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ABSTRACT

For thirty years, it has been accepted that consumption is smooth because
permanent income is smoother than measured income. This paper considers the
evidence for the contrary position, that permanent income is in fact less
smooth than measured income, so that the smoothness of consumption cannot be
straightforwardly explained by permanent income theory. Quarterly first
differences of labor income in the United States are well described by an
AR(l) with a positive autoregressive parameter. Innovations to such a pro-
cess are "more than permanent;" there is no deterministic trend to which
the series must eventually return, and good or bad fortune in one period can
be expected to be at least partially repeated in the next. Changes to per-
manent income should therefore be greater than the innovations to measured
income, and changes in consumption should be more variable than innovations
to measured income. In fact, changes in consumption are much less variable
than are income innovations. We consider two possible explanations for this
paradox, first, that innovations to labor income are in reality much less
persistent than appears from an AR(l), and second, that consumers have more
information than do econometricians, so that only a fraction of the esti-
mated innovations are actually unexpected by consumers. The univariate time
series results are less than decisive, but the balance of the evidence,
whether from fitting ARMA models or from examining the spectral density, is
more favorable to the view that innovations are persistent than to the oppo-
site view, that there is slow reversion to trend. The information question
is taken up within a bivariate model of income and savings that can accom-
modate the feedback from saving to income that is predicted by the permanent
income theory if consumers have superior information. Nevertheless, our
results are the same; changes in consumption are typically smaller than
those warranted by the change in permanent income. We show that our finding
of "excess smoothness" is consistent with the earlier findings of "excess
sensitivity" of consumption to income. Our analysis is conducted within a
"logarithmic" version of the permanent income hypothesis, a formulation that
recognizes that rates of growth of income and saving ratios have greater
claim to stationarity than do changes in income and saving flows.
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0. Introduction

For thirty years, it has been accepted that consumption is smooth because

permanent income is smoother than measured income. Indeed, the smoothness

of consumption is a principal raison d'etre for the permanent income theory,

as every macro textbook carefully explains. This paper considers the evi-

dence for the contrary position, that permanent income is in fact less

smooth than measured income, so that the smoothness of consumption cannot be

straightforwardly explained by permanent income theory. The relationship

between permanent and measured income depends on the long-run properties of

the stochastic process generating income, and it is always difficult to make

inferences about the long-run from typical macroeconomic time-series. Even

so, we feel that the weight of the evidence we consider is against the per-

manent income story as an adequate explanation for the smoothness of con-

sumption. Several different calculations suggest the same conclusion, that

innovations in labor income are typically "more than" permanent, in the

sense that the expected present discounted value of an innovation in income

is greater than the innovation itself.

The paradox that we consider, smooth consumption versus noisy permanent

income, was first raised as a possibility by Deaton (1986). In the current

paper, we attempt to do two things. The first is to thoroughly examine the

univariate time-series properties of labor income to see whether there is a

paradox to be explained, or whether the conventional wisdom can be suppor-

ted. Since the answers are not transparent from the data, we employ a range

of different techniques so as to allay fears that our results are an arte-

fact of a particular methodology or choice of functional form. Our second

aim is to relate the "excess smoothness" result to the literature on "excess
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sensitivity" of consumption to income, a literature that dates from Flavin

(1981). Flavin found that, contrary to theoretical predictions, consumption

responds to lagged or anticipated changes in labor income. Flavin's results

are not in fact inconsistent with the findings of this paper, as we shall

show. Following the work of Campbell (1987), we formulate the permanent

income theory of consumption so that a single set of restrictions will

guarantee both that changes in consumption are orthogonal to previously

known information, and that consumption changes are exactly those warranted

by the revision to permanent income as perceived by consumers. Taken

together, the restrictions can be rejected against the data, as in Camp-

bell's earlier work, and consistently with other results, including those of

Flavin. Moreover, we show that the reaction of changes in consumption to

anticipated changes in income is also the root cause of the failure of

consumption to respond sufficiently to innovations in income. Since these

tests are conducted within a bivariate model of consumption and income, we

also have a check that the result on the persistence of income innovations

carries through to the bivariate case.

Section 1 is a preliminary one that establishes the context in which the

smoothness paradox is examined. Our formulation of the permanent income

model is a standard one, but we introduce a log-linearization of the model

that in many respects is easier to handle. Most of the relevant time series

are more easily transformed to stationarity in logarithmic form, and most

atheoretical specifications of consumption functions have found that loga-

rithmic forms tend to fit the data better. The linearization given here is

designed to reap the benefits of logarithms without sacrificing the inhe-

rently additive structure of the permanent income model. The first section
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also gives simple forms of the smoothness result, for both linear and log-

arithmic formulations. Section 2 is concerned with the univariate time-

series analysis of the disposable labor income series created by Blinder and

Deaton (1985). We estimate a range of ARIMA processes for income and use

them to calculate permanent income. A variance components model suggested

by Watson (1986) is also discussed, and we pay a good deal of attention to

non-parametric estimation of the long-run properties of the series, measured

by the (normalized) spectral density at zero frequency. We argue that the

smoothness of consumption cannot plausibly be explained by the presence of

slow trend reversion in the univariate income process. Section 3 considers

models in which saving and income are represented within a bivariate system

that allows for the possibility that consumers have more information about

future income than is contained in the history of the income process. We

show that consumption is excessively smooth in the bivariate system, just as

it is in the univariate case, so that the smoothness cannot readily be

attributed to consumers' superior information. This section contains the

discussion of the relationship between excess smoothness and excess sensi-

tivity. It also contains a brief discussion of the relationship between our

results and those in the literature, as well as concluding remarks.

1. Consumption, permanent income, and innovations

We shall take the following equation as representing the permanent income

theory:

c = r
{A + E (1+ryiEy] (1)

1+r iO
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where c is consumption at time t, r is the real rate of interest, assumed

to be a constant, A is non-human wealth at the end of period t, so that

rA/(l+r) is capital income, E is the expectation operator for expectations

formed at t, and Yt is labor income received at time t. Point expectations,

a constant real interest rate, and the infinite horizon are all adopted to

enable us to illustrate as simply as possible the issues with which we are

concerned. The evolution of assets over time is governed by

A+1 = (l+r)(A+y-c). (2)

The first difference of equation (1) can be written, using (2), in the form

Ic+1 = r (3)
i=O

so that changes in consumption are driven by innovations in labor income.

More precisely, in this infinite horizon model, the change in consumption is

simply the annuity value of the present discounted value of change in the

expected value of future labor incomes. As in more general models of con-

sumption under uncertainty, the change in consumption depends on neither the

past history of nor previously anticipated changes in labor income. We

shall also make use of an alternative but equivalent expression first de-

rived in Campbell (1987). This explains saving, s, defined by

s = rA/(1+r) + Yt - C (4)

by the "saving for a rainy day" equation

s (5)
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whereby saving is the discounted present value of expected future declines

in income. (The equivalence of (5) and (1) can readily be seen by using (4)

to substitute for s, and then "unscrambling" the changes in labor income.)

Equations like (3) and (5) can be given empirical content by specifying

some mechanism for forming expectations. We follow standard practice by

specifying a time-series process for labor income, and using the estimated

parameter values to calculate predictions that can be revised as new in-

formation becomes available. For example, if Yt follows the ARNA process

Yt = Yt-k + Et + (6)

which may or may not contain unit roots, then we have, see Flavin (1981) or

Hansen and Sargent (1981),

= r[l +E(l+r)'6] (7)

(l+r) {l ->(l+rY I

In cases where there is a unit root in the autoregressive component of

(6), it is convenient to consider changes in expectations about changes

rather than levels of income. Since y1j is Yt plus the sum of from

j=l to j=i, we can substitute in the right hand side of (3) and rearrange to

obtain

= E l+(1+rYO (8)

i=o

where O and are the autoregressive and moving average coefficients in

the ARNA representation of the first-difference of income.
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To take a simple example that illustrates the algebra as well as the

phenomenon with which we shall be concerned, the following simple auto-

regression in first differences gives a good fit to the labor income series.

Our data period runs from 1953,2 to 1984,4, so that with differencing and

lags there are 125 observations: by OLS

= 8.2 + 0.442 a=25.2 (9)
(3.2) (5.5)

so that, in terms of the ARMA representation, the 0's are zero, as are the

's except for q1=O.442, so that (8) is

(l+r)
(10)

0. 558+r

The multiplier on the right hand side of (10) is 1.79 when r is zero, and

decreases only slowly with r, for example to 1.76 when r is 10% per annum,

so that (9) predicts that the standard deviation of changes in consumption

should be at least 1.76 times larger than the standard deviation of the in-

novation of labor income, estimated by (9) to be 25.2 ($ 1972 per capita per

annum). In fact, the standard deviation of the change in consumption is

27.3, and even this is an overestimate since purchases rather than con-

sumption of durables are included in the total. The standard deviation of

changes in consumption of non-durables and services is 12.4, and scaling

this by the ratio of the mean of total consumption to the mean of con-

sumption of non-durables and services gives a figure of only 15.8. The

problem arises because the stochastic process (9) has the implication that

shocks to labor income are indefinitely persistent, so that equation (10)

predicts that consumption should be noisier than income. If the income
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increase in one quarter is larger than expected, not only will that bonus

never have to be repaid, but it is reasonable to expect the good fortune to

be repeated, at least partially, in subsequent periods. Of course, this is

only an example, and we are still very far from having established that

consumption is in fact excessively smooth.

In spite of the fact that autoregressions like (9) fit the data well, it

is clear that the change in labor income is not a stationary time series.

Much more reasonable is the supposition that the first difference of the

logarithm of labor income is stationary. However, the permanent income

model relates consumption and changes in consumption to the level and

changes in the level of labor income, so that some reformulation is needed

in order to work in logarithms. The basic idea is to work with the ratios

of saving and consumption to labor income, and to relate them to expect-

ations about the ratios of future to current income. Since we assume that

the rate of growth of labor income is stationary with mean p, say, expres-

sions of the form E(y÷/y) are readily decomposed into an expected growth

component exp(j), and a residual. And because this residual is likely to

be small relative to the growth component, it is possible to adopt a con-

venient linearization that yields a logarithmic version of the model. The

details are confined to a brief Appendix; here we report the loglinear forms

for the key equations (3) and (5), and present the equations to be used in

the empirical work.

The "rainy day" equation, (5), in which saving anticipates future dec-

lines in labor income, has a very similar form in logarithms, in which the

saving ratio anticipates future logarithmic declines in income, viz.,
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(s/y) piElogy. - 'C (11)

where ,c is a constant given in the Appendix. The discount factor in (11) is

not l/(l+r), but (l-i-j)/(1+r), or approximately l+ji-r. One of the costs of

moving from linear to logarithmic specifications is the need to assume that

r>p, that the real interest rate is larger than the rate of growth of real

labor income. The discounted present value of linear growth will exist

provided only that the discount rate is positive, but this is clearly not

the case for proportional growth. We believe that the stronger assumption

is warranted by the increase in realism of the logarithmic model for

incomes.

Changes in consumption can also be related to changes in expectations

about rates of income growth. The logarithmic counterpart to equation (3)

takes the form

Ct+i r
(12)

Yt r-p i=1

so that the ratio of the change in consumption to labor income is propor-

tional to the change in the present value of future rates of growth of in-

come, where once again, the discount rate is the excess of the real interest

rate over the rate of growth.

Equations (11) and (12) make somewhat different approximations, and since

we shall use both in the analysis, it is important that they be reconciled.

The derivation of equation (11) requires that the saving ratio be small, and

in the Appendix we show that this will only be true if both r and /r are

small. If so, r/(r-p) in (12) is approximately equal to unity, while if the

lagged value of (11) is divided by p and subtracted from (11), we have
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- A1ogy - Sti - ct (13)
i0

The approximate equivalence of the first and last expressions may be checked

directly, and is satisfied in our data. Our concern will be to test whether

either of the outermost expressions is equal to that on the inside.

The simple autoregressive scheme that works for first differences in (9)

also works for rates of growth of labor income, viz. , and again by OLS

Alogy = 0.00263 + 0.443 logy1 o=O.OO792 (14)
(3.3) (5.5)

so that, if is the innovation in the process, we have

= E (O.432p)'e (15)
i0 i=O 1-0.443(1-i-p-Fr)

The sample average quarterly rate of growth of labor income, p, is 0.00451,

or 1.805% per annum. Hence, when r is zero, the multiplier for in (15)

is 1.80, and is increasing in r. We therefore have "excess smoothness" in

consumption if the standard deviation of either of the two outermost ex-

pressions in (13) is less than 1.80 times 0.00792, i.e. 0.0142 per quarter

or 5.68% per annum. In fact, the standard deviation of the ratio of the

change in consumption of non-durables and services to lagged income is 3.27%

per annum, while that of the expression involving saving ratios is 3.57% per

annum. Table 1 gives these and other results for a variety of different

data series. The first panel shows means and standard deviations for rates

of growth of both total (i.e. inclusive of capital) income z, and labor

income y . The mean and standard deviation of the present value of innova-

tions in labor income are calculated as above, but converted to an annual
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basis. The second panel gives rates of growth of total consumption, and the

two measures of consumption change. Apart from sign, the two are close to

one another, and both have standard deviations much smaller than predicted

from the AR(1) behavior of the changes in log income. The final panel cal-

culates similar statistics for consumption of non-durables and services;

Table 1

Means, actual and predicted standard deviations

Variable Mean (% per annum) Standard Deviation (% p.a.)

ilogz 2.155 3.293

Elogy 1.805 3.516

EpEMogy 0.000 5.539

Total consumption

Alogc 2.204 3.141
2.307 3.272
-2.155 3.574

Scaled consumption of non-durables and services Scale factor A
logc 1.991 1.950 -

AEc/y.1 2.073 2.019 1.274
-2.155 3.574 1.274

ALxc/y1 2.433 2.370 1.495
-1.194 2.488 1.495

Notes: A constant discount rate of 6% per annum is assumed. The calcu-
lations in the third line assume that logy follows an AR(l) process with
coefficient =0.432. i is shorthand for

this grows somewhat less rapidly than the total, and is very much smoother.

Two scale factors are considered. The first, 1.274, is the ratio of the

mean of total consumption to the mean of consumption excluding durables.

Once again, the two change measures are close in both mean and variance, and

the variances are much less than those predicted by the theory. The second

scale factor, 1.495, comes from Campbell (1987), and is the reciprocal of

the marginal propensity to consume estimated from a simple bivariate reg-
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ression of consumption of non-durables and services on total income. This

"cointegrating" factor is the number .X that will make stationary the saving

series Under this definition of consumption, the two approximations

diverge significantly, particularly in means. One of the difficulties here

is that purchases of durable goods are becoming a steadily larger share of

total consumption, so simple scaling is not an adequate substitute for cal-

culating the consumption of durables.

Even so, these results clearly show that the excess smoothness result can

be described in logarithms just as well as in levels. Even total consump-

tion, changes in which are certainly more variable than in a true measure of

consumption, is smoother than it ought to be if permanent income theory is

true. More accurately, it is too smooth if the simple AR(l) model of

changes in labor income adequately characterizes the long-run behavior of

the series. Whether or not that is true is the topic of the next section.

2. Univariate time-series representations of income

Since changes in consumption are typically less variable than are changes

in labor income, the question of whether or not consumption is too smooth

rests on whether or not changes in permanent income are typically of smaller

magnitude than changes in income. Permanent income will only change in res-

ponse to new information about income itself, and the change in permanent

income will be larger or smaller as the innovations in income are expected

to be more or less persistent. In this section we study the persistence of

univariate innovations to income, reserving to the next section the possi-

bility that what here are labelled innovations may in reality be partly

anticipated by consumers.
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We investigate these questions under the assumption that Llogy is a

stationary time series. It is important to note that this does not presume

the answer and that the assumption is consistent with a wide range of pro-

cesses. For example, if logy were the sum of a stationary ARMA process and

a deterministic linear time trend, the first difference, logy, would be a

stationary ARMA process with a unit root in the moving average part.

Consider the moving average representation of the series,

(logy-/z) — + Oi.e_1 + 02t-2 + .
= (16)

j=O

where is taken to be unity. Note that for the AR(1) scheme given by

(14), O=i , whereas the presence of a deterministic trend would tend to

show up in negative values for sometime after the first. For example, if

logy were the sum of white noise and a linear trend (which it is not), we

should have O=-l, and for j > 1. The moving average representation

(16) is convenient, not only because it allows such unit roots, but also

because we have

= GkEt (17)

In consequence, the quantity we are interested in for evaluating excess

smoothness in (13) is

E pi(EE1)logy =( = (18)
i=O 1=0

Hence, if we can find the MA representation of logy, the expression ir(p)

tells us what should be the ratio of the standard deviation of Ac/y to the

standard deviation of the innovation in labor income. Note that ir(l) is the



13

persistence measure defined in Campbell and Mankiw (1986a) and calculated by

them for real gross national product. It measures the ratio by which an

innovation has to be multiplied to determine its final effect upon the level

of the series. Since p = 1+z-r 1, the measure that we require here is

likely to be numerically close to the simple persistence measure. Note

finally that whether or not ir(p) > 1, whether the series is persistent or

whether permanent income is noisier than measured income, is not simply a

matter of whether the series in levels does or does not possess a unit root.

Consider for example the sum of a random walk and white noise; the series in

levels has a unit root, but its persistence measure, which depends on the

ratio of the variances of the white noise to the innovation variance of the

random walk, is always less than unity. We shall consider a closely related

example below.

Perhaps the most obvious way to estimate it(p) is to fit ARNA models to

the series (logy-p), and this is what we do first. For the period 1953,2

through 1984,4 we used the Kalman filtering algorithm, see Harvey (1981), to

calculate exact maximum likelihood estimates for ARMA(p,q) models for all

combinations of p,q s 2. A selection of the results is shown in Table 2.

Each vertical column in the table represents a particular specification,

with a general increase in complexity as we move from left to right. The

first horizontal panel shows the parameter estimates for the autoregressive

part, while the second shows those for the moving average. The third panel

contains the estimate of the innovation variance and the maximized value of

twice the logarithm of the likelihood. The roots of both autoregressive and

moving average parts are shown next, while the final panel gives the per-

sistence measures that are our main focus of interest. The first three of
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Table 2

ARXA models for changes in log labor income

(1) (2) (3) (4) (5) (6)
white noise AR(1) ARMA(l,l) ARMA(l,2) ARMA(2,0) ARNA(2,l)

Autoregressive parameters
- 0.45(.09) 0.44(.18) 0.59(.39) 0.45(.10) 1.44(.09)
- - - - -0.00(.10) -0.45(.09)

Moving average parameters
01

- - 0.01(.21) -0.14(.42) - -1.00(.11)
02

- - - -0.09(.22) - -

Innovation variance x iO and likelihood

8.76(0.5) 7.83(0.4) 7.83(0.4) 7.82(0.4) 7.83(0.4) 7.77(0.4)
2logL 836.42 864.32 864.32 864.81 864.32 865.42

Roots

AR 0 0.45 0.44 0.59 0.44,0.01 0.97,0.47
MA 0 0 0.01 0.38,-0.24 0 -1.00

Persistence measures

5 years 1 1.80(0.3) 1.80(0.3) 1.90(0.4) 1.81(0.4) 1.06(3.0)
2oyears 1 1.80(0.3) 1.80(0.3) 1.90(0.4) 1.81(0.4) 0.17(6.2)

ir(l) 1 1.80(0.3) 1.80(0.3) 1.90(0.4) 1.81(0.4) 0.00(1706)
ir(0.9945) 1 1.80(0.3) 1.80(0.3) 1.89(0.4) 1.80(0.4) 0.29(1429)
ir(0.9895) 1 1.80(0.3) 1.79(0.3) 1.88(0.4) 1.79(0.4) 0.49(1242)
ir(0.9845) 1 1.79(0.3) 1.78(0.3) 1.87(0.4) 1.79(0.4) 0.64(1096)

these show what fraction of an income innovation can be expected to remain

in the level of (log) income after 5 years, 20 years, and in the limit.

This limiting persistence measure, or ir(l), is simply the sum of the coef-

ficients of the MA representation of the first difference, while the last

three lines show the same suni with the successive coefficients discounted

according to (18) above. The three figures shown correspond to real

interest rates of 4%, 6% and 8% per annum respectively.
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Column (1) of the Table shows the estimates under the hypothesis that the

rate of change of income is (a constant plus) white noise, so that the log-

arithm of labor income is a random walk plus drift. Since the change in a

random walk is immediately consolidated into the series, but has no pre-

dictive power for the future, all of the persistence measures are unity.

The likelihood for the random walk model is significantly exceeded by that

for the AR(l) model for first differences in column (2), which is essenti-

ally the same model that was discussed above. For this model, the per-

sistence measure attains its final value of 1.80 quite rapidly, and is quite

insensitive to variations in the discount rate within the relevant range of

real interest rates. Improving the likelihood beyond the figure in column

(2) is more difficult. MA(l) and MA(2) processes, not shown, fit the data

very much worse than does the AR(l), while the extension of the AR(l) to an

ARMA(l,l) in column (3) gives a very small MA coefficient and an almost im-

perceptible increase in the likelihood. The ARMA(l,2) does very little bet-

ter, nor is there any evidence that adding AR coefficients with no MA coef-

ficients improves the fit, see the AR(2) in column (5). All of the models

in columns (2) through (5) have similar persistence characteristics, and for

none does the discounting make much difference to the persistence measure.

The last column, the ARMA(2,1) model, tells a somewhat different story.

All three parameters are individually significant, although there are also

very high correlations between the estimates. The moving average part has a

unit root, while the autoregressive part has roots of 0.97 and 0.47. Since

the 0.97 root is close to unity, and not significantly different from it,

there is an almost exact cancellation of roots, in which case we are back

with the AR(l) model in column (2). Indeed, a standard likelihood ratio
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test cannot reject the AR(l) as a specialization of the ARMA(2,l). Even so,

the ARMA(2,1) has both estimated AR roots less than unity, (one only just),

and contains a unit root in the moving average part, so that innovations

will always be eliminated in the end, and the ultimate measure of persist-

ence is zero. Note that even after five years, the persistence measure is

greater than unity, so that the behavior of this model deviates from that of

the others only a long time after the original shock, when there are a long

string of small negative coefficients in the MA representation that eventu-

ally eliminate the early positive effects. Of course, since the roots al-

most cancel, there is very great uncertainty about the persistence esti-

mates. Furthermore, the discounting now makes a considerable difference

with higher interest rates favoring the early positive effects at the ex-

pense of the later negative ones.

It is instructive to compare the ARMA(2,1) with the components model

suggested by Watson (1986). In this, logy is written as the sum of two

components, one of which is a random walk with drift, while the other is a

stationary AR(2) process, i.e.

logy = +

= r1 + p + (19)

(1 — — 2L2)r =

where and are independent white noise disturbances with variances

and a. It can be shown that Watson's model can be represented as an

ARMA(2,2) in the first differences, although the parameters are restricted.

If the model is fitted to our data, and once again estimation is straight-

forward using the Kalman filter, we obtain an estimate of of almost
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exactly zero, in which case (19) is identical to the ARMA(2,l) in column

(6). Note that in this case, the random walk in the second line of (19)

becomes a deterministic trend, so that the model represented by column (6),

as well as the version of the Watson model that best fits our data, is of a

(just) stationary AR(2) process around a deterministic linear trend. Such a

model has no long run persistence, because income will eventually return to

trend, and the effects of innovations on permanent income are limited,

though they can still be quite sizeable, especially if the long-run negative

effects are heavily discounted.

There is no formal statistical basis for favoring one or other of these

two representations. An external criterion like parsimony would lead to

column (2), the simple AR(l) in first differences. But many economists have

strong prior beliefs in models with deterministic trends, and they are

unlikely to be persuaded by parsimony. Formal tests for unit root models

are available from the work of Dickey and Fuller (1981) and Phillips and

Perron (1986), and these cannot reject the AR(l) model in favor of the

deterministic trend model in column (6). But that does not mean that the

deterministic trend model is incorrect, but simply that it is not possible

to discriminate on these data with these models.

Measurement of persistence depends on the long-run properties of the

income series, and it is conceivable that a mere thirty years worth of data

is insufficient for this task. However, another possibility is that the

ARMA models in Table 2 are not the most efficient way of measuring per-

sistence since they do so indirectly, estimating not persistence itself, but

a set of parameters which are then used to calculate persistence. An alter-

native, more direct procedure, is to examine the representation of income in
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the frequency domain. Long run properties of the series correspond to very

low frequency components, so that, for example, as Watson points out, the

model (18) has a spectral density at zero frequency of zero, as does the

AR(2,l) model in column (6), while the spectral density of the AR(l) series

in column (2) reaches its maximum at zero. The use of the spectral density

at zero as a measure of persistence has also been advocated by Cochrane

(1986), and its (close) relation to the measures used here is given by Camp-

bell and Mankiw (1986a).

We denote the jth autocovariance of the log difference of labor income as

and write C(z) for the sum '(az) with j running from — to If 02

is the variance of tlogy, its spectral density at zero can be written as

v—C(l)/u2, which is the sum from minus to plus infinity of all autocorre-

lations. From Cranger and Newbold (1977, p.31), we have

where ir(.) is defined in (18), and o, as before, is the innovation variance

of tdogy, so that

= C(1)/a2 = (02/a2)[ir(l)]2 (20)

Consequently, if R2==1—a/c2 is the fraction of the variance that can be pre-

dicted from the past history of the process, the relationship between the

two persistence measures can be written

ir(1) = J[u/(l—R2)] (21)

From the point of view of this paper, the main virtue of the measure u is

that there exists a direct non-parametric estimator, see for example

Priestly (1982). Write the sample autocorrelations as
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r T T— E (logy—p)2. (22)
T-j tj+1 t=i

then the estimate of v based on a triangular (Bartlett) window of size k is

k
= 1 + 2 [l—j/(k+l)J (23)

j=o

The window weights in (23) give linearly declining weights to higher-order

autocorrelations up to and including the kth. Provided this window size is

increased with the sample size, £' is a consistent estimator of v, and has

an asymptotic t-value given by

,/{O.75T/(k+l)] (24)

The fact that u can be estimated directly is of great convenience, but a

number of complications ought to be noted before turning to the results.

First, we can only move from u to ir(l) with through (21), and that requires

knowledge of extent to which the series can be predicted from its past. The

required R2 can be sensibly estimate from the ARMA models, but it cannot be

directly estimated from the data without some parametric model. Even so, we

know that R2 is at least as large as -y, the squared first order autocorre-

lation coefficient, so that j[u/(l—-y)] provides a lower bound for ir(l),

whatever the value of R2. Replacing -y by its sample estimate provides an

estimate of this lower bound, lr*. Second, it is not really 'r(l) that we

require, but ir(p), and there appears to be no way of allowing for the dis-

count factor in the estimation. However, note from Table 2 that discounting

makes little difference for most of the models, and it is clear what sort of

patterns of persistence will cause this result not to be true.

Table 3 presents the estimates of the spectral density and the implied
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Table 3

Non-parametric estimates of persistence

Labor income, logy

Autocorrelations at lag:
1 2 3 4 5 6 7 8 9 10

0.446 0.193 0.156 0.056 -0.152 -0.017 -0.010 -0.070 -0.024 0.123

Persistence estimates:

Ak Ak *Window size u s.e.(v )

10
20
30
40
50
60

2.212
2.334
2.523
2.443
1.986
1.424

0.755
1.100
1.445
1.609
1.459
1.144

1.663
1.707
1.775
1.704
1.575
1.333

Total income, 1logz

Autocorrelations at lag:
1 2 3 4 5 6 7 8 9 10

0.373 0.124 0.103 -0.039 -0.206 -0.074 -0.068 -0.120 -0.031 0.141

Persistence estimates:

Window size s.e.() *

10
20
30
40
50
60

1.589
1.518
1.529
1.438
1.088
0.793

0.542
0.716
0.871
0.947
0.800
0.637

1.358
1.328
1.329
1.292
1.124
0.960

persistence measures. The autocorrelations are shown for lag lengths up to

ten quarters, and it is interesting to note that after the first four,

which, as predicted by the simple AR(1), are positive and geometrically

declining, there is a sequence of negative coefficients, which are not

predicted by the AR(1), and which may indicate some tendency for the effects

of the innovations to be negated some considerable time after they have
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occurred. Nevertheless, the estimate of v is consistently above 2 for all

reasonable window sizes; note that as the window size tends to the sample

size, tends to a mechanical and meaningless value of zero. However, it is

also the case that the standard error increases throughout the same range,

so that it would be difficult to persuade a determined believer that per-

sistence is indeed greater than unity. For very small window sizes, say

with k<lO, the estimates of u exceed unity by more than two standard devia-

tions, but given the pattern of the autocorrelations, this is hardly a fair

test. Nevertheless, the lower bound estimates for 7r(1) shown in the table

are strikingly similar to those found in Table 2 for the AR(l) and related

models. There is no evidence here of the zero long-run persistence that

would be predicted by a model with a deterministic trend.

Since the series for labor income is a "manufactured'1 series, see Blinder

and Deaton (1985) for details, we also present details of similar estimates

for the more "official" series on total income. The pattern is somewhat

similar, and although the persistence estimates are smaller there is cer-

tainly no suggestion that the results are extremely sensitive to the defini-

tion of income. A more serious question is about the reliability of the

non-parametric estimator, particularly in samples of this size, and it is

legitimate to be concerned whether or not these procedures can be expected

to discriminate between genuinely persistent series and those, such as the

series generated by the Watson model, that have ultimately zero persistence.

Following Campbell and Mankiw (l986b), some relevant Monte Carlo results are

presented in Table 4. The second panel reports Campbell and Mankiw's re-

sults for a time series that is a stationary AR(2) process around a deter-

ministic trend so that the first difference is an ARMA(2,l) with a unit root



Truth is AR(l)
in first differences

Truth is AR(2) with
deterministic trend

Ak *v (s.d.) it (1)
Ak *v (s.d.) it (1)

1.94 (0.59) 1.50 (0.27)
1.87 (0.86) 1.45 (0.36)
1.70 (0.99) 1.37 (0.42)
1.55 (1.04) 1.29 (0.46)
1.38 (1.06) 1.19 (0.48)
1.21 (1.05) 1.09 (0.50)

1.32 (0.38) 1.24(0.20)
0.83 (0.32) 0.97(0.20)
0.57 (0.27) 0.80(0.19)
0.43 (0.23) 0.69(0.19)
0.34 (0.21) 0.60(0.19)
0.27 (0.19) 0.53(0.19)

Notes: The AR(1) model has a parameter of 0.4, while the AR(2) parameters
are 1.34 and -0.42. The results are based on 500 replications of using
generated series of length 130. True u and ir(l) are 2.33 and 1.67 for the
AR(l) model and are zero for the AR(2) model. Standard deviations are
standard deviations of the empirical distribution of the estimates.

in the moving average part; the parameters of the AR(2) are 1.34 and -0.42,

corresponding to roots of 0.84 and 0.50. The first panel gives similar data

for the AR(l) model in first differences. In each case, 500 artificial

series of length 130 were generated, and persistence estimates calculated

for various window sizes following exactly the procedures used in Table 3.

Note first that the estimates for the AR(l) model are biased downward and

that the bias worsens as the window size is enlarged. Similarly, the esti-

mates for the AR(2) with deterministic trend are too large; the long-run

return to trend can only be captured by window sizes that are larger than

the sample size can bear. Even so, the difference between the left and

right panels is very apparent, and is in the right direction; at all window

sizes the AR(l) is estimated to be more persistent than the ARMA(2,l), and

the difference is particularly marked when the window size is 20 or more.

22

Table 4

Experimental results on persistence estimates
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Comparing Table 4 with our "real" results in Table 3, labor income generates

even larger persistent estimates than does the theoretical AR(l), although

the standard deviations in Table 4 suggest that our results are well within

the sampling distribution. But it is very hard to believe that labor income

is indeed described by the a deterministic trend plus the stationary AR(2)

in Table 2; the estimates in Table 3 are extremely unlikely to have come

from the population described by the right hand panel of Table 4.

in summary then, we tend to believe that the evidence is in favor of the

persistent models, so that, if consumers predict income on the basis of a

univariate process, consumption is much too smooth to be consistent with the

permanent income model. Choice between the ARMA models in Table 2, and in

particular between an ARIMA(1,l,O) and a stationary AR(2) around a deter-

ministic trend, is very much a matter of taste, and it has become clear to

us there are very different tastes in the profession. The non-parametric

estimates of persistence do not resolve the question in favor of the model

with the unit root, but they do suggest a good deal more persistence than is

consistent with a relatively rapid return to a deterministic trend.

3 Bivariate models and the excess sensitivity question

In this section we work with a bivariate autoregressive representation of

the saving ratio and the change in log of income. Such a representation

allows a much richer representation of the permanent income theory, it is

immune to a number of important criticisms of the univariate approach, and

it will allow us to link our results with the literature. The simplest form

that we shall consider is
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1logy—p a11 a12 logy.1—p U1= + (25)
s /Yt —a a2 a22 - i/Yt - i— U2

where a is the mean saving ratio. In matrix notation, (25) is

Ax_1 + u. (26)

Most of our analysis can be done with the simple first-order vector autore-

gression (25), but we shall occasionally incorporate additional lags. If

there are 11 lags, x becomes a 211 vector containing current logy, its

first (11-1) lags, followed by the equivalent M terms for the saving ratio.

The matrix A is then a 2M square matrix of coefficients.

Equation (25) asserts that the saving ratio is stationary but satisfies

what can be thought of as an error correction mechanism whereby deviations

of the saving ratio from its (unconditional) mean exert a lagged influence

that helps return the series to its equilibrium level. The change in income

has the same autoregressive part as before, but the lagged saving ratio is

also permitted to exert an influence. The existence of the "cross" effects

not only permits rather general univariate time-series representations of

the two series, but also permits a much more satisfactory treatment of the

informational structure of the. problem. It is reasonable to suppose that

consumers make use of whatever information is available to them in making

forecasts of future income, and that while current and past income levels

are likely to be relevant, they are unlikely to be exclusively so. Con-

sumers may be able to predict labor income much more accurately than do the

simple univariate time series models of the previous section, so that what

we class as "innovations" to income could have been largely predicted by

consumers. If so, the smoothness of consumption may simply reflect the
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lower innovation variance that is guaranteed by superior information, see in

particular West (1986a), although West (1986b) has also constructed a test

that shows that the data do not support this hypothesis.

In contrast to the univariate representations, bivariate models such as

(25) are capable of recognizing that consumers may have superior inform-

ation. If the permanent income theory is correct, saving (or the saving

ratio) incorporates consumers' expectations about future income, so that

saving behavior reveals those expectations to the observer. This is perhaps

the most important reason for expecting saving to Granger-cause income. In

period t-l, consumers may receive advance notice of an income change in t,

for example through an innovation in money, stock prices, or whatever. Such

information will be reflected in saving behavior in period b-l, but will

show up in income only in period t, so that saving will Cranger-cause income

in a bivariate system such as (25). Because of these effects, and again

provided that the permanent income model is correct, the econometrician's

perceived innovation to permanent income must be the same as the innovation

experienced by the consumer. Because saving is included in our information

set, our prediction of permanent income must contain the consumer's predict-

ion of permanent income, while any "advance notice" possessed by consumers

will be reflected, not in the true innovation being smaller than the appa-

rent innovation, but rather in the ability of lagged saving to predict

income. The formal basis for these results is as stressed in Campbell

(1987); the permanent income equations (11) and (13) remain valid when

projected on to the econometrician's information set, provided that the

savings ratio itself is included in the set.
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We use the vector autoregression (25) to examine three related questions.

First, we fit (25) to the data, and examine the corresponding univariate

representation for income. This provides yet another way of looking at the

persistence questions of section 2. Second, we follow Campbell (1987), and

use the model to test the standard "orthogonality" condition, that changes

in consumption are not predictable from lagged information. As in other

studies, we find evidence of "excess sensitivity," that changes in con-

suniption are predictable by anticipated changes in income. Thirdly, we

repeat the tests for "excess smoothness" of consumption, and show that, once

again, consumption does not respond sufficiently to unanticipated changes in

income. We show that the excess smoothness and excess sensitivity results

are consistent with one another, and that they stem from the same basic

underlying feature in the data; they are essentially the same phenomenon.

The first-order vector autoregression (25) generates parameter estimates

that are shown in the first panel of Table 5. The usual first-order auto-

regression in Ilogy is again apparent, although there is a small but sign-

ificant negative feedback from the lagged saving ratio to changes in income.

The saving rate is also well described by an AR(l), especially when con-

sumption is total consumption; when non-durable and service consumption is

used, the "own" autoregressive parameter is close to unity, and there is a

much larger feedback from lagged income changes.

Univariate representations for both series can readily be derived using

standard techniques, see e.g. Granger and Newbold (1977, p.217). Both

series can be represented as ARMA(2,1) processes, which suggests that there

is no immediate contradiction between the first-order VAR and the best ARMA

models in Table 2. Characteristics of the ARMA(2,l) for the rate of growth
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Table 5

Univariate representations of income growth from bivariate VAR

(1)
VAR parameters
a11,a12 0.443 -0.177

(0.08) (0.06)

a21,a22 0.072 0.803
(0.07) (0.05)

(2)

0.454 -0.067
(0.08) (0.03)
0.212 0.972

(0.07) (0.03)

(3)

0.458 -0.066
(0.08) (0.03)
0.266 0.956

(0.08) (0.03)

ARNA parameters and AR roots
1.247 -0.369

(0.09) (0.07)
-0.799 (0.05)

r11r2 0.763 0.483

1.425 -0.455
(0.08) (0.08)
-0.954 (0.02)
0.943 0.482

1.414 -0.455
(0.08) (0.03)
-0.952 (0.02)
0.918 0.496

Persistence measures
20 years 1.642 (0.25)

r(1) 1.648
ir(0.9945) 1.646
ir(0.9895) 1.644
r(0.9845) 1.642

1.546 (0.81)
1.533
1.560
1.580
1.596

1.170 (0.39)
1.172
1.216
1.252
1.283

Notes: (1) refers to calculations in which consumption is taken to be total
consumption, including purchases of durables. Panel (2) uses only non-
durables and services consumption inflated by a factor of 1.274. Panel (3)
is the same as panel (2) but with an inflation factor of 1.495.

of labor income are given in Table 3; because of the feedbacks between

income and the saving ratio, the representation varies with the definition

of consumption. However, all three representations have an autoregressive

root that is between 0.48 and 0.50, while the second autoregressive root is

always very close to cancelling with the moving average root. Hence, all

three ARMA(2,l) processes shown are very close to being AR(l) processes with

a positive autoregressive parameter of 0.48. However, all of the ARMA(2,l)

processes shown in the Table have high persistence, with estimates of ir(p)

that are always greater than unity, and that are largely insensitive to

variations in the real interest rate. All of this is confirmation of the
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results of the previous section, and to the extent that there are differ-

ences with the univariate processes, the difference is in favor of greater

rather than less persistence.

We consider next the relationship between the estimated vector auto-

regression and the theoretical properties of income, saving and consumption

that are presented in the introduction. The version of the permanent income

model on which we focus is that given by equation (13) in section 1. In the

notation of the VAR (25), this can be rewritten in the convenient form

S S_ -1— logy - t 1 = (e-e')x - p (27)
Yt

where e and e are the vectors (1,0) and (0,1) respectively. (Note that

(27) also holds when the VAR contains more lags, provided e1 and e2 are

appropriately redefined.) Substitution of the VAR (26) into the right hand

side gives

St - Mogy - ____ = [(e-e)A - + (e-e)u (28)
Yt

From (26), it is clear that (E-E1)x+ = A1u, so that, since logy is

the first element of x,

E pi(EE1)iogy = ep'Au (29)
i=O i0

Now, by (13), the left hand sides of (28) and (29) should be equal, so that

the permanent income theory requires that two sets of constraints be satis-

fied, viz.,
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(e-e)A - p1e 0 (30a)

epAi e-e (30b)

The interpretation of these two sets of restrictions is an important part of

our story. Equation (30a) guarantees that the left hand side of (28) is

independent of either lagged income growth or the lagged saving ratio. It

is therefore a test of the unpredictability of consumption, and includes a

test of the absence of "excess sensitivity," of the lack of relationship

between changes in consumption and lagged values of income. By contrast,

the restrictions in (30b) ensure that the change in consumption is that

which is warranted by the change in the present value of income. If (30b)

is satisfied, there can be no "excess smoothness" of consumption.

The orthogonality condition (30a) implies that the A matrix can be

written in the form

a
A= (31)

a

where a and are not restricted. Since p is non-zero, the determinant of

(I-pA) will be non-zero if, and only if 0, i.e. if saving Granger-causes

income. Given f3O, the inverse (I-pAY' exists, so that (30a) can be

rearranged to yield

e(I-pA' e2-ei (32)

which is identical to (30b). Hence, provided that lagged saving ratio has

predictive power for the change in labor income, the orthogonality condition

and the condition for smoothness are identical. If consumption changes can-
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not be predicted by past changes in either consumption or income, then the

consumption change must be equal to the change in permanent income.

If f30 in (31), the orthogonality condition will not generally guarantee

that the change in consumption equals the innovation in permanent income. In

this case, the change in income is a simple AR(l) as in Section 2, so that

the discounted innovation in (29) is uit/(l-pa). This will be equal to the

innovation in (St/yt - tlogy) if u2-u1 is equal to u1/(lpa), which

requires the existence of a linear dependency between the two innovations

which there is no reason to expect to hold in the data. Further, we know

from the results of the previous sections that consumption changes are not

sufficiently variable to match discounted innovations if the first dif-

ferences of income are indeed an AR(l). Lastly, we note that the results in

Table 5 suggest that the saving ratio does Granger-cause changes in income,

so that the case of 0 that is the one that is of practical importance.

Table 6 presents some of the relevant data, again for the three alter-

native definitions of consumption. The first column presents standard tests

of orthogonality using VAR's with one lag of the two variables, and VAR's

with five lags of each. All of these test statistics show rejections, with

the possible exception of the five lag VAR for the larger scaling of con-

sumption of non-durables and services. Even allowing for the asymptotic

nature of these results, and their dependence on an estimated variance

covariance matrix of the residuals, they are not favorable for the hypo-

thesis and are in line with other findings using similar (or the same) data.

The remainder of the table compares theoretical and actual innovation

variances, or standard deviations. For each case, we calculated the theo

retical innovation variance of (s/y-Alogy), which is (approximately)
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Table 6

Tests for excess smoothness and excess sensitivity

Notes: The Wald test is the test of the estimated parameters in the VAR for
conformity with the restrictions (30a). The predicted innovation is the
standard deviation of the last term in (29), i.e. the square root of the
quadratic form e(I-pA112(I-pA''e1 where ) and A are estimated from the
unrestricted VAR. The actual innovation is the standard deviation of
u1, or the square root of (e2'-e1')12(e2-e1). All calculations use a p of
0.9895, which corresponds to a real interest rate of 6% per annum.

equal to the theoretical innovation in and is calculated from the

last term in (29). For example, in the one-lag case, the VAR's are given in

Table 5, the variance covariance matrices of the residuals are calculated in

the usual way, and a value for the real interest rate of 6% per annum is

assumed. The actual innovation in (s/y-Llogy) is, by (28), simply u2-

u1, the standard deviation of which requires only the variance covariance

matrix. In every case, the theoretical innovation variance is larger than

the actual innovation variance, and in all but one case, is more than twice

as large. Consumption is markedly smoother than it ought to be if the

permanent income theory were correct.

Wald test predicted innovation actual innovation ratio
(p-value) variance variance (s.e.)

Total consumption

VAR-i 19.6 (5.4x105) 5.044 3.309 0.656 (0.10)
VAR-5 45.9 (l.5xl06) 4.768 3.017 0.633 (0.15)

Non-durables and services consumption x 1.274

VAR-i 18.4 (1.0xl04) 3.864 2.290 0.593 (0.21)
VAR-S 31.4 (5.0x104) 4.686 2.135 0.456 (0.20)

Non-durables and services consumption x 1.495

VAR-i 10.0 (0.0066) 3.188 2.382 0.747 (0.16)
VAR-5 18.2 (0.0509) 4.022 2,257 0.561 (0.13)
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Although Table 6 is a useful summary of our findings, rather more insight

can be obtained from a slightly different approach. If we examine the three

different A matrices shown in Table 5 and compare their structures with the

structure required for orthogonality in (31), it is apparent that the re-

striction on the second column is approximately satisfied, so that the re-

jection of the model reflects the fact that a11a21. This informal im-

pression is easily confirmed by calculating the test statistics for each of

the two hypotheses separately. The data can therefore be characterized

straightforwardly by writing A, not as in (31), but as

a
A= (33)

a—x

where x is the "excess sensitivity" parameter. Note that, if A satisfies

(33), we have, from (28),

s s Lc- °gy - t 1. = —xlogy1 + ce-e)u — _t (34)
Yt PYt-i Yt-i

so that x>O reflects the fact that changes in consumption respond positively

to last period's changes in income. It is this stylized fact of the data

that has repeatedly caused the model to fail, as for example in Flavin's

(1981) paper. Note also that the AR(l) structure for Edogy with a positive

coefficient implies that Ldogy1 predicts logy, so that x>O can also be

interpreted as a response of consumption to anticipated changes in current

income, as would be generated by the existence of liquidity constraints.

The implications of the existence of excess sensitivity for forecasts of

future income can most clearly be seen by evaluating (29) when A has the

structure given by (33):
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__epiAiut = e(I—pAy'u (u2-u1)/(l-px) (35)

The theoretical innovation is therefore the actual innovation multiplied by

(l-p)1, which, since x is a little less than 0.4, means that the predicted

standard deviation will be about fifty percent too large, which is essenti-

ally what is shown in Table 6. In the bivariate framework used here, the

untoward sensitivity of changes in consumption to anticipated changes in

income inevitably implies that consumption will respond by less than is

warranted given the innovation in income. There is no contradiction between

excess sensitivity and excess smoothness; they are the same phenomenon.

It is worth explicitly reconciling these findings with those of Flavin,

since Flavin's interpretation of her results is somewhat different from

ours. Flavin defines "excess sensitivity" as existing when the response of

consumption to current and lagged changes of income is larger than can be

justified by the permanent income model. Since the model implies that

changes in consumption should not be related to lagged income, part of her

excess sensitivity test is clearly identical to the orthogonality tests

presented here. Further, and in spite of our different econometric pro-

cedures (most importantly our use of logarithms, and Flavin's detrending of

the data), the orthogonality conditions fail here as they do in Flavin's

paper. However, Flavin also finds that consumption is excessively sensitive

to current income changes and writes, for example, "Using either nondurables

consumption or consumption of nondurables and services as the dependent

variable, the hypothesis that consumption exhibits no excess sensitivity to

current income can be rejected at the 0.5 percent level." (plO86). Since

our principal finding is that consumption is too smooth, that it does not
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respond enough to unanticipated changes in current labor income, a brief

reconciliation seems in order.

Consider the following simple model adapted from Flavin but using our

notation and our logarithmic form:

= + xi]ogy + (36)
iO

logy = p(l—) + Llogy1 + v1 (37)

Following Flavin, we have added an error term v2 to the consumption equa-

tion, and the term xlogy represents the excess sensitivity of consumption

to changes in current income. It is the quantity that Flavin finds to be

positive and significantly different from zero. (Note that it is straight-

forward to add further lagged changes in income to (36) and no new issues of

principle arise.) Equation (36) can be rewritten as

= xu(l—) + xlogy1 + [x-i-(l—py']v1 + (38)

so that (37) and (38) are the reduced form of the system. If we follow

Flavin, and allow the covariance of v1 and v2, 12 say, to be unre-

stricted, then (37) and (38) are an exactly identified two equation SUR

system, and the indirect least squares (maximum likelihood) estimate of x is

given by

= cov(ilogy1,Lic/y1 (39)

cov(logy -1 Alogy)

This expression does not involve any covariance between the change in con-

sumption and the current change in income, and given that Alogy is first-
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order autocorrelated, the probability limit of is zero if, and only if,

L.c/y,1 is uncorrelated with lagged changes in income. Hence when Flavin

estimates an excess response of consumption to changes in current income,

she is measuring the same thing that we are measuring, the failure of

changes in consumption to be orthogonal to lagged changes [n income. Note

that in a different world, where changes in consumption are orthogonal to

lagged information, but there is an excess sensitivity of consumption to

innovations in income, then the plim of would be zero and the response of

consumption to income innovations would show up in a positive estimate of

w12. In fact, the estimate of 12 in Flavin's paper is large and negative,

as it must be if the smoothness of consumption is to be captured by the

model.

Our results are therefore consistent with Flavin's in the sense that both

studies find that changes in consumption are correlated with lagged infor-

mation about income. Of course, in other respects the formulation in this

paper is quite different from Flavin's. Our inclusion of lagged saving in

the income generation equation is required to justify our claims that excess

smoothness cannot be explained by consumers' superior information. Nor is

it open to us to work with consumption and income data that have been de-

trended. Mankiw and Shapiro (1985) have demonstrated that detrending can

seriously compromise econometric tests for orthogonality, and it is import-

ant to note that the results in Section 3 are not subject to this diff i-

culty. But more seriously from our point of view, the assumption that

income is stationary around a deterministic trend would prejudge the issue

with which we began, "Is consumption too smooth?"
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Appendix

A logarithmic version of the permanent income model

Start from the "rainy day" equation (5), i.e.

s = - (Al)
i=o

Subtract capital income from both sides of (Al) to give

c-rA/(1+r) = Yt5t = _f_. [Yt + E (1+ryiEy] (A2)
l+r i=i

Dividing through by current labor income Yt gives

= r
[1 + E (A3)

1+r i1

Now, for all j > 0,

/y) = exp[jp±(Elogy÷—p)] e [l±2(lxlogy÷—p)] (A4)

where ,u = E(Ex1ogy) is the (unconditional) mean of the rate of growth of

labor income. If the final term in (A4) is substituted in the right hand

side of (A3) and terms rearranged, we reach
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l-(sIy)
r

[1 + piE(logy.p)] (A5)
(l+r)(l-p)

where p [(l+p)/(l+r)] l+p-r. Provided the ratio of saving to labor

income is sufficiently small, we can take logs of both sides and approximate

once again to give:

(St/yt) - (A6)

'C = log(r/(l-i-r)) - log(l-p) - jzp/(l—p) (A7)

Equation (A6) is equation (11) in the main text. From (A5), we have

E(siy) 1 — r
r - (A8)

(l+r)(l-p) r

so that the saving ratio is small if r is small and if p/r is small.




