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ABSTRACT

Economists think of medical innovation as a valuable but risky good, producing health benefits but
increasing financial risk. This perspective overlooks how innovation can lower physical risks borne
by healthy patients facing the prospect of future disease. We present an alternative framework that
accounts for all these aspects of value and links them to the value of health insurance. We show that
any innovation worth buying reduces overall risk, thereby generating positive insurance value on its
own. We conduct two empirical exercises to assess the significance of our insights. First, we calculate
that conventional methods underestimate the value of historical health gains by 30-80%. Second, we
examine a large set of medical technologies and calculate that insurance value on average adds 100%
to the conventional valuation of those treatments. Moreover, we find that the physical risk-reduction
value of these technologies is ten times greater than the financial risk they pose and the corresponding
value of health insurance that insures this financial risk. Our analysis also suggests standard methods
disproportionately undervalue treatments for the most severe illnesses, where physical risk to consumers
is most costly.
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|. INTRODUCTION

Economists traditionally measure the benefit of a medical innovation as the improvement in health it
produces in a person who is already sick (Drummond, Sculpher et al. 2005, Murphy and Topel 2006).
Likewise, economists measure the benefit of health insurance by valuing the reduction in financial risk
associated with lower out-of-pocket spending for medical care (Finkelstein and McKnight 2008, Abaluck
and Gruber 2011, Engelhardt and Gruber 2011). Studying innovation and insurance in isolation,
however, overlooks fundamental connections between them. As a result, the true economic benefit of
medical technology has been inaccurately characterized and measured.

It is indeed true that a medical technology can improve the health of the sick, and that it can raise
financial risk for the healthy. But it also does two other things that affect its valuation. First, a
technology can reduce physical risk for healthy consumers who might get sick.! New treatments make
illness less unpleasant and thus effectively raise utility in the bad state of the world, just like standard
insurance contracts. Failure to account for this physical insurance value of technology understates its
value, particularly in treating the most severe illnesses and the most risk-averse consumers. Second,
medical technology does not merely create financial risk. Rather, it converts a previously uninsurable
physical risk into a potentially insurable financial one (Philipson and Zanjani 2014). Medical technology
thus enables health insurance to smooth a risk that it could not previously smooth, and its valuation
should reflect that benefit.

We present a framework for valuing medical innovation that accounts for all of its benefits and costs,
including its impacts on physical and financial risk. We show under general conditions that the reduction
in physical risk outweighs the increase in financial risk, so that the net insurance value of innovation is
positive.

To illustrate our key points, consider a healthy consumer facing the risk of developing Parkinson’s
disease? in the years before the discovery of treatments that reduced the disease’s impacts on quality of
life. Suppose we measure the quality of one year of life as some percentage of a year spent in perfect
health. In the absence of a treatment, contracting Parkinson’s might reduce quality of life from, say, 80%
of perfect health to 40%.3 Consider the introduction of a new medical treatment that costs roughly
$5,000 per year and increases quality of life for Parkinson’s patients from 40% to 70%. If the value of
perfect health for one year is $50,000, this increase in quality of life is worth $15,000 annually but costs
only $5,000 annually. The traditional approach in health economics compares these two numbers to
arrive at the net value of the treatment, which in this case would be $10,000 annually.

Notice that this calculation neglects the way the medical treatment’s introduction also compresses the
variance in the quality of life between the Parkinson’s and non-Parkinson’s states. Prior to the
availability of treatment, Parkinson’s was a gamble that lowered quality of life by 40% of a perfectly

1 Our paper focuses on medical innovations that reduce the cost of being sick. We take up the case of innovations
that extend longevity in contemporaneous work.

2 Parkinson’s disease is a progressive disorder of the nervous system that degrades a patient’s movements. It
typically manifests as a hand tremor but can also cause slowing of movement and slurring of speech, and later
dementia. Its most famous patient is the boxer Muhammad Ali. Parkinson’s symptoms can now be treated with
medications such as Levodopa or MAO-B inhibitors that raise the level of dopamine in the brain.

3To be clear, the numbers on the impact of Parkinson’s on quality of life in this example are made up.



healthy year, or a loss of approximately $20,000 per year; the treatment transforms the disease into a
new gamble that lowers quality of life by just 10% of a perfectly healthy year, or a loss of just $5,000 per
year. This compression in quality of life outcomes generates value for consumers who dislike risk.

It is true that the reduction in the variance of health outcomes is mitigated by an increase in the
variance of healthcare spending. Before the availability of treatment, the individual may have faced no
financial risk from falling ill with Parkinson’s; after its introduction, she faces the risk of a $5,000 per year
expenditure. However, if the treatment is priced to generate consumer surplus, the ex post
improvement in health outcomes will outweigh its financial cost. Thus, it should come as no surprise
that this medical treatment lowers total risk in our example. Prior to the development of treatment,
Parkinson’s imposes a risk of losing $20,000 in reduced health. After development, the risk of disease is
transformed into a $5,000 financial risk plus a $5,000 health risk. In sum, this medical treatment cut the
total risk of Parkinson’s in half. Furthermore, the nascent financial risk associated with purchasing
treatment can be mitigated or even eliminated by health insurance.

More generally, the value of medical technology consists of its physical value and its financial value. As
described in Table 1, each of these can be further decomposed into the value of: (1) changes in mean
physical and financial outcomes; and (2) changes in the variance of physical and financial outcomes. We
call the sum of the mean effects the “conventional value” of the technology, since this is what
conventional economic analysis estimates.

Table 1: Elements in the value of medical technology.

Mean Variance
Physical value Improvement in health outcomes Lower health outcomes risk
Financial value Increase in healthcare spending Greater healthcare spending risk
Full value Conventional value Insurance value

Notes: Traditional cost-effectiveness analysis calculates the conventional value of medical technology. The spending risk
component of insurance value is absent if the consumer has access to comprehensive healthcare insurance.

We call the sum of the variance effects the “insurance value” of technology. This component is not
accounted for by conventional health economic analysis. Importantly, medical innovation coupled with
well-functioning healthcare insurance eliminates the increase in healthcare spending risk and thus leads
to unambiguous reductions in risk.

Our framework clarifies the relationship between the value of medical innovation and of health
insurance. First, our model implies that medical technology itself acts as insurance. Even if a consumer
has no health insurance, technology can reduce the physical risk she faces. In the Parkinson’s example,
she faced a health risk of $20,000 prior to the technology but just a $10,000 risk after it, even if no
health insurance is available. Adding health insurance to the analysis would cause the risk to fall even
lower, to just $5,000. Although health insurance magnifies the benefits of new technology, it is unable
to smooth the initial $20,000 risk by itself because real-world financial markets rarely write contracts
that make indemnity payments strictly on the basis of an illness occurring.* This insight has important
implications for health policy. For example, providing consumers with access to better medical
technology by encouraging medical innovation may reduce risk more efficiently than providing them
with health insurance.

4 One rare exception is Aflac Cancer Care, which pays a cash benefit upon diagnosis of cancer.



Second, our framework provides insights into the relationship between health insurance and medical
technology. The existing literature has argued that these two products are complements by showing
that the provision of health insurance can drive medical technology (Goddeeris 1984, Newhouse 1992).°
Our framework highlights the possibility of reverse causality. Medical technology converts a physical risk
(sickness) into a financial risk (payment for treatment) that can be mitigated by health insurance.® Thus
technology, by making health insurance actually useful for smoothing health-related risk, generates
demand for insurance (Weisbrod 1991).

Third, our framework allows economists to incorporate risk-reduction into existing estimates of the
value from medical technology. This correction has the greatest empirical impact on treatments for
severe diseases, where risks to consumers are greatest. This insight reconciles the conventional
economic approach to valuation with the findings of population surveys suggesting that people prefer to
allocate resources to treating severe diseases rather than milder ones, even holding fixed the cost-
effectiveness of treatment across the two types of diseases (Nord, Richardson et al. 1995, Green and
Gerard 2009, Linley and Hughes 2013). Conventional approaches are hard-pressed to account for this
finding.

Our paper unites two large literatures. The first, which estimates the consumer surplus value of health
and longevity, has found that advances in medical technology generate enormous value for consumers
(Shepard and Zeckhauser 1984, Rosen 1988, Murphy and Topel 2006). Because these studies all operate
within riskless environments, their estimates do not reflect any potential benefits accruing from risk
reduction. A second, more recent literature has documented that health insurance delivers significant
value to consumers (Engelhardt and Gruber 2011, Verguet, Laxminarayan et al. 2014). This is an
important finding because it justifies the cost of public health insurance programs, even if they do not
generate significant increases in overall health as several studies have found (Finkelstein and McKnight
2008, Baicker, Taubman et al. 2013). The framework used in these studies, however, is unable to
compare the value of financial health insurance to the value of physical insurance provided by medical
technology.

We undertake two empirical exercises to demonstrate the importance of our insights. First, we illustrate
the extent to which conventional economic studies such as Murphy and Topel (2006) have
underestimated the benefit of new medical technologies. The physical insurance value associated with
aggregate quality-of-life improvements over the past 50 years adds 30-80% to the conventional value of
quality-of-life improvements, depending on how those gains are distributed throughout the population.

5 In general, health insurance is treated as an outward shift in the demand for medical technology (Acemoglu et al.
2006, Blume-Kohout and Sood 2008, Clemens 2013). However, Malani and Philipson (2013) observe that health
insurance can reduce the supply of human subjects for the clinical trials required for medical innovation.
Lakdawalla and Sood (2013) demonstrate that health insurance and medical innovation are complementary in the
sense that health insurance reduces the static inefficiency from patents and thus reduces the cost of using patents
to encourage innovation.

6 Philipson and Zanjani (2014) make a related point in a paper written independently of and at the same time as
this one. They add to this point the theoretical observation that investment in medical R&D can be interpreted as a
premium payment that helps insure future health risk. By contrast, we add estimates to quantify empirically the
distinct welfare contributions of medical technology and health insurance.



Second, we quantify the insurance value of a sample of medical technologies studied in the Tufts Cost-
Effectiveness Analysis Registry (CEAR). For reasonable levels of risk aversion, we find that accounting for
insurance value nearly the traditional estimated value of technology, on average. Moreover, the physical
insurance value of technology is far greater than the financial insurance value of health insurance.

The remainder of this paper has the following outline. Section Il provides a model that describes the
different components of value of medical innovation. Section Ill presents the results of our empirical
exercises. Section IV concludes.

Il. FRAMEWORK FOR VALUING MEDICAL TREATMENTS

Consider an individual who faces a health risk. We are interested in calculating the value of a new
medical technology that improves health in the sick state and is priced to generate non-negative
consumer surplus even in the absence of health insurance.”

The individual derives utility from non-health consumption and from health according to u(c, h). She is
either sick with probability 7, or well with probability 1 — . Absent medical treatments, health is A%
when well and h5 < h" when sick. The individual is endowed with income y* when well and y* < y¥

when sick. Let u]l denote the marginal utility of good j € {c, h} in state i € {s,w}.

We examine a medical treatment that promises an increase in health of Ah in the sick state at a price of
p to be paid in the sick state. Our theoretical analysis will focus on valuing marginal doses of the
technology, i.e., dh and dp, because that will yield the most intuitive expressions for the different
components of value.® Our empirical framework, presented in the next section, allows technologies to
have discrete benefits and costs. Our approach calculates a consumer’s ex ante willingness to pay for a
new technology. In the appendix we discuss how to value technology using certainty equivalents, a
related approach.

A key assumption that we maintain throughout our paper is that consumers have positive demand for
health insurance, i.e., that the marginal utility of consumption is higher in the sick state than in the poor
state (ug > u’). This holds if one or both of the following are true: iliness raises the marginal utility of
consumption, by affecting the curvature of utility directly; or illness reduces consumption in the sick
state by, for example, necessitating the purchase of medical care or reducing earnings, thereby
increasing marginal utility as a result. The first condition is sometimes referred to as “positive state
dependence.” While there is no consensus among economists as to whether consumers exhibit positive
state dependence, there is little doubt that the demand for health insurance is positive. Thus our
theoretical analysis maintains the weaker assumption about insurance demand, without imposing a
specific assumption around state dependence. We note that if this weaker assumption is violated, so
that ui < u, our results still obtain, but the sign of the value of insurance flips from positive to
negative. In this case, both medical technology and health insurance exacerbate risk.

7 In an earlier working paper version of this manuscript, we also show how to measure the value of technologies
that reduce the probability of becoming sick.

8 Note that allowing for endogenous investments in prevention does not affect our analysis. Consider, for example,
a new therapeutic treatment for an infectious disease, which can be prevented by avoiding infected individuals.
Assuming that prevention is chosen optimally, the envelope theorem implies that the choice of prevention level
will have no impact on the value of a new treatment on the margin.



Il.LA. The conventional value of medical technology

The standard approach to valuing medical technology typically proceeds by quantifying how much
patients are willing to pay for the technology in the sick state (Drummond, Sculpher et al. 2005). That
value, V, is defined implicitly according to the following expression:

u(y* —p—=V,h* + Ah) = u(y®,h%)

Taking the full derivative of this expression with respect to components of technology (Ah and p) and
willingness to pay (V) shows the ex post marginal value of technology (dV) to sick patients is:
Up
dV =—dh—dp

ug

This expression is the difference between the technology’s marginal benefit (ujdh) and its marginal
III

cost (uidp), normalized by the marginal utility of income (u$). The “conventional” value of health
technology, dV¢, is simply this marginal value to sick patients multiplied by the probability of being sick:

uy 1
dVC=n<—’;dh—dp> @)
u’C

The conventional value of medical technology accounts for risk by scaling its ex post value by the
probability of falling ill, 7. This is akin to assuming consumers are risk neutral, which is unappealing.
Indeed, risk is a primary focus of a large number of economic studies on health insurance (Finkelstein
and McKnight 2008, Abaluck and Gruber 2011, Engelhardt and Gruber 2011).

The remainder of this section provides a more general approach that values medical technology ex ante,
before the health state is realized, and explicitly accounts for risk preferences. In keeping with the
terminology shown in Table 1, we will decompose total value into “conventional value” (dV.) and
“insurance value” (dV;). We further break down insurance value into a “physical” (dV,P) and a
“financial” (dV;,) component.!®

We derive the total value under three different settings: “no health insurance” (dVNH!), “with health
insurance” (dV"H!), and “complete indemnity insurance” (dV ¢!).

Il.B. The total value of technology in the absence of health insurance

We first assume consumers do not have access to health insurance in order to show that technology has
risk-reduction value even in the absence of financial health insurance. The willingness to pay for a
technology under “no health insurance,” VNH! from the perspective of all consumers who face the
relevant health risk, is implicitly defined by:

mu(y® —p — V¥ RS +dh) + (1 - mu(y” — VI RY) = nu(y®, h%) + (1 — mu(y™, k")

9 As mentioned earlier, our theoretical analysis models the marginal value of the introduction of a new technology.
Mathematically, this means we evaluate the derivative at the point u(y*, h%).

10 Using the language of Ehrlich and Becker (1972), one could call dV, “self-insurance value” when health insurance
is absent because it measures the ability of technology alone to reduce risk, and call dV;, “market insurance value”
because it reflects the ability of financial insurance to mitigate spending risk introduced by a new technology.



The marginal value in this case is given by the difference between the expected marginal benefit
(muj dh) and the expected marginal cost (Ttuidp), normalized by the ex ante marginal utility of income
(mus + (1 —muy):

JUNHI — w(uydh — uidp)
nuf + (1 —m)ul

Rearranging this expression shows that the value of technology with no health insurance, dVV#!, can be

expressed as the conventional value, dV,, plus an additional component that reflects the insurance

value of the technology, dV;N!!!:

Conventional NHI
value, dV¢ Insurance value with no health insurance, dV;j
N s s w
u u us—u (2)
h h (] c
dVVHl = | —=dh—dp | + n(1 — ) (—dh — dp - -
Up U, muy + (1 — mug

Insurance value in the absence of insurance, dV;'!, is always positive, provided that the technology is

priced such that its conventional value is positive, and provided the individual has positive demand for
financial insurance against the health risk (i.e., ug > uY). This important result bears repeating: even
absent health insurance, any medical technology that is worth purchasing ex post reduces overall risk ex
ante, because the reduction in physical risk more than offsets the increase in financial risk.

The insurance value of technology in the absence of health insurance can be written explicitly as the
reduction in physical health risk minus the increase in financial risk:
Reduction in physical risk (dVIP) Increase in financial risk (dVIF)

us —u? u; us —uY
dvNHL = (1 — c__¢ M dh — (1 - c_¢ d
! (1 =m) mul + (1 —muy Jul (1 =m) mul + (1 —muy P

S
The reduction in health risk gets larger as the value of the health improvement, %dh, gets larger. The
c

increase in spending risk gets larger as the technology’s cost, dp, gets larger. Our empirical exercises will
quantify the size of these two insurance components and compare them to the conventional value.

I.C. The total value of technology with health insurance

Health insurance mitigates the spending risk created by new technology and thus boosts the overall
insurance value created when new technologies are introduced. Consider an actuarially fair, fee-for-
service health insurance contract that pays the consumer p(p) when she falls sick.'* When p(p) = p,
the individual has complete fee-for-service (FFS) health insurance; when p(p) < p, the individual has
incomplete FFS insurance due to, e.g., deductibles, co-payments, annual caps, or other patient cost-
sharing features.

In this environment, the individual solves the problem:

max Tu (ys -p+ I_an, h® + Ah) + (1 —m)u(y™ — 1, h") subject to t < np(p)
T

11 Because the contract is actuarially fair, the insurance premium is equal to mp(p). This means a consumer in the
sick state will receive a net transfer of p(p) — tp(p) = (1 — m)p(p) when sick.



In practice, most consumers are not completely insured against health risks. Therefore, the transfer

constraint will typically bind, and the consumer will choose t* = p(p).
Define VWH! as the total value of technology “with health insurance”. Using the expression for the

optimal transfer ¥, we can implicitly define this value as:

mu(y®* —p+ (1 —mp(p) — VY, hs + AR) + (1 — mu(y” —np(p) — VWVH, hW)
= nu(y®, h®) + (1 — mu(y*, h")

The corresponding marginal value of technology with health insurance (dVW#!) is given by:

nlupdh —ugdp + (1 — m)(ué — ug)p'(p)dp] @)

dVWHI —
muf + (1 —mu,

We can relate dVWH! to the earlier expression for conventional value, dV¢, and insurance value without

health insurance, dV;{'#!, according to:

Value of health insurance, dV}’VHI

ul —u¥ ] dp } (4)

dVWHL = @V + dVV + (1 — 1)

e+ - | P

The value of technology with health insurance is equal to its conventional value, plus the insurance
value that accrues without any health insurance available, plus a component that reflects the
incremental value of health insurance made possible by technology.

If health insurance is complete, so that p(p) = p, then it will perfectly offset and eliminate the financial

VWHI

risk introduced by the new technology. Mathematically, if Z—Z =1, then dV; = dVj,. In this special

case, the total value of technology is equal only to the conventional value plus the value of physical risk
reduction:

dVWHI = qV, + dv;,

I1.D. The total value of technology under complete indemnity health insurance

What happens if the consumer has access to perfect indemnity insurance, as opposed to health
insurance covering only the cost of medical care? While rarely observed in practice, indemnity insurance
is frequently assumed in economic models of health for analytical convenience (e.g., Murphy and Topel
2006). Because the consumer faces no constraints on the amount of money she can transfer across
states, she will choose an amount 7 that equalizes the marginal utility of wealth across states, even
when she does not have access to medical technology:

1—-m

U (ys + T, hs) =u.(y¥ —%,h")
Full indemnity health insurance is fundamentally different from the healthcare insurance we considered
earlier, because indemnity insurance operates even in the absence of medical technology. This means

that the marginal value of a new technology is measured at the point u (ys + 1_T”f, hs), not u(y®, h¥).

We therefore denote the indemnity-insured marginal utility of good j € {c, h} in state i € {s,w} as ﬁJ‘

Because #ij = 1i7, it is straightforward to show that the value of a new medical technology under
“indemnity insurance” is equal to



H

Vel = (L dh —dp
a;
C

Notice that this expression is substantially similar to equation (1), the expression for the conventional
value. In fact, if the marginal utilities for dV, are calculated in the indemnity insured state, then dV ¢! =
dV¢. In that case, the conventional value of medical technology is equal to the value in a setting where
consumers face no risk thanks to perfect indemnity insurance. In principle, some differences arise,
because conventional approaches typically fail to calculate marginal utilities in the indemnity-insured
state. Nonetheless, the structure of the conventional value calculation is identical to that of the
indemnity insurance case. In other words, the conventional approach to valuing medical technology is
correct and complete only in the highly unrealistic case of perfect indemnity health insurance.

Il.E. Implications for valuing health gains

If individuals are risk averse and have positive demand for health insurance—which empirical evidence
suggests is true—then our model shows that the conventional valuation of medical technology
underestimates the true value. This has important implications for cost-effectiveness analysis, which is
widely employed by healthcare systems across the world to determine which medical treatments qualify
for insurance coverage. Moreover, economic studies such as Murphy and Topel (2006) abstract away
from the insurance value of technology and thus exclude an important source of value associated with
health improvements.!> We return to this point in our empirical section.

Our results also have important implications for the relative values of different types of medical
technologies. This can be seen by examining the effect of health status in the sick state, h¥, on our
analytical expressions for the value of a marginal technology. This is of particular interest because low
values of h® reflect diseases with high “unmet need”, e.g., Parkinson’s disease, hepatitis C, or
amyotrophic lateral sclerosis (ALS). There is much contemporary debate concerning how much insurers
should pay to treat these diseases. Suppose, as is empirically realistic, that the marginal ex post
willingness to pay for health improvement is falling in the baseline level of health, i.e., people who are
sicker have higher willingness to pay for a given health improvement, and vice-versa.'® This assumption
is supported by survey evidence suggesting that people value a given level of health investment more
highly when provided to sicker patients (Nord, Richardson et al. 1995, Green and Gerard 2009, Linley
and Hughes 2013). If this assumption obtains, two results follow. First, the total value of a medical
technology is higher for diseases with a higher degree of unmet need (i.e., diseases associated with low
values of h®). Second, the difference between the conventional value and the total value grows as the
degree of unmet need rises. This suggests that errors in the use of the standard approach are most likely
for severe diseases with a poor current standard of care.

12 Although consumers in Murphy and Topel (2006) have uncertain lifespans, their quality of life at any given age is
known with certainty and they have access to perfect credit markets. Thus health insurance has no value in their
model.

131t is straightforward to show that this is equivalent to assuming U Uy, — UpU;, < 0. This condition necessarily
holds for certain classes of utility functions, including the Cobb-Douglas specification we employ in our empirical
exercises.



IIl. EMPIRICAL ESTIMATES OF THE VALUE OF MEDICAL INNOVATION

We now present results from empirical exercises designed to quantify the insurance value of medical
innovation at an aggregate level, and at the level of individual medical technologies. We first describe
our estimation framework and explain how we parameterize our empirical model. We then conduct two
different calibration exercises. The first employs data from a nationally representative set of individuals
to estimate the aggregate insurance value that follows from increases in the quality of life. The second
exercise employs data from the Cost-Effectiveness Analysis Registry to generate technology-level
estimates of value for a large set of real-world therapeutic innovations.

l1l.A. Estimation framework
Following the existing literature on how health affects preferences for investment risk (Picone, Uribe et
al. 1998, Edwards 2008), we assume that consumers have Cobb-Douglas period utility over consumption
and health:

(cYht™r)1-9 -1

u(c,h) = 1 ifo+1

-0
u(c,h) =In(c?h7) ifo =1

where y € (0,1) affects the marginal rate of substitution between consumption and health and ¢ = 0
affects the curvature of the utility function. The parameter y primarily drives the conventional value of
technology while the parameter o drives risk aversion and thus the insurance value of technology. This
utility specification is convenient because it separates risk-aversion from the conventional value placed
on improvements in health.!* This allows us to hold the conventional value of technology constant when
estimating the effect of risk aversion on insurance values.

We are only aware of one study that estimates the parameter y. Edwards (2008) examines the effect of
health risk on investment decisions and concludes that a range of 0.155 to 0.443 for y best fits the data.
We therefore set y = 0.3 in our analysis. Employing alternative values of y affects the levels of our
estimates, but does not substantively change our conclusions concerning the importance of insurance
value relative to conventional value.

We calibrate the parameter o using estimates from studies of risk aversion. The Arrow-Pratt measure of
relative risk aversion over consumption in our Cobb-Douglas utility specification is equal to R =1 —
y(1 — o) > 0 (Dardanoni 1988). The proper value of risk aversion among real-world populations
remains controversial. Chetty (2006) estimates a risk aversion range of 0.15 to 1.78, but many studies
have estimated much larger values.’® We adopt o = 3 as our preferred estimate, which corresponds to
a relative risk-aversion value of R¢ = 1.6, but we also report results across a broad range of risk
assumptions.

14 We also considered a multiplicative utility model u(c, h) = hu(c). The advantage of multiplicative utility is that
it separates the effect of risk aversion from the effect of state dependence. One disadvantage, however, is that it
does not allow one to separate risk aversion from what we call the conventional value, i.e., changes in risk
preferences affect ex post valuations, which is unappealing.

15 A less than comprehensive list includes Barsky et al. (1997), Cohen and Einav (2005), Kocherlakota (1996), and
Mehra and Prescott (1985).
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Note that the parameter o also determines the effect of changes in health on the marginal utility of
consumption. If 0 < 1 (o > 1), the marginal utility of consumption declines (increases) in the sick state,
i.e., there is negative (positive) state dependence. If ¢ = 1 then the marginal utility of consumption is
independent of health, i.e., state-independent utility. All else equal, the value of transferring resources
from the well state to the sick state is increasing in o. Because there is less agreement regarding the
sign, let alone the magnitude, of the state dependence of the utility function as opposed to risk
aversion, we select o based on estimates of risk aversion rather than state dependence.’® However, we
point out that our preferred choice of 6 = 3 also implies positive state dependence. We run calibrations
with different values of o to show how robust our estimates of the insurance value of technology are to
risk aversion, but these also show the effects of state dependence.

Unless otherwise noted, we assume throughout that income in both the sick and well states, y* and y",
is equal to $120,000, which is approximately the value of full income for a typical individual (Murphy and
Topel 2006). Full income here embeds all sources of non-health consumption, including leisure.
Assuming y = yY provides a conservative estimate of insurance value, because it minimizes the
benefits of transferring wealth from the healthy state to the sick state by failing to incorporate the
documented empirical finding that poor health tends to decrease income (Smith 1999). Employing an
alternative, lower value for y$ would increase our estimates of both the conventional and insurance
values of technology, as shown in the appendix.

Our calibration exercises require us to measure health in some manner. We accomplish this by
employing quality of life measures from our data sets, described below. Because health has no natural
units, all measures are normalized without loss of generality so that they range from 0 to 1. These
endpoints can be thought of as representing “death” and “perfect health,” respectively. The subjective
nature of the data and the multidimensional nature of health mean these measures are necessarily
imperfect. Nevertheless, we build on established literatures of health measurement in order to lend our
measurement strategy a firmer foundation.

We report all estimates of insurance value from an ex ante perspective. Thus, they should be regarded
as the values accruing to an individual who is facing a risk of illness rather than to an individual who is
already ill. Appendix A provides details on how we implement our calculations, and also generalizes our
main model to accommodate an arbitrary number of sick states.

Our calibration exercises will estimate the conventional and insurance values of technology. We also
decompose insurance value into its two subcomponents: physical insurance value and financial spending
risk (see Table 1). Absent health insurance, the total value of technology is equal to the sum of
conventional value, physical insurance value, and the offsetting financial spending risk. If complete fee-
for-service health insurance is available, financial spending risk is equal to 0 and the total value of
technology is then equal to the conventional value plus physical insurance value.

Before we turn to our empirical calculations, we illustrate how these various components of value
change as a function of a technology’s price, given our parameter assumptions. Figure 1 displays the
results for the case where h® = 0.8 and Ah = 0.2. Since perfect health corresponds to h = 1, this

16 Finkelstein et al. (2013), Sloan et al (1988), and Viscusi and Evans (1990) find evidence of negative state
dependence. Edwards (2008) and Lillard and Weiss (1988) find evidence of positive state dependence. Evans and
Viscusi (1991) find no evidence of state dependence.
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hypothetical technology represents a perfect cure. The total value of this technology to a consumer is
equal to about $7,000 when the price is zero. In other words, a consumer facing the risk of falling ill is
willing to pay $7,000 for access to a free medical treatment that cures this illness. Figure 1 shows that
this $7,000 can be decomposed into about $5,000 of conventional value and $2,000 of physical
insurance value. At a price of zero, the financial spending risk of the technology is nonexistent.

Figure 1 demonstrates that the conventional value, which ignores risk entirely, decreases linearly with
price. The financial spending risk increases nonlinearly with price. Physical insurance value, by contrast,
is unaffected by changes in price.

The total value of the technology depends on whether or not the consumer is insured. As shown in
Figure 1, price increases reduce total value more for the uninsured than the insured. The difference
between the “total (insured”) and “total (uninsured)” lines in Figure 1 is equal to the financial spending
risk and represents the value of health insurance. This difference is small when the price is low, but
becomes large when the price is high.

I1.B. Aggregate value of gains to quality of life

There is substantial evidence that the average quality of life has improved dramatically over the past
fifty years. The proportion of elderly who are disabled has decreased, and the proportion who are active
has increased (Cutler 2005). Previous work has estimated that the increase in quality of life is actually
more valuable than the accompanying increase in life expectancy (Murphy and Topel 2006). Our first
calibration exercise aims to understand how this value changes when one accounts for the insurance
value of medical innovation.

We accomplish this by estimating the lifetime benefits of an increase in quality of life, Ah, comparable to
that considered in Murphy and Topel (2006), using data from a nationally representative sample of
individuals from the Medical Expenditure Panel Survey (MEPS). We assume the price of technology is
zero, which means our simulated increase in quality of life will generate physical insurance value
without any offsetting financial risk. We show in the appendix that relaxing this assumption does not
alter our main conclusions.

The theoretical model presented in the first half of this paper allowed for only one possible sick state.
Here we employ a generalized version that allows for an arbitrary number of sick states. The health
status and probability of a particular state i are given by h% and m;, respectively. A medical technology
can improve the health of any state i by an amount Ah; for price p;. See the appendix for details.

Let f(h®) represent the distribution of health risks. We measure h° as “quality of life,” employing a
widely used and well-validated tool for measuring quality of life known as the EQ-5D (or EQ-5D-3L). The
EQ-5D measures quality of life on a scale from zero to one, using answers from five survey questions
regarding the extent of the respondent’s problems in mobility, self-care, daily activities, pain, and
anxiety/depression. All these questions are asked of respondents in the 2000-2003 MEPS, which serves
as our host database.

We use the EQ-5D measure to estimate baseline health state quantiles by age group and gender. Our
results are reported in Table 2. The table shows that the 10" percentile of health status for 18-34-year-
old males is equal to an EQ-5D score of 0.726. For each quantile, health status declines with age, as
expected. Conditional on age, males are estimated to have a higher quality of life than females. In every
group, the 90™ percentile enjoys perfect health. In our analysis, we assume that each health status
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displayed in Table 2 represents a health status in an untreated sick state, h%i. For each gender and age
group, there are nine possible states, each occurring with probability 7; = 1/9.

Next, we estimate how much a consumer facing the health risk distribution described in Table 2 would
be willing to pay, ex ante, for a hypothetical average increase in her quality of life. How these
hypothetical health gains are distributed across states will matter, because risk-averse individuals value
gains in poor health states significantly more than gains in good health states. We therefore consider
two different scenarios. The first scenario increases the quality of life in each state by 0.05, subject to
the constraint that the total not exceed 1. The second scenario involves the same total increase in
health, but concentrates all of the gain in the two poorest health states. In both cases, the average
health increase is in line with the hypothetical increase considered by Murphy and Topel (2006).’

Our results for the first scenario are displayed in Table 3. They show that the total value of the health
increase is equal to $6,634 for males between the ages of 18 and 34. This total can be broken down into
$5,290 of conventional value and $1,344 of insurance value. Because we assume that price is equal to
zero, this insurance value consists solely of physical insurance value without any remaining financial risk.
Both the conventional and insurance values are generally increasing with age because the elderly are
less healthy and thus have more to gain from health improvements. Young individuals, by contrast,
already have a high probability of enjoying perfect health, which cannot be improved. The conventional
value is responsible for the bulk of the health gain when individuals are young, but the fraction of the
gain due to insurance increases steadily with age. This is due to the large dispersion in health states for
the elderly, as shown in Table 2. Because the elderly face the most health risk, they enjoy the highest
insurance value from an increase in the quality of life.®

Our results for the second scenario are displayed in Table 4. As expected, the total value of the health
gains is larger than those presented in Table 3 because these gains are concentrated in the poorest
health states. For the oldest age groups, the insurance value of the health gains significantly exceeds the
conventional value.

We calculate the aggregate per capita life-time value of these health gains for an 18-year-old by
aggregating over age groups in both scenarios. We discount our calculations by the probability of
survival and by a real rate of discount equal to three percent.'® The results, displayed in Table 5, show
that the hypothetical health increase we consider generates about $209,000-$221,000 and $267,000-

17 Murphy and Topel (2006) assume that advances in quality of life are related to the declines in mortality from
1970-2000. Life expectancy for 18-year-olds increased by about 5 percent during that period. Our hypothetical
quality of life increase, when averaged equally across gender, age, and health states, increases the average index
by about 4 percent.

18 One exception is that the insurance value of technology is actually Jower for 65-79-year-old males compared to
some younger ages. As shown in Table 2, the bulk of the health reduction occurring between the 50-64 and the 65-
79 age groups happens in the 60™ percentile, which represents individuals who are healthier than average. This
compresses the dispersion in health between the healthy and sick, thus reducing the benefits of risk reduction.

19 Survival probabilities are obtained from www.mortality.org. Discount rates are calculated for the midpoint of the
age group. For example, the expected conventional value for an 18-year-old male for the period covering ages 18-
34 is equal to $5,290 x 17 x 0.99886/(1 + 0.03)'7/2, where the first term comes from Table 3, 17 = 34 — 18 +
1, the third term is the probability of surviving from age 18 to age 35, and the last term is the discount rate.

13



$285,000 in conventional value for an 18-year-old male and female, respectively. This is in line with the
range estimated by Murphy and Topel (2006) for that age.

We also compute that the insurance value adds 27-81% to the conventional value, as shown in Table 5.
This suggests that the value of advances in the quality of life may be significantly higher than has
previously been recognized, and that the magnitude depends greatly on how those gains were
distributed across the population.? The value is greatest if it accrues to the sickest individuals (those
with a high degree of “unmet need”), and lowest if it accrues to those who were already relatively
healthy. This reflects our earlier theoretical result that the difference between the conventional value
and the total value of health gains grows with the degree of unmet need. To date, relatively little
attention has been paid to the distribution of historical health gains, and how it influences the total
social value of those gains.

l11.C. Value of individual medical innovations

In our second calibration exercise, we calculate the conventional value and insurance value for real-
world therapeutic technologies. In order to compute the components of value for a particular
technology, we need data on four parameters: the annual price of the technology (p), the baseline
health level prior to treatment (h%), the perfectly well health level (h"), and the annualized health
improvement produced by the technology (4h). In our exercise, we set h" = 1. We obtain the
remaining data from the Cost-Effectiveness Analysis Registry (CEAR). CEAR is a collection of several
thousand cost-effectiveness studies published between 1976 and 2012.2! A study is included in the
database if it (1) contains original research; (2) measures health benefits in uniform units called Quality-
Adjusted Life Years (QALYs); and (3) is published in English.

A QALY ranges from zero to one. It incorporates changes in both morbidity and mortality, and converts
them into an “equivalent” number of “years of good health.” For example, if individuals are indifferent
between living nine months in perfect health and living twelve months on dialysis, then one year of life
on dialysis is considered equal to9/12 = 0.75 “quality-adjusted” years. QALYs thus provide a
convenient, standardized metric for comparing health benefits across different treatments.??

Our theoretical model pertains to changes in current period health, or morbidity. We therefore limit our
analysis to technologies most likely to affect only morbidity, as described below. Nevertheless, one
shortcoming of the CEAR data is that its measure of health improvement does not distinguish between
longevity improvements and morbidity improvements. Attributing the improvement entirely to a
decrease in morbidity will thus cause upward bias in our estimation. However, we are primarily
interested here in estimating the insurance value of technology relative to the conventional value. Our
results are substantively unchanged if we conservatively assume, for example, that only one-half of the

20 |ike most insurance studies, we implicitly assume that health shocks are uncorrelated over time. Relaxing this
assumption would increase the value of insurance because correlated shocks imply even greater physical risk
(Kowalski 2015).

21 See research.tufts-nemc.org/cear4/AboutUs/WhatistheCEARegistry.aspx for more information.

22 Employing QALY’s imposes restrictions on the risk structure of the utility function when operating in an
environment that allows for changes in both longevity and morbidity (Bleichrodt and Quiggin 1999). However, we
are only estimating the value of changes in morbidity, which allows for a more general specification of the utility
function (Hammitt 2013).
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health improvement is due to a decrease in morbidity. Moreover, our results throughout can still be
interpreted as demonstrating how insurance value evolves as current period health varies, since the
precise identity of the medical technologies in the CEAR database is not central to our key conclusions.

The annualized price of treatment (p), health improvements (Ah), and the health baseline (h°) are easily
recovered from cost-effectiveness data. For example, a typical study computes costs and benefits over a
horizon of T periods as:

T-1
Cost = Price = 2 pt(l - rp)t
t=0

T-1

Benefit = Z Ah (1 — 1)t
t=0

The total cost of an intervention depends on the annual incremental cost, p;, and is discounted at the
rate 7, over a time horizon of T years. The total benefit is measured in annual incremental QALYs, Ah;,
and is discounted at the rate r,.>> The cost-effectiveness ratio is equal to Cost/Benefit.

The majority of cost-effectiveness studies do not specify an entire time path for {p;, 4h;}. Therefore, we
make the simplifying assumption of a constant flow every period, characterized by {p, Ah}. These
constant flow values are easily derived from the equations above, given information on total cost, total
benefit, discount rates, and time horizon, by imposing the constraints that p, = p and 4h; = Ah. Given
the assumption of constant utility flow, it is without loss of generality that we consider the annualized
cost and health benefit of medical technologies. Thus, 4h reflects the annual improvement in health
enjoyed by a patient, and p reflects the annual price paid for the associated technology.

CEAR reports estimates of cost-effectiveness ratios (Cost/Benefit) for a wide variety of diseases and
treatments. We exclude studies that do not report estimates of Cost and Benefit separately and that
do not report time horizon or discount rates. CEAR classifies each study into different intervention
types. We confine our attention to treatments, rather than preventive technologies (e.g., vaccines), and
thus include any CEAR study classified as “pharmaceutical”, “surgical”, “medical device”, or “medical
procedure.”?* CEAR provides information on the total cost, total benefit, discount rates, and time
horizon for each study.?> As mentioned above, these data elements are sufficient to estimate the annual
flow terms, {p, Ah}.

CEAR also reports the “health state utility weights” for each of the health states considered by a
particular cost-effectiveness study. These cardinal measures range from zero to one and are used to
proxy for hS, the quality of life in the pre-treatment (sick) state. For example, suppose there are two
health states, A and B, representing patients at different levels of illness severity. These two states

2 The discount rates 1, and 7y, are usually equal to each other. Only 8% of the studies in CEAR discount costs and
benefits using different rates.

»nou ” o u

2 The excluded categories are “care delivery”, “diagnostic”, “health education or behavior”, “immunization”,

” u

“none/na”, “other”, and “screening”.

2> Some studies report a time horizon of “lifetime” rather than a specific number of years. In those cases we
assume a horizon of 85 years.
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correspond to the utility weights w, and w,. If, prior to treatment, half of the patients are in health
state A and the other half are in B, then h® = (w, + w},)/2. Since CEAR does not report what fraction of
the patients is in each health state for either the pre- or post-treatment groups, we assume that pre-
treatment patients are uniformly distributed across health states.

CEAR assigns each treatment to one of seventy different disease categories. We match each category to
nationally representative estimates of annual disease incidence obtained from the Medical Expenditure
Panel Survey. See the data appendix for details.

Our final sample of therapeutic medical technologies consists of 1,797 observations. Summary statistics
are provided in Table 6. Figure 2 displays the distribution of Ah, in units of annual QALYS gained, in our
sample of therapeutic innovations. The majority of treatments produce small, annualized improvements
in health (Ah < 0.05), but a few treatments produce large improvements, which skews the sample to
the right. For example, drug treatments for chronic hepatitis B infections increase the annual quality of
life by Ah = 0.31 QALYs.

Figure 3 displays the distribution of treatment prices in this sample. The sample is again skewed to the
right, with the vast majority of treatments costing less than $5,000. Three very expensive treatments
top the list with prices of approximately $150,000 per year: left ventricular assist devices for heart-
failure patients and two different inhibitors for treatment of hemophilia. Although expensive, each of
these three treatments generates large annual health improvements (Ah = 0.15). Not all expensive
treatments are valuable, however: interferon beta-1b, a treatment for multiple sclerosis that helps
prevent patients from becoming wheelchair-dependent, costs $22,000 per year but generates little
annual health improvement (Ah = 0.009) (Forbes, Lees et al. 1999).

We now turn to the calculations from our model. Figure 4 shows that the distribution of the
conventional value of medical technology in our CEAR sample is concentrated near zero and skewed to
the right. This indicates that outliers will have a significant influence on mean values, and that analysis
by quantiles may provide useful information. Figure 4 also shows that there are several technologies
that generate negative conventional value, i.e., the ex post costs of these technologies exceed the ex
post benefits.

Table 7 reports the mean, the median, and the 90th percentile of our calculations for values of ¢ ranging
from 0.5 to 8, which corresponds to a relative risk aversion range of 0.85 to 3.1. The mean conventional
value is equal to $769 and is unaffected by a consumer’s risk preferences. The average physical
insurance value and financial spending risk for our preferred specification of risk, ¢ = 3, are $883 and
$45, respectively. The difference between these two values, $838, represents the net insurance value
when consumers lack access to health insurance. The magnitudes of the calculated insurance values are
increasing in o because that parameter is linked to risk aversion, which boosts insurance value. The
means of our estimates are substantially larger than the medians due to the skewness of the distribution
(see Figure 4).

When ¢ is less than 1, consumers exhibit negative state dependence and will not demand insurance in
the sick state unless the price of treatment is sufficiently large. This is reflected in negative spending risk
values in the first row of Table 7. When ¢ is greater than 1, spending risk is positive for any treatment
with a positive price.

Table 8 normalizes the insurance values displayed in Table 7 by the corresponding conventional value.
When evaluated at the mean for ¢ = 3, it shows that each dollar of conventional value generates $1.15
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of physical insurance value and $0.06 of offsetting financial spending risk. In other words, properly
accounting for the total insurance benefits of therapeutic innovation increases its value by 109%. If the
consumer has access to perfect fee-for-service health insurance, which eliminates financial spending
risk, then the value would increase by 115%.

The average financial spending risk is small because the prices of most of the treatments in our sample
are low relative to annual income. The magnitude increases substantially when the price of treatment is
a significant fraction of an individual’s wealth, as Figure 5 vividly demonstrates. This agrees with the
notion that insurance is more valuable for expensive items than for cheap items.

Financial risk is highest for expensive technologies. Likewise, physical risk is highest for diseases that
result in very poor health states. We would therefore expect that physical insurance value is largest for
medical technologies that treat patients with low health status. This intuition is confirmed in Figure 6.
The physical insurance value of technologies that treat severe diseases is vastly larger than those that
treat mild conditions.?®

Our calculations can be employed to compare consumers’ willingness to pay for the physical insurance
value of technology to their willingness to pay for health insurance that eliminates financial spending
risk. According to Table 8, medical technology creates almost 20 times as much physical insurance value
as health insurance ($1.15 vs. $0.06 of value) when evaluated at the mean.

Treatments for diseases with high “unmet need”, defined in our framework as diseases with low values
of h®, are of particular interest, because there is much controversy surrounding their reimbursement.
Survey evidence indicates that people believe that, all else equal, it is more beneficial to treat patients
whose baseline level of health is lower. Moreover, even health technology assessment authorities
known for their strictness tend to agree with this view, and often make coverage exceptions for
expensive drugs that treat conditions where the need for new treatments is extreme, e.g., orphan
diseases with few options and terminal diseases like cancer (Lancet, 2010).

An extreme example is a cost-effectiveness study of Infliximab, a treatment for Crohn’s disease (Bodger,
Kikuchi et al. 2009). The treatment group in this study consisted of patients with severe Crohn’s disease,
an extraordinarily painful inflammatory bowel disease that can affect several organ systems at the same
time. These patients are assigned an h® value of 0.103, the lowest in our data. Given a cost of $600 per
year, a traditional framework that ignores insurance value would estimate that Infliximab generates
$1,700 in conventional value for a consumer at risk for this illness. Accounting for risk aversion adds
$15,200 in insurance value to the total value of Infliximab, an enormous increase.

Figure 7 illustrates how the total value of medical technology, including the insurance value, varies by
patient health status for the entire sample of treatments we consider. Treating patients with low health
status is very valuable. Figure 8 reveals that most of that value is generated by insurance, the
component ignored by the traditional valuation of medical technology. Figure 9 illustrates this same
point by showing that the conventional value significantly undervalues treatments for very ill patients.
This suggests that — in line with public opinion — the standard approach to valuation is most
inappropriate in cases where patients are extremely sick.

26 Figure 6 does not account for the magnitude of the health improvement, Ah, which is a potential confounder.
However, the correlation between the severity of disease and Ah is quite weak. Controlling for Ah in a formal
regression framework does not alter this result.
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Finally, we note that the calculations presented so far are conservative because we have assumed that
the parameters governing income in the sick and well states are both equal to $120,000. If income in the
sick state is lower, as is often the case for debilitating diseases like multiple sclerosis or Parkinson’s
disease, then the insurance value of treatment will increase because the value of being able to transfer
resources from the well state to the sick state increases. We show in the appendix that if income in the
sick state, y®, is equal to $60,000 instead of $120,000, then physical insurance value is about three
times larger than the conventional value, and the value of health insurance is about two-thirds as large
as the conventional value.

IV. CONCLUSION

When real-world health insurance markets are imperfect, risk-averse consumers derive value from
medical technologies that limit the consequences of bad events and thereby expand the reach of
financial health insurance.

These theoretical observations are empirically meaningful. New medical technologies provide
substantial insurance value above and beyond standard consumer surplus. Under plausible assumptions,
the insurance value is roughly equal to the conventional value. Accounting for risk thus doubles the
value of medical technology over and above conventional calculations. Notably, the physical insurance
value of therapeutic technology is often a much larger contributor to insurance value than the financial
insurance value created by healthcare insurance. The latter point suggests that medical technology on
its own may do more to reduce risk than health insurance.

Our argument also suggests that the academic literature, which tends to focus exclusively on the
standard consumer surplus value of medical technology, may have failed to capture a major part of its
value. For example, Murphy and Topel (2006) value health increases over the past century at over S1
million per person. Our results suggest that accounting for uncertainty could significantly increase their
estimates, by anywhere from 30-80%.

The ability of medical innovation to function as an insurance device influences not just the level of value,
but also the relative value of alternative medical technologies. The conventional framework understates
the value of technologies that treat the most severe illnesses, compared to technologies that treat mild
ailments. This helps explain why health technology access decisions driven by cost-effectiveness
considerations alone often seem at odds with public opinion. For example, survey evidence suggests
that representative respondents evaluating equally “cost-effective” technologies strictly prefer paying
for the one that treats the most severe illness (Nord, Richardson et al. 1995).

From a normative point of view, our analysis also implies that the rate of innovation functions in a
manner similar to policies or market forces that complete or improve the efficiency of insurance
markets. Increases in the pace of medical innovation reduce overall physical risks to health, and thus
function in a manner similar to expansions in health insurance. As a result, policymakers concerned
about improving the management of health risks should view the pace of medical innovation as an
important lever to influence and maintain. U.S. policymakers have focused their efforts on improving
health insurance access and design. While these are worthy goals, medical innovation policy may have
an even greater impact on reducing risks from health.

More practically, our analysis informs the contemporary debate over how new medical technologies
should be reimbursed. The United Kingdom provides an instructive example, as the UK health
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authorities hew closely to the use of ex post consumer surplus as a measure of value for a new
technology, and thus a guide to how generously it should be reimbursed. Perhaps as a result, the UK
performs poorly in the reimbursement of drugs to treat cancer, which has motivated legislators there to
provide exceptional reimbursement for such products, above and beyond what the UK health
authorities dictate (Lancet, 2010). Controversy has erupted over the appropriateness of this approach,
and the legislation has drawn a great deal of criticism (Lancet, 2010). Yet, our analysis illuminates how
the severe nature of cancer might contribute to the major misalignment between the standard
economic approach to valuing medical technology and the preferences of legislators and voters. The
policy lesson is that more attention needs to be paid by third-party payers and other health
policymakers to covering treatments for severe diseases in order to align payment policies with the
values of consumers. Moreover, the standard economic approach to valuing health technology should
itself work towards alignment with the preferences of healthy consumers and sick patients.
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APPENDIX

A. Accommodating multiple sick states
The model presented in the main text allowed for two health states, one sick and one well. Here we
generalize the model to allow for an arbitrary number of sick states. Let the probability of each sick state
be 1;, where i = 1...N. Define the probability of the well stateas 1 —m =1 — Z?I:l ;. Suppose that,
for each sick state, there is a medical technology available that increases health by an amount Ah; for a
price p;. The conventional value is equal to
N
VC = Z VCi
j=1

where each V¢, is defined implicitly as

u(ysi — p; — Ve, /mi, RSE + ARy) = u(ySi, h5)

The full ex ante willingness to pay for a technology under “no health insurance” is defined implicitly as

N
Z[ﬂiu(ysi —p; — VNEL pSi 4 AR)] + (1 — mu(yW — VNHL pW) = EU

i=1

where EU, expected utility absent medical technology, is defined as

EU = ) [mu(y*, h*)] + (1 - muly”, k")

-

i=1
The ex ante willingness to pay “with health insurance” is implicitly defined as

N N N
Z Iniu ySi — Z mp(p;) — VWHL hSi 4+ AR ||+ (1 —mu| y¥ — Z m;p(p;) —VWHL AW | = EU
i=1

Jj=1 Jj=1

When N = 1, we have (1 — ) = 1 — m; and all of the above expressions simplify to the two-state case
presented in the main text.

VNHI VWHI

We solve for I/, , and
incremental willingness to pay when accounting for risk: V;

using standard numerical methods. The insurance value is equal to the
= VNHI — .. Financial spending risk is equal
to the incremental willingness to pay when an individual gains access to financial insurance markets:
Vi, = VWHI — VNI The physical insurance value can then be easily computed as V;, = V; + V.
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B. Employing certainty equivalents

Define a certainty equivalent as the maximum amount that a consumer is willing to pay to completely
insure against risk. For an individual without access to medical technology or financial insurance
markets, the certainty equivalent, CE), is defined implicitly as:

u(y” — CEo, ") = mu(y*, h* ) + (1 — muly™, h")

Following the introduction of a new medical technology that generates positive consumer surplus, the
certainty equivalent, CE; < CE,, is defined implicitly as:

u(y" — CEy, h") = mu(y® —p,h* +4Ah) + (1 — mu(y™, h")

The new medical technology reduces the certainty equivalent for two distinct reasons. First, the new
technology generates consumer surplus for sick individuals. This is what we call the “conventional value”
of technology. Second, the technology generates what we call “insurance value” because the consumer
now faces less risk. Note that the first source of value comes from a reduction in the mean and the
second comes from a reduction in the variance.

Finally, consider the case where the consumer has access to fee-for-service health insurance. The
certainty equivalent, CE,, is now defined implicitly as:

u(y" — CEp, h") = mu(y® —p + (1 —m)p,h® + Ah) + (1 — m)u(y” — mp, h")

The conventional value (V¢), net insurance value (V;) and financial spending risk (V) associated with a
new technology are equal to the incremental reductions in uncertainty associated with the introduction
of the technology and the availability of health care insurance:

VC + VI = CEO - CE]_
VIF = CE1 - CEZ

The physical insurance value can then be defined as V;, =V, +V;_. A shortcoming of employing
certainty equivalents is that it does not separately identify V. (a mean shift) and I;; (a variance shift).
This is not a problem for most studies that value insurance because the mean shifts are typically already
measured in dollars. For example, Finkelstein and McKnight (2008) subtract out changes in mean
medical spending following the introduction of Medicare so that their welfare estimates can be
attributed solely to risk reduction. We cannot do that in our setting because changes in health, unlike
changes in medical spending, are not measured in dollars.

One might be tempted to estimate V using the willingness to pay method we present in the main text.
Doing so can generate nonsensical estimates, however, because willingness to pay is calculated from the
perspective of the sick state while certainty equivalents are always calculated from the healthy state,
and those states employ different marginal utilities of income. For example, it is possible to generate
scenarios where the insurance value is negative even though a consumer has positive demand for health
insurance in the sick state. Nevertheless, we obtain similar results overall if we estimate our model using
certainty equivalents rather than the willingness to pay method we present in the main text.

C. Robustness checks
Appendix Table 9 and Appendix Table 10 display aggregate estimates for the hypothetical health
increased considered in the main text when we incorporate price. We follow Philipson and Jena (2006)
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and assume that the price of medical technology is equal to 20% of the ex post surplus it generates. For
the sake of brevity we present results only for Scenario 2, where all health gains are concentrated in the
two poorest health states.

Comparing Appendix Table 9 to Table 4 shows that incorporating price lowers the full willingness to pay,
as expected. This is because the conventional value is lower (there is less ex post surplus) and because
the consumer is now exposed to financial risk. The magnitude of financial risk increases with age
because price, a set fraction of ex post surplus, also increases with age.

Appendix Table 10 reports the per capita lifetime value of the health gains. Even after accounting for the
negative financial spending risk associated with purchasing medical technology, the total value still
significantly exceeds the conventional value.

Appendix Table 11 show that the estimates of insurance value presented in Table 7 increase greatly in
magnitude if we assume that income in the sick state is equal to $60,000 rather than $120,000.

D. Data appendix

Each study in the CEAR database is categorized into one of 70 possible disease classifications, e.g.,
“tuberculosis” or “endocrine disorders”. We mapped each of these verbal classifications into
corresponding ranges of ICD-9-CM codes.?” For example, tuberculosis corresponds to the codes 10
through 18.

Some CEAR disease classifications were calculated by excluding subcategories from a larger category.
For example, the CEAR database classifications include four types of respiratory diseases: “Asthma”,
“COPD”, “Respiratory Infections”, and “Other Respiratory”. These are all subcategories of “Diseases of
the Respiratory System” (codes 460-519). We therefore assigned to “Other Respiratory” all respiratory
system codes that were not included in the definitions of “Asthma”, “COPD”, and “Respiratory
Infections”.

We then estimated the incidence of each disease category using the 1996 — 2010 Medical Expenditure
Panel Surveys (MEPS). These surveys report the ICD-9 codes corresponding to every condition suffered
by a respondent during the two years she was surveyed. We mapped these codes into the disease
categories given by Appendix Table 12. Next, for each panel and disease category, we calculated (1) the
number of respondents who contracted the disease in the second year of the panel, and (2) the number
of respondents at risk for the disease in the first year of the panel. We then pooled the panels together
and divided (1) by (2) to obtain our incidence estimates. Appendix Table 12 shows our results.

27 See ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2008/Dtab09.zip.
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TABLES AND FIGURES

Table 2. Average health status for selected quantiles, by age group and gender.

Quantiles
Group Observations 10 20 30 40 50 60 70 80 90
Males (18-34) 11,382 0.726 0.796 0.886 1 1 1 1 1 1
Males (35-49) 11,424 0.681 0.743 0.796 0.835 1 1 1 1 1
Males (50-64) 7,998 0.62 0.691 0.74 0.796 0.796 1 1 1 1
Males (65-79) 4,344 0.569 0.681 0.704 0.727 0.796 0.796 0.962 1 1
Males (80+) 1,120 0.208 0.56 0.638 0.699 0.725 0.761 0.796 0.916 1
Females (18-34) 13,049 0.717 0.787 0.835 0.895 1 1 1 1 1
Females (35-49) 13,351 0.62 0.725 0.787 0.8 0.857 1 1 1 1
Females (50-64) 9,210 0.534 0.689 0.725 0.761 0.796 0.826 1 1 1
Females (65-79) 5,567 0.332 0.62 0.691 0.721 0.743 0.796 0.814 0.971 1
Females (80+) 2,077 0.116 0.427 0.62 0.681 0.696 0.731 0.796 0.844 1

Notes: Table presents pooled, weighted estimates from the 2000-2003 MEPS. Each cell
represents the average EQ-5D index for that quantile and group. The EQ-5D index is a
measure of quality of life that ranges from 0 (poor health) to 1 (perfect health).

Table 3. Value of a health improvement that is distributed evenly across all health states.

Group Conventional Insurance Total

Males (18-34) $5,290 $1,344 $6,634
Males (35-49) $7,368 $1,791 $9,160
Males (50-64) $9,634 $2,145 $11,779
Males (65-79) $12,984 $1,738 $14,721
Males (80+) $18,912 $11,292 $30,204
Females (18-34) $7,007 $1,399 $8,406
Females (35-49) $9,325 $1,943 $11,269
Females (50-64) $11,762 $2,280 $14,042
Females (65-79) $16,135 $4,472 $20,607
Females (80+) $22,156 $27,351 $49,507

Notes: This table displays the value of a modest hypothetical increase in
quality of life that is distributed evenly across all potential health states, for
an individual facing the health risk profile displayed in Table 2. It assumes
there is no spending risk, so calculated insurance values consist solely of

physical insurance value.
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Table 4. Value of a health improvement that is concentrated in the two lowest health states.

Group Conventional Insurance Total

Males (18-34) S5,261 $1,852 $7,114
Males (35-49) $7,048 $2,774 $9,822
Males (50-64) $8,935 $4,056 $12,991
Males (65-79) $11,447 $5,503 $16,950
Males (80+) $17,369 $35,674 $53,044
Females (18-34) $6,751 $2,336 $9,087
Females (35-49) $8,781 $4,044 $12,825
Females (50-64) $10,765 $6,082 $16,847
Females (65-79) $14,867 $17,780 $32,647
Females (80+) $19,931 $60,776 $80,708

Notes: This table displays the value of a modest hypothetical increase in
quality of life that is concentrated in the two poorest health states, for an
individual facing the health risk profile displayed in Table 2. It assumes there
is no spending risk, so calculated insurance values consist solely of physical
insurance value.

Table 5. Aggregate lifetime value of the health improvements from Table 3 and Table 4.

Health gains evenly distributed Health gains concentrated among sick
Fraction Fraction
Gender Conventional Insurance Total insurance Conventional Insurance Total insurance
Male $220,507 $59,410 $279,917 0.27  $209,077 $123,891 $332,969 0.59
Female $285,047 $92,088 $377,135 0.32  $266,898 $217,437 $484,335 0.81

Notes: Estimates are weighted to reflect discounting and survival probabilities. The analysis assumes
there is no spending risk, so calculated insurance values consist solely of physical insurance value.

Table 6. Summary statistics for the sample of therapeutic medical innovations from CEAR.

Mean SD Min Max
Horizon (years) 56.74 35.12 1 85
QALY discount rate 0.033 0.009 0.015 0.06
Cost discount rate 0.035 0.009 0.015 0.06
Health status in sick state (QALYs) 0.714 0.145 0.103 0.995
Ah (QALYs) 0.031 0.050 0.000 0.468
P (2011 dollars) $1,942 $8,815 ) $162,583
Probability of disease x 100 4.090 3.985 0.007 17.301

Notes: Sample consists of 1,797 interventions. Ah and P correspond to the health
improvement and price of a medical technology.

26



Table 7. Means and percentiles of the conventional and insurance values of technologies in CEAR for different values of risk
aversion.

Insurance value

Conventional Physical insurance Financial spending risk
o (R Median 90th percentile Mean | Median 90th percentile  Mean | Median 90th percentile Mean
0.5(0.85) | $213.14  $2,324.56  $768.69 | (%4.43) $47.24 $7.23 | (31.17) (0.06) ($1.54)
1(1) $213.14 $2,324.56 $768.69 $3.73 $338.89 $133.50 $0.01 $1.47 $5.53
3(1.6) $213.14 $2,324.56 $768.69 | $84.43 $2,497.94 $883.06 $6.42 $99.02 $45.22
5(2.2) $213.14 $2,324.56 $768.69 | $187.57 $5,442.03 $1,893.65 | $15.49 $232.45 $104.57
8(3.1) $213.14 $2,324.56 $768.69 | $403.66  $11,533.12 $3,495.98 | $32.99 $545.41 $224.46

Notes: Units are 2011 dollars. Sample is 1,797 interventions from CEAR. Estimates are weighted by the prevalence of

disease. The parameter o affects the curvature of the utility function. R®is the implied coefficient of relative risk
aversion over consumption.

Table 8. Means and percentiles of the insurance values of technologies in CEAR, as a fraction of the conventional value.

Physical insurance Financial spending risk Total insurance value
o (RY) Median 90th percentile Mean | Median 90th percentile Mean |Median 90th percentile Mean
0.5(0.85) -0.02 0.02 0.01 -0.01 0.00 0.00 -0.02 0.02 0.01
1(1) 0.02 0.15 0.17 0.00 0.00 0.01 0.02 0.15 0.17
3(1.6) 0.40 1.07 1.15 0.03 0.04 0.06 0.37 1.03 1.09
5(2.2) 0.88 2.34 2.46 0.07 0.10 0.14 0.81 2.24 2.33
8(3.1) 1.89 4.96 4.55 0.15 0.23 0.29 1.74 4.73 4.26

Notes: Units are 2011 dollars. Sample is 1,797 interventions from CEAR. Estimates are weighted by the prevalence of

disease. The parameter o affects the curvature of the utility function. R is the implied coefficient of relative risk
aversion over consumption.
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Ex ante value of technology: simulated example
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Figure 1. Simulated estimates of the different components of the value of medical technology as a function of price. “Total
(insured)” is equal to “conventional” plus “physical insurance”. “Total (uninsured)” is equal to “conventional” plus “physical
insurance” minus “spending risk”. Simulation parameters are y = 0.3,6 = 3,m = 0.1,y" = y* = $120,000,h" = 1,h® =
0.8,and Ah = 0.2.

Health benefits of technologies in CEAR

Fraction

o - 1 I
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Ah (QALY's)

MNotes: sample size is 1,797.

Figure 2. This figure displays the distribution of Ah, a measure of health improvement that ranges from 0 to 1, in our sample
of therapeutic innovations from CEAR.
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Prices of technologies in CEAR
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Motes: sample size is 1,797. Price is top-coded at $50,000.

Figure 3. This figure displays the distribution of prices for the treatments in our sample of therapeutic innovations from
CEAR. Price is top-coded at $50,000 for display purposes.

Conventional value of technologies in CEAR

Fraction
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MNotes: min = $-3,591.44, max = $10,725.66, sample size = 1,797.

Figure 4. Distribution of the calculated conventional value of therapeutic technologies in CEAR. Most treatments generate
little value.
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Financial spending risk of technologies in CEAR
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Figure 5. This graph shows the calculated financial spending risk of each therapeutic medical innovations in CEAR as a
function of their price. Risks are displayed as positive values, and are exactly equal to the coverage value of an actuarially
fair, perfect fee-for-service health insurance policy.

Physical insurance value of technologies in CEAR
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Figure 6. This graph shows the calculated physical insurance value of the therapeutic medical innovations in CEAR as a
function of the patient’s health status.

30



Total value of technologies in CEAR
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Figure 7. This graph shows the total value of the therapeutic technologies in CEAR as a function of the health status of the
patient in the untreated sick state. The total value is calculated assuming the patient has access to health care insurance. The
figure omits technologies with negative conventional value.
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Figure 8. Treatments for diseases with low health status (high unmet need) generate most of their value from insurance
value. The total value is calculated assuming the patient has access to health care insurance. Source: CEAR.
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Underestimation of value by conventional method
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Figure 9. The conventional valuation of medical technology significantly underestimates the total value of treatments for
individuals with high “unmet need”, i.e., treatments for individuals with low health status. This figure omits technologies
with negative conventional value and calculates total value assuming the patient has access to health care insurance. Source:
CEAR.
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APPENDIX TABLES

Table 9. Value of health improvements that are concentrated in the two poorest health states, when the price of medical

technology is equal to 20% of ex post willingness to pay.

Insurance value

Group Conventional  Physical Financial Total

Males (18-34) $4,209 $1,852 $233 $5,829
Males (35-49) $5,638 $2,774 $296 $8,116
Males (50-64) $7,148 $4,056 $368 $10,836
Males (65-79) $9,158 $5,503 $316 $14,345
Males (80+) $13,895 $35,674 $3,039  $46,531
Females (18-34) $5,401 $2,336 $236 $7,501
Females (35-49) $7,025 $4,044 S377 $10,692
Females (50-64) $8,612 $6,082 $496 $14,199
Females (65-79) $11,894 $17,780 $1,466  $28,208
Females (80+) $15,945 $60,776 $5,927  $70,795

Notes: This table displays the value of a modest hypothetical increase in quality of life
that is concentrated in the two poorest health states, for an individual facing the health
risk profile displayed in Table 2. The total value is equal to the conventional value plus
the physical insurance value minus the financial spending risk.

Table 10. Aggregate lifetime value of health improvements that are concentrated in the two poorest health states, when

price is set equal to 20% of ex post willingness to pay.

Insurance value Total value
Gender Conventional Financial Uninsured Insured
Male $167,262 $11,703 $279,450 $291,153
Female $213,518 $20,045 $410,910 $430,955

Notes: Estimates are weighted to reflect discounting and survival probabilities.

Total values are calculated assuming (1) consumer is uninsured and (2) consumer is
insured, i.e., has access to health insurance.
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Table 11. Means and percentiles of the conventional and insurance values of technologies in CEAR for different values of risk
aversion under the alternative assumption that income in the sick state equals $60,000 instead of $120,000.

Insurance value

Conventional Physical insurance Financial spending risk
o (RY) Median 90th percentile Mean Median 90th percentile = Mean Median 90th percentile Mean
0.5(0.85) | $91.94 $1,072.92 $355.10 $75.42 $863.47 $284.69 $9.48 $94.59 $40.45
1(12) $91.94 $1,072.92 $355.10 | $117.73 $1,386.55 $451.19 | $15.14 $157.88 $62.44
3(1.6) $91.94 $1,072.92 $355.10 | $320.99 $4,530.73 $1,398.80 | $42.49 $530.67 $197.22
5(2.2) $91.94 $1,072.92 $355.10 | $625.67 $8,396.28 $2,466.85 | $79.04 $1,037.51 $399.97
8(3.1) $91.94 $1,072.92 $355.10 [ $1,080.65  $12,347.83  $3,650.35 [ $131.14 $1,697.48 $711.74

Notes: Units are 2011 dollars. Sample is 1,797 interventions from CEAR. Estimates are weighted by the prevalence of

disease. The parameter o affects the curvature of the utility function. R®is the implied coefficient of relative risk aversion
over consumption.
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Table 12. Annual prevalence for the disease categories listed in CEAR, as estimated using MEPS.

CEAR disease classification

Probability x 100

CEAR observations

Alzheimer's and Other Dementias
Asthma

Breast Cancer

COPD

Cardiovascular Diseases
Cerebrovascular Disease
Colorectal Cancer

Congenital Anomalies

Depression and Bipolar Affective Disorder
Diabetes Mellitus

Digestive Diseases

Endocrine Disorders
Genito-Urinary Diseases
HIV/AIDS

Hearing

Hematologic Cancers
Hematology - Other
Hypertension

Infectious

Injuries/Exposures

Ischaemic Heart Disease

Kidney Disease

Lipids

Lung Cancer

Malignant Neoplasms

Maternal and Child Health
Multiple Sclerosis
Musculoskeletal and Rheumatologic
Neuro-Psychiatric and Neurological
Non-Cancer Prostate Disease
Non-Ischaemic Heart Disease
Osteoarthritis

Other

Other Endocrine

Other Genito-Urinary

Other Infectious Diseases

Other Musculoskeletal

0.130
1.082
0.089
2.056
3.195
0.420
0.052
0.269
0.154
0.620
6.538
3.276
4.337
0.007
3.275
0.058
0.146
2.167
10.733
10.852
0.512
0.071
0.243
0.057
1.041
0.553
0.019
7.996
5.120
0.318
0.955
0.497
11.400
3.217
4.034
9.822
6.478
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20
3
88
15
170
30

41
54
52
40
52

31
28
26
186
11
65
25
17
10
142

23

201

34

53
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Other Neoplasms 1.696 14

Other Neuro-Psychiatric and Neurological 4.904 5
Other Non-Infectious Gl Diseases 6.443 26
Other Respiratory 1.981 12
Ovary Cancer 0.007 4
Parkinson Disease 0.031

Peptic Ulcer Disease 0.152

Prostate Cancer 0.106 15
Respiratory Diseases 17.301 13
Respiratory Infections 15.130 2
Rheumatoid Arthritis 0.141 21
STDs excluding HIV 1.305 1
Schizophrenia 0.029 3
Seizure Disorders (Epilepsy) 0.032 10
Sense Organ Diseases 6.806 4
Skin Diseases (Non-Cancer) 4.614

Substance Abuse Disorders 0.213

Tuberculosis 0.020

Vascular, Non-Cardiac, Non-Cerebral 1.030 30
Vision 4.021 46
Total 1,797

Source: 1996-2010 MEPS surveys.
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