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1 Introduction

A common view is that by far the most valuable asset that most people own is their human capital. We

provide a detailed characterization of the value and return to human capital, and their implications

for portfolio choice over the lifecycle. We first estimate a statistical model for male earnings and

stock returns to describe how earnings move with age, education and a rich structure of aggregate

and idiosyncratic shocks. We then embed this statistical model into a decision problem of the type

analyzed in the literature on the income-fluctuation problem. The properties of the implied human

capital values are calculated by using the stochastic discount factor produced by a solution to this

decision problem to value future earnings after taxes and transfers.

We highlight two main findings. First, the value of human capital is far below the value that would

be implied by discounting net earnings at the risk-free interest rate. The most important reason for

this is the large amount of idiosyncratic earnings risk that we estimate from U.S. data. An agent’s

stochastic discount factor covaries negatively with this component of earnings risk.

This finding is particularly relevant with respect to the view that various legal impediments, including

personal bankruptcy laws, hinder greater skill investment and greater risk sharing in an individual’s

future earnings. The finding that individual human capital valuations are far below the value im-

plied by discounting earnings at the risk-free rate suggests that individual valuations are well below

market valuations. If so, then absent these impediments there is ample scope for alternative financial

arrangements to arise to share some of this idiosyncratic risk.1

Our second main finding involves decomposing the value of human capital at each age into a stock,

bond and orthogonal value component. We find that the stock component is typically below 35 percent

of the value of human capital. This holds for two different educational groups (high school or college

educated males) under a wide range of attitudes towards risk-aversion. We determine the stock share

by projecting the sum of next period’s earnings and human capital value onto next period’s bond and

stock returns. We then value these components using the individual’s stochastic discount factor.

This finding is relevant for understanding optimal portfolio allocation. One view is that, in deciding

how to allocate financial wealth between stock and bonds, the implicit holdings of stock and risk-free

bonds in human wealth are important. This seems particularly relevant if, as we find, the value of

human wealth far exceeds the value of financial wealth for most individuals. Thus, a first-order issue

for the portfolio allocation literature is to decompose the value of human capital into bond and stock

1Krebs, Kuhn and Wright (2013) argue that young, multi-member households are underinsured against mortality risk
- one very specific source of human capital risk.

1



components and determine the features that drive the magnitude of the stock component.

To the best of our knowledge, Benzoni, Collin-Dufresne and Goldstein (2007) is the only paper besides

ours that defines the value of human capital as we do and then decomposes this value into components.

On the basis of a rough calibration of a joint earnings-stock-returns process, they conclude that the

stock component of human capital is 50 percent of the value of human capital at age 20 and remains

at 50 percent for the first half of the working lifetime. If correct, then one explanation for why some

individuals hold little or no stock in their financial asset portfolios is that they already hold a large

implicit position in stock, and risk preferences dictate that stock holdings in overall wealth is less than

50 percent.

We find that the stock component of the value of human capital is positive, but is typically far

below the 50 percent value highlighted by Benzoni et al. (2007). A number of model features lead

to a positive stock component. For example, social security retirement benefits that are positively

linked to the level of average earnings, a left-skewed distribution of idiosyncratic, earnings shocks and

a positive conditional correlation between stock returns and the aggregate component of individual

earnings all contribute towards a positive stock component. They also have support in US data.

We do not find much support for the claim that cointegration between the aggregate component

of earnings and stock returns is key to producing a large stock component, at least when such a

relationship is estimated using US data. Cointegration is potentially important as then shock histories

with large stock returns will tend to be associated with positive shocks to average earnings. Earnings

far in the future will then take on stock-like features. Benzoni et al. (2007) calculate the value of

human capital after roughly calibrating such a cointegrated process. In contrast to Benzoni et al.

(2007), all our work is based on estimating the relationship between earnings and stock returns.

Our work is most closely related to two literatures. First, a long line of work values human capital

by discounting the future earnings stream using a deterministic interest rate or discount factor.2 Our

work differs as discounting is done using an individual’s stochastic discount factor, which produces an

individual-specific value of human capital. Huggett and Kaplan (2011) is more closely related. They

put bounds on individual human capital values using knowledge of the earnings and asset returns

process and Euler equation restrictions. Second, there is a vast literature on financial asset allocation

decisions over the lifetime. Coco, Gomes and Maenhout (2005), Benzoni et al. (2007), Lynch and

Tan (2011), and many others focus on quantitative properties of portfolio decisions. We focus on

2See Farr (1853), Dublin and Lotka (1930), Weisbrod (1961), Becker (1975), Graham and Webb (1979), Jorgenson
and Fraumeni (1989), Haveman, Bershadker and Schwabish (2003). Some of this work calculates an aggregate value of
human capital.

2



decomposing the value of human capital based on a joint earnings-stock-returns process estimated

from micro data.

The remainder of the paper is organized as follows. Section 2 presents the theoretical framework.

Section 3 to 5 present our main findings. Section 6 explores the robustness and the key drivers of

these findings. Section 7 concludes.

2 Theoretical Framework

This section presents the framework, defines the value of human capital and illustrates the value and

return concepts with a simple example.

2.1 Decision Problem

An agent solves Problem P1. Lifetime utility U(c) is determined by a consumption plan c = (c1, ..., cJ ).

Consumption at age j is given by a function cj : Z
j → R1

+ that maps shock histories zj = (z1, ..., zj) ∈

Zj into consumption. All the variables that we analyze are functions of these shocks.

Problem P1: maxU(c) subject to

(1) cj +
∑

i∈I a
i
j+1 =

∑

i∈I a
i
jR

i
j + ej and cj ≥ 0,∀j

(3) aiJ+1 = 0,∀i ∈ I

The budget constraint says that period resources are divided between consumption cj and savings
∑

i∈I a
i
j+1. Period resources are determined by an exogenous earnings process ej and by the value of

financial assets brought into the period
∑

i∈I a
i
jR

i
j . The value of financial assets is determined by the

amount aij of savings allocated to each financial asset i ∈ I = {1, ..., I} and by the gross return Ri
j > 0

to each asset i.

2.2 Value and Return Concepts

The value of human capital vj is defined to equal expected discounted dividends (i.e. net earnings)

at a solution (c∗, a∗) = ((c∗1, ..., c
∗
J ), {(a

∗,i
1 , ..., a∗,iJ+1)}i∈I) to Problem P1. Discounting is done using the

agent’s stochastic discount factor from the solution to Problem P1. The stochastic discount factor

mj,k reflects the agent’s marginal valuation of an extra period k consumption good in terms of the

period j consumption good. The stochastic discount factor has a conditional probability term P (zk|zj)
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because human capital values are stated using the mathematical expectations operator E.3

vj(z
j) ≡ E[

J
∑

k=j+1

mj,kek|z
j ] and mj,k(z

k) ≡
∂U(c∗)/∂ck(z

k)

∂U(c∗)/∂cj(zj)

1

P (zk|zj)

Given the value concept, we define the gross return Rh
j+1 to human capital to be next period’s value

and dividend divided by this period’s value: Rh
j+1 =

vj+1 + ej+1

vj
. The return to human capital is then

well integrated into standard asset pricing theory. Off corners, all returns Rj+1 satisfy the same type

of restriction: E[mj,j+1Rj+1|z
j ] = 1.4

2.3 An Interpretation

We now provide an interpretation for vj . The value vj is a personalized price to an agent for the

non-traded earnings stream that the agent owns. The price vj is the value of all the shares (total

shares are normalized to 1) in the future earnings stream. The price process {vj}
J
j=1 has the property

that if the agent were allowed to change share holdings in this earnings stream at any age at these

prices, then the agent would optimally decide not to change share holdings and would make exactly

the same consumption and asset choices (c∗, a∗) that were optimal in Problem P1.5

2.4 A Simple Example

A simple example illustrates the value and return concepts. An agent’s preferences are given by a

constant relative risk aversion utility function. Earnings follow an exogenous Markov process. There

is a single, risk-free financial asset.6

Utility: U(c) = E[
∑J

j=1 β
j−1u(cj)|z

1], where u(cj) =

{

c1−ρ
j

(1−ρ) : ρ > 0, ρ 6= 1

log(cj) : ρ = 1

Earnings: ej =
∏j

k=1 zk, where ln zk ∼ N(µ, σ2) is i.i.d.

3The expectations operator integrates the relevant age k functions with respect to the distribution P (zk|zj). In all of
our applied work, the set of partial shock histories is finite and, thus, integration is straightforward summation.

4This holds for the return to human capita Rh
j+1 by construction because vj = E[

∑J

k=j+1
mj,kek|z

j ] implies

E[mj,j+1(
vj+1+ej+1

vj
)|zj ] = 1.

5Broadly, the pricing of human capital generalizes the method of pricing a non-traded asset in Lucas (1978). One
proposes a second economy where trade in the non-traded asset is allowed and then finds prices that persuade the agent
not to do so. The result claimed in the text holds for general utility functions under a concavity asssumption and is not
sensitive to the nature of the earnings process or the financial asset returns process. It extends to economies with valued
leisure and endogenous earnings. See Huggett and Kaplan (2012, Theorem 1) for a proof. It also holds under a variety
of borrowing constraints on financial asset holdings.

6The model is a finite-lifetime version of the permanent-shock model analyzed by Constantinides and Duffie (1996).
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Decision Problem: maxU(c) subject to

(1) cj + aj+1 ≤ aj(1 + r) + ej , (2) cj ≥ 0, aJ+1 ≥ 0

When 1+ r = 1
β exp(ρµ− ρ2σ2

2 ) and initial financial assets are zero, then setting consumption equal to

earnings each period is optimal. The stochastic discount factor equalsmj,k(z
k) ≡ ∂U(c∗)/∂ck(z

k)
∂U(c∗)/∂cj(zj)

1
P (zk|zj)

=

βk−ju′(ek(z
k))

u′(ej(zj))
. This example leads to a closed-form formula where vj is proportional to earnings ej and

where Rh
j is a time-invariant function of the period shock zj.

Figure 1 illustrates some quantitative properties. The parameter σ, governing the standard deviation

of earnings shocks, varies over the interval [0, 0.3] and µ = −σ2/2. As all agents start with earnings

equal to 1, the expected earnings profile over the lifetime is flat and equals 1 in all periods. The

lifetime is J = 46 periods which can be viewed as covering real-life ages 20 − 65. The interest rate is

fixed at r = .01. Thus, the discount factor β is adjusted to be consistent with this interest rate given

the remaining parameters: 1 + r = 1
β exp(ρµ− ρ2σ2

2 ).

Figure 1 shows that the value v1 of an age 1 agent’s human capital falls and that the mean return

in any period rises as the shock standard deviation increases. Thus, a high mean return on human

capital is the flip side of a low value attached to human capital. These patterns are amplified as the

preference parameter ρ increases.

Figure 1 also plots the “naive value” of human capital. The naive value equals earnings discounted at a

constant interest rate r that we set equal to the risk-free rate (i.e. vnaive1 = E[
∑J

j=2
ej

(1+r)j−1 |z
1]). This

follows a traditional empirical procedure that is widely employed in the literature as was mentioned

in the introduction. The naive value is exactly the same in each economy in Figure 1 because the

risk-free interest rate and the mean earnings profile are unchanged across economies. Our notion of

value v1 differs from vnaive1 because the agent’s stochastic discount factor is allowed to covary with

earnings. Figure 1 shows that negative covariation can be substantial.

Figure 1 plots the total benefit and the marginal benefit of moving from the model consumption plan c

to a smooth consumption plan where csmooth
j = E1[cj ] = E1[ej ] = 1. The benefit function Ω is defined,

following Alvarez and Jermann (2004), by the first equation below. The total benefit is Ω(1) and the

marginal benefit is Ω′(0). The marginal benefit in Figure 1 increases as the standard deviation of the

period earnings shock increases.

U((1 + Ω(α))c) = U((1− α)c+ αcsmooth)
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Ω′(0) =

∑J
j=1

∑

zj
∂U(c)
∂cj(zj)

(csmooth
j (zj)− cj(z

j))
∑J

j=1

∑

zj
∂U(c)
∂cj(zj)

cj(zj)
=

E[
∑J

j=1m1,jc
smooth
j |z1]

v1(z1) + e1(z1) + a1(z1)(1 + r)
− 1

The marginal benefit is tightly connected to the value v1 of human capital. To see this, differentiate

the first equation above with respect to α. This implies the leftmost equality in the second equation

above. The rightmost equality holds by rearrangement because the individual solves Problem P1.7 The

numerator term in the second equation is pinned down by asset prices so that E[
∑J

j=1m1,jc
smooth
j |z1] =

∑J
j=1(

1
1+r )

j−1, whereas the denominator is determined by the value of human capital plus initial

earnings and initial wealth. The only unobservable is the value of human capital. The theory then

implies that a high marginal benefit of moving towards perfect consumption smoothing coincides with

a low value of human capital. This straightforward point has not, to the best of our knowledge, been

noted in the literature on the value of human capital.

3 Empirics: Earnings and Asset Returns

We outline an empirical framework for idiosyncratic earnings shocks, aggregate earnings shocks and

stochastic stock returns. Let ei,j,t denote real pretax annual earnings for individual i of age j in year

t. We assume that the natural logarithm of earnings consists of an aggregate component
(

u1
)

and an

idiosyncratic component
(

u2
)

and

log ei,j,t = u1t + u2i,j,t. (1)

In Section 3.1 we describe the structure of the idiosyncratic component of earnings, our estimation

procedure and the fit of the estimated model. In Section 3.2 we describe the structure and estimation

of the joint process for the aggregate component of earnings and stock returns.

3.1 Idiosyncratic Component of Earnings

The idiosyncratic component of earnings is the sum of four orthogonal components: a common age

effect κj , an individual-specific fixed effect ξ, a persistent component ζ and a transitory component υ.

u2i,j,t = κj + ξi + ζi,j,t + υi,j,t (2)

ζi,j,t = ρζi,j−1,t−1 + ηi,j,t

ζi,0,t = 0.

7More specifically, convert the period budget constraints in Problem P1 into an age-1 budget constraint, using the
fact that the Euler equation holds at a solution to Problem P1. Then the age-1 value of the consumption plan equals
the value of human capital, earnings at age 1 and initial wealth.
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The common age effect is modeled as a quartic polynomial. The individual fixed effects are assumed to

be normally distributed with a constant variance σ2ξ . The transitory idiosyncratic shocks are assumed

to be distributed according to a distribution with zero mean, variance σ2υ,j , and third central moment

µ3,υ,j . In order to capture life-cycle properties of the variance and skewness of earnings we allow the

moments of the transitory component to be age-dependent and model this as a quartic polynomial.

Persistent idiosyncratic shocks are assumed to be distributed according to a distribution with zero

mean, variance σ2η,t (Xt) and third central moment µ3,η,t (Xt). The variance and skewness have a linear

trend, in order to capture low frequency trends over the sample period, and are state dependent via

the variable Xt.
8 We model Xt as a two-state process. Specifically, we set Xt = 1∆u1

t>0 so that Xt is

an indicator function taking on the value 1 in booms and 0 in recessions. Thus, aside from a trend

term, the variance and skewness of the persistent innovations take on different values in expansions

and contractions.

We estimate the idiosyncratic earnings process using data on male annual labor earnings from the

Panel Study of Income Dynamics (PSID) from 1967 to 1996.9 We focus on male heads of households

between ages 22 and 60 with real annual earnings of at least $1, 000. Our measure of annual gross

labor earnings includes pre-tax wages and salaries from all jobs, plus commission, tips, bonuses and

overtime, as well as the labor part of income from self-employment. Labor earnings are inflated to

2008 dollars using the CPI All Urban series. We also consider two sub-samples. Individuals with 12

or fewer years of education are included in the High School sub-sample, while those with at least 16

years or a Bachelor’s degree are included in the College sub-sample.

Estimation is done in two stages. In the first stage we estimate κj by regressing log real annual

earnings on a quartic polynomial in age and a full set of year dummies. This is done separately for

the three education samples. On the basis of the first-stage results for the PSID, and related results

for the Current Population Survey data and NIPA data, we set the contraction years over the time

interval 1967-1996 to be 1970, 1974-5, 1979-82, 1989-91 and 1993.

Residuals from this first-stage regression are then used to estimate the remaining parameters of the

individual earnings equation:
(

ρ, σ2ξ , σ
2
η,t(Xt), µ3,η,t(Xt), σ

2
ν,j , µ3,ν,j

)

. We compute the auto-covariance

function for residual log-earnings up to 10 lags for every age/year combination, as well as the third

central moments and third-order auto-covariances. A GMM estimator is then used to estimate the

8Allowing for a trend in the shock variances is important for accurately estimating cyclical variation in the variance
and skewness. This is because of the well-documented increase in the variance of idiosyncratic earnings shocks over this
period. See for example Heathcote, Perri and Violante (2010).

9After 1996 the PSID was converted into a biannual survey.
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parameters, using the full set of second and third-order autocovariances as moments.10

The estimated process delivers a good fit to the variance and third central moment of the earnings

distribution as a function of both age and time. The fit of these and other moments for the full sample

is displayed in Figure 2. Corresponding results for the College and High School samples are contained

in the Appendix.

We highlight three findings from Table 1. First, transitory shocks are left skewed for the full sample

and the college sample. Left skewness is needed to match the left skewness of the first-stage residuals

as documented in Figure 2. Guvenen, Ozkan and Song (2014) document that male earnings growth

rates are left skewed in administrative data. Second, the variance and left skewness of persistent shocks

is higher in recessions than in booms. Thus, consistent with the findings in Storesletten, Telmer and

Yaron (2004), there is evidence for counter-cyclical risk even when the framework is generalized to

account for skewness and a time trend. However, the cyclical variation in risk that we estimate is

less dramatic than their findings. Third, the autoregression parameter ρ is higher for the full sample

and the college sample compared to the high school sample. Thus, persistent innovations of a given

magnitude will be of greater proportional importance for those with a college than a high school

education.

The parameter estimates are broadly consistent with those from related specifications (that do not

account for skewness), that have been estimated elsewhere in the literature and summarized in Meghir

and Pistaferri (2010).11 We note that our estimate of the variance of the transitory component is

approximately 0.1 larger than what has been estimated by others (see for example, Guvenen (2009)).

The source of this difference is due entirely to our broader sample selection. Since it is likely that a

substantial fraction of this variance is due to measurement error, we make an adjustment when using

these estimates as parameters in the structural model.12

10When computing the auto covariance function, individuals are grouped into 5-year age cells so that when calculating
covariances at age j, individuals aged j ∈ [j − 2, j + 2] are used. Only cells with at least 30 observations are retained.
The moments are weighted by n0.5

j,t,l where nj,t,l is the number of observations used to calculate the covariance at lag l in
year t for age j. Individuals aged 22 to 60 are used to construct the empirical auto-covariance functions. This means that
variances, covariance and third moments from ages 24 to 58 are effectively used in the estimation. Standard errors are
calculated by bootstrap with 39 repetitions, thus accounting for estimation error induced by the first-stage estimation.

11Our model is estimated using data on log earnings levels. Estimation using data on log earnings growth rates would
yield larger estimates of the persistent or permanent shocks. See Heathcote et al. (2010) for a discussion of this issue.
We favor the estimation in levels since it allows us to accurately capture the age profile of the cross-sectional variance of
earnings.

12Using indirect inference on a structural model of consumption and savings behavior, Guvenen and Smith (2011)
estimate that the variance of measurement error in male log annual earnings is around 0.02-0.025. Using a validation
study of the PSID, French (2004) concludes that the variance of measurement error in the PSID is around 0.01. However,
both of their samples are substantially more selected than ours, with a cross-sectional variance about 0.1 lower. Assuming
that half of this additional variance is due to measurement error, would suggest that around 0.05-0.06 of the estimated
transitory variance is measurement error. Accordingly, we adjust our estimates of the variance σ2

ν,j down by 1/3 at all
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3.2 Aggregate Component of Earnings and Stock Returns

The joint process for the dynamics of the aggregate component of earnings and stock returns is modeled

as follows. Let yt =
(

u1t Pt

)′

, where Pt is an underlying process that generates risky returns. Gross

returns on stock Rs
t satisfy logRs

t = ∆Pt. We do not assume from the outset that the vector yt is

a stationary process. Rather, we allow for yt to be a first order integrated process and write it as a

Vector Error Correction Model (VECM), a form that is common in the literature on cointegration:13

(

∆yt
wt

)

=

(

γ
β′γ + ρ

)

+

(

Γ α
β′Γ 1 + β′α

)(

∆yt−1

wt−1

)

+

(

εt
β′εt

)

(3)

Equation (3) expresses the dynamics of the aggregate states as a coupled system of equations between

the growth rates of the aggregate variables yt and a cointegrating vector wt defined by wt ≡ β′yt +

µ+ ρ(t+1). To understand this process, first note that when α = 0, there is no cointegration and the

process collapses to a standard first-order VAR for ∆yt:

∆yt = γ + Γ∆yt−1 + εt (4)

When α = 0 the growth rate of log aggregate earnings and stock returns follow a first-order VAR.

Mean aggregate earnings growth and mean stock returns are captured by the constant term γ. When

α 6= 0, the process allows for cointegration. The pattern of cointegration is described by β and a

linear time trend ρ in the level of the cointegrating vector wt. The strength of the cointegration, i.e.

how sensitive ∆yt is to wt, is reflected by α. The error term εt is a vector of zero mean IID random

variables with covariance matrix Σ.

We estimate (3) and (4) using data on male annual labor earnings from the the Current Population

Survey (CPS) from 1967 to 2008. Our sample selection criteria and definition of earnings are the same

as those used for the PSID, descibed in section 3.1. We constructe an empirical counterpart to u1t by

estimating a median regression (Least Absolute Deviations) of earnings on a full set of age and time

dummies. We use median regression rather than OLS since it is more robust to the effects of changes

in top coding in the CPS over our sample period. We use the estimates of û1t from our CPS sample,

rather than corresponding estimates from the PSID, as input to the estimation because CPS data has

both a longer time dimension and a larger cross-section sample each year compared to PSID data.

ages. We adjust the third central moment at each age so that the coefficient of skewness, µ3,ν,j/σ
3
ν,j remains unchanged

after adjusting the demoninator.
13We have used symbols in the specification of the VAR process that are consistent with notation that is common in

the literature on cointegration. The parameters α, β, γ and ρ should not be confused with the preference parameters
that use the same symbols.
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Data on equity and bond returns are annual returns. Equity returns are based on a value-weighted

portfolio of all NYSE, AMEX and NASDAQ stocks including dividends. Bond returns are based on

1-month Treasury bill returns.14 Real returns are calculated by adjusting for realized inflation using

the CPI All Urban series.

Table 2 reports results of estimation of (3) and (4). The parameter estimates reveal a moderate degree

of persistence in aggregate earnings growth. There is a positive correlation between innovations to

earnings growth and innovations to stock returns in all models. This implies that the conditional

correlation between earnings growth and stock returns is positive. This is one feature, among others,

that will later produce a positive conditional correlation between stock and human capital returns.

The implied steady-state dynamics are reported in Table 3. The estimated model matches the observed

correlation structure well. When we input the estimated process into our economic model, we adjust

the constants (γ1, γ2) estimated in Table 2 so that all models produce in steady state E[logRs] = .041

and E[∆u1] = 0. This facilitates comparisons of human capital value and return properties across

models.

In the Appendix we show how the VECM model in (3) can be derived from an underlying VAR(2)

for yt. We present results from standard lag-order selection tests for the order of a more general

VAR(p) process and find that for our baseline sample, as well as for college and high-school sub-

samples, and for alternative measures of aggregate earnings and alternative sample periods, virtually

all specifications indicate the presence of two lags, i.e. p = 2. This is what leads us to adopt the

model in (3). The Appendix also contains tests of the cointegrating rank of (3) based on the methods

in Johansen (1995). For all three education samples, tests based on the trace statistic, the maximum

eigenvalue or the Schwarz-Bayes information criterion, suggest a cointegrating rank of zero, while the

Hannan-Quinn information criterion suggest the presence of one cointegrating vector. We interpret

these findings as providing only very weak evidence for cointegration. Hence, we adopt the model

without cointegration in (4) as our benchmark specification. However, since these tests may all have

relatively little power given the short annual sample period, we present estimates for the model with

cointegration and later assess the implications.

14All returns come from Kenneth French’s data archive. We restrict attention to the period 1967-2008 since this is the
period that the CPS earnings data covers.
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4 The Benchmark Model

We now use the theoretical framework and the empirical results to quantify the value and return to

human capital. The benchmark model has two financial assets. Asset i = 1 is riskless and asset i = 2

is risky. The agent cannot go short on either financial asset.

Benchmark Model: maxU(c) subject to c ∈ Γ1(x, z
1)

Γ1(x, z
1) = {c = (c1, ..., cJ ) : ∃(a

1, a2) s.t. 1− 2 holds ∀j}

1. cj +
∑

i∈I a
i
j+1 ≤ x for j = 1 and cj +

∑

i∈I a
i
j+1 ≤

∑

i∈I a
i
jR

i
j + ej for j > 1

2. cj ≥ 0 and a1j+1, a
2
j+1 ≥ 0,∀j

The utility function U(c) = U1(c1, ..., cJ ) is of the type employed by Epstein and Zin (1991). It

is defined recursively by applying an aggregator W and a certainty equivalent F . The certainty

equivalent encodes attitudes towards risk with α governing risk-aversion. The aggregator encodes

attitudes towards intertemporal substitution where ρ is the inverse of the intertemporal elasticity of

substitution. We allow for mortality risk via the one-period-ahead survival probability ψj+1.

U j(cj , ...cJ ) =W (cj , F (U
j+1(cj+1, ..., cJ )), j)

W (a, b, j) = [(1− β)a1−γ + βψj+1b
1−γ ]1/(1−γ) and F (x) = (E[x1−α])1/(1−α)

Table 4 summarizes the parameters in the benchmark model.

Demographics: Agents start economic life at real-life age 22, retire at age 61 and live at most up to

age 90. Thus, we set J = 69 and Ret = 40. Agents face a conditional probability ψj+1 of surviving

from period j to period j + 1 that is set to estimates for males from the 1989-91 US Decennial Life

Tables in NCHS (1992).

Preferences: We set the preference parameters to values estimated from Euler equation restrictions.

Vissing-Jorgensen and Attanasio (2003) estimate 1/γ = 1.17 for a prefered specification and conclude

that the risk aversion parameter α in the interval [5, 10] can be obtained under realistic assumptions,

based on household-level data. Thus, the special case of constant-relative-risk-aversion preferences,
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where γ = α, is not the parameter configuration that best fits the Euler equation restrictions. We

examine model implications for 1/γ = 1.17 and α ∈ {4, 6, 8, 10, 12}. We set the discount factor β so

that given all other model parameters the model produces a steady-state wealth to income ratio of

3.5.

Initial Wealth: Initial wealth is set to equal 30 percent of mean earnings at age 22.

Earnings and Asset Returns: Earnings and asset returns in the benchmark model are based on

the estimates in Tables 1-3 for the case of no cointegration. The earnings that enter the model are

earnings after taxes and transfers. Before the retirement age, model earnings ej(z) are the process

estimated in Tables 1-3 times (1 − τ), where τ = .27. After the retirement age, model earnings ej(z)

equal model social security benefits after taxes.

ej(z) = z1gj(z2) =

{

exp(u1) exp(κj + ξ + ζ + υ)(1 − τ) j < Retire
exp(u1)b(ξ)(1 − τ) otherwise

We group the variables from the statistical model into a state variable z = (z1, z2), where z1 = exp(u1)

captures the aggregate component of earnings and z2 = (ξ, ζ, υ,∆u1, logRs) captures the idiosyncratic

components (ξ, ζ, υ), the growth in the aggregate component of earnings and the stock return.15

The fixed effect ξ is normally distributed with the variance given in Table 1. The transitory shock υ

and the persistent shock innovations η follow a Generalized Normal distribution, determined by the

first three central moments. The second and third central moments of the persistent shock innovations

are state dependent as described in Table 1. The age-dependent second and third moments of the

transitory shock distribution are scaled as discussed in footnote 12. See Hosking and Wallis (1997,

Appendix A.8) for a discussion of the Generalized Normal distribution.

Social Security: The nature of social security benefits is potentially of great importance for how

people value future earnings flows after taxes and transfers. Social security wealth is by some calcu-

lations the single most important asset type for many older households.16 Social security benefits in

the model are an annuity payment which is determined by the aggregate earnings level z1 when the

agent reaches the retirement age and by a concave benefit function b. We adopt the benefit function

employed by Huggett and Parra (2010) which captures the bend-point structure of old-age benefits in

the U.S. social security system. We employ the computationally-useful assumption that the benefit

function applies only to an agent’s idiosyncratic fixed effect rather than to an average of the agent’s

15The Appendix discusses how we compute model solutions. The state variable in the model with cointegration is
z = (z1, z2), where z2 = (ξ, ζ, υ,∆u1, logRs, w).

16Poterba, Venti and Wise (2011) calculate that the capitalized wealth implicit in social security retirement annuities
is approximately 33 percent of all wealth for households aged 65-69 and is a much larger percentage of individual wealth
for households with low wealth.
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past earnings as in the U.S. system. Thus, the model benefit is risky after entering the labor market

only because the aggregate component of earnings at the time of retirement is risky. Old-age benefit

payments in the U.S. system are indexed to average economy-wide earnings when an individual hits

age 60.17 This is captured within the model by the fact that benefits are proportional to z1 ≡ exp(u1).

Properties of the benchmark model are displayed in Figure 3, which is constructed by simulating

many shock histories, calculating allocations along these histories and then taking averages at each

age. Figure 3 shows that mean consumption and mean earnings net of taxes and transfers are hump

shaped over the lifetime. The college profile is much steeper than the high school earnings profile.

One consequence of this is that a larger fraction of young college agents will hold exactly zero financial

assets early in life compared to high school agents. This has implications for how strongly college

agents discount future earnings early in life.

5 Human Capital Values and Returns: Benchmark Model

We report properties of the benchmark model based on the high school and the college subsamples.

Results for the full sample are typically between the results for these education groups.

5.1 Human Capital Values

Figure 4 plots the value of human capital in the benchmark model and a decomposition of this value.

The mean value of human capital over the lifetime is hump shaped and is lower for higher values of

the risk aversion coefficient.18 For comparison purposes, we also plot the value of human capital that

would be implied by discounting future earnings at the risk-free rate. We label this the naive value.

Our notion of value lies far below the naive value. This occurs because of negative covariation between

an agent’s stochastic discount factor and earnings and because agents are sometimes on the corner of

the risk-free asset choice. Corner solutions occur more frequently early in life for college agents than

for high school agents due to differences in the mean earnings profile. When an agent is on the corner,

then the agent discounts certain future earnings at more than the risk-free rate.

We now decompose human capital values into a bond, stock and a residual-value component. To do

so, we project next period’s human capital payout vj+1 + ej+1 onto the space of conditional asset

returns. The decomposition is carried out in the two equations below. The human capital payout

17See the Social Security Handbook (2012, Ch. 7).
18Figure 3(a)-(b) are constructed by first computing human capital values at each age as a function of the state. We

then calculate the sample average of the value at each age, conditional on survival, by simulating many realizations of
the state variable over the lifetime. Computational methods are described in the Appendix.
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contains a component (
∑

i∈I α
i
jR

i
j+1) spanned by asset returns and a component (ǫj+1) orthogonal to

asset returns, where αi
j are the projection coefficients. When the agent is off corners in the holding of

asset i then the Euler equation E[mj,j+1R
i
j+1|z

j ] = 1 holds.19

vj = E[mj,j+1(vj+1 + ej+1)|z
j ] = E[mj,j+1(

∑

i∈I

αi
jR

i
j+1 + ǫj+1)|z

j ]

vj =
∑

i∈I

αi
jE[mj,j+1R

i
j+1|z

j ] + E[mj,j+1ǫj+1|z
j ]

Figure 4 calculates the value of the bond, stock and orthogonal components as a fraction of the value

of human capital at each age and then averages these ratios across the states that occur at each age.

The bond component averages more than 80 percent of the value of human capital. This holds for

both education groups and for a range of risk-aversion parameters.

Figure 4 shows that the stock component of the value of human capital is positive on average. It

averages below 35 percent at all ages for high school agents and below 20 percent for college agents for

a wide range of risk-aversion parameters. The stock component is positive, at a given age and state,

provided that the sum of next period’s earnings and human capital value covaries positively with the

return to stock, conditional on this period’s state.20 Our empirical work, as summarized in Table 2,

directly relates to the conditional comovement of earnings and stock returns since cov(ε1,t, ε2,t) > 0

in all the estimated models.

The orthogonal component has a large negative value early in the lifetime. Given that the orthogonal

component has a zero mean, this is due to strong negative covariation between the orthogonal compo-

nent and the stochastic discount factor early in life. This occurs, for example, because consumption

and future utility are increasing in the realization of the persistent idiosyncratic earnings shock, other

things equal. The persistent shock component is particularly important early in life as the effect of

such a shock has many periods over which it impacts future earnings.

While it may seem plausible that the value of human capital is largely bond-like during retirement,

it is useful to understand why it is not always 100 percent bond-like. If a retired agent will in all

future date-events end up holding positive bonds, then the decomposition will indeed calculate that

this agent’s human capital in retirement is 100 percent bond-like as social security annuity payments

in the model are riskless after retirement. However, if an agent hits the corner of the bond decision in

the future under some sequence of risky stock returns, then this is not true. The mean of the agent’s

19We allow for corners in which case E[mj,j+1R
i
j+1|z

j ] ≤ 1.
20The Appendix describes our methods for computing the projection coefficients in the value decomposition.
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stochastic discount factor will be less than the inverse of the gross risk-free rate in such an event.

Thus, the agent discounts future social security transfers at greater than the risk-free rate beyond this

date. The value of these transfers at earlier dates takes on a positive stock component provided that

a corner solution is induced by low stock return realizations. In summary, while the value of human

capital is mostly bond-like in retirement, it is not 100 percent bonds because agents run down financial

assets, hit a corner solution on the holdings of the risk-free asset and live off social security transfers.

5.2 Human Capital Returns

Figure 5 plots properties of human capital returns. Mean returns are very large early in the working

lifetime. To understand what drives the mean human capital returns, it is useful to return to the

main ideas used in the value decomposition. The first equation below decomposes gross returns by

decomposing the future payout into a bond, a stock and an orthogonal component. The second

equation shows that the conditional mean human capital return always equals the weighted sum of

the conditional mean of the bond and stock return.21

Rh
j+1 ≡

vj+1 + ej+1

vj
=
αb
jR

b
j+1 + αs

jR
s
j+1 + ǫ

vj

E[Rh
j+1|z

j ] =
αb
j

vj
E[Rb

j+1|z
j ] +

αs
j

vj
E[Rs

j+1|z
j ]

The weights on the bond and stock return do not always sum to one. When the agent’s Euler equation

for both stock and bonds hold with equality, then these weights will sum to more than one exactly

when the value of the orthogonal component is negative.22 The value of the orthogonal component

of human capital payouts is negative early in the working lifetime. Human capital returns can vastly

exceed a convex combination of stock and bond returns when the weights sum to more than one.

The mean return to human capital is near the risk-free rate immediately after retirement but sub-

sequently increases. The high return towards the end of the lifetime might at first seem odd.

This should not be surprising, however, as in the penultimate period vJ−1 = E[mJ−1,JeJ ] and

1 = E[mJ−1,JeJ/vJ−1]. As the payment eJ , conditional on surviving to the last period, is certain,

the return is Rh
J = eJ/vJ−1 = 1/E[mJ−1,J ]. Thus, the return equals the risk-free bond rate when the

agent is off the corner (i.e. Rh
J = 1/E[mJ−1,J ] = Rb) but can exceed the risk-free rate when the agent

21The orthogonal component drops out as, with a risk-free asset, the mean of the orthogonal component is zero.
22In this case, vj = E[mj+1(vj+1+ ej+1)] = αb

j +αs
j +E[mj+1ǫj+1] and E[mj+1ǫj+1] < 0 imply αb

j/vj +αs
j/vj > 1. Of

course, the weights for decomposing returns can and do sum to more than one even when Euler equations do not hold
with equality.
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is on the corner (i.e. Rh
J = 1/E[mJ−1,J ] ≥ Rb). Towards the end of the lifetime an increasing fraction

of agents in the model are on this corner and live off their social security annuity.

The positive correlation between human capital returns and stock returns in Figure 5 is based in

part on two properties. First, innovations to the aggregate component of earnings growth and to

stock returns are positively correlated. This implies that the component of human capital returns

related directly to the earnings payout next period covaries positively with stock returns. Second, the

old-age transfer benefit formula in the benchmark model is proportional to the aggregate component

of earnings at the retirement age. The U.S. social security system has a similar feature as old-age

benefits are proportional to a measure of average earnings in the economy when the worker turns age

60, other things equal.

5.3 Portfolio Allocation

Figure 6 describes portfolio allocation for three measures of wealth. Higher values of the risk-aversion

coefficient are associated with lower average stock shares of financial wealth. The average stock share

increases just before retirement. This is connected to the falling stock share of the value of human

capital just before retirement.

The remainder of Figure 6 divides overall wealth (human plus financial wealth) into components. In

the model human capital averages more than 50 percent of overall wealth at all ages.23 Early in the

working lifetime and in retirement the value of an agent’s human capital makes up on average an

overwhelming share of overall wealth. This holds despite the fact that human capital values are far

below naive values.

We also divide overall wealth into bond and stock components using the human capital value de-

composition. Thus, to account for overall stock holdings, we add together stock directly held in the

financial wealth portfolio and the stock position embodied in the value of human capital. For both

education groups we find that the bond component of overall wealth exceeds the stock component

at all ages. The overall stock share early in life is largely determined by the decomposition analysis

presented earlier. This is because financial assets are small in value compared to the value of human

capital and negative positions in either financial asset are not allowed.

23This is the mean of the shares produced across simulations of a population of individuals, each drawing a sequence
of shocks from the stochastic process for aggregate and idiosyncratic shock variables.
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6 Discussion: Robustness and Drivers

The previous section documented properties of human capital values in the benchmark model. We

find that (1) the value of human capital is far below the value implied by discounting future earnings

at the risk-free rate and (2) the stock component of human capital is less than 35 percent of the value

of human capital at all ages. This section determines the robustness and drivers of these findings.

6.1 Value of Human Capital

What drives the value of human capital to be substantially below the naive value? To answer this

question, we consider a number of perturbations of the benchmark model. For each perturbation, we

recalculate human capital values and then plot the results. The benchmark model analyzed in this

section is the model in Table 4 that sets risk aversion to α = 6 and that sets earnings to the process

without cointegration estimated for the full sample.

We first consider perturbations that help agents to better smooth consumption. Intuitively, such

perturbations lessen the negative covariation between the stochastic discount factor and earnings.

One perturbation starts agents off with an initial wealth of 1 times mean earnings at age 22 rather

than the benchmark value of 0.30 times mean earnings. The other perturbations allow agents to hold

negative balances in the risk-free asset up to 1.0 times mean earnings or up to the natural borrowing

limit. Figure 7 shows that while all perturbations increase the human capital value early in life human

capital values remain well below the naive value.

Next we examine the extent to which transitory or persistent idiosyncratic shocks are key drivers.

First, we eliminate transitory or persistent shocks. Figure 7 shows that eliminating transitory shocks

increases human capital values. However, the quantitative effects are small compared to the massive

impact of eliminating persistent idiosyncratic shocks. Eliminating persistent shocks produces more

than a tripling of the value of human capital early in life. Lastly, we impose that persistent shocks

have no skewness and no cyclical variation in variance or skewness. Figure 7 shows that this increases

human capital values and that its effect is more powerful than eliminating transitory shocks. This

foreshadows the importance of skewness as a driver of the stock component of human capital values

that we find in the next subsection. We note that for each of these three changes we re-estimate the

model with the new restrictions imposed.

We examine the effect of altering the preference parameter γ, while keeping relative risk aversion

fixed. The value of 1/γ controls the intertemporal elasticity of substitution (IES). Figure 7 shows that

increasing the IES to 2 increases the human capital value slightly, whereas decreasing the IES to 0.5
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reduces the value of human capital. Neither change alters the finding that human capital values are

substantially below naive values.

6.2 Stock Share of Human Capital Values

What drives the magnitude of the stock share of human capital values? We answer this question by

analyzing four perturbations of the benchmark model. We (i) vary the borrowing constraint, (ii) vary

the IES, (iii) eliminate the cyclical changes in persistent idiosyncratic shocks and/or eliminate the

left-skewness in these shocks and (iv) allow cointegration.

Figure 8 shows the results. Raising the IES to 2 lowers the stock component slightly whereas lowering

the IES to 0.5 raises the stock component slightly. Allowing borrowing up to one times mean earnings

has almost no impact on the stock component.

Next we eliminate skewness and/or eliminate the cyclical variation in shock distributions. The case

of no skewness means that the generalized normal distribution analyzed in the benchmark model is

replaced by the normal distribution. In all cases, we re-estimate the idiosyncratic shock process under

the new restrictions to best match data moments.

Figure 8 shows that eliminating left-skewness and eliminating cyclicality decreases the stock component

of human capital values relative to the benchmark model. This could be stated more positively if one

took the benchmark model to be the model with no skewness and no cyclical changes in idiosyncratic

shocks. Using that model as a benchmark, implies that allowing left-skewed shocks and allowing

the distribution of such shocks to vary cyclically increases the stock component of human capital.

Furthermore, Figure 8 shows that the incremental effect of adding left-skewness is substantially larger

than adding cyclical variation in a distribution displaying no skewness. Thus, we find that skewness

is a quantitatively important factor that increases the stock share of human capital values and, at the

same time, acts to lower human capital values.

Figure 8 also addresses whether cointegration between earnings and stock returns is important for

the magnitude of the stock share. First, we compare the benchmark model and the model allowing

cointegration when both are estimated using CPS 1967-2008 data. We find that allowing cointegration

slightly decreases the stock share of human capital values. One might be skeptical that a cointegrated

relationship can be precisely estimated over a short time period. For this reason, we repeat the analysis

using an aggregate measure of earnings growth to proxy male earnings growth. We use NIPA 1929-

2009 data on aggregate wages and salaries and divide this by the labor force to get average earnings.

We re-estimate both models from Table 2 using data over the period 1929-2009. Figure 8 shows that
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the stock share increases somewhat when these estimated models are incorporated into the economic

model. However, allowing cointegration does not significantly alter the stock share compared to the

case of no cointegration, given the new data.

In summary, Figure 8 shows that two changes to the benchmark model produce a larger stock share.

These are to decrease the IES to values below 1 and to re-estimate the model using NIPA data over

a longer time period. We also find that skewness is a key driver of the stock component. Abstracting

from skewness implies a much smaller stock share of human capital.24 While one may conjecture that

allowing cointegration may substantially increase the stock share of the value of human capital, we do

not find support for this when the models are estimated using the same data set.

This last finding may seem surprising in light of the work of Benzoni et al. (2007). The main focus

of their work is to examine how cointegration affects portfolio choice as a single parameter κ that

controls the strength of adjustment in the cointegrating relationship increases. Stock holding in the

financial asset portfolio is zero early in life in their model for a sufficiently large value of κ, when the

relative-risk aversion coefficient is set to equal 5. For the parameter configuration that they highlight,

the stock component of the value of human capital is 50 percent at age 20 and remains at 50 percent

throughout the first half of the working lifetime.

Our model differs from their work in a number of dimensions. For example, we model social security

benefits, allow idiosyncratic shocks to be drawn from a skewed distribution and allow for cyclical

changes in idiosyncratic shocks. They abstract from all of these features. In addition, the method-

ology differs. While we estimate the idiosyncratic and aggregate shock structure from micro data,

they roughly calibrate a cointegrated aggregate process governing stock returns and the aggregate

component of earnings.

To make contact with Benzoni et al. (2007), we simply take the calibrated aggregate process from their

work and substitute it into our model. Their calibrated process has the discrete-time approximation

of the form indicated below. We take as given their parameter value for κ = 0.15 and their values

governing the variance-covariance structure of the shock terms (ǫ1, ǫ2, ǫ3), but we adjust the constant

terms (γ1, γ2) so that E[logR] = .041 and E[∆u] = 0.25

24One might conjecture that increasing the mean growth rate E[∆u1
t ] from the sample average of zero might matter.

Increasing this mean from zero to 1 or 2 percent substantially increases individual human capital values while leaving
the stock share essentially unchanged in the benchmark model.

25Appendix A.3 shows how we go from their continuous-time formulation to the discrete-time model and computes
steady-state properties. The Benzoni et al. (2007) process produces an unconditional standard deviation of SD(∆ut) =
0.069 which is more than twice the values that we calculate in US earnings data as documented in Table A.4 and Table
A.5.

19







∆ut+1

logRt+1

wt+1



 =





γ1
γ2
0



+





0 0 −κ
0 0 0
0 0 1− κ









∆ut
logRt

wt



+





ǫ1,t+1

ǫ2,t+1

ǫ3,t+1



 (5)

Figure 9 shows how the stock share of the value of human capital changes across models. Figure 9(a)

compares the benchmark model (without cointegration) from this section to the model that results

from replacing the aggregate dynamics with the Benzoni et al. (2007) process featuring cointegration,

as constructed above. When inserted into our framework, the Benzoni et al. (2007) process produces

a stock share that is well below the 50 percent value that they highlight.

Figure 9(b) considers a different comparison. The benchmark model is now modified to exclude

skewness and cyclical variation in idiosyncratic risk, but is still estimated to best match data. We

then insert the Benzoni et al. (2007) process into this model. Figure 9(b) shows that once again both

models produce a stock share that is well below 50 percent over the lifetime. The results in Figure 9

are essentially unchanged if the mean log earnings growth rate is increased to equal 1 percent in all

the models rather than the benchmark value of zero.

7 Conclusion

Our analysis highlights two main properties of human capital values based on an analysis of U.S.

data on males earnings and financial asset returns: (1) the value of human capital is far below the

value implied by discounting future earnings at the risk-free rate and (2) the stock component of the

value of human capital averages less than 35 percent at each age over the working lifetime. These

properties hold for (i) three different educational groups, (ii) a wide range of parameters characterizing

risk aversion, (iii) a range of assumptions on borrowing constraints and (iv) two different statistical

models for earnings estimated using male earnings data.

We investigate the main drivers of these two findings. Persistent idiosyncratic shocks and the left

skewness of idiosyncratic shocks are two key drivers of low human capital values. In our model frame-

work, an agent’s stochastic discount factor falls for larger realizations of idiosyncratic shocks, other

things equal. A number of model features lead to a positive stock component of the value of human

capital including (i) social security benefits linked to average earnings, (ii) positive conditional correla-

tion between the aggregate component of earnings and stock returns and (iii) left-skewed idiosyncratic

shocks. We provide support for all three of these features in US data. We do not find much support

for the idea that cointegration between the aggregate component of earnings and stock returns is a

key factor driving the size of the stock component of the value of human capital.
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Figure 1: Human capital values and returns: a simple example
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Figure 2: Fit of estimated idiosyncratic earnings model for the full sample
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(b) Mean earnings and consumption (college)

Figure 3: Life-cycle profiles in the benchmark model

Notes: The vertical scale is in units of 100,000 dollars in year 2008.
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(a) Human capital values (high school)
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Figure 4: Human capital values and a decomposition

Notes: The vertical scale in Figure 3 (a)-(b) is in units of 100,000 dollars in year 2008.
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(a) Human capital returns (%) (high school)
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Figure 5: Properties of human capital returns
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(a) Stock share of financial wealth (high school)
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(b) Stock share of financial wealth (college)
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(c) Portfolio shares (high school)
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Figure 6: Portfolio shares in the benchmark model

Notes: Financial portfolio shares in panels (a)-(b) are averages over the sub-population with positive asset holdings.
Panels (c)-(f) present results setting risk aversion equal to 6.
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(a) Human capital values (borrowing, initial wealth)

30 40 50 60 70 80 90
0

5

10

15

20

25

30

 

 

Naive Value
Benchmark
No skewness and no cyclicality in shocks
No persistent shocks
No transitory shocks

(b) Human capital values (idiosyncratic risk)
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Figure 7: What drives the value of human capital?

Notes: In panel (a) “With borrowing (1x)” refers to the model that allows borrowing up to 1 times average annual
earnings, and “With borrowing (NBL)” refers to model that allows borrowing up to the “Natural Borrowing Limits” i.e.
limits that impose only that the agent must be able to repay his debt in all states of the world.
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Figure 8: What drives the stock component of human capital?

Notes: When comparing different models estimated on the same data set or the same model estimated on different data
sets, the constants in all models are reset so that E[∆ui

t] = 0 and E[logRs
t ] = 0.041 as previously noted in Table 3.

30



30 40 50 60 70 80 90
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

Benchmark
 with Benzoni et al. (2007) aggregate process
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Figure 9: Analysis of Benzoni et al. (2007)
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Table 1: Parameter Estimates for the Idiosyncratic Earnings Process

Full College High School
Sample Sample Sample

Fixed Effect
σ2ξ 0.082 0.064 0.137

(0.013) (0.015) (0.032)

Persistent Component

ρ 0.942 0.951 0.843
(0.012) (0.015) (0.097)

σ2η: boom 0.038 0.037 0.047

(0.005) (0.006) (0.023)

σ2η: recession 0.058 0.048 0.072

(0.005) (0.008) (0.020)

σ2η: linear trend 0.001 0.001 0.002

(0.000) (0.000) (0.002)

µ3,η: boom -0.020 -0.006 -0.149
(0.014) (0.015) (0.181)

µ3,η: recession -0.061 -0.040 -0.190
(0.013) (0.019) (0.170)

µ3,η: linear trend -0.001 -0.001 -0.003
(0.001) 0.001) (0.002)

Transitory Component

σ2υ 0.132 0.139 0.128
(0.005) (0.006) (0.023)

µ3,υ -0.161 -0.162 -0.002
(0.027) (0.029) (0.172)

Notes: Models of the moments of the transitory shock include a fourth-order polynomial in age. The reported mo-

ments for transitory shocks are averages over the age range. Standard errors are computed by block bootstrap with 39

repetitions.
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Table 2: Parameter Estimates for the Aggregate Stochastic Process
No Cointegration With Cointegration

Full College High School Full College High School
Sample Sample Sample Sample Sample Sample

Equation 1: ∆u1t
∆u1t−1 Γ11 0.383 0.260 0.348 0.364 0.12 0.295

(0.14) (0.15) (0.14) (0.19) (0.15) (0.18)
logRs

t−1 Γ12 0.044 0.04 0.057 0.045 0.016 0.058
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Constant γ1 -0.004 -0.003 -0.009 -0.004 -0.005 -0.008
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Equation 2: logRs
t

∆u1t−1 Γ21 -2.149 -2.203 -1.731 0.473 -2.248 0.236
(1.15) (1.29) (0.97) (1.42) (1.45) (1.18)

logRs
t−1 Γ22 0.106 0.153 0.101 0.054 0.145 0.072

(0.17) (0.18) (0.17) (0.16) (0.21) (0.17)
Constant γ2 0.032 0.031 0.024 0.00 0.029 0.00

(0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

Var-Cov Matrix
var (ε1,t)× 10−4 4.42 4.24 6.49 4.42 3.37 6.44
var (ε2,t)× 10−2 3.2 3.24 3.23 2.57 3.24 2.92

cov (ε1,t, ε2,t)× 10−3 1.23 1.24 1.52 1.28 1.21 2.00

Cointegrating
Vector
logRs

t β2 0.309 -0.211 0.469
(0.10) (0.06) (0.15)

Trend ρ -0.019 0.016 -0.026
(0.01) (0.00) (0.01)

Constant µ -0.67 0.343 -0.976

Adjustment
Parameters

∆u1t α1 0.007 -0.196 0.017
(0.05) (0.07) (0.04)

logRs
t α2 -1.04 -0.063 -0.651

(0.36) (0.64) (0.23)

Notes: Standard errors in parentheses.
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Table 3: Implied Steady-State Statistics for the Aggregate Stochastic Process

Full Sample
Data No Cointegration With Cointegration

E
(

logRb
t

)

0.012 0.012 0.012
E (logRs

t ) 0.041 0.045 0.070
E
(

∆u1t
)

-0.002 -0.004 -0.002

sd
(

∆u1t
)

0.025 0.025 0.025
sd (logRs

t ): 0.187 0.187 0.187
corr

(

∆u1t , logR
s
t

)

0.184 0.177 0.156
corr

(

∆u1t ,∆u
1
t−1

)

0.425 0.441 0.435
corr

(

logRs
t , logR

s
t−1

)

0.057 0.055 0.005
corr

(

∆u1t logR
s
t−1

)

0.372 0.398 0.394
corr

(

logRs
t ,∆u

1
t−1

)

-0.292 -0.270 -0.289

College Sub-sample
Data No Cointegration With Cointegration

E
(

logRb
t

)

0.012 0.012 0.012
E (logRs

t ) 0.041 0.040 0.045
E
(

∆u1t
)

0.000 -0.001 -0.001

sd
(

∆u1t
)

0.023 0.023 0.023
sd (logRs

t ): 0.187 0.187 0.186
corr

(

∆u1t , logR
s
t

)

0.248 0.251 0.243
corr

(

∆u1t ,∆u
1
t−1

)

0.346 0.341 0.342
corr

(

logRs
t , logR

s
t−1

)

0.057 0.084 0.050
corr

(

∆u1t logR
s
t−1

)

0.377 0.387 0.367
corr

(

logRs
t ,∆u

1
t−1

)

-0.225 -0.235 -0.229

High School Sub-sample
Data No Cointegration With Cointegration

E
(

logRb
t

)

0.012 0.012 0.012
E (logRs

t ) 0.041 0.045 0.074
E
(

∆u1t
)

-0.007 -0.010 -0.008

sd
(

∆u1t
)

0.030 0.030 0.030
sd (logRs

t ): 0.187 0.187 0.186
corr

(

∆u1t , logR
s
t

)

0.207 0.194 0.175
corr

(

∆u1t ,∆u
1
t−1

)

0.386 0.416 0.411
corr

(

logRs
t , logR

s
t−1

)

0.057 0.047 0.003
corr

(

∆u1t logR
s
t−1

)

0.387 0.420 0.420
corr

(

logRs
t ,∆u

1
t−1

)

-0.289 -0.261 -0.276

Notes: Table shows average moments in the data, together with implied steady-state statistics from the corresponding
estimated model. Data cover the period 1967-2008. When implementing the estimated processes in the structural model,
we adjust the constants (γ1, γ2) estimated in Table 2 so that all models have E[logRs

t ] = 0.041 and E[∆u1
t ] = 0.

34



Table 4: Parameter Values for the Benchmark Model

Category Symbol Parameter Value

Demographics J,Ret (J,Ret) = (69, 40)
ψj+1 Survival Probability U.S. Life Table

Preferences α Risk Aversion α ∈ {4, 6, 8, 10, 12}
1/γ Intertemporal Substitution 1/γ = 1.17
β Discount Factor see Notes

Returns Rs, Rb Table 2 - 3

Earnings ej(z) =

{

z1 exp(κj + ξ + ζ + υ)(1− τ) if j < Ret
z1b(ξ)(1− τ) if j ≥ Ret

τ = .27

ζ ′ = ρζ + η′ and η′ ∼ GN(0, σ2η(X), µ3,η(X)) b(·) see text

ξ ∼ N(0, σ2ξ ) and υ ∼ GN(0, σ2υ,j , µ3,υ,j) Table 1-2

Initial Wealth
∑

i∈I a
i
1R

i
1

∑

i∈I a
i
1R

i
1 = 0.3E[e1]

Notes: β is calibrated to generate a steady-state ratio of wealth to income equal to 3.5. All sensitivity analyses are
performed by re-calibrating β to generate the same ratio. Survival probabilities are smoothed versions of male values
from the 1989-91 US Decennial Life Tables in NCHS (1992). Smoothing is done using a nine point moving average. E[e1]
denotes mean earnings at age 1 in the model.
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A Appendix

A.1 Model Fit

The fit of the earnings model for the high school and college samples is provided in Figure A.1 and
A.1 respectively.

A.2 Computation

This section describes our methods to compute solutions to the benchmark model and to compute
values and returns.

A.2.1 Value Function and Decision Rules

To compute the optimal value function V ∗
j and optimal decision rules to the model in section 4,

we employ the method of dynamic programming. This involves computing functions Vj solving the
Bellman equation (BE). Of course, the idea is that Vj = V ∗

j . In stating Γ̂j(x, z) in Bellman’s equation,
we impose the restrictions from the original budget constraint Γj(x, z). We also use the fact that
shocks are Markovian so that the current shock, denoted z, rather than partial histories zj contain all
relevant information. We model the shock z = (z1, z2) as stated in section 4.

V ∗
j (x, z) ≡ maxW (cj , F (U(cj+1, ..., cJ )), j) s.t. c ∈ Γj(x, z)

(BE) Vj(x, z) = maxW (cj , F (Vj+1(x
′, z′)), j) s.t. (c, a1, a2) ∈ Γ̂j(x, z)

Γ̂j(x, z) = {(c, a1, a2) : c+
∑

i∈I a
i ≤ x, c ≥ 0, a1, a2 ≥ 0}

We compute solutions to Bellman’s equation only when the first component of the shock z = (z1, z2)
takes the value z1 = 1. This is indicated below. To do so requires knowledge of Vj+1(x

′, z′1, z
′
2) at

all values of z′1. Lemma 1 below shows that V ∗
j (λx, λz1, z2) = λV ∗

j (x, z1, z2),∀λ > 0 and therefore
V ∗
j (x, z1, z2) = z1V

∗
j (

x
z1
, 1, z2). In the Algorithm described below, we make use of this key property.

In Lemma 1, Γ(x, z) is homogeneous provided c ∈ Γ(x, z) ⇒ λc ∈ Γ(λx, λz),∀λ > 0.

Vj(x, 1, z2) = max
(c,a1,a2)∈Γ̂j(x,1,z2)

W (cj , F (Vj+1(x
′, z′1, z

′
2)), j)

Lemma 1:

(i) Assume U is homothetic and Γ(x, z) is homogeneous. c∗ ∈ argmax {U(c) : c ∈ Γ(x, z)} implies
λc∗ ∈ argmax {U(c) : c ∈ Γ(λx, λz)},∀λ > 0.

(ii) In the benchmark model V ∗
j (λx, λz1, z2) = λV ∗

j (x, z1, z2),∀λ > 0

Proof:

(i) obvious

(ii) Follows from Lemma 1(i) after noting two things. First, EZ preferences are homothetic and, in
fact, homogeneous of degree 1. Second, Γj(x, z) is homogeneous in (x, z1) for any fixed z2. This is
implied because the earnings function from the benchmark model is ej = z1gj(z2) and z

′
1 = z1fj+1(z

′
2),
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(e) Average autocovariance function

Figure 10: Fit of estimated idiosyncratic earnings model for High School sample

37



1965 1970 1975 1980 1985 1990 1995 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Data
Model

(a) Variance of log earnings by year

20 25 30 35 40 45 50 55 60
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 

 

Data
Model

(b) Variance of log earnings by age

1965 1970 1975 1980 1985 1990 1995 2000
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

Data
Model

(c) Third central moment of log earnings by year

20 25 30 35 40 45 50 55 60

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

Data
Model

(d) Third central moment of log earnings by age

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Data
Model

(e) Average autocovariance function

Figure 11: Fit of estimated idiosyncratic earnings model for College sample
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where z2 is Markov and primes denote next period values. These two properties hold both for the
model with and without cointegration. ⋄

The Lagrange function corresponding to (BE) is stated below along with first-order conditions.

L = W(x−
2

∑

i=1

ai,F(Vj+1(x
′, z′1, z

′
2)), j) + λ1[a

1 − 0] + λ2[a
2 − 0]

(1) −W1 +W2dF/da
1 + λ1 = 0

(2) −W1 +W2dF/da
2 + λ2 = 0

(3) constraints+ complementary slackness

We rewrite equation (1)-(2) below after imposing the functional forms from section 4. The Algorithm
is then based on repeatedly solving these Euler equations.

(1′) − 1 + βψj+1E[(
cj+1

cj
)−γ(

Vj+1

F (Vj+1)
)γ−αR1(z′)|x, z] + λ′1 = 0

(2′) − 1 + βψj+1E[(
cj+1

cj
)−γ(

Vj+1

F (Vj+1)
)γ−αR2(z′)|x, z] + λ′2 = 0

Algorithm:

1. Set VJ(x, 1, z2) =W (x, 0) and cJ(x, 1, z2) = x at grid points (x, z2).

2. Given (Vj+1(x, 1, z2), cj+1(x, 1, z2)), compute (a1j+1(x, 1, z2), a
2
j+1(x, 1, z2)) at grid points (x, 1, z2)

by solving (1′)− (2′) and (3).

3. Set cj(x, 1, z2) = x−
∑

i a
i
j+1(x, 1, z2) and Vj(x, 1, z2) =W (cj(x, 1, z2), F (Vj+1), j) at grid points.

4. Repeat 2-3 for successive lower ages.

To carry out this Algorithm we mention two points. First, evaluating (1′)− (2′) involves an interpo-
lation of the first component of the functions (Vj+1, cj+1). Second, evaluating (1′)− (2′) also involves
knowledge of (Vj+1, cj+1) when the second component of these functions differs from z1 = 1. This is
accomplished by using Lemma 1 as indicated below.

Vj+1(x
′, z′1, z

′
2) = z′1Vj+1(

x′

z′1
, 1, z′2) and cj+1(x

′, z′1, z
′
2) = z′1cj+1(

x′

z′1
, 1, z′2)

x′ =
∑

i

aij+1(x, 1, z2)R
i(z′) + ej+1(z

′)
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A.2.2 Human Capital Values and Returns

We describe how to compute human capital values and returns. Let (vj(x, z), Rj+1(x, z, z
′)) denote

the value and the return to human capital. These functions are recursive versions of the values and
returns defined in section 2. Human capital values vj(x, z) follow the recursion (∗∗), given vJ(x, z) = 0:

(∗∗) vj(x, z) = E[mj+1(x, z, z
′)(vj+1(x

′, z′) + ej+1(z
′))|z]

Rj+1(x, z, z
′) =

vj+1(x
′, z′) + ej+1(z

′)

vj(x, z)

mj+1(x, z, z
′) = βψj+1(

cj+1(x
′, z′)

cj(x, z)
)−γ(

Vj+1(x
′, z′)

F (Vj+1(x′, z′))
)γ−α

x′ =
∑

i

aij+1(x, z)R
i(z′) + ej+1(z

′)

Although the recursive structure above is a step in the right direction, it is not practical to implement
because the aggregate component of earnings z1 “fans out” over time in the benchmark model. Instead,
we compute the functions (v̂j , m̂j+1) defined below and then use Lemma 2 to compute values and
returns. v̂j is defined recursively, given v̂J = 0 . To compute (v̂j , m̂j+1), we require as inputs the
functions (cj , a

1
j+1, a

2
j+1, Vj) from the previous sections computed on the restricted domain. In what

follows, we write earnings as ej(z) = z1gj(z2) and use the fact that z′1 = z1fj+1(z
′
2) which is consistent

with the model from section 4. In retirement z′1 = z1fj+1(z
′
2) = z1.

v̂j(x̂, z2) = E[m̂j+1(x̂, z2, z
′
2)fj+1(z

′
2)(v̂j+1(x̂

′, z′2) + gj+1(z
′
2))|z2]

m̂j+1(x̂, z2, z
′
2) ≡ βψj+1(

fj+1(z
′
2)cj+1(x̂

′, 1, z′2)

cj(x̂, 1, z2)
)−γ(

fj+1(z
′
2)Vj+1(x̂

′, 1, z′2)

F (fj+1(z′2)Vj+1(x̂′, 1, z′2))
)γ−α

x̂′ ≡

∑

i a
i
j+1(x̂, 1, z2)R

i(z′2) + fj+1(z
′
2)gj+1(z

′
2)

fj+1(z
′
2)

Lemma 2 says that the value of human capital is proportional to z1 other things equal and after
correcting for financial asset holdings. It also says that the stochastic discount factor and the return
to human capital are independent of the level of z1, after correcting for financial asset holdings. Lemma
2 and the associated formulas allow the computation of statistics of (vj , Rj) over the lifetime by means
of simulating lifetime draws of z2 shocks and using v̂j and the computed decision rules.

Lemma 2: In the benchmark model the following hold when x̂ = x/z1 :

(i) mj+1(x, z, z
′) = m̂j+1(x̂, z2, z

′
2)

(ii) vj(x, z) = z1vj(x̂, 1, z2) = z1v̂j(x̂, z2)

(iii) Rj+1(x, z, z
′) =

fj+1(z′2)(v̂j+1(x̂′,z′
2
)+gj+1(z′2))

v̂j(x̂,z2)
.
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Proof: (i) The result follows from direct substitution of the consumption and the value function
into the definition of mj+1(x, z, z

′). Here we use Lemma 1 so that cj(x, z) = z1cj(
x
z1
, 1, z2) and

Vj+1(x
′, z′) = z′1Vj+1(

x′

z′
1

, 1, z′2). We also use the fact that z′1 = z1fj+1(z
′
2) and that F is homogeneous

of degree 1.

(ii) Lemma 2(ii) holds trivially for j = J . We show it holds for j given it holds for j + 1. The first
line below uses the definition and the induction hypothesis. The leftmost equality in the second line
follows from the first line, Lemma 2(i) and the induction hypothesis. The rightmost equality follows
from the definition of v̂j .

vj(x, z) = E[mj+1(x, z, z
′)(z′1vj+1(x̂

′, 1, z′2) + z′1gj+1(z
′
2))|z]

vj(x, z) = E[m̂j+1(x̂, z2, z
′
2)(z

′
1v̂j+1(x̂

′, z′2) + z′1gj+1(z
′
2))|z] = z1v̂j(x̂, z2)

(iii) The first line follows from the definition, Lemma 2(ii) and the structure of earnings. The second
line follows from the first and z′1 = z1fj+1(z

′
2).

Rj+1(x, z, z
′) =

vj+1(x
′, z′) + ej+1(z

′)

vj(x, z)
=
z′1v̂j+1(x̂

′, z′2) + z′1gj+1(z
′
2)

z1v̂j(x̂, z2)

Rj+1(x, z, z
′) =

fj+1(z
′
2)(v̂j+1(x̂

′, z′2) + gj+1(z
′
2))

v̂j(x̂, z2)

⋄

An algorithm to compute the naive value vnj (z) is provided. First, we list some useful points from
theory, where z = (z1, z2), ej(z) = z1gj(z2) and z

′
1 = z1fj+1(z

′
2). The first two equations are Bellman

equations. The third equation is an implication of theory. It follows from the first equation by
backwards induction and substituting in for earnings.

vnj (z) ≡ E[
1

1 + r
(vnj+1(z

′) + ej+1(z
′)|z]

v̂nj (z2) ≡ E[
fj+1(z

′
2)

1 + r
(v̂nj+1(z

′
2) + gj+1(z

′
2)|z2]

vnj (z) = z1v̂
n
j (z2)

The algorithm is as follows. Step 1: compute the functions v̂nj (z2) by iterating on Bellman’s equation.
Step 2: simulate histories of z2 shocks. Step 3: compute z1 histories using step 2 and z′1 = z1fj+1(z

′
2).

Step 4: compute histories vnj (z) using (i) vnj (z) = z1v̂
n
j (z2), (ii) v̂

n
j (z2) from step 1, (iii) shock histories

from steps 2-3.

A.2.3 Decomposing Human Capital Values

We decompose the value of human capital into a bond, a stock and a residual component. We then
calculate the bond and stock shares of human capital at different ages and states. To do so, apply
the Projection Theorem to the payout y = vj+1(x

′, z′) + ej+1(z
′). By construction, the residual

ǫ ≡ y − αbRb + αsRs is orthogonal to each asset return.
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vj(x, z) = E[mj+1y] = E[mj+1(α
bRb + αsRs + ǫ)]

vj(x, z) = αbE[mj+1R
b] + αsE[mj+1R

s] + E[mj+1ǫ]

shareij(x, z) ≡
αi
j(x, z)E[mj+1R

i]

vj(x, z)
for i = s, b

Calculate (αb, αs) by solving the system below, using the relevant conditional expectation. The system
imposes that ǫ is orthogonal to each return.

αbE[R2
b ] + αsE[RsRb] = E[yRb]

αbE[RbRs] + αsE[R2
s ] = E[yRs]

Lemma 3 below is useful in theory and computation. It says that in the decomposition defined above,
shareij(x, z) is invariant to scaling up or down (x, z1). Thus, shares can be computed for a single value
z1 = 1 to determine the share decomposition for all z1 values.

Lemma 3: In the benchmark model the following holds for i = s, b :

shareij(λx, λz1, z2) = shareij(x, z1, z2),∀λ > 0

Proof: The first line is the definition of the share. The second line uses Lemma 1 and the fact that the
solution (αb, αs) to the linear system scales linearly in (x, z1). This latter fact holds as the payout scales
linearly in (x, z1). To show this, write the payoff: y = vj+1(x

′, z1fj+1(z
′
2), z

′
2) + z1fj+1(z

′
2)gj+1(z

′
2).

The payoff scales in (x, z1) because vj+1 scales in its first two components (Lemma 2(ii)) and x′ scales
in (x, z1). Lemma 3 then follows if E[mj+1R

i|λx, λz1, z2] is constant in λ. This holds because financial
asset returns Ri depend only on z′2, z2 is Markov and mj+1 is homogeneous of degree zero in (x, z1)
by Lemma 2(i).

shareij(λx, λz1, z2) =
αi
j(λx, λz1, z2)E[mj+1R

i|λx, λz1, z2]

vj(λx, λz1, z2)

shareij(λx, λz1, z2) =
λαi

j(x, z1, z2)E[mj+1R
i|λx, λz1, z2]

λvj(x, z)

shareij(λx, λz1, z2) =
αi
j(x, z1, z2)E[mj+1R

i|λx, λz1, z2]

vj(x, z)

⋄
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A.2.4 Discretization of Stochastic Processes

For computation, we discretize the idiosyncratic component of earnings, the aggregate component of
earnings and stock returns. We construct our discrete approximations to the estimated stochastic
processes as follows.

For the idiosyncratic earnings process, both the persistent and transitory innovations are drawn from
a three-parameter Generalized Normal distribution. The (inverse) map from the mean, variance and
third central moment to the parameters of the Generalized Normal is unique. Thus, we set model
parameters consistent with the values in Table 1 as indicated in Table 4. For a given number of grid
points, we choose the upper and lower bounds and the (non-linear) spacing of the grid points for
each component to minimize the distance between the average variance and average skewness over
the lifecycle of the discretized process, and the corresponding moments from the estimated continuous
process, excluding the estimated trend. We fill in transition probabilities by assigning to each grid
point the mass implied by the continuous Generalized Normal distribution between the mid-points of
adjacent grid points. We construct separate discretizations for booms and recessions. We use 7 grid
points for the transitory component, 11 grid points for the persistent component and 3 grid points for
the fixed effect. Table A.1 reports moments from the continuous and discretized persistent processes
for the baseline model. The moments for the transitory process are matched exactly, for each age, by
construction.

For the aggregate earnings process, we assume that innovations are drawn from a joint normal dis-
tribution. We use equally spaced grid points in each dimension where the upper and lower bounds
are a constant multiple of the unconditional variance in the respective dimensions. We choose this
multiple to minimize the distance between the second moments of the underlying estimated continu-
ous process and the discretized process. We use 4 grid points for aggregate earnings growth, 5 grid
points for equity returns and in the models that include cointegration we include 3 grid points for the
cointegrating vector. Table A.1 reports moments from the continuous and discretized processes for
the baseline model.

Table A.1: Model Moments

Full College High School
Sample Sample Sample

Idiosyncratic Component

Variance persistent component: true 0.340 0.339 0.193
Variance persistent component: discretized 0.324 0.329 0.184

Skewness persistent component: true -1.14 -0.738 -4.73
Skewness persistent component: discretized -1.20 -0.815 -4.43

Aggregate Component

Variance aggregate earnings growth: true 0.00632 0.00539 0.00918
Variance aggregate earnings growth: discretized 0.00657 0.00560 0.00953

Variance stock returns: true 0.0349 0.0351 0.0350
Variance stock returns: discretized 0.0333 0.0336 0.0334
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We impose a constant lower bound on the possible realizations of the combined process for total
earnings, in order to minimize numerical inaccuracies that result from very low probability low earnings
realizations.We set this minimum at 5% of average earnings. The minimum does not bind except for
the high school sample at young ages where there is large amount of negative skewness in persistent
shocks.

A.3 Time Series Model

A.3.1 Full Description of Stochastic Model for Aggregate Variables

We assume the following general VAR model for yt =
(

u1t Pt

)

:

yt = v(t) +

p
∑

i=1

Aiyt−i + εt

where εt is a vector of mean zero IID random variables with covariance matrix Σ. v (t) is a quadratic
time trend which is parameterized below. We restrict attention to values of p ≤ 2 to keep the state
space manageable. This model has a general VECM form given by

∆yt = v + δt+ αβ′yt−1 +

p−1
∑

i=1

Γi∆yt−i + εt

where the vector β is known as the cointegrating vector. We can split the constant and trend terms
into components as follows

v = αµ+ γ

δt = αρt+ τt

where γ′αµ = 0 and τ ′αρ = 0. In this case the VECM model can be written as

∆yt = γ + τt+ α
(

β′yt−1 + µ+ ρt
)

+

p−1
∑

i=1

Γi∆yt−i + εt

It is useful to define the one-dimensional object wt = β′yt + µ + ρ(t + 1) which, in the case of
cointegration (α 6= 0), is a stationary random variable. By construction, wt evolves as

wt = wt−1 + β′∆yt + ρ

Since we would like a system where wt evolves based on variables at t− 1 or earlier, we can re-write
this as

wt = wt−1 + β′γ + β′τt+ β’αwt−1 +

p−1
∑

i=1

β′Γi∆yt−i + β′εt

=
(

β′γ + ρ
)

+ β′τt+
(

1 + β′α
)

wt−1 +

p−1
∑

i=1

β′Γi∆yt−i + β′εt

In all of our analyses we assume that τ = 0. The general system can then be written as
(

∆yt
wt

)

=

(

γ
β′γ + ρ

)

+

(

Γ α
β′Γ 1 + β′α

)(

∆yt−1

wt−1

)

+

(

εt
β′εt

)

44



Table A.2: Lag-Order Selection Tests for VAR
Lag P-Value FPE AIC HQIC SBIC

Full Sample

0 .001762 -0.666 -0.635 -0.579
1 0.000 .000020 -5.169 -5.077 -4.911
2 0.004* .000016* -5.370* -5.217* -4.939*
3 0.160 .000018 -5.333 -5.118 -4.729

College Sub-sample

0 .001882 -0.600 -0.569 -0.514
1 0.000 .000015 -5.422 -5.330* -5.163*
2 0.078* .000015* -5.432* -5.279 -5.001
3 0.374 .000018 -5.248 -4.973 -4.744

High School Sub-sample

0 .003469 0.012 0.042 0.098
1 0.000 .000028 -4.801 -4.709 -4.543
2 0.014* .000025* -4.919* -4.766* -4.488*
3 0.132 .000028 -4.837 -4.561 -4.257

Notes: Lag order selected by each criteria is denoted by *. P-values are from likelihood ratio tests of the null that true

lag length is p− 1 or less.

We adopt the Johansen (1995) normalization for β, which implies for the two variable case that we
can write

∆wt = ∆u1t + β2 logR
s
t + ρ

The model with p = 2 becomes




∆u1t
logRs

t

wt



 =





γ1
γ2

γ1 + β2γ2 + ρ



+





Γ11 Γ12 α1

Γ21 Γ22 α2

Γ11 + β2Γ21 Γ12 + β2Γ22 1 + α1 + β2α2









∆u1t−1

logRs
t−1

wt−1



(6)

+





ε1t
ε2t

ε1t + β2ε2t



 (7)

A.3.2 Estimation of Aggregate Stochastic Process

We test for the lag order of the underlying VAR. Table A2 reports results from likelihood ratio tests
and a number of commonly used statistical information criteria. All criteria suggest a lag length of
p = 2. The college and high-school sub-samples, and alternative measures of aggregate earnings and
alternative sample periods all indicate the presence of two lags.

We also test for the presence of cointegration. Table A3 reports results from tests of the cointegrating
rank based on the methods in Johansen (1995). Our results suggest only very weak evidence for
cointegration. Alternative variable definitions, specifications and time periods lead to similar results.

Table A4 presents the average moments in the data together with the implied steady-state statistics
from the model for three different data samples: the full sample from the CPS 1967-2008, NIPA 1967-
2008 and NIPA 1929-2009. The NIPA measure of earnings growth is the change in the log of total
wages and salaries per member of the labor force.

A.3.3 Benzoni et. al. (2007)

We describe the construction of the system of equations underlying the results in Figure 9 from section
6. The three equations below are equation 2, 8 and 14 from Benzoni et al. (2007), where yt is log
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Table A.3: Cointegration Rank Selection Tests
Maximum Rank Trace Statistic 5% Critical Value Eigenvalue SBIC HQIC

Full Sample

0 9.95* 15.41 0.220* -5.05* -5.21
1 0.00 3.76 0.000 -5.02 -5.26*

College Sub-sample

0 9.49* 15.41 0.200* -5.08* -5.247
1 0.55 3.76 0.014 -5.03 -5.274*

High School Sub-sample

0 9.91* 15.41 0.218* -4.66* -4.824
1 0.07 3.76 0.002 -4.63 -4.875*

Notes: Rank of cointegration by each criteria is denoted by *. Trace statistic criteria is obtained by selecting the lowest

rank that cannot be rejected.

Table A.4: Implied Steady-State Statistics: Alternative Data Sources and Sample Periods

No Cointegration
CPS: 1967-2008 NIPA: 1967-2008 NIPA: 1929-2009
Data Model Data Model Data Model

E (logRs
t ) 0.041 0.045 0.041 0.044 0.068 0.069

E
(

∆u1
t

)

-0.002 -0.004 0.004 0.001 0.012 0.012

sd
(

∆u1
t

)

0.025 0.025 0.024 0.025 0.029 0.029
sd (logRs

t ): 0.187 0.187 0.187 0.187 0.178 0.178
corr

(

∆u1
t , logR

s
t

)

0.184 0.177 0.234 0.216 0.070 0.071
corr

(

∆u1
t ,∆u1

t−1

)

0.425 0.441 0.429 0.460 0.398 0.384
corr (logRs

t , logR
s
t−1) 0.057 0.055 0.058 0.057 -0.054 -0.052

corr
(

∆u1
t logR

s
t−1

)

0.372 0.398 0.640 0.685 0.680 0.675
corr

(

logRs
t ,∆u1

t−1

)

-0.292 -0.270 -0.189 -0.194 -0.096 -0.096

With Cointegration
CPS: 1967-2008 NIPA: 1967-2008 NIPA: 1929-2009
Data Model Data Model Data Model

E (logRs
t ) 0.041 0.070 0.041 0.070 0.068 0.045

E
(

∆u1
t

)

-0.002 -0.002 0.004 0.005 0.012 0.004

sd
(

∆u1
t

)

0.025 0.025 0.024 0.024 0.029 0.026
sd (logRs

t ): 0.187 0.187 0.187 0.182 0.178 0.172
corr

(

∆u1
t , logR

s
t

)

0.184 0.155 0.234 0.178 0.070 -0.020
corr

(

∆u1
t ,∆u1

t−1

)

0.425 0.435 0.429 0.435 0.398 0.260
corr (logRs

t , logR
s
t−1) 0.057 0.005 0.058 -0.007 -0.054 -0.096

corr
(

∆u1
t logR

s
t−1

)

0.372 0.394 0.640 0.664 0.680 0.660
corr

(

logRs
t ,∆u1

t−1

)

-0.292 -0.283 -0.189 -0.213 -0.096 -0.176

Notes: Table shows average moments in the data, together with implied steady-state statistics from the corresponding

estimated model. NIPA data is total wage and salaries per member of the labor force. When implementing the estimated

processes in the structural model, we adjust the constants (γ1, γ2) so that all models have E[logRs
t ] = 0.041 and

E[∆u1
t ] = 0.
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Table A.5: Implied Steady-State Statistics: Two Models

Benchmark Model Benzoni Process
sd

(

∆u1
t

)

0.025 0.069
sd (logRs

t ): 0.187 0.160
corr

(

∆u1
t , logR

s
t

)

0.177 0.000
corr

(

∆u1
t ,∆u1

t−1

)

0.441 0.327
corr (logRs

t , logR
s
t−1) 0.055 0.000

corr
(

∆u1
t logR

s
t−1

)

0.398 0.347
corr

(

logRs
t ,∆u1

t−1

)

-0.270 0.000

Notes: Table shows implied steady-state statistics. When implementing the estimated processes in the structural model,

we adjust the constant terms so that all models have E[logRs
t ] = 0.041 and E[∆u1

t ] = 0.

dividends, Rt is the gross stock return and ut is the log of the common component of earnings. The
parameter κ is the key adjustment parameter controlling the strength of cointegration.

dyt = (g − σ2/2)dt + σdz3

Rt − 1 = µdt+ σdz3

d(ut − yt − ūy) = −κ(ut − yt − ūy)dt+ ν1dz1 − ν3dz3

The three equations below are a discrete-time approximation of this continuous-time process, where
(z1,t, z3,t) are independent standard normal random variables. We rewrite this system of equations as
system (8) below, using ∆ut ≡ ut − ut−1 and wt ≡ (ut − yt − ūy).

yt+1 − yt = g − σ2/2 + σz3,t+1

logRt+1 = µ+ σdz3,t+1

(ut+1 − yt+1 − ūy)− (ut − yt − ūy) = −κ(ut − yt − ūy) + ν1dz1,t+1 − ν3dz3,t+1





∆ut+1

logRt+1

wt+1



 =





g − σ2/2
µ
0



+





0 0 −κ
0 0 0
0 0 1− κ









∆ut
logRt

wt



+





ν1z1,t+1 + (σ − ν3)z3,t+1

σz3,t+1

ν1z1,t+1 − ν3z3,t+1





(8)

System (8) produces the steady-state statistics listed in Table A5. This occurs when we set (κ, g, ν1, ν3, σ, µ) =
(.15, .018, .05, .16, .16, .07), which are the benchmark parameter values used by Benzoni et al. (2007),
and when we alter the constant terms in (8) to produce the same steady-state mean values (E[logR], E[∆u])
as in both of our benchmark models. This leaves the variance-covariance properties of the model un-
changed.
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