFP taken from the NBER Productivity Database. Baseline patent shocks for manufacturing industries are the 
lagged change in USPTO patents filed by overseas inventors associated with the industry. These correlations are presented after year fixed effects are removed from each shock. 
The Correlation Coefficient column presents the average pairwise correlation of the given shock series between any two industries.

Table 1a: Correlation matrix of network interconnections

Notes: Downstream networks represent inputs from supplier industries into the focal industry's production, expressed 
as a share of the focal industry's sales (e.g., rubber inputs into the tire industry as a share of the tire industry's sales). 
Upstream networks represent sales from the focal industry to industrial customers, expressed as a share of the focal 
industry's sales (e.g., sales of tires to car manufacturers as a share of the tire industry's sales). Both networks are 
measured from the 1991 BEA Input-Output Matrix. Shares allow for flows to non-manufacturing industries and 
customers and thus do not sum to 100% within manufacturing. Leontief connections provide the full chain of 
interconnections in the network matrix. Geographic overlay is measured as the sum across regions of the interaction of 
a focal industry's employment share in the region times the share of regional activity for other industries. Regions are 
defined through commuting zones and use 1991 industrial activity from the County Business Patterns database. 
Correlations are statistically significant at the 1% level. 
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Table 1b: Correlation matrix of shocks
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(1) (2) (3) (4) (5) (6)

Δ Dependent variable t-1 0.019 0.020 0.149*** 0.132*** -0.117*** -0.120***
(0.025) (0.025) (0.020) (0.019) (0.028) (0.033)

Δ Dependent variable t-2 0.047** 0.109*** -0.057
(0.024) (0.020) (0.037)

Δ Dependent variable t-3 0.033 0.089*** -0.002
(0.021) (0.016) (0.033)

Downstream effects t-1 -0.140 -0.124 -0.056 -0.044 -0.100 -0.108
(0.086) (0.081) (0.040) (0.037) (0.099) (0.099)

Upstream effects t-1 0.076*** 0.076*** 0.049*** 0.039*** 0.021 0.021
(0.024) (0.023) (0.016) (0.015) (0.013) (0.014)

Own effects t-1 0.034*** 0.031*** 0.023*** 0.018*** 0.007 0.007
(0.009) (0.009) (0.005) (0.004) (0.007) (0.007)

Observations 6560 5776 6560 5776 6560 5776
p-value: Upstream=Own 0.071 0.054 0.086 0.139 0.333 0.350

Table 2a: China trade shock analysis

Δ Log real value added Δ Log employment Δ Log real labor productivity

Notes: Estimations consider network structures and the propagation of trade shocks. Baseline trade shocks for manufacturing industries are the 
lagged change in imports from China relative to 1991 US market volume, following Autor et al. (2013). A negative value is taken such that positive 
coefficients correspond to likely beneficial outcomes, similar to other shocks. Explanatory variables aggregate these industry-level components by 
the indicated network connecting industries. These network explanatory variables are expressed as lagged changes in non-log values. Downstream 
and upstream flows use the Leontief inverse to provide the full chain of material interconnections within manufacturing. All trade analyses instrument 
the direct and network effects from US imports with the rise in Chinese imports in eight other advanced countries. Upstream=Own test uses the exact 
formula discussed in the text and is calculated through unreported auxiliary regressions. Variables are winsorized at the 0.1% level and initial shocks 
are transformed to have unit standard deviation for interpretation. Estimations include year fixed effects, report standard errors clustered by industry, 
and are unweighted. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

Adding 
resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.019 0.021 0.023 0.114 -0.008 -0.038* -0.071*** 0.018
(0.025) (0.025) (0.026) (0.071) (0.025) (0.023) (0.020) (0.025)

Downstream effects t-1 -0.140 -0.022 -0.152* -0.209* 0.000 0.138 0.192 -0.163*
(0.086) (0.083) (0.086) (0.123) (0.109) (0.106) (0.129) (0.092)

Upstream effects t-1 0.076*** 0.068*** 0.078*** 0.075** 0.051** 0.053* 0.051 0.107**
(0.024) (0.023) (0.023) (0.034) (0.023) (0.032) (0.042) (0.042)

Own effects t-1 0.034*** 0.033*** 0.022 0.018** 0.015 0.016 0.032***
(0.009) (0.009) (0.014) (0.009) (0.010) (0.014) (0.009)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.071 0.053 0.076 0.159 0.266 0.489 0.080

Δ Dependent variable t-1 0.149*** 0.156*** 0.153*** 0.257*** 0.097*** 0.044** 0.010 0.146***
(0.020) (0.021) (0.020) (0.034) (0.020) (0.019) (0.020) (0.020)

Downstream effects t-1 -0.056 0.024 -0.055 -0.034 0.009 0.036 0.080 -0.082*
(0.040) (0.037) (0.040) (0.059) (0.049) (0.054) (0.067) (0.047)

Upstream effects t-1 0.049*** 0.044*** 0.051*** 0.048** 0.029* 0.014 0.012 0.084***
(0.016) (0.016) (0.016) (0.022) (0.016) (0.018) (0.025) (0.028)

Own effects t-1 0.023*** 0.023*** 0.020*** 0.009** 0.005 0.001 0.021***
(0.005) (0.005) (0.007) (0.004) (0.004) (0.005) (0.005)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.086 0.069 0.185 0.209 0.616 0.667 0.027

Table 2b: Robustness checks on China trade shock analysis

Notes: See Table 2a.

A. Δ Log real value added

B. Δ Log employment



(1) (2) (3) (4) (5) (6)

Δ Dependent variable t-1 0.019 0.018 0.158*** 0.135*** -0.117*** -0.119***
(0.025) (0.024) (0.021) (0.019) (0.030) (0.036)

Δ Dependent variable t-2 0.051** 0.116*** -0.057
(0.023) (0.019) (0.038)

Δ Dependent variable t-3 0.038* 0.102*** -0.002
(0.021) (0.016) (0.035)

Downstream effects t-1 0.017 0.023 0.007 0.013 0.007 0.004
(0.021) (0.021) (0.015) (0.012) (0.016) (0.017)

Upstream effects t-1 0.022** 0.020** 0.010* 0.011** 0.012 0.010
(0.009) (0.008) (0.006) (0.005) (0.008) (0.008)

Own effects t-1 0.004 0.008** 0.003 0.006*** 0.001 0.002
(0.003) (0.004) (0.003) (0.002) (0.001) (0.002)

Observations 6560 5776 6560 5776 6560 5776
p-value: Upstream=Own 0.076 0.191 0.321 0.383 0.147 0.330

Table 3a: Federal spending shock analysis

Δ Log real value added Δ Log employment Δ Log real labor productivity

Notes: See Table 2a. Estimations consider network structures and the propagation of federal spending shocks. Baseline federal spending shocks for 
manufacturing industries are the lagged log change in national federal spending interacted with the 1992 share of sales from industries that went to 
the federal government.



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

Adding 
resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.019 0.019 0.023 0.115* -0.011 -0.042* -0.076*** 0.019
(0.025) (0.025) (0.026) (0.068) (0.025) (0.024) (0.021) (0.025)

Downstream effects t-1 0.017 0.034* 0.015 0.008 -0.006 0.029 -0.040 0.017
(0.021) (0.019) (0.020) (0.014) (0.021) (0.024) (0.062) (0.021)

Upstream effects t-1 0.022** 0.022** 0.022** 0.030** 0.012 0.025* 0.069*** 0.022*
(0.009) (0.009) (0.010) (0.014) (0.008) (0.015) (0.023) (0.012)

Own effects t-1 0.004 0.004 0.001 0.002 0.005 0.011 0.004
(0.003) (0.003) (0.002) (0.003) (0.005) (0.011) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.076 0.077 0.027 0.254 0.183 0.031 0.130

Δ Dependent variable t-1 0.158*** 0.159*** 0.163*** 0.269*** 0.099*** 0.041** 0.006 0.158***
(0.021) (0.021) (0.021) (0.033) (0.020) (0.019) (0.019) (0.021)

Downstream effects t-1 0.007 0.021** 0.006 0.007 -0.011 0.018 -0.046 0.009
(0.015) (0.010) (0.013) (0.007) (0.015) (0.013) (0.046) (0.014)

Upstream effects t-1 0.010* 0.010* 0.009 0.009 0.004 0.016*** 0.020* 0.006
(0.006) (0.006) (0.006) (0.005) (0.005) (0.006) (0.011) (0.007)

Own effects t-1 0.003 0.003 0.001 0.002 0.009** 0.022** 0.003
(0.003) (0.003) (0.001) (0.003) (0.004) (0.009) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.321 0.346 0.156 0.747 0.160 0.829 0.717

Table 3b: Robustness checks on federal spending shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 3a.



(1) (2) (3) (4) (5) (6)

Δ Dependent variable t-1 -0.024 -0.031 0.141*** 0.118*** -0.194*** -0.211***
(0.040) (0.041) (0.021) (0.020) (0.029) (0.034)

Δ Dependent variable t-2 0.049** 0.118*** -0.071**
(0.023) (0.019) (0.034)

Δ Dependent variable t-3 0.037* 0.102*** -0.008
(0.020) (0.016) (0.032)

Downstream effects t-1 0.060*** 0.047** 0.016* 0.011 0.047*** 0.043**
(0.020) (0.020) (0.009) (0.009) (0.018) (0.018)

Upstream effects t-1 0.024** 0.020* 0.009 0.008 0.015* 0.014
(0.011) (0.012) (0.006) (0.006) (0.009) (0.009)

Own effects t-1 0.004 0.007 0.006*** 0.007*** 0.011** 0.013***
(0.007) (0.006) (0.002) (0.002) (0.005) (0.004)

Observations 6560 5776 6560 5776 6560 5776
p-value: Downstream=Own 0.005 0.034 0.041 0.161 0.101 0.276

Table 4a: TFP shock analysis

Δ Log real value added Δ Log employment Δ Log real labor productivity

Notes: See Table 2a. Estimations consider network structures and the propagation of TFP shocks. Baseline TFP shocks for manufacturing industries 
are the lagged log change in four-factor TFP taken from the NBER Productivity Database.



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 -0.024 -0.002 -0.024 -0.075 -0.080** -0.126*** -0.147***
(0.040) (0.024) (0.040) (0.073) (0.039) (0.038) (0.039)

Downstream effects t-1 0.060*** 0.062*** 0.060*** 0.077** 0.039* 0.027 0.027
(0.020) (0.021) (0.020) (0.034) (0.020) (0.018) (0.019)

Upstream effects t-1 0.024** 0.024** 0.025** 0.054*** 0.021* 0.017 0.020
(0.011) (0.011) (0.011) (0.016) (0.011) (0.012) (0.013)

Own effects t-1 0.004 0.005 0.025* 0.010 0.014** 0.012**
(0.007) (0.007) (0.014) (0.006) (0.006) (0.005)

Observations 6560 6560 6560 6560 6560 6560 6560
p-value: Downstream=Own 0.005 0.007 0.303 0.198 0.623 0.171

Δ Dependent variable t-1 0.141*** 0.154*** 0.146*** 0.252*** 0.081*** 0.020 -0.015
(0.021) (0.021) (0.021) (0.032) (0.021) (0.019) (0.020)

Downstream effects t-1 0.016* 0.025*** 0.016* 0.024* 0.002 0.011 0.013
(0.009) (0.009) (0.009) (0.012) (0.009) (0.010) (0.011)

Upstream effects t-1 0.009 0.012** 0.009 0.022*** 0.007 0.010 0.010
(0.006) (0.006) (0.006) (0.008) (0.006) (0.007) (0.007)

Own effects t-1 0.006*** 0.006*** 0.003 0.007*** 0.008*** 0.009***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 6560 6560 6560 6560 6560 6560 6560
p-value: Downstream=Own 0.041 0.045 0.026 0.712 0.312 0.314

Table 4b: Robustness checks on TFP shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 4a.



(1) (2) (3) (4) (5) (6)

Δ Dependent variable t-1 0.020 0.020 0.159*** 0.138*** -0.117*** -0.120***
(0.025) (0.025) (0.021) (0.020) (0.030) (0.036)

Δ Dependent variable t-2 0.051** 0.117*** -0.057
(0.023) (0.020) (0.038)

Δ Dependent variable t-3 0.037* 0.100*** -0.003
(0.021) (0.016) (0.035)

Downstream effects t-1 0.043*** 0.044*** 0.018*** 0.018*** 0.027*** 0.028***
(0.011) (0.011) (0.006) (0.006) (0.009) (0.009)

Upstream effects t-1 -0.000 0.000 -0.001 -0.000 0.001 0.002
(0.005) (0.005) (0.003) (0.003) (0.004) (0.004)

Own effects t-1 -0.006 -0.007* -0.008*** -0.006** 0.003 0.002
(0.004) (0.004) (0.003) (0.003) (0.003) (0.004)

Observations 6543 5761 6543 5761 6543 5761
p-value: Downstream=Own 0.000 0.000 0.001 0.002 0.029 0.026

Table 5a: Foreign patent shock analysis

Δ Log real value added Δ Log employment Δ Log real labor productivity

Notes: See Table 2a. Estimations consider network structures and the propagation of foreign patent shocks. Baseline patent shocks for manufacturing 
industries are the lagged change in USPTO patents filed by overseas inventors associated with the industry. 



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.020 0.020 0.024 0.120* -0.012 -0.042* -0.075***
(0.025) (0.025) (0.026) (0.070) (0.025) (0.024) (0.021)

Downstream effects t-1 0.043*** 0.039*** 0.042*** 0.044** 0.040*** 0.038*** 0.038***
(0.011) (0.011) (0.011) (0.021) (0.011) (0.011) (0.011)

Upstream effects t-1 -0.000 0.000 0.000 0.007 0.000 0.000 0.000
(0.005) (0.005) (0.004) (0.007) (0.005) (0.004) (0.005)

Own effects t-1 -0.006 -0.006 0.004 -0.003 -0.003 -0.004
(0.004) (0.004) (0.007) (0.004) (0.004) (0.004)

Observations 6543 6543 6543 6543 6543 6543 6543
p-value: Downstream=Own 0.000 0.000 0.354 0.001 0.001 0.000

Δ Dependent variable t-1 0.159*** 0.160*** 0.163*** 0.270*** 0.099*** 0.044** 0.012
(0.021) (0.021) (0.021) (0.034) (0.020) (0.019) (0.020)

Downstream effects t-1 0.018*** 0.013** 0.018*** 0.014* 0.015** 0.014** 0.013**
(0.006) (0.006) (0.006) (0.007) (0.006) (0.006) (0.006)

Upstream effects t-1 -0.001 -0.000 -0.001 0.001 -0.001 -0.000 -0.000
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Own effects t-1 -0.008*** -0.007*** -0.004 -0.004 -0.003 -0.003
(0.003) (0.002) (0.003) (0.003) (0.002) (0.003)

Observations 6543 6543 6543 6543 6543 6543 6543
p-value: Downstream=Own 0.001 0.001 0.238 0.008 0.016 0.023

Table 5b: Robustness checks on foreign patent shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 5a.



(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 -0.045 -0.060 -0.025 -0.011 -0.057 -0.063 0.312*** 0.244**
(0.039) (0.044) (0.027) (0.041) (0.044) (0.044) (0.109) (0.098)

Δ Downstream real value added t-1 0.038 -0.036 0.087*** 0.080*** -0.735*** -0.398**
(0.112) (0.116) (0.025) (0.025) (0.268) (0.200)

Δ Upstream real value added t-1 0.173*** 0.171*** 0.113** 0.114** 0.017 -0.162*
(0.059) (0.061) (0.045) (0.052) (0.011) (0.086)

Own shock t-1 0.030*** 0.030*** 0.006** 0.007* 0.009 0.009 -0.012* -0.006
(0.008) (0.008) (0.003) (0.004) (0.007) (0.007) (0.007) (0.006)

Observations 6168 6168 6560 6560 6560 6560 6543 6543

Δ Dependent variable t-1 0.132*** 0.084 0.185*** 0.079 0.089*** 0.081*** 0.310*** 0.268***
(0.023) (0.146) (0.025) (0.080) (0.028) (0.026) (0.059) (0.058)

Δ Downstream employment t-1 0.097 0.158 0.095** 0.091** -0.264*** -0.278***
(0.295) (0.115) (0.041) (0.044) (0.098) (0.099)

Δ Upstream employment t-1 0.053*** 0.035 -0.045* -0.018 0.017 0.085**
(0.014) (0.054) (0.024) (0.031) (0.025) (0.038)

Own shock t-1 0.026*** 0.022* 0.005** 0.003 0.007*** 0.007*** -0.012*** -0.013***
(0.004) (0.011) (0.002) (0.003) (0.002) (0.002) (0.004) (0.004)

Observations 6168 6168 6560 6560 6560 6560 6543 6543

Table 6: VAR estimations for intermediated shocks

A. Δ Log real value added

B. Δ Log employment

Notes: See Tables 2a-5a. Rather than model network shocks directly, estimations consider intermediated approaches where the shock indicated by the column header 
instruments for changes in upstream and downstream economic activity in terms of real value added or employment. Estimations control for own shock and use two lags of 
upstream and downstream components. In each estimation pair, the first specification considers the focal network element for the shock in question. The second 
specification adds in the non-focal element where the first stage fit can be weak.

China trade Federal spending TFP Foreign patenting



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.043 -0.050 0.125*** 0.105***
(0.041) (0.041) (0.020) (0.020)

Δ Dependent variable t-2 0.040* 0.108***
(0.022) (0.020)

Δ Dependent variable t-3 0.032 0.089***
(0.021) (0.016)

Trade: Downstream effects t-1 -0.059 -0.042 -0.016 0.008
(0.082) (0.080) (0.044) (0.040)

Upstream effects t-1 0.106*** 0.107*** 0.066*** 0.054***
(0.030) (0.031) (0.020) (0.019)

Own effects t-1 0.032*** 0.030*** 0.022*** 0.017***
(0.009) (0.009) (0.005) (0.004)

Federal: Downstream effects t-1 -0.006 -0.003 -0.008 0.001
(0.023) (0.025) (0.017) (0.014)

Upstream effects t-1 0.035** 0.040*** 0.020** 0.023***
(0.014) (0.014) (0.009) (0.008)

Own effects t-1 0.001 0.004 0.001 0.005*
(0.003) (0.004) (0.003) (0.003)

TFP: Downstream effects t-1 0.062*** 0.051** 0.019* 0.014
(0.021) (0.021) (0.010) (0.010)

Upstream effects t-1 0.030** 0.028** 0.013* 0.011
(0.013) (0.014) (0.008) (0.008)

Own effects t-1 0.007 0.009 0.007*** 0.008***
(0.007) (0.007) (0.002) (0.002)

Patent: Downstream effects t-1 0.043*** 0.043*** 0.017*** 0.016**
(0.011) (0.011) (0.006) (0.007)

Upstream effects t-1 0.002 0.002 0.000 0.000
(0.005) (0.005) (0.003) (0.003)

Own effects t-1 -0.007* -0.007* -0.007*** -0.006**
(0.004) (0.004) (0.003) (0.003)

Observations 6543 5761 6543 5761

Table 7: Joint analysis of shocks

Δ Log real value added Δ Log employment

Notes: See Table 2a.



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.028 -0.047 0.130*** 0.124***
(0.040) (0.041) (0.021) (0.020)

Trade: Geographic effects t-1 0.125*** 0.113*** 0.055*** 0.049***
(0.035) (0.034) (0.018) (0.017)

Downstream effects t-1 -0.048 -0.014
(0.078) (0.045)

Upstream effects t-1 0.095*** 0.061***
(0.029) (0.019)

Own effects t-1 0.032*** 0.033*** 0.023*** 0.023***
(0.009) (0.009) (0.005) (0.005)

Federal: Geographic effects t-1 0.112*** 0.101*** 0.046*** 0.040***
(0.032) (0.031) (0.015) (0.014)

Downstream effects t-1 -0.036 -0.018
(0.023) (0.017)

Upstream effects t-1 0.026** 0.017**
(0.012) (0.009)

Own effects t-1 0.001 -0.001 0.002 0.001
(0.004) (0.004) (0.003) (0.003)

TFP: Geographic effects t-1 0.032*** 0.027*** 0.014*** 0.012**
(0.010) (0.010) (0.005) (0.005)

Downstream effects t-1 0.055*** 0.016*
(0.019) (0.010)

Upstream effects t-1 0.024* 0.011
(0.013) (0.008)

Own effects t-1 0.008 0.007 0.008*** 0.007***
(0.006) (0.006) (0.002) (0.002)

Patent: Geographic effects t-1 0.005*** 0.004*** 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Downstream effects t-1 0.039*** 0.016**
(0.011) (0.006)

Upstream effects t-1 0.002 0.000
(0.005) (0.003)

Own effects t-1 -0.002 -0.006* -0.005** -0.007***
(0.004) (0.004) (0.003) (0.003)

Observations 6543 6543 6543 6543

Table 8: Geographic and networks analysis

Δ Log real value added Δ Log employment

Notes: See Table 2a. Estimations include additional effects from indicated shocks and the geographic overlay of 
industries. Geographic overlay is measured as the sum across regions of the interaction of a focal industry's 
employment share in the region times the share of regional activity for other industries. Regions are defined through 
commuting zones and use 1991 industrial activity from the County Business Patterns database. 



Appendix A: Proof of Proposition 1

Part 1. Let us set government purchases equal to zero for this part of the proof. Recall that
profit maximization implies

aij =
pjxij
piyi

, and αli =
wli
piyi

. (A1)

Utility maximization in turn yields

pici
βi

=
pjcj
βj

. (A2)

Since total household income is equal to labor income and in this part we have no government
purchases, we also have

n∑
i=1

pici = wl,

which yields
pici = βiwl, ∀i. (A3)

Moreover, the first-order condition for labor supply implies

−γ
′(l)l

γ(l)
= 1,

and thus labor supply is determined independent of the equilibrium wage rate because given
the preferences in (3), income and substitutions cancel out.

Let us now take logs in (1) and totally differentiate to obtain

d ln yi = dzi + αlid ln li +
n∑
j=1

aijd lnxij . (A4)

Let us next totally differentiate (A1) to obtain

d ln yi + d ln pi = d lnxij + d ln pj ,

and
d ln yi + d ln pi = d ln li,

where we have made use of the fact that the wages are chosen as the numeraire and thus
d lnw = 0. Substituting these two equations into (A4), we have

d ln yi = dzi + αli(d ln yi + d ln pi) +
n∑
j=1

aij(d ln yi + d ln pi − d ln pj).

Next recalling that l remains constant, differentiating (A2) and (A3), and combining with the
previous two equations to eliminate prices, we obtain

d ln yi = dzi + αli(d ln yi − d ln ci) +
n∑
j=1

aij(d ln yi − d ln ci + d ln cj).

Noting that αli +
n∑
j=1

aij = 1, this simplifies to

d ln ci = dzi +

n∑
j=1

aijd ln cj ,



which can be rewritten in matrix form as

d ln c = dz + Ad ln c

where d ln c and dz are the vectors of d ln ci and dzi respectively, which is a unique solution
given by

d ln c = (I−A)−1 dz, (A5)

in view of the fact that the largest eigenvalue of A is less than 1. Next combining (2) and
(A1), we have

yj
cj

= 1 +
n∑
i=1

aij
βiyi
βjci

,

which implies that
d ln y = d ln c. (A6)

Then combining (A5) with (A6) we obtain

d ln y = (I−A)−1 dz. (A7)

This yields the desired result, (6).
Part 2. Normalize z = 0 for this part of the proof. Consider the unit cost function of

sector i, which is

Ci (p, w) = Biw
αli

n∏
j=1

p
aij
j ,

where

Bi =

[
1

αli

]αli n∏
j=1

[
1

aij

]aij
Zero profit condition for producer i implies

ln pi = lnBi + αli lnw +

n∑
j=1

aij ln pj for all i ∈ {1, .., n} .

Since the wage is the numeraire (i.e., w = 1), we have αli lnw = 0 and these equations define an
n equation system in n prices (for a given vector of productivities z, in this instance normalized
to 1), with solution

ln p = (I−A)−1 b,

where b is the vector with entries given by lnBi.
This shows that, for a given vector of productivities, the equilibrium price vector is uniquely

determined regardless of the value of the vector of government purchases G. Thus demand-
side shocks have no impact on equilibrium prices, which are entirely determined by the supply
side. But then from (A3), the consumption vector remains unchanged, and from (2), total
net supply of all sectors has to remain constant regardless of the change in G. We can then
obtain the change in the total production in the economy using (2) combined with (A1) and
(A2), which with unchanged prices simply implies

d ln yi = d lnxij and d ln yi = d ln li.

Household maximization implies that, even though prices are fixed, labor supply will change
because of changes in consumption (resulting from government purchases). In particular, the
following first-order condition determines the representative household’s labor supply

wl

wl − T = − lγ
′ (l)

γ (l)
,



with T =

n∑
i=1

piGi.

When γ (l) = (1− l)λ, using the fact that the wage, w, is chosen as the numeraire, we
obtain

l =

1 + λ
n∑
i=1

piGi

1 + λ
.

Therefore, we have that

pici = βi [lw − T ]

=
βi

1 + λ

1−
n∑
j=1

pjGj


which implies

d(pici) = − βi
(1 + λ)

n∑
j=1

d(pjGj).

The resource constraint then implies:

dyi = dci +
n∑
j=1

dxji + dGi.

Combining the previous two equations with (A1),

d(piyi)

piyi
=

n∑
j=1

aji
d(pjyj)

piyi
+
dGi
yi
− βi

(1 + λ)

n∑
j=1

(dpjGj)

piyi

=
n∑
j=1

âji
d(pjyj)

pjyj
+
dG̃i
piyi
− βi

(1 + λ)

n∑
j=1

dG̃j
piyi

, (A8)

where G̃j = pjGj . Writing this in matrix form and noting that, because prices are constant,
d(piyi)
piyi

= d ln yi, we have

d ln y = ÂTd ln y + ΛdG̃

=
(
I− ÂT

)−1
ΛdG̃

= ĤTΛdG̃

where Ĥ =
(
I− Â

)−1
, G̃ is the vector of nominal government spending levels, the G̃’s,

Â =


â11 â12 ...
â21 â22

. . .

ânn

 ,



with entries âij =
xij
yj
, and

Λ =



(
1− β1

(1+λ)

)
1

p1y1
− β1
(1+λ)

1
p1y1

...

− β2
(1+λ)

1
p2y2

(
1− β2

(1+λ)

)
1

p2y2

. . . (
1− βn

(1+λ)

)
1

pnyn


. (A9)

Carrying out the second matrix multiplication, this can also be written as

d ln y = ĤT


dG̃1
p1y1
− β1

(1+λ)
1

p1y1

∑n
j=1 dG̃j

dG̃2
p2y2
− β2

(1+λ)
1

p2y2

∑n
j=1 dG̃j

.

.

.

 ,

or with one more round of matrix multiplication, as

d ln yi =
n∑
j=1

ĥji
1

pjyj

(
dG̃j −

βj
1 + λ

n∑
k=1

dG̃k

)
.

Rearranging this equation yields (7).
We also note that the effects of demand-side shocks can be alternatively expressed (without

the division by piyi in equation (A8)) in level, rather than log, changes as

dỹ = HT


dG̃1 − β1

(1+λ)

∑n
j=1 dG̃j

dG̃2 − β2
(1+λ)

∑n
j=1 dG̃j

.

.

.

 , (A10)

which is the general form of the expressions used in Example 2.



Appendix B: Supplemental Figures and Tables

E. Federal government spending, value added

Notes: See Figure 1a. Figure plots estimated intermediated network effects akin to a VAR analysis. Estimations use upstream and 
downstream shocks in instrumental variable specifications where the endogenous regressor is the lagged actual value-added or 
employment change in the network. Results with foreign patenting and employment for federal spending are excluded.

Appendix Figure 1: VAR responses to a one standard-deviation shock taken in isolation

A. Chinese imports (reduction), value added B. Chinese imports (reduction), employment

C. TFP, value added D. TFP, employment
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Notes: See Figure 1a. Figure plots estimated response to joint one-time standard-deviation shocks. Panels A and B exclude foreign patenting, which has a 
negative own effect, while Panels C and D include it.

Appendix Figure 2: Combined response to joint one standard-deviation shocks

A. Value-added, without foreign patenting B. Employment, without foreign patenting

C. Value-added, with foreign patenting D. Employment, with foreign patenting
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Notes: See Figures 1a and Appendix Figure 2. Figure plots estimated response to joint one-time standard-deviation shocks that includes geographic effects. 

Appendix Figure 3: Combined response to joint one standard-deviation shocks with geographic effects

A. Value-added, without foreign patenting B. Employment, without foreign patenting

C. Value-added, with foreign patenting D. Employment, with foreign patenting
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Downstream 
effects t-1

Upstream 
effects t-1 Own effects t-1

Downstream 
effects t-1

Upstream 
effects t-1 Own effects t-1

(1) (2) (3) (4) (5) (6)

Δ Log real value added t-1 -0.012*** -0.014 -0.008 -0.013*** -0.015 -0.023
(0.004) (0.010) (0.084) (0.005) (0.011) (0.082)

Δ Log real value added t-2 -0.004 0.032** -0.027
(0.005) (0.015) (0.068)

Δ Log real value added t-3 -0.005 0.004 -0.018
(0.005) (0.013) (0.080)

IV Downstream effects t-1 0.638*** 0.101** 0.832** 0.640*** 0.110** 0.835**
(0.041) (0.044) (0.368) (0.041) (0.045) (0.364)

IV Upstream effects t-1 0.005 0.886*** -0.244** 0.005 0.879*** -0.237***
(0.009) (0.045) (0.076) (0.009) (0.045) (0.077)

IV Own effects t-1 -0.001 -0.008*** 0.461*** -0.001 -0.009*** 0.458***
(0.002) (0.003) (0.075) (0.002) (0.003) (0.073)

Shea's Partial R-Squared 0.361 0.514 0.224 0.360 0.509 0.222

Appendix Table 1: First-stage relationships for Chinese imports instruments

Notes: See Table 2a.

Real value-added growth, one lag Real value-added growth, three lags



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

Adding 
resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.176*** 0.179*** 0.182*** 0.332*** 0.140*** 0.103*** 0.061*** 0.173***
(0.026) (0.026) (0.028) (0.065) (0.026) (0.024) (0.021) (0.027)

Downstream effects t-1 -0.140** -0.067 -0.147** -0.186** -0.025 0.084 0.128 -0.176
(0.059) (0.055) (0.060) (0.091) (0.076) (0.076) (0.098) (0.067)

Upstream effects t-1 0.054*** 0.048*** 0.055*** 0.045* 0.034* 0.033 0.031 0.098***
(0.019) (0.019) (0.019) (0.024) (0.020) (0.026) (0.035) (0.037)

Own effects t-1 0.021*** 0.020*** 0.018 0.007 0.004 0.002 0.018***
(0.006) (0.006) (0.011) (0.006) (0.007) (0.010) (0.006)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.068 0.053 0.143 0.154 0.272 0.460 0.027

Appendix Table 2a: Robustness checks on China trade shock analysis using real shipments growth

Notes: See Table 2a.

Δ Log real shipments



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 -0.146* -0.116 -0.086 -0.056 -0.026 0.004 0.034 0.065 0.095 0.125 0.155*
(0.087) (0.083) (0.080) (0.078) (0.076) (0.074) (0.074) (0.074) (0.075) (0.077) (0.080)

Upstream effects t-1 0.077*** 0.073*** 0.069*** 0.064*** 0.060*** 0.056*** 0.052*** 0.048*** 0.043** 0.039** 0.035*
(0.024) (0.022) (0.021) (0.020) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018)

Own effects t-1 0.034*** 0.033*** 0.033*** 0.032*** 0.032*** 0.031*** 0.031*** 0.030*** 0.030*** 0.029*** 0.029***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010)

Downstream effects t-1 -0.073 -0.062 -0.050 -0.038 -0.027 -0.015 -0.003 0.008 0.020 0.032 0.043
(0.046) (0.042) (0.039) (0.037) (0.035) (0.034) (0.034) (0.035) (0.036) (0.039) (0.042)

Upstream effects t-1 0.056*** 0.052*** 0.047*** 0.042*** 0.038*** 0.033*** 0.028*** 0.024** 0.019** 0.014 0.010
(0.018) (0.017) (0.016) (0.014) (0.013) (0.012) (0.011) (0.010) (0.009) (0.009) (0.009)

Own effects t-1 0.026*** 0.024*** 0.022*** 0.020*** 0.018*** 0.016*** 0.014*** 0.012*** 0.010*** 0.008** 0.006
(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

B. Δ Log employment

Notes: See Table 2a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 2b: Variations in psi parameter for China trade shock analysis

A. Δ Log real value added



Baseline annual 
analysis

Using two-year 
periods

Using three-
year periods

Using four-year 
periods

Using five-year 
periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.019 0.085** 0.092* 0.027 0.072
(0.025) (0.037) (0.047) (0.056) (0.076)

Downstream effects t-1 -0.140 -0.323*** -0.417** -1.549*** -1.092
(0.086) (0.120) (0.198) (0.348) (0.671)

Upstream effects t-1 0.076*** 0.089*** 0.149*** 0.292*** 0.719***
(0.024) (0.024) (0.040) (0.067) (0.175)

Own effects t-1 0.034*** 0.041*** 0.087*** 0.118*** 0.153***
(0.009) (0.010) (0.017) (0.029) (0.054)

Observations 6560 3080 1920 1152 768
p-value: Upstream=Own 0.071 0.035 0.093 0.005 0.001

Δ Dependent variable t-1 0.149*** 0.242*** 0.284*** 0.266*** 0.297***
(0.020) (0.028) (0.041) (0.047) (0.058)

Downstream effects t-1 -0.056 -0.041 -0.207*** -0.055 0.685*
(0.040) (0.058) (0.076) (0.221) (0.408)

Upstream effects t-1 0.049*** 0.063*** 0.100*** 0.215*** 0.655***
(0.016) (0.019) (0.027) (0.060) (0.160)

Own effects t-1 0.023*** 0.036*** 0.067*** 0.102*** 0.111***
(0.005) (0.008) (0.012) (0.027) (0.039)

Observations 6560 3080 1920 1152 768
p-value: Upstream=Own 0.086 0.138 0.172 0.066 0.001

Appendix Table 2c: Longer changes on China trade shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 2a. All sample periods start with 1991 and extend as far as data allow. For example, Column 5 effectively 
considers 1996-2001 and 2001-2006, with lags extending back to 1991-1996. 



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

Adding 
resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.178*** 0.178*** 0.184*** 0.334*** 0.138*** 0.101*** 0.058*** 0.178***
(0.026) (0.026) (0.027) (0.061) (0.026) (0.026) (0.021) (0.026)

Downstream effects t-1 -0.002 0.019 -0.003 -0.002 -0.022 0.011 -0.025 0.000
(0.018) (0.016) (0.017) (0.009) (0.018) (0.019) (0.046) (0.018)

Upstream effects t-1 0.022*** 0.022*** 0.021*** 0.024** 0.013* 0.024* 0.055*** 0.017*
(0.008) (0.008) (0.008) (0.010) (0.007) (0.013) (0.019) (0.010)

Own effects t-1 0.005* 0.004* 0.001 0.003 0.007 0.010 0.005*
(0.003) (0.003) (0.001) (0.003) (0.005) (0.010) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560 6560
p-value: Upstream=Own 0.063 0.065 0.019 0.304 0.211 0.055 0.259

Notes: See Table 3a.

Appendix Table 3a: Robustness checks on federal spending shock analysis using real shipments growth

Δ Log real shipments



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.017 0.016 0.014 0.012 0.010 0.009 0.007 0.005 0.004 0.002 0.000
(0.022) (0.020) (0.018) (0.016) (0.014) (0.012) (0.011) (0.009) (0.008) (0.008) (0.008)

Upstream effects t-1 0.022** 0.020** 0.018** 0.017** 0.015** 0.013** 0.011** 0.009** 0.007** 0.005* 0.004
(0.010) (0.009) (0.008) (0.007) (0.006) (0.005) (0.005) (0.004) (0.004) (0.003) (0.003)

Own effects t-1 0.004 0.004 0.003 0.003 0.003 0.003 0.002* 0.002** 0.002** 0.001** 0.001
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Downstream effects t-1 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.000 -0.001
(0.016) (0.015) (0.014) (0.013) (0.012) (0.011) (0.010) (0.009) (0.008) (0.008) (0.007)

Upstream effects t-1 0.011 0.010* 0.009* 0.009* 0.008* 0.007* 0.007* 0.006* 0.005* 0.004* 0.004
(0.007) (0.006) (0.006) (0.005) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

Own effects t-1 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002* 0.002** 0.002***
(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

B. Δ Log employment

Notes: See Table 3a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 3b: Variations in psi parameter for federal spending shock analysis

A. Δ Log real value added



Baseline annual 
analysis

Using two-year 
periods

Using three-
year periods

Using four-year 
periods

Using five-year 
periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.019 0.094** 0.114** 0.083 0.138*
(0.025) (0.037) (0.048) (0.059) (0.072)

Downstream effects t-1 0.017 0.031 0.094* 0.197** 0.122
(0.021) (0.033) (0.054) (0.095) (0.130)

Upstream effects t-1 0.022** 0.020 0.037* 0.056 -0.009
(0.009) (0.014) (0.021) (0.039) (0.051)

Own effects t-1 0.004 0.013*** 0.023** 0.011 0.017
(0.003) (0.005) (0.010) (0.016) (0.016)

Observations 6560 3080 1920 1152 768
p-value: Upstream=Own 0.076 0.634 0.569 0.286 0.657

Δ Dependent variable t-1 0.158*** 0.264*** 0.332*** 0.346*** 0.379***
(0.021) (0.027) (0.040) (0.047) (0.054)

Downstream effects t-1 0.007 0.029 0.051 0.044 0.176*
(0.015) (0.021) (0.032) (0.044) (0.102)

Upstream effects t-1 0.010* 0.018** 0.040*** 0.063*** -0.025
(0.006) (0.008) (0.013) (0.023) (0.036)

Own effects t-1 0.003 0.006* 0.015*** 0.022*** 0.036***
(0.003) (0.004) (0.006) (0.008) (0.013)

Observations 6560 3080 1920 1152 768
p-value: Upstream=Own 0.321 0.214 0.088 0.103 0.144

Appendix Table 3c: Longer changes on federal spending shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 3a. 



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.226*** 0.164*** 0.231*** 0.307*** 0.168*** 0.122*** 0.088***
(0.026) (0.024) (0.026) (0.045) (0.026) (0.027) (0.027)

Downstream effects t-1 0.054*** 0.048*** 0.055*** 0.065*** 0.037** 0.026* 0.026*
(0.017) (0.017) (0.017) (0.023) (0.016) (0.014) (0.014)

Upstream effects t-1 0.012 0.010 0.013 0.039*** 0.008 0.004 0.006
(0.010) (0.010) (0.010) (0.012) (0.009) (0.011) (0.011)

Own effects t-1 -0.012*** -0.011*** -0.004 -0.007* -0.005 -0.006*
(0.004) (0.004) (0.009) (0.004) (0.004) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560
p-value: Downstream=Own 0.000 0.000 0.034 0.014 0.134 0.008

Appendix Table 4a: Robustness checks on TFP shock analysis using real shipments growth

Δ Log real shipments

Notes: See Table 4a.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.059*** 0.054*** 0.050** 0.045** 0.040* 0.035 0.031 0.026 0.021 0.017 0.012
(0.020) (0.020) (0.020) (0.021) (0.021) (0.022) (0.022) (0.023) (0.024) (0.024) (0.025)

Upstream effects t-1 0.023** 0.021* 0.019* 0.017 0.015 0.013 0.011 0.008 0.006 0.004 0.002
(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013) (0.014)

Own effects t-1 0.002 -0.011*** -0.023*** -0.035*** -0.047*** -0.059*** -0.072*** -0.084*** -0.096*** -0.108*** -0.120***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006)

Downstream effects t-1 0.018* 0.017* 0.016* 0.015 0.013 0.012 0.011 0.010 0.009 0.007 0.006
(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.011) (0.011)

Upstream effects t-1 0.010 0.009 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.003 0.002
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.008) (0.008)

Own effects t-1 0.010*** 0.007*** 0.005*** 0.003 0.000 -0.002 -0.004** -0.007*** -0.009*** -0.011*** -0.014***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Appendix Table 4b: Variations in psi parameter for TFP shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 4a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.



Baseline annual 
analysis

Using two-year 
periods

Using three-
year periods

Using four-year 
periods

Using five-year 
periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 -0.024 0.067 0.157*** 0.123* 0.125*
(0.040) (0.047) (0.056) (0.069) (0.068)

Downstream effects t-1 0.060*** 0.189*** 0.118* 0.253*** 0.269**
(0.020) (0.047) (0.067) (0.089) (0.104)

Upstream effects t-1 0.024** 0.033 0.041 -0.055 -0.077
(0.011) (0.021) (0.036) (0.050) (0.056)

Own effects t-1 0.004 -0.004 -0.027 -0.032 -0.016
(0.007) (0.013) (0.022) (0.031) (0.037)

Observations 6560 3080 1920 1152 768
p-value: Downstream=Own 0.005 0.000 0.092 0.006 0.025

Δ Dependent variable t-1 0.141*** 0.252*** 0.336*** 0.349*** 0.363***
(0.021) (0.028) (0.042) (0.047) (0.054)

Downstream effects t-1 0.016* 0.015 -0.016 0.032 0.053
(0.009) (0.022) (0.027) (0.036) (0.053)

Upstream effects t-1 0.009 0.017 0.021 -0.069** -0.099**
(0.006) (0.010) (0.018) (0.033) (0.039)

Own effects t-1 0.006*** 0.006 -0.004 -0.011 -0.016
(0.002) (0.004) (0.006) (0.008) (0.014)

Observations 6560 3080 1920 1152 768
p-value: Downstream=Own 0.041 0.485 0.690 0.169 0.217

Appendix Table 4c: Longer changes on TFP shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 4a. 



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.181*** 0.181*** 0.187*** 0.342*** 0.139*** 0.103*** 0.060***
(0.026) (0.026) (0.028) (0.063) (0.027) (0.025) (0.021)

Downstream effects t-1 0.022*** 0.019** 0.022*** 0.025 0.019** 0.017** 0.018**
(0.008) (0.008) (0.008) (0.019) (0.008) (0.008) (0.008)

Upstream effects t-1 0.002 0.002 0.002 0.007 0.002 0.002 0.002
(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004)

Own effects t-1 -0.003 -0.003 0.004 -0.001 -0.001 -0.002
(0.003) (0.003) (0.006) (0.003) (0.003) (0.003)

Observations 6543 6543 6543 6543 6543 6543 6543
p-value: Downstream=Own 0.015 0.021 0.683 0.039 0.057 0.025

Appendix Table 5a: Robustness checks on foreign patent shock analysis using real shipments growth

Δ Log real shipments

Notes: See Table 5a.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.043*** 0.041*** 0.039*** 0.037*** 0.036*** 0.034*** 0.032** 0.030** 0.028** 0.026* 0.024
(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.014) (0.015)

Upstream effects t-1 -0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.005 0.006
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.007)

Own effects t-1 -0.006 -0.005 -0.005 -0.004 -0.003 -0.002 -0.002 -0.001 -0.000 0.001 0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.006)

Downstream effects t-1 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018** 0.018** 0.018** 0.018**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008)

Upstream effects t-1 -0.002 -0.001 -0.001 0.000 0.001 0.001 0.002 0.003 0.003 0.004 0.004
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Own effects t-1 -0.009*** -0.008*** -0.007*** -0.006** -0.006** -0.005 -0.004 -0.003 -0.002 -0.001 -0.000
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

B. Δ Log employment

Notes: See Table 5a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 5b: Variations in psi parameter for foreign patenting shock analysis

A. Δ Log real value added



Baseline annual 
analysis

Using two-year 
periods

Using three-
year periods

Using four-year 
periods

Using five-year 
periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.020 0.099*** 0.113** 0.075 0.133*
(0.025) (0.038) (0.050) (0.060) (0.071)

Downstream effects t-1 0.043*** -0.032 0.040 0.088 -0.012
(0.011) (0.023) (0.034) (0.064) (0.067)

Upstream effects t-1 -0.000 -0.020** -0.013 0.004 0.014
(0.005) (0.009) (0.012) (0.018) (0.021)

Own effects t-1 -0.006 0.012 -0.015 0.044* 0.004
(0.004) (0.011) (0.017) (0.023) (0.033)

Observations 6543 3072 1915 1149 766
p-value: Downstream=Own 0.000 0.051 0.144 0.902 0.592

Δ Dependent variable t-1 0.159*** 0.265*** 0.330*** 0.324*** 0.347***
(0.021) (0.028) (0.041) (0.046) (0.053)

Downstream effects t-1 0.018*** 0.005 0.046** 0.104*** 0.039
(0.006) (0.012) (0.023) (0.037) (0.048)

Upstream effects t-1 -0.001 -0.011** -0.009 0.005 0.006
(0.003) (0.005) (0.008) (0.012) (0.015)

Own effects t-1 -0.008*** -0.002 -0.022** -0.006 -0.006
(0.003) (0.007) (0.010) (0.015) (0.030)

Observations 6543 3072 1915 1149 766
p-value: Downstream=Own 0.001 0.890 0.030 0.055 0.616

Appendix Table 5c: Longer changes on foreign patent shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 5a.



Δ Log real 
value added

Δ Log nominal 
value added

Δ Log real 
shipments

Δ Log nominal 
shipments

Δ Log real 
value added

Δ Log nominal 
value added

Δ Log real 
shipments

Δ Log nominal 
shipments

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.019 0.034* 0.176*** 0.201*** 0.019 0.034* 0.178*** 0.201***
(0.025) (0.021) (0.026) (0.020) (0.025) (0.020) (0.026) (0.019)

Downstream effects t-1 -0.140 -0.013 -0.140** -0.025 0.017 0.014 -0.002 -0.004
(0.086) (0.073) (0.059) (0.050) (0.021) (0.019) (0.018) (0.016)

Upstream effects t-1 0.076*** 0.077*** 0.054*** 0.056*** 0.022** 0.020** 0.022*** 0.019**
(0.024) (0.025) (0.019) (0.021) (0.009) (0.009) (0.008) (0.008)

Own effects t-1 0.034*** 0.044*** 0.021*** 0.029*** 0.004 0.003 0.005* 0.004
(0.009) (0.011) (0.006) (0.007) (0.003) (0.003) (0.003) (0.002)

Observations 6560 6560 6560 6560 6560 6560 6560 6560

Δ Log real 
value added

Δ Log nominal 
value added

Δ Log real 
shipments

Δ Log nominal 
shipments

Δ Log real 
value added

Δ Log nominal 
value added

Δ Log real 
shipments

Δ Log nominal 
shipments

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 -0.024 0.058** 0.226*** 0.246*** 0.020 0.032 0.181*** 0.201***
(0.040) (0.029) (0.026) (0.021) (0.025) (0.020) (0.026) (0.020)

Downstream effects t-1 0.060*** 0.018 0.054*** 0.026** 0.043*** 0.037*** 0.022*** 0.018**
(0.020) (0.016) (0.017) (0.012) (0.011) (0.010) (0.008) (0.007)

Upstream effects t-1 0.024** 0.039*** 0.012 0.031*** -0.000 -0.012*** 0.002 -0.008**
(0.011) (0.011) (0.010) (0.008) (0.005) (0.005) (0.004) (0.003)

Own effects t-1 0.004 -0.008** -0.012*** -0.013*** -0.006 -0.011*** -0.003 -0.007**
(0.007) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.003)

Observations 6560 6560 6560 6560 6543 6543 6543 6543

TFP shocks Foreign patenting shocks

Appendix Table 6, continued

Appendix Table 6: Comparison of alternatives to real value added growth

Notes: See Tables 2a-5a.

China trade shocks Federal spending shocks



(1) (2) (3) (4) (5) (6) (7) (8)

Include 3 lags of DV Yes Yes Yes Yes Yes Yes Yes Yes
Include 3 lags of own shock Yes Yes Yes Yes
Include 3 lags of network shocks Yes Yes Yes Yes

Table 2a: Imports
Downstream effects -0.124 -0.121 -0.191* -0.225** -0.044 -0.040 -0.034 -0.065*
Upstream effects 0.076*** 0.079*** 0.069*** 0.074*** 0.039*** 0.045*** 0.038*** 0.043***
Own effects 0.031*** 0.042*** 0.030*** 0.046*** 0.018*** 0.029*** 0.018*** 0.032***

Table 3a: Federal Spending
Downstream effects 0.023 0.023 0.042* 0.036* 0.013 0.013 0.015 0.015
Upstream effects 0.020** 0.020** 0.018** 0.018** 0.011** 0.011** 0.013*** 0.013***
Own effects 0.008** 0.010*** 0.008** 0.009*** 0.006*** 0.007*** 0.006*** 0.006***

Table 4a: TFP
Downstream effects 0.047** 0.048** 0.085** 0.087** 0.011 0.012 -0.005 -0.003
Upstream effects 0.020* 0.019* 0.017 0.017 0.008 0.008 0.013 0.014*
Own effects 0.007 -0.001 0.007 -0.002 0.007*** 0.005* 0.007*** 0.006*

Table 5a: Foreign Patent
Downstream effects 0.044*** 0.043*** 0.037* 0.030 0.018*** 0.018*** 0.022** 0.021**
Upstream effects 0.000 0.001 -0.014** -0.014** -0.000 0.000 -0.009** -0.009**
Own effects -0.007* 0.001 -0.007* 0.003 -0.006** -0.004 -0.006** -0.005

Appendix Table 7: Summed coefficients over deeper lags

Δ Log real value added Δ Log employment

Notes: Table documents the sum of coefficients across variations of lag structure. Columns 1 and 5 are baseline specifications from respective 
tables. 



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.040 -0.048 0.126*** 0.105***
(0.041) (0.041) (0.020) (0.020)

Δ Dependent variable t-2 0.041* 0.108***
(0.022) (0.020)

Δ Dependent variable t-3 0.033 0.090***
(0.021) (0.016)

Trade: Downstream effects t-1 -0.042 -0.025 -0.006 0.017
(0.083) (0.081) (0.043) (0.040)

Upstream effects t-1 0.106*** 0.107*** 0.065*** 0.054***
(0.030) (0.031) (0.020) (0.020)

Own effects t-1 0.030*** 0.028*** 0.022*** 0.016***
(0.009) (0.009) (0.005) (0.004)

Federal: Downstream effects t-1 -0.003 0.001 -0.006 0.003
(0.024) (0.025) (0.017) (0.014)

Upstream effects t-1 0.036** 0.041*** 0.021** 0.023***
(0.014) (0.014) (0.009) (0.008)

Own effects t-1 0.001 0.004 0.001 0.005*
(0.003) (0.004) (0.003) (0.003)

TFP: Downstream effects t-1 0.061*** 0.049** 0.019* 0.013
(0.020) (0.020) (0.010) (0.010)

Upstream effects t-1 0.029** 0.027** 0.013* 0.011
(0.013) (0.013) (0.007) (0.008)

Own effects t-1 0.007 0.009 0.007*** 0.008***
(0.007) (0.007) (0.002) (0.002)

Observations 6560 5776 6560 5776

Appendix Table 8: Joint analysis without foreign patenting shocks

Δ Log real value added Δ Log employment

Notes: See Table 7.



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 -0.028 0.009 -0.027 -0.065 -0.074* -0.120*** -0.139***
(0.040) (0.023) (0.040) (0.070) (0.039) (0.038) (0.038)

Trade: Geographic effects t-1 0.125*** 0.121*** 0.121*** 0.068** 0.090*** 0.074** 0.047
(0.035) (0.034) (0.035) (0.029) (0.032) (0.030) (0.031)

Own effects t-1 0.032*** 0.031*** 0.020* 0.020** 0.020** 0.023*
(0.009) (0.009) (0.011) (0.009) (0.010) (0.013)

Federal: Geographic effects t-1 0.112*** 0.112*** 0.110*** 0.063** 0.086*** 0.075*** 0.012
(0.032) (0.030) (0.032) (0.026) (0.029) (0.028) (0.030)

Own effects t-1 0.001 0.000 -0.001 -0.001 0.004 0.014
(0.004) (0.004) (0.003) (0.004) (0.005) (0.009)

TFP: Geographic effects t-1 0.032*** 0.032*** 0.030*** 0.011* 0.025*** 0.022** 0.018**
(0.010) (0.010) (0.010) (0.006) (0.010) (0.009) (0.009)

Own effects t-1 0.008 0.008 0.031** 0.011* 0.015** 0.013**
(0.006) (0.007) (0.014) (0.006) (0.006) (0.005)

Patent: Geographic effects t-1 0.005*** 0.005*** 0.005*** 0.002*** 0.005*** 0.005*** 0.004***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Own effects t-1 -0.002 -0.001 0.007 0.000 -0.000 -0.001
(0.004) (0.004) (0.006) (0.004) (0.004) (0.004)

Observations 6543 6560 6543 6543 6543 6543 6543

Appendix Table 9a: Robustness checks on joint geographic analysis

Notes: See Table 8.

A. Δ Log real value added



Baseline 
estimation

Excluding 
own lagged 

shock

Weighting by 
1991 log value 

added

Weighting by 
1991 

employees
Adding SIC2 
fixed effects

Adding SIC3 
fixed effects

Adding SIC4 
fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.130*** 0.156*** 0.135*** 0.240*** 0.081*** 0.020 -0.019
(0.021) (0.020) (0.020) (0.034) (0.021) (0.019) (0.019)

Trade: Geographic effects t-1 0.055*** 0.057*** 0.053*** 0.030** 0.027* 0.030* 0.036**
(0.018) (0.017) (0.017) (0.012) (0.015) (0.015) (0.018)

Own effects t-1 0.023*** 0.023*** 0.022*** 0.011*** 0.007* 0.004
(0.005) (0.005) (0.007) (0.004) (0.004) (0.004)

Federal: Geographic effects t-1 0.046*** 0.050*** 0.043*** 0.027*** 0.022* 0.021 0.010
(0.015) (0.014) (0.014) (0.010) (0.013) (0.013) (0.017)

Own effects t-1 0.002 0.002 0.000 0.001 0.009** 0.021***
(0.003) (0.002) (0.001) (0.003) (0.004) (0.007)

TFP: Geographic effects t-1 0.014*** 0.014*** 0.013*** 0.006** 0.008* 0.009* 0.011**
(0.005) (0.005) (0.005) (0.003) (0.005) (0.005) (0.005)

Own effects t-1 0.008*** 0.008*** 0.006*** 0.008*** 0.009*** 0.010***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Patent: Geographic effects t-1 0.001 0.001 0.001 0.001 0.001 0.001 0.000
(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Own effects t-1 -0.005** -0.005** -0.002 -0.003 -0.002 -0.002
(0.003) (0.002) (0.003) (0.002) (0.002) (0.002)

Observations 6543 6560 6543 6543 6543 6543 6543

Appendix Table 9a, continued

B. Δ Log employment

Notes: See Table 8.



(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.022 0.019 0.018 0.017 -0.013 -0.024 0.021 0.020
(0.025) (0.025) (0.024) (0.024) (0.040) (0.040) (0.025) (0.025)

Trade: Geographic effects t-1 0.001 0.002
(0.007) (0.007)

Downstream effects t-1 -0.142*
(0.086)

Upstream effects t-1 0.076***
(0.024)

Own effects t-1 0.032*** 0.034***
(0.009) (0.009)

Federal: Geographic effects t-1 0.021** 0.018**
(0.009) (0.009)

Downstream effects t-1 0.005
(0.021)

Upstream effects t-1 0.018**
(0.008)

Own effects t-1 0.004 0.003
(0.003) (0.003)

TFP: Geographic effects t-1 0.005 0.003
(0.005) (0.005)

Downstream effects t-1 0.060***
(0.020)

Upstream effects t-1 0.023**
(0.011)

Own effects t-1 0.007 0.004
(0.007) (0.007)

Patent: Geographic effects t-1 0.004*** 0.003***
(0.001) (0.001)

Downstream effects t-1 0.041***
(0.011)

Upstream effects t-1 -0.001
(0.004)

Own effects t-1 -0.002 -0.006
(0.004) (0.004)

Observations 6560 6560 6560 6560 6560 6560 6543 6543

Appendix Table 9b: Geographic effects and networks analysis with single shocks

Notes: See Table 8.

Δ Log real value added



(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.152*** 0.149*** 0.159*** 0.158*** 0.142*** 0.141*** 0.159*** 0.159***
(0.020) (0.020) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

Trade: Geographic effects t-1 0.004 0.004
(0.004) (0.004)

Downstream effects t-1 -0.059
(0.041)

Upstream effects t-1 0.049***
(0.016)

Own effects t-1 0.022*** 0.023***
(0.005) (0.005)

Federal: Geographic effects t-1 0.005 0.004
(0.003) (0.003)

Downstream effects t-1 0.005
(0.014)

Upstream effects t-1 0.009
(0.006)

Own effects t-1 0.003 0.003
(0.002) (0.003)

TFP: Geographic effects t-1 0.003 0.002
(0.003) (0.003)

Downstream effects t-1 0.016*
(0.009)

Upstream effects t-1 0.009
(0.006)

Own effects t-1 0.007*** 0.006***
(0.002) (0.002)

Patent: Geographic effects t-1 0.000 0.000
(0.001) (0.001)

Downstream effects t-1 0.018***
(0.006)

Upstream effects t-1 -0.001
(0.003)

Own effects t-1 -0.006** -0.008***
(0.003) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6543 6543

Appendix Table 9b, continued

Δ Log employment

Notes: See Table 8.



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.052 -0.055 0.103*** 0.103***
(0.041) (0.042) (0.020) (0.019)

Δ Dependent variable t-2 0.032 0.033 0.106*** 0.106***
(0.021) (0.021) (0.019) (0.019)

Δ Dependent variable t-3 0.022 0.023 0.089*** 0.088***
(0.019) (0.019) (0.016) (0.016)

Trade: Geographic effects t-1 0.193*** 0.147*** 0.074*** 0.066***
(0.044) (0.039) (0.021) (0.019)

Downstream effects t-1 -0.006 -0.027 0.021 0.012
(0.076) (0.076) (0.041) (0.041)

Upstream effects t-1 0.090*** 0.095*** 0.048** 0.049***
(0.030) (0.030) (0.019) (0.019)

Own effects t-1 0.029*** 0.031*** 0.017*** 0.017***
(0.009) (0.009) (0.004) (0.004)

Federal: Geographic effects t-1 0.178*** 0.134*** 0.063*** 0.055***
(0.040) (0.036) (0.019) (0.017)

Downstream effects t-1 -0.048* -0.041* -0.012 -0.012
(0.025) (0.025) (0.015) (0.015)

Upstream effects t-1 0.028** 0.030** 0.020** 0.020**
(0.013) (0.013) (0.008) (0.008)

Own effects t-1 0.002 0.002 0.004 0.004
(0.005) (0.004) (0.003) (0.003)

TFP: Geographic effects t-1 0.047*** 0.044*** 0.020*** 0.020***
(0.013) (0.013) (0.006) (0.006)

Downstream effects t-1 0.040** 0.043** 0.009 0.010
(0.019) (0.019) (0.010) (0.010)

Upstream effects t-1 0.015 0.019 0.006 0.007
(0.013) (0.013) (0.008) (0.008)

Own effects t-1 0.008 0.009 0.007*** 0.007***
(0.006) (0.006) (0.002) (0.002)

Patent: Geographic effects t-1 0.005*** 0.001
(0.001) (0.001)

Downstream effects t-1 0.040*** 0.016**
(0.011) (0.007)

Upstream effects t-1 0.002 0.000
(0.005) (0.003)

Own effects t-1 -0.006 -0.006**
(0.004) (0.003)

Observations 5776 5761 5776 5761

Appendix Table 9c: Joint estimates with three lags of dependent variable

Δ Log real value added Δ Log employment

Notes: See Table 2a.



Appendix C: Omitted Proofs and Results and Monte Carlo Ex-
ercises

Details for Example 1

The expressions and Example 1 follow readily from equation (6) in the text or equation (A7) in
Appendix A. We provide the detailed algebra here for completeness and verification. Suppose,

for this purpose and without loss of any generality, that u(c1, c2, c3, l) = γ(l)
3∏
i=1

c
1/3
i (since in

this case preference heterogeneity does not matter). Recall that the production function for
sector i ∈ {1, 2, 3} is:

yi = ezi l
αli
i x

aij
ij . (C1)

In what follows, we denote the supplier of the focal sector i by j and the customer of i by
k (for instance, {i, j, k} = {1, 2, 3} , {i, j, k} = {2, 3, 1} , and {i, j, k} = {3, 1, 2}). With this
convention, the resource market clearing condition can be written as

yi = ci + xki.

Combining the first-order conditions of the representative household and firms to eliminate
prices, we can write

aij =
cixij
cjyi

and αli =
3cili
yi

. (C2)

Substituting this expression into (C1) we obtain

ci = eziΩijc
aij
j , (C3)

where Ωij ≡
(
αli
)αli aaijij 3−α

l
i for i = 1, 2, 3. Solving these three equations summarized in (C3)

jointly, we have
ci = Ω̃ie

δi (C4)

where
δi ≡

zi + zjaij + zcaijajk
1− aijajkaki

,

and Ω̃i is a constant. Using the production functions (C1) and optimal labor choices (C2) and
the equilibrium consumption choices (C4), we can express express yi in terms of its intermediate
input use, xij , only. Then combining these with the resource constraints we obtain

yi = Ω̃ie
δi + yke

αlkδk−zk
1−αl

k
k Γi,

where the Γi’s denote constants. Solving this system of equations gives:

yi = eδi

[
Ω̃i + Ω̃kΓk + Ω̃jΓjΓk

]
1− ΓiΓjΓk

.

Finally, taking the logs and differentiating this expression delivers the desired result:

d ln yi =
dzi + aijdzj + aijajkdzc

1− aijajkaki
for each i = 1, 2, 3.



Details for Example 2

Once again the expressions in Example 2 follow from our general results, in particular equation

(A10) in Appendix A (recalling that in this case u(c1, c2, c3, l) = γ(l)
3∏
i=1

c
1/3
i ). Once again we

provide the algebraic detail for completeness. Note that the unit cost functions for the three
sectors can be written as

Ci (p, w) = µiw
αlip

aij
j ,

where µi ≡
(
αli
aij

)aij
+
(
aij
αli

)αli
. In equilibrium, we have

pi = Ci (p, w) = µiw
αlip

aij
j . (C5)

Using the fact that the wage is the numeraire, we can solve for the price system in (C5) as

pi = γ
1

1−aijajkaki ,

where γ ≡ µiµ
aij
j µ

aijajk
k , confirming our general results that prices are constant regardless of

demand shocks. Given this constancy, we switch to working with nominal values, which we
denote by a tilde, “~”. Then the resource constraint implies

dỹi = dc̃i + dx̃ki + dG̃i.

Using the first-order condition of firms, aij =
x̃ij
ỹi
, we have

dx̃ij = aijdỹi.

Combining this with the resource constraint, we obtain

dỹi = dc̃i + akidỹk + dG̃i. (C6)

Recall that the household optimization implies

c̃i =
1

(1 + λ) 3
− G̃i + G̃j + G̃k

(1 + λ) 3
.

Differentiating this expression yields

dc̃i = −dG̃j + dG̃i + G̃k
(1 + λ) 3

. (C7)

Combining (C7) in (C6), we arrive at the system of equation (for i = 1, 2, 3):

dỹi = −dG̃i + dG̃j + G̃k
(1 + λ) 3

+ akidỹk + dG̃i.

Solving this system of equations delivers the desired result:

dỹi =
1

1− aijajkaki

{
dG̃i + akiajkdG̃j + akidG̃k

−(1+aki+akiajk)
(1+λ)3

[
dG̃i + dG̃j + dG̃k

] } .



The Long and Plosser (1983) Model

Long and Plosser’s (1983) model is closely related to the one we studied in the main text, with
the main difference that there is a one period delay in production, so that inputs dated t− 1
produce output dated t, which implies that shocks spread across industries only slowly. More
specifically, the production function for sector i at time t is

yi,t = ezi,t l
αli
i,t−1

n∏
j=1

x
aij
ij,t−1. (C8)

The Long-Plosser model also includes capital, from which we abstract to simplify the discussion
here. We also assume that the government budget has to be balanced at each date.

The preferences of the representative household are now defined over sequences of con-
sumption bundles as

∞∑
t=0

δt

[
ln γ(lt) + βi

n∑
i=1

ln ci,t

]
,

where δ ∈ (0, 1) is the discount factor.1 The representative household can save using a risk-free
asset, with gross interest rate Rt at time t (meaning that one dollar invested at time t − 1
in this risk-free asset pays Rt dollars for sure at time t), and because there is no capital, this
asset must be in zero net supply.

Since there is no capital, the resource constraint takes the same form as in the static
economy:

yi,t = ci,t +

n∑
j=1

xji,t +Gi,t−1, (C9)

where we have adopted the timing convention that government spending decisions from time
t− 1 are implemented at time t.

An equilibrium is now defined as sequence of prices such that markets at each date clear.
The equilibrium in this dynamic model continues to be very tractable and can be represented
by a log-linear equation for the evolution of sectoral outputs as shown in the next proposition.

Proposition C1 In the dynamic Long-Plosser model:

1. The equilibrium evolution of sectoral outputs in the presence of technology shocks (and
no government spending shocks) is given by

d ln yt+1 = A× d ln yt + dzt+1. (C10)

2. Suppose that Suppose γ(l) = (1 − l)λ. Then the equilibrium evolution of sectoral output
in the presence of government spending shocks (and no technology shocks) is given by

dỹt+1 =
(
I−δAT

)−1(−∑n
j=1 dG̃j,t

1 + λ
β + dG̃t

)
, (C11)

where G̃t is the vector of nominal government spending across sectors at time t, and ỹt
denotes the vector of nominal sectoral output at time t.

1Differently from the static model, the utility function is no longer invariant to monotone transformations,
thus Cobb-Douglas and log preferences are no longer equivalent, and we adopt the standard log preferences used
by Long and Plosser (1983).



Proof. Part 1. Since there is no capital, the profit maximization of sector i at time t can
be written as

max
li,t,xij,t

pi,t+1Rt
ezi,t+1 l

αli
i,t

n∏
j=1

x
αij
ij,t − wtli,t −

n∑
j=1

pj,txij,t

 , (C12)

where output prices are discounted by the gross interest rate between dates t and t + 1, Rt,
because they accrue with one period delay. Consider the dual of this problem, which gives the
unit cost function for sector i as

Ci,t+1 (pt, wt) = e−zi,t+1Biw
αli
t

n∏
j=1

p
aij
j,t ,

where Bi ≡
[
1/αli

]αli n∏
j=1

[
1
aij

]aij
. In the competitive equilibrium, we have

pi,t+1
Rt

= e−zi,t+1Biw
αli
t

n∏
j=1

p
aij
j,t

to ensure zero profits (recall that Rt is known at time t). Given the interest rates representing
intertemporal prices, we can set wages in each period as the numeraire, i.e., wt = 1 for all t,
and taking logs, we arrive at

ln pi,t+1 − lnRt = −zi,t+1 + lnBi +
n∑
j=1

aij ln pj,t. (C13)

The representative household’s problem can be represented as

E0
∞∑
t=0

δt

ln γ (lt) +
n∑
j=1

βi ln ci,t + µt

RtAt + wtlt −At+1 −
n∑
j=1

pi,tci,t

 ,

where the term in square brackets is the flow dynamic budget constraint of the household, with
At denoting asset holdings, and µt is the Lagrange multiplier or the marginal value of income
at time t. This problem has the familiar first-order conditions given by

ci,t :
βi

pi,tci,t
= µt =⇒ lnβi − ln ci,t − lnµt = ln pi,t (C14)

At+1 : −δtµt + δt+1RtEtµt+1 = 0 (C15)

lt :
γ′ (lt)

γ (lt)
+ µtwt = 0 (C16)

Combining (C13) and (C14), we obtain

lnβi − ln ci,t+1 − lnEtµt+1 − lnRt = −zi,t+1 + lnBi +
n∑
j=1

aij
[
lnβj − ln cj,t − lnµt

]
or

d ln ci,t+1 + d lnEtµt+1 + d lnRt = dzi,t+1 +

n∑
j=1

aij [d ln cj,t + d lnµt] (C17)



Because the risk-free asset is in zero net supply, we must have At = 0 for all t, so that from
the representative household’s budget constraint

ltwt =
pi,tci,t
βi

=
pj,tcj,t
βj

(C18)

for all i, j and t. Combining this equation with (C14), we obtain

µt =
1

lt
, (C19)

which together with (C16) implies

1 = − ltγ
′ (lt)

γ (lt)
,

and thus
lt = l∗ for all t. (C20)

Finally combining this result with (C15) and (C19), we obtain that, regardless of the realization
of the stochastic shocks,

µt = µ∗ and Rt =
1

δ
.

This equation, combined with (C17) gives the law of motion of consumption of the output of
different sectors as

d ln ci,t+1 =
n∑
j=1

aijd ln cj,t + dzi,t+1,

or as
d ln ct+1 = A× d ln ct + dzt+1. (C21)

Consider next the first-order conditions of the profit-maximization problem, (C12):

aij
pi,t+1
Rt

yi,t+1 = pj,txij,t. (C22)

Using this expression for substituting for xji,t in the resource constraint, (C9), using the fact
that in this part, Gi,t−1 = 0, and rearranging, we obtain:

1 =
ci,t
yi,t

+ δ

n∑
j=1

aji
pj,t+1yj,t+1
pi,tyi,t

,

and finally, since from (C18) pi,tci,t
βi

= l∗, this equation can be written as

βi
yi,t
ci,t

= βi + δ

n∑
j=1

ajiβj
yj,t+1
cj,t+1

,

or defining ψi,t ≡ βi
yi,t
ci,t

and denoting the vector of ψi,t’s by ψt, as

ψt = β+δATψt+1.

Substituting this equation forward, we obtain

ψt = β+δATβ+δ2
(
AT
)2
β + ...+δK

(
AT
)K
ψt+K .



Because A’s largest eigenvalue is less than 1 in absolute value, as K → ∞, the last term
converges to zero, yielding

ψt =
(
I−δAT

)−1
β,

which implies that ψi,t is constant for all i and t, and thus

d ln yi,t = d ln ci,t.

Combined with (C21), this yields (C10).
Part 2. The analysis until equation (C18) from part 1 still applies. This equation needs to

be modified, however, because of taxes to finance government spending. In particular, At = 0
now implies

ltwt − Tt =
pi,tci,t
βi

=
pj,tcj,t
βj

(C23)

=
1

µt
,

with the second line following from (C14). Combining (C16) with (C23), we obtain

lt =
1 + λTt
1 + λ

µt =
1 + λ

1− Tt
(C24)

Rt =
1− EtTt+1
δ (1− Tt)

,

where the last equation of (C24) has expected taxes next period, because next period’s govern-
ment spending shocks and thus taxes are unknown at time t. Since, by assumption, EtG̃τ = G̃t

for all τ > t, we also have EtTt+1 = Tt, and thus

Rt =

(
1− Et+1Tt+1
δ (1− Tt)

)
=

1

δ
. (C25)

Next multiplying the resource constraint, (C9), with pi,t to convert it into nominal terms
and substituting pi,tci,t = βi

µt
(from (C23)), and using (C22), we have

ỹi,t =
βi
µt

+
n∑
j=1

aji
ỹj,t+1
Rt

+ G̃i,t−1,

where note that we write ỹi,t+1 instead of Etỹi,t+1, since there are no productivity shocks and
thus given the input choices at time t, ỹi,t+1 is known at time t. Substituting for µt from (C24)
and for Rt from (C25), and writing it in matrix notation, we have

ỹt = gt−1β+δATỹt+1 + G̃t−1, (C26)

where gt ≡
1−
∑n
j=1 dG̃j,t
1+λ . Writing the same equation at future dates and taking expectations

at time t, we have
ỹt+1 = gtβ+δATỹt+2 + G̃t,



and
Etỹt+k = Etgt+k−1β+δATEtỹt+k+1 + EtG̃t+k−1.

Substituting these terms forward, we obtain

ỹt = gt−1β + G̃t−1+δA
T
(
Etgtβ + EtG̃t

)
+δ2

(
AT
)2×(Etgt+1β + EtG̃t+1

)
+. . .+δK

(
AT
)K ×Etỹt+K .

Using the fact that δK
(
AT
)K → 0 as K →∞ (again because A’s largest eigenvalues less than

one in absolute value) and that EtG̃τ = G̃t for all τ > t, and leading by one period, we have

ỹt+1 = gtβ + G̃t + δAT×
(
gtβ + G̃t

)
+ δ2

(
AT
)2 (

gtβ + G̃t

)
+ . . . .

Finally, differentiating, we obtain

dỹt+1 = dgtβ + dG̃t + δ
(
AT(dgtβ + dG̃t

)
+ δ2(

(
AT
)2

(dgtβ + dG̃t)+...

=
(
I− δAT

)−1(−∑n
j=1 dG̃j,t

1 + λ
β + dG̃t

)
,

verifying (C11).
There are three important features to emphasize. First, despite the intertemporal nature

of the linkages, the equilibrium still takes a simple form, with many of the same features as the
ones that emerged in our static economy. Secondly, and relatedly, equilibrium dynamics in the
case of technology/productivity shocks, summarized in equation (C10), are particularly close
to the responses in the static model derived in the main text. Dynamics in the presence of
government spending shocks are a little more complicated, however, because in this dynamic
environment, changes in government spending affect the interest rate and via this channel
sectoral prices (whereas in the static model prices remained constant in response to changes in
government spending). This complication notwithstanding, equation (C11) still takes relatively
simple form and shows how sectoral outputs evolve in response to changes in government
spending patterns (and we will see its close relationship to equation (7) in the text in the next
proposition). Finally, equilibrium dynamics now depend on the input-output matrix, A or Â,
and not on the Leontief inverse. This is because, given that one period delay in converting
inputs into output, indirect effects take place over time. Consequently, for tracing the effect
of last period’s output on today’s output, which focuses on direct effect, it is the input-output
matrix that is relevant. Nevertheless, because the indirect effects now accumulate over time,
the long-run response to shocks is again given by the Leontief inverse as we show in the next
proposition.

Proposition C2 1. Consider a one-time productivity shock to industries, dzt (with dzt =
0 for all τ > t). Then

d ln y∞ = (I−A)−1 × dzt. (C27)

2. Consider a one-time government spending shock to industries at time t, dG̃t (with dG̃τ =
0 for all τ > t), and suppose that δ → 1. Then

dỹt+1 = HT

(
−
∑n

j=1 dG̃j,t

1 + λ
β + dG̃t

)
,



or in log form
d ln ỹt+1 = ĤTΛdG̃t. (C28)

where Λt is the date-t version of the matrix defined in Appendix A equation (A8), given
in equation (C29) below.

Proof. Part 1. Take t = 0 for simplicity. Then, from equation (C10), we have

ln y0 = A× ln y−1 + z0

ln y1 = A2× ln y−1 + A× z0 + z1
...

ln yK = AK+1× ln y−1 + AK×z0 + AK−1×z1 + ...+ zK

Since dzt = 0 for all t > 0, zt = z0 for all t > 0, and thus

ln yK = AK+1× ln y−1 + AK×z0 + AK−1×z0 + ...+ z0.

Differentiating, we have

d ln yK =
[
AK + AK−1 + ...+ I

]
dz0.

As K →∞, we obtain (C27).

Part 2. This result is obtained directly from (C11) by taking the limit δ → 1, which yields

dỹt+1 = H×

 dG̃1,t − β1
1+λ

∑n
j=1 dG̃j,t

dG̃2,t − β1
1+λ

∑n
j=1 dG̃j,t

...

 ,

verifying equation (A10) in Appendix A. Moreover, following the same steps as in Appendix
A (in particular, equation (A8)), we can equivalently write this in log form as follows:

dỹi,t+1 =
n∑
j=1

hji

(
dG̃j,t −

βj
1 + λ

n∑
k=1

dG̃k,t

)
for each i

dỹi,t+1
ỹi,t+1

=
n∑
j=1

ĥji
1

ỹj,t

(
dG̃j,t −

βj
1 + λ

n∑
k=1

dG̃k,t

)
,

and thus
d ln ỹt+1 = ĤTΛtdG̃t

where where

Λt =



(
1− β1

(1+λ)

)
1

p1,ty1,t
− β1
(1+λ)

1
p1,ty1,t

...

− β2
(1+λ)

1
p2,ty2,t

(
1− β2

(1+λ)

)
1

p2,ty2,t

. . . (
1− βn

(1+λ)

)
1

pn,tyn,t


, (C29)



thus yielding the desired result.
The most noteworthy results in this proposition are the coincidence of equations (C27) and

(C28) with (6) and (7) in the text. In particular, (C27) highlights that the long-run response to
a one-time (permanent) technology shock in this dynamic model is identical to the equilibrium
response to technology shocks in the static model given by (6). Equation (C28), on the other
hand, highlights that the dynamic response to a one-time (permanent) government spending
shock is identical to the equilibrium response to government shocks in the static model given
by (7) provided that the discount factor δ is close enough to 1. These results underpin our
claims that our results and empirical strategy continue to be valid even if data are generated
by a dynamic model in which shocks spread across sectors over time.

Monte Carlo Evidence

We now use the results of the previous subsection as the basis of our Monte Carlo exercise. We
use the equations of the Long-Plosser model, (C10) and (C11), derived above to trace out the
dynamics of output in response to technology in government spending shocks. We also add an
additional error term to capture other sources of productivity and demand shocks (as well as
measurement error). In the case of technology shocks, equation (C10) thus becomes

technology shocks : d ln yt = A× d ln yt−1 + ztfpt + εtfpt (C30)

where ztfpt denotes the vector of technology shocks, and εtfpt is the vector of additional shocks
assumed to be iid. We take productivity and government spending shocks to be persistent
(since we are considering short time periods, such as months or quarters, which will then be
time averaged into annual observations). In particular, we assume that

ztfpi,t = ρztfpi,t−1 + νt,

where νt ∼ N (0, 1). When time periods correspond to quarters, we set ρ = 0.85, which implies
an annual persistence of 0.52, corresponding approximately to the average persistence of the
shocks we study in our empirical work.

For equation (C11), we approximate Rt ' 1/δ ' 1, since time periods are taken to be short
(quarters or months), and then use the same steps as in the proof of Proposition C2 to convert
the equation in nominal terms into log changes and thus write (C11) as

d ln yt+1 = ĤTΛtdG̃t,

where

Λt =



(
1− β1

(1+λ)

)
1

p1,ty1,t
− β1
(1+λ)

1
p1,ty1,t

...

− β2
(1+λ)

1
p2,ty2,t

(
1− β2

(1+λ)

)
1

p2,ty2,t

. . . (
1− βn

(1+λ)

)
1

pn,tyn,t


.

Thus the equation we use to generate our simulated data the case of government spending
shocks is



government spending shocks : d ln yt = ĤTΛtz
G
t + εGt ,

where zGt denotes the vector of government spending shocks, and ε
G
t denotes the additional

shock in this case. We again take this latter shock to be iid, and impose the same persistence
structure on our shock of interest, i.e.,

zGi,t = ρzGi,t−1 + νt.

We also assume that εtfpt , εGt are iid and distributed N (0, 10) so as to generate suffi cient
noise in our simulated data. Throughout, we take the number of sectors to be 392 as in our
empirical work, and we use the actual input-output matrices from the U.S. data that featured
in our empirical work.

For quarterly data, we burn the first 160 quarters of simulated data, and then take 20
years of quarterly data, which we then time-average into annual observations, thus giving us
20 years of annual data with 392 sectors, which matches our empirical frame. We repeat this
procedure 1000 times.

We then estimate our main specification from the text, equation (12), on these simulated
datasets. As in our main text, upstream and downstream effects are computed from equa-
tions (13) and (14). The following regression equation reports mean values and the standard
deviation of the estimates across the 1000 runs, starting with the case of technology shocks:

d ln yt = −0.002
(0.012)

× d ln yt−1 + 0.770
(0.037)

× dztfpt−1 + 0.014
(0.206)

× dztfp,upt−1 + 0.881
(0.327)

× dztfp,downt−1 .

Panels A-D of Appendix Figure 4 illustrate the distributions of each coeffi cient across these
1000 simulations. Both our summary equation and the figure clearly show that we estimate
no upstream effect and significant downstream effects as predicted by theory. The coeffi cient
on the lagged dependent variable is zero, reflecting the fact that there is no other source of
persistence (such as capital accumulation) in our simulated data. Panel E of the figure turns
to the implied tests of the theoretical restriction (where we again follow the theory and include
all indirect effects from own shocks together with the own shock). It plots the distribution of
p−values of the test for this theory-implied restriction. We see that this restriction is rejected
in about 18% of the cases at the 5% level. This somewhat high rejection rate is a consequence
of the fact that time averaging the simulated data affects the own and downstream effects
differentially. Nevertheless, we find it encouraging that in the great majority of the cases, this
restriction is not rejected.
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Appendix Figure 4. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to technology shocks at quarterly frequency.

The next equation summarizes the results from government spending shocks, with the full
results shown in Appendix Figure 5. The overall pattern is very similar and again consistent
with our theoretical predictions, with one notable difference that, in this case, despite time-
averaging the theory-implied restriction between own and network effects is rejected in about
4% of the cases at the 5% level, approximately as we would expect.

d ln yt = −0.012
(0.011)

× d ln yt−1 + 0.781
(0.034)

× dzGt−1 + 0.761
(0.182)

× dzG,upt−1 − 0.008
(0.221)

× dzG,downt−1 .
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Appendix Figure 5. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to government spending shocks at quarterly frequency.

We next depict the same analysis when simulating the model at the monthly frequency,
which in particular implies that we set ρmonth = 0.947, so that we have the same annual
persistence of shocks. We now use 1000 runs of 20 years each, and again burned the equivalent
of 20 years of data (480 months). The results for technology shocks are once again similar, as
summarized in the next equation and in Appendix Figure 6 below.

d ln yt = −0.031
(0.014)

× d ln yt−1 + 0.730
(0.022)

× dztfpt−1 + 0.002
(0.092)

× dztfp,upt−1 + 0.769
(0.133)

× dztfp,downt−1 .
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Appendix Figure 6. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to technology shocks at monthly frequency.

Once again, in response to technology shocks, there are no upstream effects and well-
estimated downstream effects, and theory-implied restrictions are accepted in the majority of
the cases.

Turning next to government spending shocks, we find a similar pattern consistent with
theory as summarized in the next equation and in Appendix Figure 7:

d ln yt = −0.035
(0.014)

× d ln yt−1 + 0.734
(0.020)

× dzGt−1 + 0.711
(0.089)

× dzG,upt−1 − 0.0003
(0.098)

× dzG,downt−1 .
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Appendix Figure 7. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to government spending shocks at monthly frequency.

Measurement Error

Our second Monte Carlo exercise investigates whether measurement error in the input-output
matrix will lead to incorrect inference (partly because this measurement error might be magni-
fied in the Leontief inverse). For this exercise, we directly simulate data at the annual frequency
from our baseline model (thus using the Leontief inverse matrices), and since we would like
to investigate whether, in the presence of measurement error, network effects from technology
shocks might be incorrectly identified as resulting from government shocks and vice versa, we
combine (C10) and (C11) and simulate the data in the presence of both types of shocks pro-
creating according to theory as well as additional noise representing other shocks. Namely, we
use the equation

d ln yt+1 = γ × d ln yt + αdown ×H× dztfpt + αup × Ĥ×Λt × dz
G
t + εt, (C31)

where dztfpt and dzGt are the vectors of technology and government spending shocks, and we
take them to be iid and distributed N (0, 1). The additional noise εt is assume to be distributed
N (0, 1/12) . We set γ to the average of its empirical estimates, 0.085, and we again use the
Leontief inverse matrices H and Ĥ from the data as in our empirical work. To investigate
whether positive downstream (upstream) effects will be correctly identified and whether we



will also be able to estimate precisely zero effects when such propagation is absent, we consider
four different scenarios for αup and αdown: (i) αup = 1, αdown = 1, (ii) αup = 1, αdown = 0,
(iii) αup = 0, αdown = 1, and (iv) αup = 0, αdown = 0, covering all four possibilities (where
the normalization of the positive effects to 1 is without loss of any generality). We again run
1000 simulations in each case.

In estimating our main empirical model, equation (12), we introduce randomly-generated
measurement error on the actual matrix, so that the matrix we use in the estimation becomes

Aε =


a11 + ε11 a12 + ε12 ...
a21 + ε21 a22 + ε22

. . .

ann + εnn


and Âε is constructed analogously. To make this demanding test of our empirical strategy,
we introduce a considerable amount of measurement error and set the standard deviation of ε
equal to the average entry of the input-output matrix, ā ≡ 1

n2

∑
i

∑
j
aij . That is,

εij , ε̂ij∼N (0, ā) ,

and different draws are independent. With this amount of measurement error, the ranking of
the entries of the input-output matrices can be considerably different than what we measure.
We then compute the Leontief inverses in the usual manner: Hε = (I−Aε)−1 and Ĥε =(
I− ÂεT

)−1
. We again estimate equation (12) computing the downstream and upstream

effects according to equations (13) and (14).
We next report the results of this exercise, starting with the benchmark of no measurement

error when there are both upstream and downstream effects, and then moving to the four cases
indicated above. Throughout, given our motivation explained above, we estimate network
effects from technology and government spending shocks simultaneously.2

Case 0, No Measurement Error, αup = 1, αdown = 1

In this case, both own effects and network effects are precisely estimated, and are consistent
with theory. In particular, we find downstream propagation of technology shocks and zero
upstream propagation of these shocks, and upstream propagation but no downstream propa-
gation of government spending shocks. Quantitatively, own shocks and the relevant network
effects are of the same magnitude as predicted by theory. These results are summarized in the
next equation.

dln yt+1 =


0.085
(0.006)

× dln yt − 0.003
(0.054)

× ztfp,upt + 1.002
(0.065)

× ztfp,downt + 1.000
(0.010)

× ztfp,ownt

+0.980
(0.055)

× zG,upt − 0.004
(0.064)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

(C32)

2The results are similar if the two types of network effects are estimated separately.



Case 1, Measurement Error, αup = 1, αdown = 1

In this case, as shown by the next summary equation, we find the expected pattern of down-
stream propagation of technology shocks and upstream propagation of government spending
shocks, and no upstream propagation from technology shocks and no downstream propagation
from government spending shocks. Moreover, despite the sizable amount of measurement er-
ror in the input-output matrices, the estimated magnitudes of the relevant network effects are
consistent with theory: on average, downstream network effects from technology shocks have
the same magnitude as the own effect of technology shocks, and upstream network effects from
government spending shocks likewise have the same magnitude as the own effect of government
spending shocks.

dln yt+1 =


0.085
(0.006)

× dln yt − 0.001
(0.054)

× ztfp,upt + 0.992
(0.063)

× ztfp,downt + 1.000
(0.011)

× ztfp,ownt

+0.970
(0.053)

× zG,upt − 0.002
(0.061)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

The full distribution of the parameter estimates, focusing on upstream effect, downstream
effects and own effects, are shown in Appendix Figure 8.
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Appendix Figure 8.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 1 and αdown = 1.



In summary, in this case, with both government spending and technology shocks, despite the
substantial amount of measurement error, our regressions correctly identify the theory-implied
network effects and estimate zero propagation when there should not be any.

Case 2, Measurement Error, αup = 1, αdown = 0

We next turn to the (hypothetical) case in which the data generating process includes upstream
propagation in response to government spending shocks, but no downstream propagation in
response to technology shocks.3 The results are again encouraging for our empirical strategy
as summarized by the next equation and Appendix Figure 9, and show that our regressions
estimate the relevant network effects correctly and estimate zero effects when there are no
network effects.

dln yt+1 =


0.085
(0.006)

× dln yt + 0.001
(0.052)

× ztfp,upt − 0.001
(0.066)

× ztfp,downt + 0.000
(0.010)

× ztfp,ownt

+0.974
(0.056)

× zG,upt − 0.005
(0.063)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

3This case is not possible when our theory applies, since upstream propagation in response to government
spending shocks and downstream propagation in response to technology shocks are determined by the same
input-output linkages. Nevertheless, this hypothetical case enables us to investigate whether our regressions
will correctly identify the presence or the absence of these effects when one is present and the other one is not
as might be the case under alternative theories.
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Appendix Figure 9. Distribution of coeffi cient estimates from 1000 Monte Carlo simulationsin

response to government spending shocks with measurement error and αup = 1 and αdown = 0.

The results show zero own effects and zero network effects from technology shocks, and
zero downstream propagation from government spending shocks, and correctly identify the own
effects and upstream propagation from government spending shocks, with the right magnitudes.

Case 3, Measurement Error, αup = 0, αdown = 1

We find the same pattern when there is downstream propagation in response to technology
shocks but no upstream propagation in response to government shocks as summarized next:

dln yt+1 =


0.085
(0.008)

× dln yt + 0.004
(0.052)

× ztfp,upt + 0.989
(0.062)

× ztfp,downt + 1.001
(0.011)

× ztfp,ownt

−0.003
(0.052)

× zG,upt − 0.002
(0.061)

× zG,downt + 0.000
(0.010)

× zG,ownt

 .
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Appendix Figure 10.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 0 and αdown = 1.

Case 4, αup = 0, αdown = 0

Finally, we turn to the case in which there are no network effects, and in this case our equations,
as summarized next, correctly identify no upstream or downstream propagation in response to
either government spending or technology shocks (as well as no own effects).

dln yt+1 =


0.085
(0.011)

× dln yt + 0.000
(0.052)

× ztfp,upt + 0.002
(0.062)

× ztfp,downt + 0.000
(0.010)

× ztfp,ownt

−0.001
(0.053)

× zG,upt + 0.000
(0.064)

× zG,downt + 0.000
(0.010)

× zG,ownt

 .
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Appendix Figure 11.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 0 and αdown = 0.

Overall, these results bolster our confidence in the reliability of our empirical strategy, even
in the presence of substantial measurement error.




