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Some Like it (Less) Hot: 

Extracting Tradeoff Measures for Physically Coupled Amenities 

I.  Introduction 

Hedonic models have been used to estimate measures for the economic tradeoffs people would 

make, at the margin, to enhance (or avoid degradation in) a wide array of outdoor amenities. Some 

examples directly related to land use decisions include forest lands (Cho, Poudyal and Roberts 2008; 

Thorsnes 2002; Tyrvainen and Miettinen 2000), greenbelts (Lee and Linneman 1998), wetlands (Mahan, 

Polasky and Adams 2000), lakes (Abbott and Klaiber 2013), open space (Abbott and Klaiber 2010; 

Geoghegan 2002; Irwin and Bockstael 2001; Smith, Poulos and Kim 2002; Towe 2009), and aspects of 

the surrounding landscape, including tree canopy cover (Cavailhes 2009; Geoghegan, Wainger and 

Bockstael 1997; Luttik 2000; Netusil, Chattopadhyay and Kovacs 2010; Sander, Polasky and Haight 2010). 

In contrast to these applications, the use of hedonic property value models for the case of landscape 

related amenities presents dual challenges.   

First, landscape amenities may convey multiple benefits of varying levels of excludability, 

leading to complex, multi-scalar patterns of capitalization. For example, tree cover on one’s property 

may convey excludable benefits due to its role in shading the house, providing privacy or enhancing the 

recreational utility of the yard. Trees on the edge of a neighbor’s yard may provide valuable privacy 

benefits, while the trees of still more distant neighbors may offer more diffused aesthetic benefits or 

improvements to the neighborhood micro-climate. Tree cover, and landscaping more generally, 

contributes to creating a multidimensional impure public good with implications that can have 

confounding effects on what can be learned from models that rely on spatial differences in housing 

prices.  

Second, landscape amenities, by the nature of their interactions with the built and natural 

environment may also serve as factor inputs to other valued amenities. For example, vegetation through 
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the effects of shade and evapotranspiration may act to moderate local temperatures. The urban heat 

island (UHI) – the relative warming of built urban areas compared to surrounding non-urban areas – is 

an intensively researched micro-climatic effect of people’s decisions to transform the landscape. 

Extensive research in Phoenix, much of it funded under the National Science Foundation’s CAP-LTER 

program, has demonstrated an urban heat island (UHI) effect from the urbanization of its landscape.1 

For economists, efforts to understand how these changes feedback into household decision making, and 

what these decisions, in turn, reveal about the value placed on these amenities are critical inputs for the 

design of policies to mitigate heat island effects. 

 The hypothesis that people recognize the UHI and adapt their activities to mitigate its effects 

within a given urban area has not been tested in the existing literature. We provide the first 

unambiguous evidence of an important feedback loop between UHI, people’s behavior through the 

location of their housing choice, and the resulting changes in landscape. We establish this finding by 

jointly estimating the effects of temperature and the presence of water-intensive (“green”) landscaping 

on housing prices for single-family residential properties in the Phoenix metropolitan area.2 This task is 

accomplished while taking account of other location specific amenities and dis-amenities, including the 

role of site elevation3.  

Green landscaping provides both private and public benefits to residents at multiple spatial 

scales. It serves to mitigate the UHI effects on local temperatures. Private benefits also include the 

aesthetic value of a green yard as well as the opportunity for local outdoor recreation allowed by the 

                                                 
1
 See Grimm and Redman [2004] for a summary of the multiple dimensions of this transformation. 

2
 Baker et al. [2002] suggest mechanisms that could lead to feedbacks but do not provide evidence that the 

temperature effects and recognized choices lead to real resource commitments that can be associated with the 
temperatures that vary with location and time of the housing sales. 
3
 A home’s elevation potentially influences both vistas and evening temperatures linked to the site. 
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grass. At a neighborhood scale, the quantity of green landscape may provide services through aesthetics 

and recreational opportunities in public areas.  

Landscape changes take place within a finely delineated spatial template. This setting combines 

structures, roads, and other features of the built environment with the natural environment. The 

landscaping decisions of homeowners in a given neighborhood collectively influence localized daily 

maximum and nighttime minimum temperatures. By transforming landscape on their properties 

homeowners produce local amenities for themselves and, indirectly, spillovers for their neighbors. 

Homeowners’ associations also produce collective amenities in their respective local neighborhoods 

through plantings, water features, maintenance programs for open space, and restrictions on what 

homeowners can do – all of which can affect the microclimate (see Chow et al. [2012]). People’s 

behavior, together with the natural processes, are thus jointly embedded in the hedonic price 

equilibrium which is assumed to give rise to the relationship between housing prices, home attributes, 

and spatially varying features of parcels and neighborhoods (as well as other local goods such as local 

school quality, safety and other dimensions of environmental quality).  

The implication of this logic for the measurement of the tradeoffs households would make to 

enhance landscape amenities arises because the multiple induced outputs resulting from their choices 

must be considered as joint outcomes. A strategy that does not adequately control for the roles that 

landscape inputs play in the hedonic price function will provide inconsistent estimates of the marginal 

value of temperature.  It could easily confound the separate effects of the services provided by 

landscape amenities with landscape effects on temperature mitigation. Even if concern lies only with 

estimating the overall marginal value of landscape, inclusive of its induced effects on temperature, there 

is still a need to  account for both landscape and temperature due to the potential for reverse causation. 

To address this challenge we modify Abbott and Klaiber’s [2011] extension to the Hausman-Taylor panel 
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data model  for a hierarchical spatial context. Our strategy extends their logic by defining panels that 

exploit two sources of variation in housing prices—the spatial and the temporal dimensions. 

 The next section describes the urban heat island and its link to landscaping choices. It then 

discusses important differences between our approach and past efforts to measure the effect of 

weather variables on housing prices, wages, or migration choices. Section 3 presents our econometric 

model. Sections 4 and 5 describe the data used and estimation results, respectively. Section 6 discusses 

the complementarities between the use of hedonic methods to estimate the effects of spatially 

delineated amenities and the modeling of urban ecosystems. 

 

II. The Urban Heat Island and Landscape 

 The urban heat island refers to the records documenting warmer temperatures at the core of a 

built urban area compared to its surrounding, more rural, areas that fall within the same general 

weather patterns. It is one of the best documented weather related phenomena that can be associated 

with the increases in urbanization globally (see Oke [1982]). Grimm and Redman’s [2004] summary of 

the first five years of research associated with the CAP-LTER notes that: 

 “The signal (for the UHI) in Phoenix is much more dramatic than other world city sites at 10 
times the global change trend, owing to the stable air and clear days in this desert city. Minimum 
temperatures in the Phoenix summertime have increased by 10°C over the last 50 years . . .” (P. 208, 
parenthetical phrase added).  
 
The UHI effect is typically greater at night when energy stored in impervious surfaces is released to the 

atmosphere, dampening the typical pattern of nighttime cooling – so much so that the UHI is often 

defined on the basis of nighttime temperatures. 

 There are multiple sets of research that have confirmed the general trends Grimm and Redman 

highlight. For example, Brazel et al. [2007] examined the areas around surface weather stations 

between 1990 and 2004. Using a pooled sample (over years and spatial zones) this study found that 



5 

 

monthly mean minimum temperatures for June in each of thirty-seven development zones were 

significantly related to new housing units built in each zone after controlling for the land types used to 

define their zones. Mean minimum temperatures increased by approximately 1.4°C (2.5°F) for each 

1000 new homes constructed around the station in each year. While the authors are careful to qualify 

their results as an approximate relationship that is supportive of UHI effects, they nonetheless reinforce 

the conclusions based on other results tracking the general trends in temperature and urbanization for 

the area as a whole. 

The economic literature on the effects of temperature on housing prices is relatively small.  For 

the most part models considering temperature as influencing house prices or wages assume households 

sort across multiple metropolitan areas and employment markets in response to spatially aggregated 

measures of regional climate.4  This literature generally involves multiple metropolitan areas and jointly 

considers changes in housing prices (rents) along with wages.  The conceptual arguments for joint 

consideration of wages and rents are usually attributed to Rosen [1979] and Roback [1982]. The first 

empirical effort to evaluate the model’s implications was developed by Blomquist et al. [1988]. Their 

findings clearly supported weather conditions as a factor in a model that assumed rents and wages were 

determined cross metro areas as a result of a long-run sorting process. Most recently, two studies have 

extended their analyses in somewhat different directions. Bieri, Kuminoff, and Pope [2014] consider the 

effects of 75 amenities for over 3000 counties in the U.S. on wages and annualized housing prices. Their 

analysis includes geographic features, environmental amenities (and dis-amenities), local public services, 

infrastructure, and cultural and urban amenities. Humidity, heating and cooling degree days, 

precipitation, and sunshine are their weather related variables. In their preferred model with all 75 

                                                 
4
 See Albouy et al. [2013]; Biere et al.[ 2014]; Cragg and Kahn [1997]; Maddison and Bigano [2003]; Rehdanz and 

Maddison [2009]; Sinha and Cropper [2013]. 
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amenities, cooling degree days are a significant negative influence on rents and their measure for 

sunshine is a significant positive influence.5 

 Plantinga et al. [2013] supplements the Blomquist et al. logic using a random utility model 

(RUM) of location choices across metropolitan areas. The primary source for their data is the 2000 5% 

Public Use Microdata Survey. They consider migration decisions between 1995 and 2000 for working age 

(aged 25 to 64) adults for 291 metropolitan areas (MA). In a migration model they find that higher 

January temperatures attract movers and higher July temperatures are a significant deterrent.6  

 Our analysis is different from these other efforts in that it requires that an economically 

important choice, the housing decision, respond over relatively small variations in local weather 

conditions within a single metropolitan area. It does have some advantages in that it can take advantage 

of spatially stable gradients of temperature within the housing market provided they are known to a 

significant share of homebuyers. There are several reasons to suggest this characterization is 

reasonable. First, there is significant heterogeneity in heat exposure across Maricopa County. 63% of the 

spatial-temporal variability in mean minimum temperatures at the Census tract level can be explained 

by spatial heterogeneity in the means alone. Second, previous work has demonstrated a strong 

correlation of income and lower summer surface temperatures that is suggestive of sorting behavior in 

the market, with a marginal reduction of 0.28°C for every $10,000 in income (Jenerette et al. [2007]). 

This same work has shown that much of the income-based heterogeneity of temperatures is driven by 

differences of vegetative cover, buttressing the case for the joint consideration of these amenities.7 

                                                 
5
 A small number of other studies have also considered weather’s role. See Albouy et al. [2013]; Cragg and Kahn 

[1997]; Maddison and Bigano [2003]; Rehdanz and Maddison [2009]; Sinha and Cropper [2013]. 
6
 A simpler migration analysis by Evans et al. [2014] using the 2004 and 2006 waves together with confidential 

records identifying the census tract of respondents to evaluate residential choices in 2006 confirms the importance 
of weather variables. 
7
 In unpublished research using stated preference questions, Smith et al. [2007] asked respondents from the 

Phoenix, AZ area whether they would be willing to pay a higher mortgage or rental fee to reduce summer 
nighttime temperatures. The analysis found that respondents were willing on average to pay nearly $40 a month 
for a reduction of 5 degrees Fahrenheit. 
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Finally, a separate set of research has used the American time use survey to consider how people adapt 

to short term variations in weather conditions. Graff-Zivin and Neidell document a robust link between 

temperature and individuals’ daily time allocations to working outdoors for surveys between 2003 and 

2006. Their analysis focuses on industries classified as likely to involve work outside. There are 

monotonic declines in time allocated to work in these cases for temperatures above 85°F.8 

 

III.  Decoupling Natural and Produced Amenities  

 The use of water intensive landscaping for mitigation of the urban heat island physically couples 

two features of a location. It is an example of how the production of one amenity can serve to create 

joint outputs. Increased evapotranspiration and shading from green landscaping can reduce the storage 

of heat and lessen the UHI. An anticipated byproduct of these types of mitigating responses is a 

reduction in the expenditures on electricity for cooling. This linkage implies analysts are unlikely to be 

able to construct a quasi-experiment that assigns temperatures in a way that is uncorrelated with 

landscape. Since the physical mechanisms that generate the UHI depend on the landscape, the two 

phenomena cannot be artificially separated. We also suggested reasons to believe that landscaping is 

likely an impure public good. For this reason it may influence housing prices at both a highly localized 

(parcel) level and a more diffuse (neighborhood) scale. This differential level for capitalization reflects 

the landscaping decisions of many neighbors that aggregate to create both neighborhood level 

                                                 
8
 Other studies have also offered support for their conclusions. For example, Connolly’s [2008] analysis of rainfall 

and work and leisure is broadly consistent in the sense that labor in general is not affected by the weather. This 
finding was also true for Graff-Zivin and Neidell. The effect was under high temperatures for individuals likely to be 
working outside. Black et al.’s [2014] analysis of air pollution conditions on outdoor leisure activities using the 
ATUS between 2003 and 2010 appears to be broadly consistent. These authors include controls for temperature 
but do not report the specific estimates. Their findings suggest that controls for temperatures along with other 
fixed effects influence the ability to detect extensive margin adjustments to air pollution conditions. Finally 
Siikamaki [2009] used the ATUS as well as other time use surveys to consider trends in the time spent for outdoor 
recreation from 1965 to 2007. 
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amenities and microclimate effects that are likely to be noticeable at the relatively coarse scale of 

neighborhoods.9  

Recovering a tradeoff measure for reducing nighttime temperatures requires that the analysis 

be capable of using temperature differences at multiple spatial scales to capture the effects of both 

spatially differentiated microclimates and any associated differences in landscaping. This task is 

especially challenging because the variables used to measure temperature and landscaping are likely to 

be correlated with other omitted variables at each spatial scale. Parcel-level benefits from green 

landscape may be correlated with unobserved neighborhood characteristics while gains associated with 

landscape features across broader spatial scales influencing neighborhood quality, such as access to 

local jogging or walking paths, are also liked to be correlated. In addition it is also important to recognize 

the possibility for temporal changes in unobservables due to urban expansion. Temperature, while 

perhaps not significantly varying at parcel and neighborhood spatial scales, may be correlated with 

evolving larger-scale features of an urbanizing landscape, particularly aspects of development density.  

The potentially complex interplay between omitted unobservables and the multi-scalar nature 

of the effects of landscape and UHI creates challenges to the spatial fixed effects approaches often 

employed in hedonics. It particularly limits the ability to use relatively small-scale spatial fixed effects to 

absorb temporally stable omitted variables at or above this scale as these would absorb the variation in 

temperature needed for identification. Given this property, the analyst is faced with a tradeoff in 

selecting the scale of fixed effects.  Consistent estimation of fine-level effects (e.g. effects of landscaping 

at or below the neighborhood level) might preclude identification of more widespread and slowly-

varying spatial phenomena such as the UHI. 

                                                 
9
 There may also be some excludable benefits to the parcel-level microclimate of one’s own landscape, e.g. Stone 

and Norman [2006]).  
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Abbott and Klaiber [2010; 2011] address this problem by recasting traditional cross-sectional 

hedonic data as a panel, where the panel is defined as transactions within discrete spatial 

“neighborhoods” (e.g., subdivisions, census units, etc.) and then proposing a spatial adaptation of the 

Hausman-Taylor panel data estimator (Hausman and Taylor [1981]). The Hausman-Taylor model 

combines elements of both random effects and fixed effects estimation for panel data using 

instrumental variables to correct for correlation between explanatory variables and spatially-defined 

random effects. To instrument for all variables that vary below the scale of the spatial effects, the model 

utilizes the within-transformation of variables to form instruments. For endogenous variables that lack 

“within” variation, these instruments are constructed using the within-panel means of a subset of the 

within-varying variables that are hypothesized to be exogenous. Our presentation of this model here 

closely parallels Abbott and Klaiber [2011] with a change that is especially relevant to our application. 

We augment the purely spatial definition of panels used in their application to include a temporal 

dimension, so that a panel is defined as the intersection of a given spatial zone with the sale year for the 

houses in our sample. This change allows our new framework to address the effects arising from time-

varying omitted variables and, as we explain below, facilitates the estimation of temperature effects.  

As with most hedonic regression models, the (natural log) of housing price      is hypothesized 

to be determined by a linear function of a series of home, neighborhood and area attributes 

(1)               
        

       
       

           

where the     subscript represents individual houses, spatial neighborhood, and time, respectively. 

Variables denoted by   are     specific and classified as either endogenous (superscript=1) or exogenous 

(superscript=2), while variables denoted by   do not vary within the    panel dimension and similarly 

can be either endogenous or exogenous. Unobserved random effects which vary over location and time 

are given by     and      is an idiosyncratic error. The endogeneity of     
  is assumed to be of a 

particular form so that          
         but     

  is exogenous with respect to the idiosyncratic error 
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    .10 As this specification suggests, the econometric challenge is to consistently estimate coefficients 

for the endogenous variables,     
  and    

 , in the presence of omitted variables. 

 The process begins by first obtaining consistent estimates of       and    using the within 

estimator and computing the residuals. The within panel means of these residuals correspond to 

spatial/time fixed effects. Regressing these means on    
  and    

 , using exogenous variables     
  and    

  

as instruments, recovers initial estimates for    and   . With estimates of all coefficients in hand, it is 

then possible to estimate the variance of the error components. These variance estimates are used to 

develop a random effects feasible GLS (FGLS) transformation on equation (1) as shown in equation (2) 

(2)                      
         

        
        

        

where      is a FGLS transformed column vector of ones. The final step is to develop an instrumental 

variables regression using the within-transformed variables,      
  and      

 ; the transformed non-within-

varying exogenous variables,     
 ; and the neighborhood means of within-varying exogenous variables 

    
 . Note that exogenous    variables are instrumented by themselves while     

  provides instruments 

for the endogenous    variables. Identification rests on the ability to find a number of exogenous within-

varying variables that equal or exceed the number of endogenous non within-varying variables,     
 .  

For a valid instrumental variable estimator for equation (2) the within-panel means of these 

within-varying characteristics     
  must be correlated with     

  while also being uncorrelated with    . We 

follow Abbott and Klaiber [2011] and construct a pseudo-Hausman test suggested by Wooldridge [2002] 

to test this hypothesis. A Wald test for this hypothesis compares the coefficient estimates for     
 from 

fixed and random effects estimates. It tests the null-hypothesis that the difference in the two sets of 

coefficients estimated under different maintained hypotheses is zero. Failure to reject this condition 

                                                 
10

 This is the standard assumption underlying the standard fixed effects estimation strategy in a spatial hedonic 
setting. 
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indicates that random effects and fixed effects estimates cannot be distinguished on statistical criteria, 

supporting the conclusion that the     
  are uncorrelated with    .11  

While this description has assumed that the error correlations follow a random effects pattern, 

so that the transformed error in the FGLS equation (2) is spherical, this is not necessary for consistency 

of the coefficient estimates. To account for spatial and temporal correlation within panels as well as 

heteroskedasticity, we calculate cluster-robust standard errors using a nonparametric cluster bootstrap 

(Cameron, Gelbach and Miller [2008]), with clusters defined at the same scale as the random effects.  

 

IV.  Data 

Our data consists of all single family residential transactions in Maricopa County (the county 

containing Phoenix and most of its MSA) between 1999 and 2005. Phoenix experienced rapid growth 

during this period. Our primary source of transactions data comes from the private data vendor, 

Dataquick, and is supplemented with data from the Maricopa County Assessor. These data contain a 

complete inventory of single family residential transactions as well as an extensive list of structural 

characteristics and lot size. After removing outliers and observations with missing information, we are 

left with a dataset containing 614,700 individual transactions. We further restrict the sample to areas 

containing a minimum of 5 transactions in each tract/year combination. This removes an additional 236 

transactions that were primarily located a considerable distance outside the urban area. Our resulting 

dataset contains 614,464 individual transactions occurring over 630 Census 2000 tracts (Figure 1).  

The Hausman-Taylor model requires a clear definition of the spatial and temporal scale of the 

random effects. Census 2000 tracts are used to define the spatial dimension of the random effect (the   

dimension). These spatial effects are interacted with the year of sale (the   dimension) to define our 

                                                 
11

 To ensure robustness of the test to errors that fail to follow the random effects assumptions, we follow 
Wooldridge’s suggestion and use a cluster-robust estimate of the covariance matrix in the Wald test.  
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random effects, yielding an unbalanced panel of 4,341 unique tract/year combinations. While varying in 

spatial size depending on population density, tracts provide a commonly used definition of a 

“neighborhood” – knitting together areas with similar observed and unobserved public goods while also 

allowing significant “between” variation across tracts to identify the coefficients of variables that vary at 

or above the tract level. To take account of the rapid increases in housing prices in Phoenix during our 

sample period, we normalize transactions prices to January 1998 dollars using the monthly Case-Shiller 

price index for Phoenix. We further convert these normalized prices to an annual rental rate using a 

value of 11% following Poterba [1991]. Summary statistics for prices as well as other structural 

characteristics including square footage, lot acreage, number of stories, number of bathrooms, age of 

house, number of rooms, and indicators for the presence of a garage and pool are shown in Table 1. 

Overall, the mean annualized Case-Shiller adjusted sales price in our sample is slightly over $16,349 in 

1998 dollars, with a nominal sales value of $221,416. The typical home contains approximately 1,900 

square feet, slightly over 2.5 bathrooms, and is situated on 0.20 acres. These summary features are 

consistent with the pattern of relatively dense (for detached housing) development of subdivisions in 

the area. We calculate a further set of parcel specific GIS attributes which consist of distances to the 

nearest highway and downtown Phoenix, as well as distances to and adjacency indicators for local parks, 

city parks, and subdivision provided open space following Abbott and Klaiber [2010].  

Information on landscape characteristics is obtained from remote sensing data (Stefanov, 

Ramsey and Christensen 2001) which classified satellite imagery in the Phoenix area into 12 unique 

categories. Their classification system analyzed differences in reflectivity to assign one of 12 land cover 

types to 30x30 meter squares (rasters) covering our study area. The land cover types include cultivated 

vegetation, cultivated grass, vegetation, fluvial and lacustrine sediments (canals), water, undisturbed, 

disturbed soil with agricultural water rights, compacted soil, commercial/industrial, asphalt and 

concrete, mesic residential, and xeric residential. By comparing the land cover classification to aerial 
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photography of residential lots, we chose to combine the categories cultivated vegetation, water, and 

mesic residential to form an “irrigated” classification where the remaining categories are considered 

“dry” or xeric. We overlaid classifications on GIS parcel maps, categorizing a parcel as irrigated based on 

the intersection of parcel centroids. Figure 2 provides an example of the parcel level classification of 

irrigated land cover.  In addition to the parcel-level classification of landscaping, we created a 

subdivision-level measure of green landscaping to capture aspects of neighborhood landscaping that 

capitalize to all houses in the neighborhood.12 For a subdivision to be characterized as mesic or “wet”, at 

least 75% of the parcels in the subdivision must be identified as irrigated. This characterization results in 

a total of 261 wet subdivisions shown in Figure 3 with the remaining subdivisions containing a mix of 

irrigated and xeric landscaping.  

Our final parcel-specific variable is elevation which was obtained from USGS digital elevation 

models. These provide precise measures of elevation as continuous raster files which are intersected 

with parcel centroids using GIS. Summary statistics for this variable are shown in table 1 showing that 

the mean elevation is 391 meters with a range from 259 meters to 969 meters. Phoenix is located in an 

alluvial plain, with elevations increasing to the north and south of downtown. The majority of higher 

elevation parcels are located at a considerable distance from downtown Phoenix and are associated 

with mountain outcroppings on the desert plain. We hypothesize that elevation provides considerable 

amenity value to households through improved views. 

Tract-level temperature measures for July minimum temperatures are obtained from the PRISM 

database maintained by Oregon State University (http://www.prism.oregonstate.edu). These data are 

available monthly at a 4 kilometer resolution. We focus on July temperatures and nighttime minimum 

temperatures consistent with the focus of most UHI research. Since temperatures are unlikely to vary 

                                                 
12

 A subdivision is typically substantially smaller than either a Census block group or tract, with an average of 70 
homes. Homes within a subdivision are often fairly homogenous, may share a number of local public goods and are 
often governed by a single home ownership association.  
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substantially within tracts, several steps are used to estimate tract July minimum temperature specific 

for each year of our transactions data. The first step is to obtain (using latitude and longitudes) the July 

minimum temperature associated with each parcel in our database for each year. We then attach to 

each parcel the nearest July low temperature to the year we observed a transaction for each house. For 

houses transacting from January through June we attach the previous year’s July low temperature, and 

for houses transacting between July and December we attach the current year’s temperature. Finally, 

we average over all transactions in each tract/year combination to form a spatially and temporally 

varying measure of temperature. Figure 4 shows the resulting temperature measures at the Census tract 

level for the year 2005. We use this annually updated measure of temperature under the assumption 

that current and potential renters will draw upon the most recent part of the historical record to form 

their expectations of a year’s summer temperatures. We also assess the sensitivity of the model to this 

assumption. Between 1999 and 2005, the average nighttime minimum temperature across all tracts 

ranged from a low of 77.9 (F) degrees in 1999 to a high of 80.5 (F) degrees in 2003. This general increase 

in temperature is what would be expected from urban heat island effects associated with increased 

development.  Our final set of within-panel invariant control variables includes Census 2000 

demographics on age composition and race. Summary statistics for each of these variables are shown in 

Table 1. 

 

V.  Results 

The Hausman-Taylor estimator requires that the variables influencing housing prices be 

partitioned into exogenous and (potentially) endogenous categories. Defining panels as Census 

tract/year combinations, we treat all of the within-panel invariant variables, except temperature, as 

exogenous. While all within-panel varying variables are instrumented using their “within” 

transformations, the strategy used in the case of temperature requires at least one of these variables to 
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be assumed exogenous, allowing the within-panel means of these exogenous variables to provide the 

identifying variation for the effect of temperature. To meet this need we assume that distance to 

subdivision open space and elevation are exogenous, implying our estimation is over-identified by one 

degree of freedom. For these variables to function as instruments, they must be uncorrelated with the 

error and partially correlated with temperature. The relevance of proximity to subdivision open space 

stems from the effects on neighborhood density from open space provision. Increased provision of open 

space reduces development density, thereby reducing urban heat island effects. We follow Abbott and 

Klaiber’s [2011] arguments for distance to subdivision open space as a valid instrument. Specifically, 

subdivision open space often serves an important role as “retention basins” for urban storm water 

runoff. It also meets mandates by zoning apart from endogenous market considerations. Thus, it 

satisfies the needs for being correlated but not jointly determined with temperature. The relevance of 

elevation as an instrument is well-established in the UHI literature. Elevation is likely to be exogenous 

due to the geological nature of its “provision” as well as the specific structure of the Phoenix landscape. 

Downtown Phoenix is located at the bottom of a “bowl”, with elevation slowly increasing (at different 

rates depending on direction) with distance from the city center. This gradual elevation change is not 

readily apparent and as such is likely to be uncorrelated with unobservable characteristics, particularly 

after controlling for Census demographics.13  

Before presenting our preferred estimates we first present three alternatives to the Hausman-

Taylor model in Table 2: naïve OLS, random effects (RE) with effects defined for tract/year combinations, 

and fixed effects (FE) using tract effects. When these estimates are compared with those using our 

adaptation of the Hausman-Taylor logic each set serves to highlight the importance of our identification 

strategy and the influence of endogeneity in estimates developed with methods that do not take 

                                                 
13

 There are a handful of developed mountainous outcroppings that offer exceptions to this story of gradual 
elevation change. Homes located on these outcroppings represent a small fraction of sales, but do tend to possess 
views and more luxurious amenities that are not captured in the available housing characteristics.  
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account of its role for several key determinants of housing prices in this market. The OLS estimator 

exploits both within and between panel variation in the independent variables. However, it ignores the 

potential for correlation between omitted spatial and temporal effects and the dependent variables and 

may therefore exhibit omitted variables bias at all spatial scales. The random effects estimator 

efficiently accounts for the contribution of within and between variation in its estimates, resulting in 

estimates similar to those using the within estimator for datasets with long panels and with a relatively 

high variance for the unobserved  spatial and temporal heterogeneity in the random effects (Abbott and 

Klaiber [2011]). However, like OLS, RE estimates are not consistent –particularly for variables with little 

or no within-panel variation, such as tract-level attributes. The FE estimates utilize only within-panel 

variation. Because our measure of July minimum temperature varies by tract and year, we are unable to 

recover estimates of the marginal effect of temperature using tract/year fixed effects. Therefore, we 

consolidate fixed effects to the tract level, utilizing only the inter-annual variation in temperature within 

each tract for identification.  

In general, the RE estimates are comparable to the FE estimates for variables with substantial 

within-panel variation. The value of a green lot is consistent across all three specifications, yielding 

approximately a 1% premium for conversion to green landscaping. However, moving from OLS to RE 

reduces by about one-half the magnitude of the estimated effect of subdivision-wide green landscaping 

– from a 22% premium in the OLS specification to about 12% under RE. Comparing the estimates for July 

minimum temperature, we find that a 1(F) degree increase in tract level nighttime temperatures 

decreases rental values by approximately 2% according to the OLS estimate and 3.2% according to RE. 

The FE approach of discarding between-tract variation in temperatures and relying exclusively on 

temporal variation in temperatures within tracts yields the  counter intuitive finding that a 1(F) degree 

rise in nighttime temperatures increases rental values by 3.9%. This clear difference in the implications 

of temperature suggests that retaining between-tract variation in temperature is an important source of 
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variation. Nonetheless, the RE model may be biased if the tract/year effects are correlated with model 

covariates. Temperature, in particular, varies across both spatial and temporal dimensions. As a result, it 

is possible that it is correlated with the latent spatial and temporal features of the landscape, such as 

development density. 

To address the concerns about consistency at all scales, we turn to the Hausman-Taylor 

estimator. This approach instruments for temperature using the within-tract annual means of elevation 

and distance to subdivision open space. Table 3 presents information supporting the relevance of these 

instruments. The correlations between temperature and the within-tract means of elevation and 

distance to subdivision open space are -0.31 and 0.35 respectively .The two instruments are not 

themselves highly correlated, with a correlation of -0.17. The pseudo-Hausman tests fail to reject the 

null hypothesis that the instruments are individually and jointly exogenous. 

The results for the Hausman-Taylor model are shown in Table 4. The variables are grouped 

according to whether they are assumed to be endogenous or exogenous and whether they vary within 

the tract/year panels or between them. Focusing on the estimates using PRISM temperature data, we 

first examine the results for the within-varying exogenous variables, whose means serve as instruments 

for temperature. The estimates correspond closely to those using both the naïve OLS and the random 

effects models, suggesting the assumption of exogeneity is reasonable. They are also statistically 

significant within p-values of 0.01 or lower. A 100m increase in elevation results in an estimated price 

increase of 8.2% or about $112 more in monthly rents while a 1 mile reduction in distance to subdivision 

open space increases rental values by 4.1%.  

The second category of variables includes the endogenous, within-varying characteristics, 

consisting of: structural housing characteristics, measures of distance and adjacency with respect to 

parks, highways, and the central business district, as well as block group summary measures for land use 

and landscape characterization. We find the expected signs for structural characteristics including 
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positive and significant signs on the coefficients for square footage, acreage, and baths. Similarly, the 

coefficients for the distance measures exhibit signs consistent with expectations and previous work 

(Abbott and Klaiber [2010]).14 Turning to landscape characteristics, we find a significant but small 

premium of 1% for green landscaping at the parcel level but find a much larger premium of 

approximately 11% for living in a green subdivision.  

The third category of variables includes panel-invariant variables that do not require the 

development of instruments. While these variables are treated as exogenous, they are primarily 

included to control for observable features of the tract-level “neighborhoods”, reducing the scope for 

omitted variables bias. We anticipated that including these variables would enhance the validity of the 

instruments for tract-level temperature.  Since they serve a role as controls we do not attempt to 

interpret the estimated coefficients for these variables. Also included within this category are dummy 

variables for each year, which show a trend of “real” price appreciation over our sample period even 

after deflating prices using the Case-Shiller index. 

The HT estimate for July minimum temperature yields a negative and statistically significant 

coefficient of -0.041, indicating that households are willing to pay approximately 4.1% more to live in an 

area with a 1°F reduction in nighttime temperatures. This estimate is appreciably larger than both the 

OLS estimate and the RE estimate (Table 2). This aversion to heat island effects corresponds to a 

monthly willingness to pay of approximately $56 to avoid a 1 degree increase in temperature using the 

mean monthly rental price of $1,362.  

These estimates provide direct confirmation of a feedback loop from UHI impacts associated 

with urbanization. They imply that households recognize the relatively higher nighttime temperatures 

and sort in neighborhoods to reduce the size of the UHI’s effects. These estimates take explicit account 

                                                 
14

 Our model specifications were selected to be as close as feasible to this previous work. The focus of the earlier 
work was subdivision open space in relation to other, more open access, open space areas. As a result the spatial 
unit for the panel is different. 
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of green landscape as a mitigating factor. They exploit the spatial and temporal variation in prices, 

landscape and temperature, as well as develop instruments to account for the endogenously 

determined landscape and temperature values for specific parcels. To our knowledge, this analysis is the 

first example of how market mechanisms can serve the role of signaling changes in urban climate and 

ecosystems in response to urbanization and in turn confirming people’s responses to them. 

We also evaluated the robustness of our results by considering a range of alternative 

specification assumptions. To examine whether our estimates are sensitive to alternative measures of 

summer minimum temperatures we replace the PRISM estimates of mean minimum July temperature 

with inverse-distance weighted interpolations of the July mean minimum temperature from roughly 20 

active NOAA weather stations located in Maricopa County (see the estimates in Table 4). The estimates 

of the temperature marginal effect are very similar in magnitude regardless of how temperature is 

measured – -.041 relative to -.045 – with the estimates of other parameters remaining essentially 

unchanged.  

As noted earlier, our temperature measure is based on the assumption that the relevant metric 

is the minimum temperature in the most recent July. This specification assumes that the expectations of 

renters update in a myopically adaptive way that discards information contained in previous years’ 

temperatures. It also implies that inter-annual variation within tracts, as well as differences in 

temperature across tracts, play a role in the identification of the effects of the urban heat island. To 

assess the sensitivity of our estimates to this aspect of our specification, we replaced the minimum July 

temperature with averages of the minimum July temperature over the previous two years. The resulting 

estimate is virtually indistinguishable in sign and significance from the original HT estimate (Table 5). 

Alternative specifications, using an even larger smoothing window (and not reported here) show little 

change in the estimated marginal effects of temperature. However, as the smoothing of the 

temperature measure increases and approaches the tract level sample mean, the standard errors do 
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increase so that we cannot reject the null hypothesis of no association. These analyses suggest that 

while cross-sectional differences across tracts in temperature are ultimately capitalized into home 

prices, retaining temporal variation is essential to the process of developing precise estimates.  

Finally, we assessed whether our results were sensitive to the choice of statistical summary 

measure for temperature. The urban heat island is often characterized in terms of a variation on an 

order statistic, namely the nighttime minimum temperatures. This logic for this selection is likely 

motivated by the assumption that weekday exposure to neighborhood microclimate for many working 

homeowners will be in nighttime hours. In addition, while air conditioning is pervasive among private 

homes, the ability to maintain cool sleeping temperatures depends on outside conditions and would 

therefore be another reason for the focus on nighttime temperatures. Despite these arguments there is 

no obvious, a priori metric that encompasses all the relevant dimensions of neighborhood microclimate. 

Daytime maximum temperatures may be more salient for outdoor activities on weekends but would not 

necessarily be confined to areas around the house. Furthermore, to the extent that centralized air 

conditioning with a thermostat is used to avert the effects of extreme summertime heat, both minimum 

and maximum temperature are potentially relevant. Table 5 reports estimates using the July maximum 

(daytime) temperature and shows that the marginal effect is indistinguishable from when the minimum 

temperature is used. When both minimum and maximum temperature are included as endogenous 

regressors (not shown)15, both coefficients attenuate in absolute value and become insignificant. 

Altogether, the evidence suggests that the estimated effects of maximum or minimum temperatures 

relate to a shared common component of temperature reflected in both measures (the two measures 

have a correlation of 0.45), rather than minimum or maximum temperature per se.  

 To provide some context for our estimated marginal willingness to pay for a reduction in 

temperature, it is helpful to consider how it compares to estimates of the energy cost savings from 

                                                 
15

 This leads to a just-identified model relative to the over-identified models using one temperature variable.  
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reduced air conditioning costs. Estimates for this saving depend on a wide array of factors such as the 

albedo of building surfaces, the quality of insulation, the size and external surface area of the building, 

the efficiency of air conditioning, thermostat settings, and the exact nature of the change in the daily 

outside temperature profile.  We abstract from these details  and draw upon the simulation model of 

Matsuura [1995] to provide an approximate gauge of the effect.  His analysis considers a 1 degree (F) 

increase in mean outside temperature.  This would increase the average daily energy load for a two-

story, 1640 ft2 townhouse (slightly smaller than the mean detached home in our sample) in Phoenix kept 

at a constant comfortable temperature by approximately 7.5kWh/day or 232.5 kWh per month. 

Translating this energy use into monthly utility costs depends on the pricing plan chosen (e.g., one that 

charges for peak and off-peak usage vs. a flat rate) and the baseline usage (since many utilities use 

increasing block rates). However, using 2014 summer16 seasonal rates from Arizona Public Service’s 

“standard” plan for homes in the 801-3000 kWh monthly usage bracket, the marginal cost of a kWh is 

$0.162.   Using this composite of assumptions, this analysis results in increased utility costs from a 1 

degree temperature increase of approximately $38/month, which converted to 1998 dollars using the 

urban consumers CPI amounts to $26.17  This is about half of our estimate of the monthly willingness to 

pay to avoid one degree temperature increase of $56. This lower value is reasonable since adjustments 

to indoor conditions do not offer a perfect substitute for cooler outdoor conditions. The ability to use 

outdoor space in the evening is affected by nighttime conditions whereas air conditioning addresses 

only the indoor living environment. 

 

VI.  Discussion 
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 Almost all energy usage from increased mean temperatures would occur in summer months, with negligible 
energy savings from less heating in the (very mild) Phoenix winters (Matsuura [1995]).  
17

 The CPI component for energy in 1998 was 161.6 using a base of 1980-82. For January 2014 it was 233.9. 
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Ecologists have provided detailed evidence, due in large part to the national LTER research 

program, of how urban ecosystems and the services they provide to people are affected by both 

development density and its form. Ecologists have also argued that we should expect a feedback loop 

whereby changes in these services affect people, causing them to adopt mitigation and adaptation 

strategies which can in turn further alter urban ecosystems. This conjecture, while plausible, has not 

been convincingly verified to date. The links from urbanization and increased development density to 

the temperature outcomes of the UHI are well known. We provide the first evidence – using the 

“fingerprints” revealed by market activity in a differentiated housing market – that there is a 

corresponding response from people. Households’ choices of where to live and the types of landscape 

to maintain provide a part of the hypothesized feedback loop.  In metropolitan Phoenix one observes 

neighborhoods where homeowners modify landscapes, water treatments, and design features of their 

homes to adapt to and locally mitigate summer temperatures. Developers plan subdivisions to 

incorporate landscape, open space, and building envelopes to reduce temperatures. The housing market 

signals the importance of reduced urban nighttime temperatures and thereby provides incentives for 

the adoption of means to achieve this end. The nature of this feedback loop also suggests why efforts to 

reduce outdoor water use may not be as successful as hoped by local water providers. Landscape 

amenities requiring water command premiums that are only partially replaced by attractive xeric 

alternatives. While natural desert landscapes may provide many aesthetic benefits, their use of heat-

absorbing rock and low evapotranspiration do not facilitate temperature reductions and may actually 

increase nighttime temperatures. 

Our results demonstrate that green landscaping generates substantial benefits to homeowners, 

both for its direct benefits and its indirect effects as an input for the cooling of the surrounding 

microclimate. As development in arid areas such as the U.S. Sun Belt continues and as climate change 

and the urban heat island effects of development progress, one of the effects may well be that 
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quantities of water required to sustain mitigation through green landscaping are likely to increase even 

as the social opportunity cost of the water rises contemporaneously.  

A full analysis of the tradeoffs inherent in evaluating the importance of continued efforts at 

conservation of outdoor water use requires a comparison of the value of water in its use as an input (i.e. 

the value of its marginal product) to green vegetation and temperature moderation compared to the 

value of water in alternative uses. This type of assessment requires the integration of valuation 

techniques – such as the hedonic price regression estimated here – for the final valued “services” or 

“outputs” with knowledge of the underlying production functions linking the use of water inputs to the 

valued amenities.18 It also requires information on other strategies for mitigation to reduce the effects 

of increases in outdoor temperatures. It is possible to develop the conceptual logic that links the 

equilibrium first-stage hedonic approaches to biophysical production relations for green landscaping and 

temperature. However, this approach is less suitable for considering the endogenous feedbacks 

between water use, land cover, temperature, the patterns of development, and welfare that are likely 

to result over long time scales or as a result of significant land use or water policy interventions.  

Providing ex ante analysis of the tradeoffs likely to be associated with alternative policy 

instruments for mitigation and adaptation requires the integration of biophysical “production functions” 

with structural economic models of location choices by households and the spatial supply decisions of 

developers.19 While complex and data intensive, we argue that this sort of structural, interdisciplinary 

modeling is essential to making the transition from understanding present tradeoffs to anticipating the 

effects of policy interventions in complex, dynamic urban environments that have embedded feedbacks 

that arise from both ecological and economic processes. 

                                                 
18

 Abbott and Klaiber [2013] provide an example of this approach where the linkage between the use of water 
inputs and the valued amenity is relatively transparent.  
19

 See Kuminoff et al. [2013] for a review of this literature and Klaiber and Phaneuf [ 2010] for one of the first 
efforts to consider the housing supply response with a spatially delineated context.  
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Table 1: Summary statistics (N=614,464) 

 

 

  

Mean Std Dev Min Max Mean Std Dev Min Max

Sale Price (Annual, 1998 dollars) 16349 18990 739 973384 Distance to highway (miles) 5.0607 4.0662 0.0003 24.4125

Sale Price (Nominal) 221416 256130 17000 10000000 Distance to highway sq 42.1450 59.6745 0.0000 595.9692

Elevation (100s of meters) 3.9163 0.7191 2.5893 9.6962 Distance to local park (miles) 0.9368 0.8255 0.0031 14.4390

Distance to subd. open space (miles) 0.3639 0.4596 0.0059 7.0004 Distance to city park (miles) 5.2039 3.8175 0.0286 29.8113

Summer Min Temp (PRISM) 78.7513 1.3130 74.6330 83.4535 Adjacent subd. open space (0/1) 0.0521 0.2221

Summer Min Temp (Monitor) 79.3953 1.2560 73.0608 84.9613 Adjacent city park (0/1) 0.0003 0.0186

Summer Max Temp (PRISM) 106.0373 1.5571 100.2242 110.3890 Adjacent local park (0/1) 0.0024 0.0486

Green landscape (0/1) 0.0933 0.2908 Local park area (within 1500 ft) 1.5616 5.9547 0.0000 127.5382

Green subdivision (0/1) 0.0937 0.1309 Subd open space area (within 1500 ft) 9.1060 16.3581 0.0000 284.4212

Square feet (100s) 19.2619 7.3236 6.0000 60.0000 % Residential (block group) 0.5303 0.2671 0.0010 1.0000

Acres 0.2086 0.1853 0.0500 13.9374 % Agricultural (block group) 0.0501 0.1003 0.0000 0.6189

Stories 1.1963 0.3974 1.0000 4.0000 % Vacant (block group) 0.2542 0.2245 0.0000 0.9586

Bathrooms 2.6214 0.8366 0.5000 6.0000 % Commercial (block group) 0.0724 0.0914 0.0000 0.8027

Age 14.3327 15.6857 1.0000 86.0000 % Hispanic 0.1837 0.1835 0.0000 0.9605

Garage (0/1) 0.9578 0.2010 % Black 0.0254 0.0429 0.0000 0.6598

Pool (0/1) 0.3301 0.4702 % Children 0.2743 0.0950 0.0000 0.4678

Rooms 6.6369 1.5570 3.0000 19.0000 % Age 18-35 0.2275 0.0949 0.0000 0.6500

Square feet sq 424.6561 364.6836 36.0000 3600.0000 % Age 35-55 0.2885 0.0836 0.0174 0.4751

Acres sq 0.0779 0.5839 0.0025 194.2523 Year = 1999 0.1249

Age sq 451.4647 814.2542 1.0000 7396.0000 Year = 2001 0.1187

Adjacent to rail (0/1) 0.0021 0.0459 Year = 2002 0.1252

Adjacent to canal (0/1) 0.0098 0.0986 Year = 2003 0.1415

Adjacent to school (0/1) 0.0047 0.0685 Year = 2004 0.1854

Distance to CBD (miles) 16.0656 6.2910 0.5029 38.8356 Year = 2005 0.1964

Distance to CBD sq 297.6804 204.9631 0.2530 1508.2010
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Table 2: Comparison of OLS, random effects and fixed effects estimators.  

 

 

 

OLS RE FE OLS RE FE

Elevation 0.114*** 0.0877*** 0.0861* Adjacent local park 0.0207* 0.0141* 0.0207**

(0.00739) (0.0135) (0.0457) (0.0111) (0.00853) (0.0104)

Distance to subd. open space -0.0200*** -0.0342*** -0.0340*** Local park area (1500 ft) -0.000344** -0.000132 -0.000109

(0.00687) (0.00596) (0.0109) (0.000173) (0.000153) (0.000180)

Summer min temperature  (PRISM) -0.0208*** -0.0323*** 0.0394*** Subd open space area (1500 ft)0.000486*** 0.000497*** 0.000375*

(0.00506) (0.00408) (0.0140) (0.000132) (0.000115) (0.000204)

Green landscape (0/1) 0.0106*** 0.0101*** 0.0100*** % Residential (block group) 0.0135 0.0614*** 0.0545***

(0.00157) (0.00142) (0.00167) (0.0165) (0.0102) (0.0182)

Green subdivision (0/1) 0.222*** 0.119*** 0.110*** % Agricultural (block group) -0.102* -0.0314 0.00604

(0.0166) (0.0100) (0.0154) (0.0557) (0.0391) (0.0427)

Square feet (100s) 0.0560*** 0.0523*** 0.0517*** % Vacant (block group) 0.0372* 0.0900*** 0.0864***

(0.00141) (0.00111) (0.00187) (0.0195) (0.0252) (0.0290)

Acres 0.299*** 0.333*** 0.325*** % Commercial (block group) 0.0350 0.0894*** 0.0764**

(0.0241) (0.0189) (0.0288) (0.0325) (0.0172) (0.0352)

Stories -0.107*** -0.0826*** -0.0813*** Distance to CBD -0.0752*** -0.0992***

(0.00544) (0.00354) (0.00499) (0.0103) (0.0123)

Bathrooms 0.0736*** 0.0487*** 0.0478*** Distance to CBD sq 0.00150*** 0.00194***

(0.00380) (0.00317) (0.00441) (0.000278) (0.000264)

Age -0.0120*** -0.00973*** -0.00921*** Distance to highway -0.00385 0.0110

(0.000582) (0.000423) (0.000665) (0.00800) (0.00696)

Garage (0/1) 0.0667*** 0.0539*** 0.0495*** Distance to highway sq 0.000741 0.000650

(0.00431) (0.00329) (0.00479) (0.000862) (0.000687)

Pool (0/1) 0.0593*** 0.0545*** 0.0545*** Distance to regional park -0.00386*** -0.00357***

(0.00163) (0.00129) (0.00195) (0.00146) (0.00125)

Rooms -0.0215*** -0.0157*** -0.0160*** Distance to city park 0.0201*** 0.0222***

(0.00185) (0.00139) (0.00233) (0.00419) (0.00402)

Square feet sq -0.000424*** -0.000396*** -0.000385*** Distance to local park -0.0236* -0.0175

(2.09e-05) (1.50e-05) (2.66e-05) (0.0121) (0.0126)

Acres sq -0.0311*** -0.0359*** -0.0355*** % Hispanic -0.415*** -0.503***

(0.00430) (0.00466) (0.00678) (0.0338) (0.0249)

Age sq 0.000139*** 8.09e-05*** 6.91e-05*** % Black -0.413*** -0.827***

(8.05e-06) (6.64e-06) (1.02e-05) (0.0765) (0.0550)

Adjacent to rail 0.0379 -0.0110 -0.0148 % Children -0.254*** -0.274***

(0.0280) (0.0227) (0.0244) (0.0433) (0.0454)

Adjacent to canal 0.0108* -0.00676 -0.00827 % Age 18-35 -0.0321 0.0621*

(0.00628) (0.00549) (0.00774) (0.0548) (0.0346)

Adjacent to school -0.00505 -0.00627 -0.00194 % Age 35-55 0.355*** 0.483***

(0.0101) (0.0110) (0.00774) (0.0528) (0.0472)

Distance to CBD 0.0587*** 0.0615*** 0.0655*** Year = 1999 -0.00805 -0.00999 -0.000235

(0.0108) (0.0120) (0.0161) (0.00790) (0.00771) (0.00369)

Distance to CBD sq -0.00160*** -0.00158*** -0.00167*** Year = 2001 0.0377*** 0.0514*** -0.0106

(0.000280) (0.000258) (0.000371) (0.0101) (0.00873) (0.0122)

Distance to highway 0.00683 0.00355 0.00692 Year = 2002 0.0328*** 0.0678*** -0.0396**

(0.00657) (0.00624) (0.0132) (0.0105) (0.00914) (0.0200)

Distance to highway sq -7.55e-05 -0.000367 -0.000372 Year = 2003 0.0801*** 0.117*** -0.0546*

(0.000690) (0.000600) (0.00113) (0.0146) (0.0121) (0.0318)

Distance to local park 0.00296 0.00581 0.00861 Year = 2004 0.0543*** 0.0767*** -0.0180

(0.00995) (0.00959) (0.00876) (0.0132) (0.00981) (0.0169)

Distance to city park -0.00953** -0.0107*** -0.0138** Year = 2005 0.00966 0.0363*** -0.0164

(0.00426) (0.00385) (0.00617) (0.0116) (0.00850) (0.0110)

Adjacent subd. open space 0.0322*** 0.0375*** 0.0373***

(0.00436) (0.00366) (0.00660)

Adjacent city park -0.0207 -0.0225 -0.0256 Constant 10.10*** 11.23*** 4.751***

(0.0300) (0.0269) (0.0335) (0.438) (0.355) (1.160)

Panel dimension Tract-x-Year Tract-x-Year Tract

Observations 614,464 614,464 614,464

R-squared

Year by tract clustered robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Correlations between minimum July temperature and candidate instruments and pseudo-
Hausman tests of instrument validity 
 

 

 

 

  

Pseudo-Hasuman test for exogeneity

Variable p value

Elevation 0.8176 -0.308

Dist to subd open space 0.7454 0.351

Joint test 0.9254

Correlation w/ 

Temperature
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Table 4: Hausman-Taylor estimates  

 

PRISM Monitor (IDW) PRISM Monitor (IDW)

Within Panel Exogenous Adjacent city park -0.0237 -0.0237

Elevation 0.0817*** 0.0815*** (0.0273) (0.0273)

(0.0187) (0.0188) Adjacent local park 0.0134 0.0134

Distance to subd. open space -0.0359*** -0.0360*** (0.00851) (0.00851)

(0.00712) (0.00707) Local park area (1500 ft) -0.000131 -0.000131

Between Panel Endogenous (0.000157) (0.000157)

Summer min temperature -0.0410** -0.0447** Subd open space area (1500 ft) 0.000497*** 0.000496***

(0.0179) (0.0196) (0.000120) (0.000120)

Within-Panel Endogenous % Residential (block group) 0.0624*** 0.0622***

Green landscape (0/1) 0.00999*** 0.00999*** (0.0103) (0.0103)

(0.00146) (0.00146) % Agricultural (block group) -0.0251 -0.0252

Green subdivision (0/1) 0.109*** 0.109*** (0.0435) (0.0436)

(0.01000) (0.01000) % Vacant (block group) 0.0935*** 0.0934***

Square feet (100s) 0.0520*** 0.0520*** (0.0274) (0.0274)

(0.00111) (0.00111) % Commercial (block group) 0.0895*** 0.0896***

Acres 0.338*** 0.339*** (0.0195) (0.0195)

(0.0215) (0.0215) Between Panel Exogenous

Stories -0.0811*** -0.0811*** Distance to CBD -0.111*** -0.106***

(0.00367) (0.00367) (0.0123) (0.0121)

Bathrooms 0.0475*** 0.0475*** Distance to CBD sq 0.00229*** 0.00212***

(0.00311) (0.00311) (0.000266) (0.000266)

Age -0.00955*** -0.00954*** Distance to highway 0.00597 0.00348

(0.000440) (0.000440) (0.00870) (0.00824)

Garage (0/1) 0.0513*** 0.0513*** Distance to highway sq 0.000986 0.000960

(0.00340) (0.00340) (0.000790) (0.000794)

Pool (0/1) 0.0543*** 0.0543*** Distance to regional park -0.00384** 0.00106

(0.00130) (0.00130) (0.00177) (0.00136)

Rooms -0.0155*** -0.0155*** Distance to city park 0.0205*** 0.0225***

(0.00138) (0.00138) (0.00439) (0.00407)

Square feet sq -0.000394*** -0.000394*** Distance to local park -0.0277** -0.0315**

(1.46e-05) (1.46e-05) (0.0135) (0.0131)

Acres sq -0.0366*** -0.0366*** % Hispanic -0.566*** -0.583***

(0.00610) (0.00610) (0.0400) (0.0449)

Age sq 7.47e-05*** 7.46e-05*** % Black -0.802*** -0.877***

(7.01e-06) (7.01e-06) (0.0614) (0.0813)

Adjacent to rail -0.0139 -0.0139 % Children -0.225*** -0.257***

(0.0238) (0.0238) (0.0463) (0.0520)

Adjacent to canal -0.00826 -0.00825 % Age 18-35 0.0101 0.0384

(0.00530) (0.00530) (0.0398) (0.0476)

Adjacent to school -0.00636 -0.00637 % Age 35-55 0.401*** 0.379***

(0.0109) (0.0109) (0.0455) (0.0487)

Distance to CBD 0.0617*** 0.0617*** Year = 1999 -0.0210** -0.0165**

(0.0109) (0.0109) (0.00826) (0.00798)

Distance to CBD sq -0.00156*** -0.00156*** Year = 2001 0.0436*** 0.0460***

(0.000240) (0.000240) (0.0165) (0.0175)

Distance to highway 0.00391 0.00392 Year = 2002 0.0598** 0.0629**

(0.00707) (0.00707) (0.0243) (0.0254)

Distance to highway sq -0.000402 -0.000403 Year = 2003 0.121*** 0.124***

(0.000684) (0.000684) (0.0424) (0.0438)

Distance to local park 0.00590 0.00591 Year = 2004 0.0753*** 0.108***

(0.00976) (0.00976) (0.0264) (0.0400)

Distance to city park -0.0111*** -0.0111*** Year = 2005 0.0253* 0.0544**

(0.00378) (0.00378) (0.0149) (0.0258)

Adjacent subd. open space 0.0376*** 0.0376*** Constant 12.10*** 12.37***

(0.00364) (0.00364) (1.487) (1.621)

Panel Dimension Tract-x-Year Tract-x-Year

Observations 614,464 614,464

Number of year_spatial_id 4,341 4,341

Clustered bootstrap standard errors in parentheses (k=200)

*** p<0.01, ** p<0.05, * p<0.1

Temperature Specification Temperature Specification
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Table 5: Hausman-Taylor estimates using alternative specifications of tract-level temperatures 

 

Two Year Avg Max Temperature Two Year Avg Max Temperature

Within Panel Exogenous Adjacent city park -0.0237 -0.0237

Elevation 0.0817*** 0.0816*** (0.0171) (0.0273)

(0.00233) (0.0187) Adjacent local park 0.0134** 0.0134

Distance to subd. open space -0.0359*** -0.0359*** (0.00659) (0.00851)

(0.00208) (0.00709) Local park area (1500 ft) -0.000131** -0.000131

Between Panel Endogenous (5.94e-05) (0.000157)

Summer min temp (2 yr avg) -0.0399*** Subd open space area (1500 ft)0.000497*** 0.000497***

(0.0120) (2.93e-05) (0.000120)

Summer max temp -0.0404** % Residential (block group) 0.0624*** 0.0623***

(0.0176) (0.00469) (0.0103)

Within-Panel Endogenous % Agricultural (block group) -0.0251*** -0.0251

Green landscape (0/1) 0.00999*** 0.00999*** (0.00880) (0.0436)

(0.00122) (0.00146) % Vacant (block group) 0.0935*** 0.0934***

Green subdivision (0/1) 0.109*** 0.109*** (0.00589) (0.0274)

(0.00384) (0.01000) % Commercial (block group) 0.0895*** 0.0896***

Square feet (100s) 0.0520*** 0.0520*** (0.00696) (0.0195)

(0.000264) (0.00111) Between Panel Exogenous

Acres 0.338*** 0.339*** Distance to CBD -0.112*** -0.0886***

(0.00358) (0.0215) (0.00482) (0.0141)

Stories -0.0811*** -0.0811*** Distance to CBD sq 0.00232*** 0.00176***

(0.00103) (0.00367) (0.000126) (0.000324)

Bathrooms 0.0475*** 0.0475*** Distance to highway 0.00594 0.00508

(0.000875) (0.00311) (0.00401) (0.00844)

Age -0.00955*** -0.00954*** Distance to highway sq 0.000981*** 0.000729

(0.000113) (0.000440) (0.000276) (0.000827)

Garage (0/1) 0.0513*** 0.0513*** Distance to regional park -0.00374** -0.000384

(0.00173) (0.00340) (0.00154) (0.00110)

Pool (0/1) 0.0543*** 0.0543*** Distance to city park 0.0205*** 0.0252***

(0.000774) (0.00130) (0.00176) (0.00393)

Rooms -0.0155*** -0.0155*** Distance to local park -0.0278*** -0.0189

(0.000419) (0.00138) (0.00939) (0.0140)

Square feet sq -0.000394*** -0.000394*** % Hispanic -0.570*** -0.438***

(4.34e-06) (1.46e-05) (0.0374) (0.0530)

Acres sq -0.0366*** -0.0366*** % Black -0.808*** -0.701***

(0.000853) (0.00610) (0.0740) (0.0585)

Age sq 7.47e-05*** 7.46e-05*** % Children -0.222*** -0.273***

(1.99e-06) (7.01e-06) (0.0634) (0.0517)

Adjacent to rail -0.0139* -0.0139 % Age 18-35 0.0104 -0.0158

(0.00712) (0.0238) (0.0504) (0.0356)

Adjacent to canal -0.00826** -0.00826 % Age 35-55 0.396*** 0.483***

(0.00330) (0.00530) (0.0690) (0.0509)

Adjacent to school -0.00636 -0.00636 Year = 1999 -0.0374*** 0.00361

(0.00465) (0.0109) (0.0142) (0.0109)

Distance to CBD 0.0617*** 0.0618*** Year = 2001 0.0278* 0.0682***

(0.00157) (0.0109) (0.0146) (0.0261)

Distance to CBD sq -0.00156*** -0.00156*** Year = 2002 0.0524*** 0.0652**

(3.67e-05) (0.000240) (0.0193) (0.0261)

Distance to highway 0.00391*** 0.00392 Year = 2003 0.0997*** 0.157***

(0.000973) (0.00707) (0.0268) (0.0575)

Distance to highway sq -0.000402*** -0.000403 Year = 2004 0.0958*** 0.136***

(5.47e-05) (0.000684) (0.0276) (0.0514)

Distance to local park 0.00590*** 0.00590 Year = 2005 0.0460** 0.123**

(0.000807) (0.00976) (0.0199) (0.0540)

Distance to city park -0.0111*** -0.0111***

(0.000593) (0.00378)

Adjacent subd. open space 0.0376*** 0.0376*** Constant 12.02*** 12.84***

(0.00154) (0.00364) (0.967) (1.809)

Panel Dimension Tract-x-Year Tract-x-Year

Observations 614,464 614,464

Number of year_spatial_id 4,341 4,341

Clustered bootstrap standard errors in parentheses (k=200)

*** p<0.01, ** p<0.05, * p<0.1

Temperature Specification Temperature Specification
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Figure 1. Transactions with 2000 Census tracts 
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Figure 2. Housing transactions with a green landscape classification 
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Figure 3. Subdivisions classified as “green”
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Figure 4. Spatial variation for July 2005 PRISM minimum temperatures.   

79.8-81.2 79.0-79.2 77.2-78.3

79.4-79.8 78.8-79.0 75.4-77.2

79.2-79.8 78.3-78.8 No transactions


