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1 Introduction

Over the past decade, there has been a high level of interest in modeling consumer behavior

in the fields of computer science and statistics. These applications are motivated in part

by the availability of large data sets where the demand for SKU’s or individual consumers

can be observed. These methods are commonly used in industry in retail, health care or on

the internet by firms to use data at large scale to make more rational business decisions.

In this paper, we compare these methods to standard econometric models that are used by

practitioners to study demand. We are motivated by the problem of finding practical tools

that would be of use to applied econometricians in estimating demand with large numbers

of observations and covariates, such as in a scanner panel data set.

Many economists are unfamiliar with these methods, so we begin by expositing some

commonly used techniques from the machine learning literature. We consider 8 different

models that can be used for estimating demand for an SKU. The first two models are well

known to applied econometricians—the conditional logit and a panel data regression model.

We then turn to machine learning methods, all of which differ from standard approaches

by combining an element of model selection into the estimation procedure. Several of these

models can be seen as variants on regularization schemes, which reduce the number of covari-

ates in a regression which receive non-zero coefficients, such as stepwise regression, forward

stagewise regression, LASSO, and support vector machines. We also consider two models

based on regression trees, which are flexible methods for approximating arbitrary functions:

bagging and random forests. While these models may be unfamiliar to many economists,

they are surprisingly simple and are based on underlying methods that will be quite familiar.

Also, all of the methods that we use are supported in statistical packages. We perform our

computations in the open source software package R. Therefore, application of these methods

will not require writing complex code from scratch. However, applied econometricians may

have to familiarize themselves with alternative software.

We derive novel results for the asymptotic theory for several of the models above. We

show, somewhat unsurprisingly, that many of these models do not have standard asymptotics

and converge more slowly than the standard square root rate. Since these models do not have

standard normal asymptotics, common methods such as the bootstrap cannot be applied

for inference. We also propose using an idea dating back at least to Bates and Granger

(1969). We first form prediction for all 8 models in the standard way. We then treat each of

these 8 independent predictions as regressors and form a combined model by regressing the

dependent variable on to the prediction of each component model. We use a three-way cross
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validation to avoid overfitting the models in practice. We split the sample into three disjoint

sets; we use the first part to fit all 8 models, we use the second part to fit our regression on

the 8 independent model predictions, and we use the final third of the data to test the fit

out of sample.

To assess the small-sample properties of each of the machine learning methods and the

model combination procedure we run a Monte Carlo. We show that several of the machine

learning methods, particularly the random forest, do extremely well in predicting out-of-

sample outcomes. In the combined model, the two regression tree-based methods, bagging

and random forest, receive nearly fifty percent of weight. The model which receives forty-

three percent of the weight in the combined model is the stagewise model. We demonstrate

that the predictive accuracy of the combined model can result in dramatic improvements in

fit over any of the component models. The Monte Carlo also demonstrates that the method

is robust to the inclusion of spurious regressors, does just as well on complex, discontinuous

data-generating processes as the simple linear-index models typically used in empirical work,

and that the convergence rates of the various component models is typically better than the

theoretical convergence rates.

We next apply our method to a canonical demand estimation problem. We use data from

IRI Marketing Research via an academic license at the University of Chicago. It contains

scanner panel data from grocery stores within one grocery store chain for six years. We used

sales data on salty snacks, which is one of the categories provided in the IRI data. The

number of observations are 1,510,563, which includes 3,149 unique products.

If we allow for product and store level fixed effects, our model effectively has many thou-

sands of explanatory variables. Therefore, variable selection will be an important problem.

If we included all of these variables in a standard regression model, the parameters would be

poorly estimated. Also, many of the regressors will be multi-collinear which will make the

models predict poorly out of sample.

In our results, we find that the 6 models we use from the statistics and computer science

literature predict demand out of sample in standard metrics much more accurately than a

panel data or logistic model. We do not claim that these models dominate all methods pro-

posed in the voluminous demand estimation literature. Rather, we claim that as compared

to common methods an applied econometrician might use in off the shelf statistical software,

these methods are considerably more accurate. Also, the methods that we propose are all

available in the well documented, open software package R as well as commercially-available

software.
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Applied econometricians have sometimes voiced skepticism about Machine Learning mod-

els because they do not have a clear interpretation and it is not obvious how to apply them to

estimate causal effects. In this paper, we use an idea proposed by Varian (2014) to estimate

the marketing lift attributable to promotions in our scanner panel. The idea is similar to

the idea of synthetic controls used in Abadie and Gardeazabal (2003). We begin by training

our model on the data where there is no promotion. We then hold the parameters of our

model fixed and predict for the observations where there is a promotion. We then take the

difference between the observed demand and the predicted demand for every observation in

our data. By averaging over all observations in our sample, we construct an estimate of the

average treatment effect on the treated.

We believe that this approach might be preferable to instrumental variable methods.

In practice, it can be difficult to find instruments that are a prior plausible. When they

exist, they may be subject to standard critiques such as the instruments may be weak or the

identification may only be local.

The logic behind our approach is simply to use lots of data rather than rely on quasi-

randomness. As mentioned above, in applied econometrics, there are many forms of data

about products that are simply not exploited in empirical studies such as unstructured text

or pictures. In some applications, simply using more data and more scalable computations

may be a superior strategy to reducing bias in causal lift estimates.

We find quite interesting that a standard panel data model with fixed effects has the

“wrong sign” on promotional lift, i.e. promotions decrease demand. By contrast, our models

from the statistics and computer science literature have the anticipated sign. We conjecture

that this is because they simply use more data and have less bias as suggested by standard

omitted variable formulas.

Finally, we can use our model to search for heterogeneity in the treatment effects in an

unstructured way. Our model generates a residual for each observation that is treated. We

can regress this residual on covariates of interest such as store indicators, brand dummies,

hedonic attributes or seasonal factors. Once again, this is a high dimensional regression

problem and the estimates would be poorly estimated in a regression framework. We instead

propose a method suggested by Belloni et al. (2012) and use a LASSO to select variable and

then use standard methods for inference. We believe that this is attractive for applied

econometricians since it allows us to learn about heterogeneity in the treatment effect. Also,

it could be useful to applied marketers since these variable could be useful in marketing

mix models because it allows us to identify a smaller set of variables that predict marketing
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return.

The paper is organized as follows: Section 2 introduces the underlying statistical model

of demand we study; Section 3 discusses the rates of convergence of our estimators and model

combination; Section 4 demonstrates the useful properties of these estimators in a controlled

Monte Carlo setting; Section 5 applies the techniques to a scanner data set; and Section 6

concludes.

2 Model

Our paper explores using machine learning techniques to help approximate the conditional

expectation, E[Y |X]; to help motivate this more approximation more concretely, we study

a standard model of discrete choice demand.

2.1 Components of Demand

Let there be J products, each endowed with observable characteristics Xj. Let product j

have demand in market m at time t equal to:

lnQjhmt = f(pmt, amt, Xmt, Dmt, εjmt), (1)

where a is a matrix of advertising and promotional measures, D is a vector of demographics,

p is a vector of prices, and ε is an idiosyncratic shock.

The above specification is very general. It allows for nesting through the stratification

of the error term. Suppose that there are H nests of products; continuing the automobile

example, two nests might be entry-level sub-compacts (Ford Fiesta, Toyota Yaris, Mazda

2, Chevrolet Sonic) and luxury performance sedans (BMW M3, Mercedes-Benz AMG C63,

Cadillac CTS-V). Nests allow the substitution patterns to vary in a reduced-form way across

those different classes of products. One can also extend the model to allow for non-trivial

intertemporal shocks, such as seasonality in demand due to environmental conditions or

holidays. The specification in Equation 1 is also consistent with models of discrete choice.

For example, if the choice problem is discrete, then one obtains quantities by integrating

over both the population of consumers and the distribution of errors.

The goal of our exercise is to estimate the relationships between the right-hand side

variables and quantities demanded. We explore several approaches to approximating the

model in Equation 1. We discuss common approaches such as linear regression and logit
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models before describing several machine learning approaches which are less known in the

econometrics literature.

2.1.1 Linear Regression

A typical approach to estimating demand would be to approximate Equation 1 using a

flexible functional form of the following type:

lnQjhmt = α′pmt +β′1Xmt +β′2Dmt +γ′amt +λ′I(Xmt, Dmt, pmt, amt) + ζhm + ηmt + εjmt, (2)

where I is an operator which generates interactions between the observables (e.g. interactions

of X, p, and D, e.g. high income neighborhoods have higher demand for expensive imported

beer). Such a model may have thousands of right-hand side variables; for example, an

online retailer such as eBay may offer hundreds of competing products in a category, such

as men’s dress shirts. The demand for one particular good, say white Brooks Brothers

dress shirts, may depend on the prices of the full set of competing products offered. In a

more extreme example, as offered in Rajaraman and Ullman (2011), Google estimates the

demand for a given webpage by using a model of the network structure of literally billions

of other webpages on the right-hand side. Dummy variables on nests are captured by ζhm.

Seasonality is captured by the term ηmt, which varies by time (say, quarters) across markets.

In ordinary least squares (OLS), the parameters of Equation 2, jointly denoted by β, are

typically estimated using the closed-form formula:

β = (X ′X)−1(X ′Y ), (3)

where X is the matrix of right-hand side variables and Y is the vector of outcomes.

We note that the formula requires an inversion of (X ′X). This imposes a rank and order

condition on the matrix X. We highlight this because in many settings, the number of

right-hand side variables can easily exceed the number of observations. Even in the simplest

univariate model, one can saturate the right-hand side by using a series of basis function of

X. This restriction requires the econometrician to make choices about which variables to

include in the regression. We will return to this below, as some of machine learning methods

we discuss below allow the econometrician to skirt the order condition by combining model

selection and estimation simultaneously.
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2.1.2 Logit Models

A large literature on differentiated products has largely focused on logit-type models, where

the idiosyncratic error term is assumed to be distributed as a Type I Extreme Value. Under

that restriction, market shares are given by:

sjhmt =
exp(θ′Xjhmt)∑
k∈J exp(θ′Xkhmt)

. (4)

Starting with Berry et al. (1995), many empirical models of differentiated product demand

concentrate on estimating a distribution of unobserved heterogeneity, F (θ), over a typically

low-dimensional θ:

sjhmt =

∫
exp(θ′Xjhmt)∑
k∈J exp(θ′Xkhmt)

dF (θ). (5)

Quantities are then computed by multiplying through by market size. An attractive feature

of the BLP-style approach is that the method is robust to the inclusion of unobserved

heterogeneity and vertical characteristics that are observed to both the firm and consumers.

However, this estimator places a significant amount of structure on the demand curve and

is computationally burdensome.

2.1.3 Stepwise, Stagewise, and Incremental Stagewise Regression

Stepwise regression starts with the intercept as the base model. The algorithm then searches

over the set of covariates, selects the one with the highest correlation with the residual,

and adds that to the next model. The procedure produces a series of nested models. The

procedure runs until no covariates have any a sufficient high correlation with the error term.

Forward stagewise regression is a variant of a variable selection model, with the regression

model being built up one variable at a time. At each stage of the process, the econometrician

finds the variable with the highest correlation to the residual. This variable is then added to

the regression model; the crucial detail here is that the variable is only given an additional

ε, where ε is an arbitrarily small number. Over iterations, the forward stagewise regression

builds up a model of predictors. This is related to the classic forward selection model if

ε is set to equal the correlation of the variable with the residual (after standardizing the

covariates and demeaning the response variable).
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2.1.4 Support Vector Machines

Support vector machines are a penalized method of regression, using the following:

min
β

n∑
i=1

V (yi − x′iβ) +
λ

2
‖β‖, (6)

where the penalty function is:

Vε(r) =


0 if |r| < ε,

|r| − ε otherwise. (7)

The tuning parameter, ε, controls which errors are included in the regression. Errors of

sufficiently small size are treated as zeros. Typically only a partial set of the covariates are

assigned a non-zero value in SVM regression.

2.1.5 LASSO

Lasso is another penalized regression method. The regression is given by:

min
β

1

2

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ(t−
p∑
j=1

|βj|), (8)

where t is the tuning parameter governing how strictly additional regressors are penalized.

LASSO typically results in a number of covariates being given zero weights.

2.1.6 Regression Trees

A regression tree a collection of rules that determine the value of a function. Tree-based

methods partition the characteristic space into a series of hyper-cubes, and fits a value to

each partition. In a sense, they are a generalization of fixed effects, where the fixed effects

value is allowed to depend on the X. Trees are characterized by a hierarchical series of nodes,

with a decision rule associated at each node. Following ESL, define a pair of half-planes:

R1(j, s) = X|Xj ≤ s and R2(j, s) = X|Xj > s, (9)
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where j indexes the splitting variable and s is the split point. Starting with the base node at

the top of the tree, the rule for that node is formed by the following optimization problem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
 . (10)

The inner minimization is solved by setting c to be equal to the average of the function in

that partition. The key issue here is finding the right split point, s. Once the split point has

been found, the same procedure is then performed on each resulting partition, resulting in a

further partitioning of the space.

In the limit, each value of x ∈ X is assigned the value Y = f(X = x), which is a

perfect reconstruction of the underlying function f . In practice, the tree is expanded until

the reduction in squared prediction error falls under some threshold. Often, the tree is grown

until a specific number of splits are achieved.

The literature has proposed several variations on the regression tree estimator. One is

bagging (Breiman, 1996), which uses resampling and model combination to obtain a predic-

tor. The idea is to sample the data with replacement B times, train a regression tree on each

resampled set of data, and then predict the outcome at each x through a simple average of

the prediction under each of the B trees.

A second approach, which we have found to work exceptionally well in practice, are

random forests, as in Breiman (2001). Random forests expand on the idea of using collections

of predictors to make predictions by introducing randomness into the set of variables which

are considered at node level for splitting. Before each split, only m ≤ p of the explanatory

variables are included in the split search. Repeating this across B trees results in a forest of

random trees. The regression predictor for the true function is then:

f̂Brf (x) =
1

B

B∑
b=1

Tb(x). (11)

Trees of sufficient size can be unbiased but exhibit high variance, and therefore may benefit

from averaging.
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3 Model Averaging and Model Selection

The problem under consideration has a flavor of model selection problem with a large set

of alternative models. The models are defined by the vectors of nonzero coefficients. The

study of model selection has a long history. The main concepts of model selection contrast

the selection criteria based on the measures of the (penalized) model fit and the criteria

based on the model information. Themodel fit criteria include Mallows (1973) for general-

ized deviation-based goodness of fit, the prediction criterion of Amemiya (1980), and various

information criteria, such as Akaike (1973), Schwarz (1978), Hannan and Quinn (1979), and

Chow (1981). However, given that these procedures do not account for model complexity,

they can lead to a selection of a miss-specified model. Shrinkage techniques have been pro-

posed as a solution to the pre-test problem: see Stein (1956), James and Stein (1961),Yancey

and Judge (1976) and Judge and Bock (1978), and associated algorithms such as Lasso

(Tibshirani, 1996). One criticism of shrinkage is that it is not progressive, in the sense of

knowledge accumulating about the process being modelled, because the decision rule need

not eliminate variables. Bayesian model averaging (see Hoeting, Madigan, Raftery andVolin-

sky, 1999, for an overview) is often used to account for model uncertainty, as is the extreme

bounds literature of Leamer (1978, 1983, 1985). Bayesian model averaging in its classical

form, however, was heavily criticized by McAleer, Pagan and Volker (1985), Breusch (1990)

and Hendry and Mizon (1990) among others. Stepwise regression is popular, but is path

dependent, is susceptible to negative dependence, and does not have a high success rate of

finding the DGP. Berk (1978) demonstrates that applying both forward and backward selec-

tion is no guarantee to finding the correct model. Alternative selection procedures exist, such

as “optimal regression” in which all subsets of regressors are included (see Coen, Gomme

and Kendall (1969) and Box and Newbold (1971)), but that approach is anyway intractable

with a large set of potential regressors.

The discussed literature is mainly concerned with selecting a correctly specified model.

However, it is not unfamiliar to choose a miss-specified model with much better predictive

properties. There could be many other reasons why choosing the model with the correct

specification is not the focus of the model selection procedure. Using criteria like the out-

of-sample predictive accuracy and treaded-off goodness of fit and the model size is not

uncommon. The proposed approach combines the Bayesian model averaging with the resent

work on the least absolute shrinkage and selection operator and the Dantzig selector as well

as the data mining literature.

We consider the model where the outcome variable D is binary and it is driven by a vector

10



of regressors X. Our goal is to generate an approximation for the conditional expectation

E[D |X = x].

Regression tree model The regression tree model is based on the idea that the condi-

tional expectation of interest can be approximated using the “flexible histogram approach”:

one would select the bins in the support of X using an algorithmic selection rule and then

the expectation will be approximated in each bin as an average of D for all X that fall into

the bin. We start with a simple case and consider a situation where X is one-dimensional.

In most cases the split decision is based on the minimization of the least squares criterion.

In other words, at each step the decision is made as to where to split the support of X.

Consider the effect of the decision of the first split. At the first split we select a single point

in the support of X (we call it x(1)) and the approximation for the conditional expectation

takes the form

θ̂(1)(x) =


θ
(1)
1 , if x < x(1),

θ
(1)
2 , if x ≥ x(1).

We call θ(1) = (θ
(1)
1 , θ

(1)
2 )′. Provided that the decision is informed by the least squares

criterion, we can write the sample objective function as

Q̂(1)(x(1), θ(1)) =
1

n

n∑
i=1

(
di − θ̂(1)(xi)

)2
.

This objective is minimized with respect to x(1) and θ(1). Suppose that x̂(1) is the minimizer

of this objective function. Then

θ̂
(1)
1 =

∑n
i=1 di1{xi ≤ x̂(1)}∑n
i=1 1{xi ≤ x̂(1)}

and

θ̂
(1)
2 =

∑n
i=1 di1{xi ≥ x̂(1)}∑n
i=1 1{xi ≥ x̂(1)}

.

Then the objective function can be re-written as

Q̂(1)(x(1), θ(1)) =
1

n

n∑
i=1

(
di − θ̂(1)1

)2
1{xi ≤ x̂(1)}+

1

n

n∑
i=1

(
di − θ̂(1)2

)2
1{xi ≥ x̂(1)}.
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Further transformations yield

Q̂(1)(x̂(1), θ̂(1)) =
1

n

n∑
i=1

di −
(∑n

i=1 di1{xi ≥ x̂(1)}
)2

n
∑n

i=1 1{xi ≥ x̂(1)}
−
(∑n

i=1 di1{xi ≤ x̂(1)}
)2

n
∑n

i=1 1{xi ≤ x̂(1)}
.

Now we note that the minimization of the criterion function can be replaced with the max-

imization of the following new objective function

Ĝ(x̂(1)) =

(
1
n

∑n
i=1 di1{xi ≥ x̂(1)}

)2
1
n

∑n
i=1 1{xi ≥ x̂(1)}

+

(
1
n

∑n
i=1 di1{xi ≤ x̂(1)}

)2
1
n

∑n
i=1 1{xi ≤ x̂(1)}

with respect to the single parameter x̂(1). The presence of the indicator function leads the

corresponding maximizer to behave similarly to the parameters in the Manski’s maximum

score model. To formalize the result we impose the following assumption.

ASSUMPTION 1 Suppose that

(i) Random variable X has a continuously differentiable density. Moreover E[|X|4+δ] <∞
for some δ > 0

(ii) The conditional probability P (D = 1|X = x) is continuous in X

Denote the cdf of random variable X by F (·). Consider the population version of the

objective function which can be written as

G(x(1)) = P (D = 1|X ≤ x(1))2F (x(1)) + P (D = 1|X > x(1))2(1− F (x(1))).

Now we bound the absolute difference |Ĝ(x̂) − G(x(1))| using the fact that F (x(1))(1 −
F (x(1))) ≤ 1

2
, 1
n

∑n
i=1 di1{xi ≤ x̂(1)} ≤ 1 and the properties of empirical and true distribution

functions:

|Ĝ(x̂)−G(x(1))| ≤

∣∣∣∣∣ 1n
n∑
i=1

di1{xi ≤ x(1)} − P (D = 1|X ≤ x(1))F (x(1))

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

1{xi ≥ x(1)} − F (x(1))

∣∣∣∣∣ .
As a result, the difference between the empirical and the true objective function is dominated

by the sum of the difference between the true and the empirical cdf and the difference between

the empirical and true correlation between D and the indicator 1{X ≤ x(1)}. The latter

is precisely the Manski maximum score objective function for estimation of the maximum
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score model with normalization of the coefficients of the index (1, X) to (x(1), 1) which is one

possible normalization in this model. This allows us to use the results of Kim and Pollard

(1990) to establish the following result.

THEOREM 1 Suppose that Assumption 1 holds. Suppose that 0 = argmaxxG(x) (without

loss of generality). Then if x̂(1) = argmaxxĜ(x), then

n1/3x̂(1)
d−→ t̂,

where random variable t̂ corresponds to t̂ = argmaxt {−t2G′′(0) +W (t)} , where W (t) is a

Brownian bridge process.

This shows that the regression tree leads to the non-standard distribution for the cutoff

points. At the same time, if we return to the analysis of the consistency of the regression

function itself, we note that the cutoff point enters into the formula as a plug-in component

and it is averaged. Newey (1994) and Brown and Newey (1996) demonstrated that in the

analysis of the plug-in estimators which average over a functional of a non-parametric object,

the estimation error of the plug-in nonparametric component only affects the quadratic

second-order term. In other words, we can establish that for some δ1 we can represent

|θ(1)1 − θ
(1)
1 | =

∣∣∣∣∑n
i=1 di1{xi ≤ x(1)}∑n
i=1 1{xi ≤ x(1)}

− θ(1)1

∣∣∣∣+ δ1(x̂
(1) − x(1))2 + op((x̂

(1) − x(1))2).

Provided that the standard Lindeberg CLT applies to the first term, we can establish that
√
n|θ(1)1 − θ

(1)
1 | = Op(1) if |x̂(1) − x(1)| = op(n

−1/4). In light of Theorem 2, provided that

|x̂(1) − x(1)| = Op(n
−1/3), it immediately follows that

√
n|θ(1)1 − θ

(1)
1 | = Op(1) and thus the

estimator for the parameters in the regression tree model converges to the true coefficient at

the standard parametric convergence rate.

These results allow a simple extension to a multi-dimensional case. In case of multiple

regressors X, the tree model allows one to select the dimension of the variable X. Suppose

that the dimension of X is d and consider the case where all components of X are continuous.

As it will become clear, the case where some components of X are discrete come as a simple

extension. By X(r) we denote r-th component of X. The algorithm in the multi-dimensional

case proceeds as follows: at iteration k we consider each of r dimensions. Suppose that by

step k, kr splits were performed along dimension k. Then for each dimension r we compute

the outcome of kr + 1-st split. The actual split will be performed along the dimension for

which the kr + 1-st split results in the largest decrease in the mean-squared error. Note that
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if any component that is already discrete does not need splitting, the decision would only be

whether including that variable decreases the sum of squared residuals more than splitting

along other variables.

As before, without loss of generality we can consider the split decision in the first step.

At the first split we select the split dimension r and a single point in the support of X (we

call it x(1)(r)) and the approximation for the conditional expectation takes the form

θ̂(1)(x) =


θ
(1)
1 , if x(r) < x(1)(r),

θ
(1)
2 , if x(r) ≥ x(1)(r),

if dimension r was chosen for a split. The sum of squared residuals can be again written as

Q̂(1)(x(1), θ(1)) =
1

n

n∑
i=1

(
di − θ̂(1)(xi)

)2
.

Then the problem of the first step boils down to finding d numbers x̂(1)(1), . . . , x̂(1)(d) and

the dimension r which minimizes

Q̂(1)(x̂(1), θ̂(1), r) =
1

n

n∑
i=1

di −
(∑n

i=1 di1{xi(r) ≥ x̂(1)(r)}
)2

n
∑n

i=1 1{xi(r) ≥ x̂(1)(r)}
−
(∑n

i=1 di1{xi(r) ≤ x̂(1)(r)}
)2

n
∑n

i=1 1{xi(r) ≤ x̂(1)(r)}
.

As in the one-dimensional case, we can reduce the problem to the maximization of the

objective function

Ĝ(x̂(1), r) =

(
1
n

∑n
i=1 di1{xi(r) ≥ x̂(1)(r)}

)2
1
n

∑n
i=1 1{xi(r) ≥ x̂(1)(r)}

+

(
1
n

∑n
i=1 di1{xi(r) ≤ x̂(1)(r)}

)2
1
n

∑n
i=1 1{xi(r) ≤ x̂(1)(r)}

with respect to d continuous and one discrete variable. Now we note that along each dimen-

sion, under our previous normalization we can apply the result of Kim and Pollard (1990)

to get

Ĝ

(
x(1) +

t

n1/3
, r

)
⇒ −t2G′′(0, r) +Wr(t),

whereW (t) = (W1(t), . . . ,Wd(t)) is the d-dimensional Brownian bridge process. This delivers

n1/3 convergence rate for the split point for each dimension. We note that this rate applies

to all split dimensions. Previously we have established that this ensures that the estimated

regression θ1(x) will converge at parametric
√
n rate for the given number of splits. Now
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since there are d dimensions, we can majorize the error

|θ(1)1 − θ
(1)
1 | ≤ d sup

r=1,...,d

∣∣∣∣∑n
i=1 di1{xi(r) ≤ x(1)(r)}∑n
i=1 1{xi(r) ≤ x(1)(r)}

− θ(1)1

∣∣∣∣+ δ1

d∑
r=1

(x̂(1)(r)− x(1)(r))2

+ op(
d∑
r=1

(x̂(1)(r)− x(1)(r))2) = Op

(
1√
n

)
+Op

(
d

n2/3

)
.

This delivers the same
√
n convergence rate for the estimated regression.

Stepwise regression model Consider the stepwise regression model based on the choice

of the subset of regressors X, X2, X3, etc. by a successive enlargement of the model. For

simiplicity of the exposition, as in the case of the regression tree we will characterize the

properties of the one-dimensional regressor. Suppose that we use the AIC-style criterion

for the choice of the selection of regressors. In this case the selection criterion can be

characterized by

Q̂(β̂(p), p) =
1

n

n∑
i=1

(
di −

p∑
k=0

β
(p)
k xpi

)2

− λ p,

which is minimized with respect to the vector of coefficients at each p and then the decision

is maed on the basis of whether the criterion function increases in the transition from p to

p+ 1.

Let x
(p)
i = (1, xi, x

2
i , . . . , x

p
i )
′. Then the fitted value of the estimated projection of d on the

polynomial temrs can be expressed for each p as β̂(p) =
(

1
n

∑n
i=1 x

(p)
i x

(p)′
i

)−1
1
n

∑n
i=1 x

(p)
i di.

Further, we can convert the problem of selection of p into the problem of solving for a

continuous parameter τ such that p = [n1/3τ ] where [·] denotes the integer part of a real

number.

Now we consider the objective function

Ĝ(τ) = Q̂(β̂([n1/3τ ]), [n1/3τ ])

with the population analog G(τ).

It turns out that the optimization problem formulated in this form leads to a similar

cube-root convergence result for the parameter τ .

THEOREM 2 Suppose that Assumption 1 holds. Suppose that 1 = argmaxt≥0G(t) (without
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loss of generality). Then if τ̂ = argmaxt≥0Ĝ(t), then

n1/3(τ̂ − 1)
d−→ t̂,

where random variable t̂ corresponds to t̂ = argmaxt {−t2G′′(1) +W (t)} , where W (t) is a

Brownian bridge process.

Random forest model

The random forest model is based on the the aggregation of the ensamble of B trees. We

have previously shown that for the distribution of the first split of the regression tree model

we can evaluate the variance term as

|θ̂(1) − θ(1)| = Op(1/
√
n).

This result will also apply to any subsequent split. In other words, this means that the

variance term of the mean-squared error for the tree of length k is

|θ̂(k) − θ(k)| = Op(1/
√
n).

The bias will be determined by the location of the split points, which we found to have the

following structure:

|x̂(1) − x(1)| = Op(1/
3
√
n).

The same evaluation with also apply to the k-th split. Now looking at the random forest

with a fixed number of B trees with a fixed number of splits k yields the overall evaluation

for the mean-squared error of Op(1/ 3
√
n) dominated by the bias of the split points. Note that

this is the lower bound for the convergence rate of the random forest. Data-dependent choice

of the number of trees and the number of splits may further accelerate the convergence rate

(see Scornet (2014)).
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Support vector machines

Note that the SVM estimator for the regression with a fixed margin ε (see Vapnik (1998))

leads to an objective function with the structure

nQ(β; ε, λ) =
n∑
i=1

(yi − x′iβ − ε)1 {yi − x′iβ − ε ≤ 0}+
λ

2
‖β‖.

Assuming that the model dimension d is finite and fixed and the parameter space is compact,

then λ
2
‖β‖ = O(d). This means that

Q(β; ε, λ) =
1

n

n∑
i=1

(yi − x′iβ − ε)1 {yi − x′iβ − ε ≤ 0}+O(d/n).

The first term in this objective function has a structure of the objective function that parallels

the Manski’s maximum score objective function. This fact was first noticed in Komarova

(2013). In Kim and Pollard (1990) it was noticed that such a structure of the objective

function leads to the following evaluation

|β̂ − β| = Op(
1
3
√
n

).

This means that the predictions from the SVM regression have the mean square error with

the lower bound Op(1/ 3
√
n). Making the margin ε and the penalty constant λ data-dependent

may further accelerate the convergence.

LASSO

The general theory for LASSO regression has been developed in Belloni et al. (2011). They

impose the restriction on the structure of regressors and consider the case where the di-

mensionality of the model d can grow along with the number of non-zero coefficients. The

establish the bound on the mean-squared error of the vector of estimated coefficients of

Op(
√
s log d/n). This means that with a moderate growth of sparsity s = O(n1/3), we

obtain the Op(1/ 3
√
n) mean-squared error for prediction in the model with a fixed dimen-

sionality. With a more stringent set of conditions for the sparsity and the dimensionality,

the rate can be further improved (as a function of n).
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Improvement of convergence rates for averaged classi-

fiers

The object of interest in the “first stage” estimation was to recover the function θ(·). We now

consider the properties of the second stage estimation whose goal is the weighted average

value of the classifier which may be described as

α = E[w(X)θ(X)]. (12)

We consider the case where θ(·) is delivered by some algorithmic model selection rule (from

the list analyzed in the previous subsection) and w(·) are either directly imputed or estimated.

Newey (1994) provides an insight that the asymptotic properties of an empirical analog of

(12) may not depend on the properties of a particular non-parametric estimator which was

employed to estimate θ(·). This result provides a powerful implication for our estimation

approach. We proved that an algorithmic model selection rule provides a consistent estimator

for θ(·) that, however, converges at the subparametric n1/3 rate to a non-standard distribution

characterized by a Brownian bridge. If the result in Newey (1994) can be applied, this would

mean that the properties of an averaged classifier will be standard and thus be immune to

the choice of the algorithmic model selection rule used for estimation of θ(·).
First of all, consider the empirical analog of α where θ(·) and w(·) are replaced with their

empirical counterparts θ̂(·) and ŵ(·):

α̂ =
1

n

n∑
i=1

ŵ(xi)θ̂(xi). (13)

We assume (for the purposes of normalization) that E[ŵ(X)] = E[w(X)] = 0. Without loss

of generality, this assumption can be omitted. Now consider the following decomposition

α̂− α = 1
n

n∑
i=1

ŵ(xi)θ̂(xi)− E[w(X)θ(X)]

= 1
n

n∑
i=1

(ŵ(xi)− w(xi))(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

+ 1
n

n∑
i=1

w(xi)(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

+ 1
n

n∑
i=1

(θ(xi)− E[θ(X)]) (ŵ(xi)− w(xi)) + 1
n

n∑
i=1

(E[θ(X)]− E[θ(X)]) (ŵ(xi)− w(xi))

1
n

n∑
i=1

E[θ(X)](ŵ − w(xi)) + 1
n

n∑
i=1

(w(xi)θ(xi)− E[w(X)θ(X)])
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We have established the result that for the algorithmic model selection rule we can provide

a uniform convergence rate ‖θ̂(x)− θ(x)−E[θ̂(X)] +E[θ(X)]‖∞ = Op(n
−1/3). Also, the bias

condition reduces to |E[θ̂(X)] − E[θ(X)]| = op(n
−1/3). Now suppose that ŵ(·) is estimated

at the uniform rate n−r. We now establish the requirement for this rate that guaratees the

parametric convergence rate for α̂. First of all note that under the i.i.d. sampling requirement

and restriction that E
[
w2+δ(X)θ2+δ(xi)

]
we can apply the Lindeberg CLT to the last term

of the above decomposition. This means that the last term converges in distribution to

the normal random variable at parametric rate. Now consider the same decomposition for
√
n(α̂− α). We evaluate each of the terms of decomposition multiplied by

√
n:

√
n (α̂− α) =

1√
n

n∑
i=1

(ŵ(xi)− w(xi))(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

+
1√
n

n∑
i=1

w(xi)(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

+
1√
n

n∑
i=1

(θ(xi)− E[θ(X)]) (ŵ(xi)− w(xi))

− 1√
n

n∑
i=1

(E[θ(X)]− E[θ(X)]) (ŵ(xi)− w(xi))

+
1√
n

n∑
i=1

E[θ(X)])(ŵ(xi)− w(xi)) +
1√
n

n∑
i=1

(w(xi)θ(xi)− E[w(X)θ(X)])

= Op(n
1/6−r) +Op(n

−1/3) +Op(n
−r) + op(n

1/6−r) +Op(1) +Op(1).

(14)

The first evaluation comes from the fact that∥∥∥∥ 1√
n

n∑
i=1

(ŵ(xi)− w(xi))(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

∥∥∥∥
≤
√
n‖ŵ(x)− w(x)‖∞‖θ̂(x)− θ(x)− E[θ̂(X)] + E[θ(X)‖∞ = Op(n

1/6−r).

(15)

The second evaluation comes from the fact that

1√
n

n∑
i=1

w(xi)(θ̂(xi)− θ(xi)− E[θ̂(X)] + E[θ(X)])

≤ ‖θ̂(x)− θ(x)− E[θ̂(X)] + E[θ(X)‖∞ 1√
n

n∑
i=1

w(xi) = Op(n
−1/3),
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provided that E[w2+δ(X)] < ∞ and thus CLT can be applied to the mean of w(·). Analo-

gously, we can evaluate the next term, provided that E[θ2+δ(X)] <∞:

1√
n

n∑
i=1

(θ(xi)− E[θ(X)]) (ŵ(xi)− w(xi)) ≤ ‖ŵ(x)− w(x)‖∞
1√
n

n∑
i=1

θ(xi) = Op(n
−r).

Then

1√
n

n∑
i=1

(E[θ(X)]− E[θ(X)]) (ŵ(xi)− w(xi)) ≤
√
n‖ŵ(x)− w(x)‖∞|E[θ(X)]− E[θ(X)]|

= Op(n
1/6−r).

The last two terms of the expansion will be leading and, thus, deliver the standard parametric

asymptotics if the first three terms are negligible.

THEOREM 3 Suppose that n1/6 sup
x
‖ŵ(x)− w(x)‖ p−→ 0. Then for some Vα <∞:

√
n (α̂− α)

d−→ N(0, Vα).

In particular, if the weights are fixed then the convergence of the averaged algorithmic classi-

fier to its expectation at parametric rate is guarateed regardless of the method used to obtain

the classifier.

Proof: Note that if n1/6 sup
x
‖ŵ(x)− w(x)‖ p−→ 0, then our previous analysis establishes

that
√
n (α̂− α) =

1√
n

n∑
i=1

ψ(xi) + op(1),

where

ψ(xi) = (w(xi)θ(xi)− E[w(X)θ(X)]) + E[θ(X)](ŵ(xi)− w(xi)).

This means that the conditions of Proposition 2 in Newey (1994) are satisfied and, thus, the

parameter of interest α̂ converges at the parametric rate to the normal asymptotic distribu-

tion whose properties are immune to the choice of estimator for θ̂(·) selected from the class

of algorithmic model selection estimators considered in the previous section. Q.E.D.

Note that even in case the weights ŵ(·) we need a very weak requirement for the conver-

gence of these weights to their population counterparts at the rate n−1/6 which allows one
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to use a wide range of non-parametric methods for construction of such weights to perform

the averaging of the prediction from the algorithmic model selection rule.

4 Monte Carlo

To demonstrate the usefulness of our estimation approach, we conduct several Monte Carlo

exercises. We consider several variations of a discrete choice model: we use both aggregate

and individual data; compare the logit model to our machine learning methods with and

without specification error; show the performance of our methods in a model with irrelevant

regressors; and finally consider the performance of the logit and machine learning methods

on a model with a highly nonlinear utility function. We also report the convergence rates

of the individual estimators and demonstrate the superior statistical properties of the linear

combination model.

We first consider the classic case of a discrete choice model using aggregate data. In each

of M markets, there are J = 2 products with K = 2 characteristics each. For each product,

characteristics are drawn from the following distributions:

x1 ∼ logN(0, 1), x2 ∼ logN(0, 1.5)

In each market, we assume there are an infinite number of consumers. Each consumer makes

a single choice from the set of options which maximizes their utility. Utilities are given by

uij = u(Xj, β) + εij, (16)

where Xj is a matrix of products and their characteristics, β is a vector of utility parameters,

and εij is an individual- and choice-specific idiosyncratic error with a Type I extreme value

distribution. This model generates shares (or choice probabilities in the case of individual

data) of the form:

sj =
exp(u(Xj, β))∑
k exp(u(Xk, β))

. (17)

We consider several variants of Equation 16. In the baseline model, utility is linear in

the unknown parameters:

uij = xjβ + εij. (18)

We set the marginal utilities to be equal to β = {0.1,−0.02}. This is the standard spec-

ification used in most discrete choice applications, and will provide a natural baseline for
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comparing the performance of the flexible approximation methods to more traditional ap-

proaches.

To test the performance of our estimators against more complex functional forms, we

also consider a model with a highly-nonlinear utility function given by:

10 ∗ sin ((0.03Xj1 + 0.1Xj2)
2)− 0.5 ln(Xj2)− 1(0.3 < Xj1 < 1.5)6Xj1

+ 1(Xj1 > 2)Xj1 + 1(0.15 < Xj2 < 1)Xj2 + 1(Xj2 > 2.3)Xj2. (19)

To test our methods in the presence of irrelevant regressors, we consider a version of

Equation 16 with five additional “junk” data regressors that receive zero marginal utilities.

The first two are drawn from a standard log-normal distribution, the third is the sine function

of a uniform random variable, the fourth is a “time trend” type variable which counts up

from 1 for each observation. The fifth is similar to the fourth but adds a squared term to

the count, specifically x = 0.5n+ 0.2n2 where n is the observation number.

We also consider a micro-data version of the model above, with market-level data replaced

by individual-level observations. This specification introduces sampling error in that there

are a finite number of consumers in each market, given by N .

In order to assess the performance of our approach, we consider a three-step process.

First, using a training sample of size M , we estimate the parameters of the component

models. Then, using a second out-of-sample training data set, we estimate weights on the

best linear predictor of 2,500 observed market shares. Third, we then take the combined

linear model and use it to predict an additional 2,500 out-of-sample market shares. We

report the results of the in-sample fit from stage one, the weights from stage two, and the

out-of-sample fits from stage three in our results.

We now describe the specific algorithms and parameters choices for the various models

that are used in the Monte Carlo.

Bagging The steps taken are as follows:

1. Generate shares and characteristics data as described above for M markets.

2. Sample with replacement from this data 200 times.

3. For each subsample, train a regression tree.

4. Predict the market shares of test data by averaging the prediction across all grown

trees.
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Random Forest The steps taken are the same as described in the bagging section, except

that when trees are grown, at each node, 2 characteristics are chosen at random to be

candidate characteristics for splitting into new leaves.

Linear Regression This model regresses product 1’s market shares on all product charac-

teristics and their 2nd and 3rd powers, including all interactions between polynomials (e.g,

x21x2 and x1x
2
2).

Logit This model conducts a logistic regression of product 1’s market shares on all product

characteristics. It fits perfectly, so for now is not depicted in the figures below, and does not

factor into the best linear combination model.

Lasso This model conducts a Lasso regression, which is OLS (the same model with up to

3rd order polynomials) with an added constraint that the sum of estimation coefficients is

less than some threshold parameter. This is equivalently written as a Lagrangian multiplier

which equally penalizes any positive estimator values. Matlab represents the Lasso penalty

parameter in this way. To choose a threshold parameter for each market size, we conduct

the Lasso regression 100 times over a grid of possible parameter values, and then choose the

penalty parameter (lambda) that minimizes the RMSE in the first out-of-sample test data.

Stepwise Regression This model implements Matlab’s stepwisefit function. The initial

feature set is null, and the model successively adds a regressor to the model with the lowest

coefficient p-values, until the p-values surpass 0.05. The resulting coefficient vector includes

the coefficients from the selected features, with zeros elsewhere.

Stagewise Regression We implement a Stagewise Regression algorithm, which works as

follows. Add a constant to the matrix of X (including the polynomials as above).

1. Set β = 0.

2. Fit a constant equal to min(Y ) and compute the residual (ε).

3. Step through each column of X and compute corr(Xj,ε).

4. Choose the Xj with the highest correlation and regress Xj on ε.

5. Add the resulting coefficient to βj.
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Table 1: Monte Carlo: Baseline Model
Market Size 400 6400 51,200

MODEL RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight
Aggregate

Bagging 0.0124 0.0328 0.1136 0.014 0.011 0.3655 0.0117 0.0025 0.2768
Rand Forest 0.0125 0.0326 0 0.0143 0.0107 0.0676 0.0116 0.0025 0.2689
Linear 0.0215 1.5187 0 0.0761 0.3239 0.0056 0.1184 0.0259 0.018
Lasso 0.0902 0.2244 0 0.2485 0.1548 0 0.3162 0.07 0
Stepwise 0.0907 0.2268 0.0187 0.2492 0.1558 0.0178 0.3183 0.0703 0.0047
Stagewise 0.0027 0.019 0.8677 0.0154 0.0561 0.1365 0.0124 0.0025 0.4317
IF Stagewise 0.0648 1.2199 0 0.0152 0.0149 0.407 0.0195 0.0041 0
Best Linear 0.0171 0.0088 0.0017

Individual

Bagging 0.116 0.2993 0 0.3107 0.2024 0 0.3998 0.0903 0
Rand Forest 0.1171 0.2985 0.9904 0.3135 0.2024 0.1386 0.4019 0.0903 0.1065
Logit 0.1665 0.3118 0 0.446 0.2861 0 0.5623 0.1155 0.0242
Linear 0.1139 3.2092 0 0.3304 0.2056 0.1037 0.4176 0.0913 0.2123
Lasso 0.128 0.683 0.0041 0.3741 0.2345 0.0535 0.472 0.1034 0
Stepwise 0.1516 0.6201 0.0055 0.3736 0.236 0 0.4756 0.1048 0
Stagewise 0.1151 0.3167 0 0.327 0.202 0.6778 0.412 0.0903 0.657
IF Stagewise 0.1268 39.1139 0 0.3275 0.2022 0.0264 1.2317 2.2218 0
Best Linear 0.2984 0.202 0.0903

6. Update ε = Y −X ′β.

7. Looping back to step 3, repeat until either the maximum correlation is less than 0.01

or 5,000 iterations have passed.

Incremental Forward Stagewise Regression This model is the same as the Stagewise

Regression except that in step 5, we update the coefficient by only moving a small distance

δ towards the estimated coefficient.

Best Linear Combination In this method, we find an optimal linear combination of

the models using linear regression (constrained so that weights are within [0,1] and sum

to 1). The optimum is chosen with respect to the first out-of-sample test data, and then

reported with respect to the second out-of-sample test data. The thinking here is to prevent

over-fitting the weights to the training data. This method is similar to choosing weights to

minimize cross-validation error and then reporting out-of-sample fits. Then the RMSE is

calculated between the market shares and the weighted predictions of the two models.
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4.1 Results

We first consider the baseline model with aggregate shares. The top panel of Table 1 reports

the significant variance within and across sample sizes with respect to in- and out-of-sample

fit. Bagging and the random forest do well in all sample sizes, and stagewise regression has the

best fit at the smallest sample size. Linear regression suffers from tremendous overfitting,

as it has decent in-sample fits and terrible out-of-sample fit. At the higher sample sizes,

random forest, bagging, and stagewise regression dominate the in-sample and out-of-sample

fits compared to the rest of the models. This is also reflected in the weights that these

three estimators receive in the linear combination. The RMSE for the combined model is 32

percent better than any of the individual components.

The bottom panel of Table 1 reports the results for the individual-level model. The

essential difference between the two settings is the idiosyncratic error which is absent in the

aggregate model but plays a key role in the individual-level data. Broadly speaking, each of

the individual models, along with the linear combination, have errors which are two orders of

magnitude larger than the aggregate models. We have included the logit model in the bottom

panel; interestingly, although it is the most efficient estimator, it does dominate the machine

learning methods for in- or out-of-sample fit. It also does not receive any weights in the linear

combination for the smaller samples sizes, and only contributes two percent in the largest

sample. Stagewise again receives a large share of the weights in the linear combination, while

bagging and random forest share stagewise regression’s level of prediction performance.

Table 2 reports the results for the discontinuous utility function, which should be more

of a challenge for both the econometrician and estimation. The econometrician would likely

not guess the functional form of the underlying data-generating process. Estimation is going

to be more difficult given the discontinuous nonlinearity of the underlying utility function.

4.2 Rates of Error Convergence

Tables 5 shows the ratio of standard errors for each doubling of the sample size from n = 100

to n = 102, 400. This exercise is useful for demonstrating the empirical convergence rates

of our various component models and also the combination model. Looking at the average

rates from Table 5, it is useful to compare these ratios against the parametric rate, which is√
2 ' 1.4142, and the cube-root rate, which is 3

√
2 ' 1.2599. The average rates for bagging

and the random forest are slightly below the parametric rate, but substantially better than

the cube-root lower bound provided by theory. The polynomial, stagewise, and incremental
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Table 2: Monte Carlo: Discontinuous Utility
Market Size 400 6400 51,200

MODEL RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight
Aggregate

Bagging 0.0757 0.2031 0.8773 0.1284 0.0832 0.4848 0.116 0.0262 0.6455
Rand Forest 0.0772 0.2082 0.1096 0.1287 0.0842 0.5152 0.1153 0.0261 0.3545
Logit 0.1115 0.2884 0 0.3548 0.2217 0 0.4455 0.0981 0
Linear 0.0818 54.6065 0 0.2727 0.1733 0 0.3566 0.1716 0
Lasso 0.1187 1.7018 0 0.3617 0.2261 0 0.4473 0.1967 0
Stepwise 0.1514 40.126 0.0033 0.3812 0.2371 0 0.4464 0.1972 0
Stagewise 0.0906 5.2107 0.0098 0.2739 0.1717 0 0.37 0.0854 0
IF Stagewise 0.1025 0.2848 0 0.3022 0.1881 0 0.3839 0.0865 0
Best Linear 0.2188 0.0828 0.0257

Individual

Bagging 0.1082 0.2772 0.9209 0.2779 0.1817 0.5016 0.3564 0.0811 0.9244
Rand Forest 0.1095 0.2801 0 0.2808 0.1817 0.4386 0.359 0.0813 0.0756
Logit 0.1296 0.3064 0.0485 0.3991 0.2415 0.0429 0.6125 0.1364 0
Linear 0.1077 6.8276 0 0.3089 0.2391 0.0009 0.3968 0.0878 0
Lasso 0.1388 0.344 0 0.3678 0.2324 0 0.4576 0.1021 0
Stepwise 0.1484 7.9849 0 0.3906 0.2421 0.016 0.4598 0.1026 0
Stagewise 0.113 0.3125 0.0306 0.3127 0.1939 0 0.3965 0.0881 0
IF Stagewise 0.1195 0.4755 0 0.4278 0.2445 0 0.4029 0.0898 0
Best Linear 0.2771 0.1813 0.0811

Table 3: Monte Carlo: Irrelevant Regressors
Market Size 400 6400 51,200

MODEL RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight RMSE (IS) RMSE Weight
Aggregate

Bagging 0.0116 0.0287 0.0466 0.0134 0.0085 0.2328 0.0116 0.002 0.4452
Rand Forest 0.0125 0.0309 0 0.0164 0.0101 0 0.0153 0.0029 0
Logit 0.043 0.1065 0 0.1186 0.0732 0 0.1516 0.0332 0
Linear 0.0112 0.4661 0.0019 0.0408 0.058 0.0137 0.0614 0.013 0.035
Lasso 0.0896 0.2238 0 0.2485 0.1549 0 0.3163 0.0699 0
Stepwise 0.0909 0.2274 0.0273 0.2499 0.1562 0.0286 0.3168 0.07 0.0107
Stagewise 0.0042 0.0128 0.9133 0.01 0.0063 0.149 0.0135 0.0029 0.5091
IF Stagewise 0.0104 0.0394 0.0109 0.0129 0.0082 0.576 0.023 0.0047 0
Best Linear 0.011 0.0044 0.0016

Individual

Bagging 0.1086 0.3043 0 0.3072 0.2013 0.3436 0.3979 0.0905 0
Rand Forest 0.1104 0.303 0.6239 0.312 0.2009 0 0.4015 0.0905 0.6356
Logit 0.1181 0.3059 0.1295 0.3281 0.2007 0.2215 0.4142 0.0911 0.1083
Linear 0.0987 0.5509 0 0.3238 0.203 0.2011 0.412 0.0908 0.2561
Lasso 0.0997 0.4604 0 0.3752 0.2292 0.0079 0.4707 0.103 0
Stepwise 0.1527 0.4436 0 0.4077 0.2497 0 0.4902 0.107 0
Stagewise 0.1107 0.3179 0 0.3251 0.2007 0.2259 0.4118 0.0904 0
IF Stagewise 0.1105 0.3137 0.2465 0.3256 0.2009 0 0.4119 0.0904 0
Best Linear 0.3026 0.2006 0.0905
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Table 4: Monte Carlo: Out-of-Sample Root Mean Squared Prediction Error

N bagging RF poly lasso step stage IFS best

100 0.04366 0.04366 83.70950 0.23643 0.25931 1.25375 16.54100 0.11526
200 0.03516 0.03608 27.69800 0.23034 0.25320 0.73421 2.53325 0.18970
400 0.02939 0.02980 10.21270 0.22693 0.24085 0.27002 33.43815 0.05714
800 0.02377 0.02378 3.65680 0.22368 0.22511 0.11785 1.29285 0.02776
1600 0.01839 0.01839 2.64430 0.20718 0.21256 0.08971 1.30170 0.02344
3200 0.01344 0.01369 1.56610 0.18560 0.18739 0.05324 2.40746 0.01516
6400 0.00931 0.00950 0.31950 0.15507 0.15708 0.01397 0.62162 0.00639
12800 0.00633 0.00636 0.18308 0.12408 0.12616 0.00935 0.34044 0.00548
25600 0.00414 0.00416 0.09440 0.09461 0.10077 0.00995 0.19680 0.00764
51200 0.00257 0.00262 0.06922 0.06983 0.07218 0.00520 0.11254 0.00236
102400 0.00165 0.00161 0.02730 0.05052 0.05083 0.00153 0.12369 0.00093

Table 5: Monte Carlo: Convergence Rates

N bagging RF poly lasso step stage IFS best

200 1.2419 1.2102 3.0222 1.0264 1.0241 1.7076 6.5296 0.6076
400 1.1963 1.2106 2.7121 1.0150 1.0513 2.7191 0.0758 3.3200
800 1.2363 1.2532 2.7928 1.0145 1.0699 2.2913 25.8639 2.0581
1600 1.2925 1.2931 1.3829 1.0796 1.0590 1.3136 0.9932 1.1846
3200 1.3680 1.3434 1.6885 1.1163 1.1343 1.6849 0.5407 1.5456
6400 1.4435 1.4415 4.9017 1.1968 1.1930 3.8110 3.8729 2.3720
12800 1.4705 1.4936 1.7451 1.2498 1.2451 1.4940 1.8259 1.1656
25600 1.5306 1.5286 1.9395 1.3115 1.2520 0.9396 1.7299 0.7178
51200 1.6100 1.5874 1.3637 1.3549 1.3961 1.9148 1.7487 3.2438
102400 1.5551 1.6256 2.5360 1.3821 1.4202 3.4022 0.9099 2.5333

Average 1.3945 1.3987 2.4085 1.1747 1.1845 2.1278 4.4090 1.8748
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forward stagewise models all have significantly better than the parametric lower bound rate

of convergence. The LASSO model and the stepwise models both have empirical rates of

convergence below the cube-root lower bound, but this is due to those two models having

additional degrees of complexity which increase with the sample size. In the case of the

LASSO model, the Matlab implementation changes the penalty parameter, λ, in accordance

with the sample size. Most importantly, the model combination exhibits a rate of convergence

that is slightly faster than the parametric lower bound.

5 Empirical Application

This section compares econometric models with machine learning ones using a typical de-

mand estimation scenario – grocery store sales. The machine learning models in general

produce better out-of-sample fits than linear models without loss of in-sample goodness of

fit . If we combine all the models linearly with non-negative weights, the resulting combina-

tion of models produces better out-of-sample fit than any model in the combination.

This section also illustrates how machine learning models could work with unstructured

data or sparse data. Unstructured data is not organized to feed into models directly like

structured data. For instance, the text description of a bag of chips and the image of the bag

are unstructured data. Sparse data is a type of data where most of the elements are zeros.

Both of unstructured and sparse data would be hard to handle in econometric models.

The last part of this section uses the same data and model structures to estimate the

promotional lift of sales.

The data we use is provided by IRI Marketing Research via an academic license at the

University of Chicago. It contains scanner panel data from grocery stores within one grocery

store chain for six years. We used sales data on salty snacks, which is one of the categories

in the IRI data.

A unit of observation is product j, uniquely defined by a UPC (Universal Product Code),

in store m at week t. The number of observations are 1510563, which includes 3149 unique

products. Let qjmt be the number of bags of salty snack j sold in store m at week t. If

qjmt = 0, we do not know if it is due to no sale or out-of-stock and the observation is not filled

in. The price pjmt is defined as the quantity weighted average of prices for product j in store

m at week t. Therefore if qjmt = 0, the weight is also 0. In addition to price and quantity, the

data contains attributes of the products (such as brand, volume, flavor, cut type, cooking

method, package size, fat and salt levels) and promotional variables (promotion, display and
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feature).

Table 6 shows the summary statistics of quantity, price and volume. Table 7 shows the

three most common values of product attributes - brand, volume, flavor, cut type, cooking

method, package size, fat and salt levels.

Table 6: Summary Statistics

Variable Mean Min Max 1st Qu. Median 3rd Qu.

Quantity 20.08 1.00 3402.00 4.00 9.00 19.00
Price 2.05 0.10 5.69 1.39 1.99 2.87

Volume 0.52 0.06 1.25 0.34 0.41 0.59

Table 7: Tabulate Category Variables

Variable Three Most Frequent Values

Brand Pringles Utz Lays
Product Type Potato Chip Potato Crisp Potato Chip and Dip
Packaging Bag Canister Cardboard Canister
Flavor Original Sour Cream & Onion BBQ
Fat Content Missing Low Fat Fat Free
Cooking Method Missing Kettle Cooked Old Fashion Kettle
Salt Content Missing Lightly Salted Sea Salt
Cutting Type Flat Missing Ripple

In our application, we compare nine alternative models of demand to predict qjmt. The

nine models are linear model, stepwise, forward stagewise, LASSO, random forest, support

vector machine, gradient boosting trees, Logit and Logit with gradient boosting variable

selection. Linear model and Logit are traditional econometric models where the others are

popular machine learning algorithms. We also perform a linear combination of all the models

in the effort to increase prediction accuracy. We use R to compute all the results and a list

of related R packages is provided in this section.

5.1 Linear Regression Models

The linear regression is a typical approach to estimate demand by approximating the demand

using a function form of the following:

log(qjmt) = β′Xjmt + ζmt + ηjm + εjmt
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where Xjmt is the matrix of attributes including log of own prices, product attributes, adver-

tising and promotion indicators, ζmt is the market specific seasonal factor, ηjm is the product

specific market effect and εjmt is an idiosyncratic shock to each product, market and time.

Table 8 shows the output of linear model where only the significant coefficients are dis-

played.

5.2 Logit

We followed Berry et al. (1995) to do a logit-type model of market shares. Assuming market

sizes are fixed, we estimate the shares in two ways: 1) by using traditional regression; 2)

by using gradient boosting (R package gbm). Gradient boosting is where tree models are

utilized as base-learners. Specifically, we are interested in L2(Euclidean distance) loss in the

boosting tree in regression. Thus it is nothing else than repeated least squares fitting of

residuals. Both approach 1) and 2) project estimated q̂jmt on product attributes dummies,

store fixed effects and week fixed effects.

Then we sum q̂jmt over stores and weeks. Assuming that market sizes are fixed, we

calculate market share by dividing q̂jmt by market size. The log of market share is taken as

the dependent variable in our Logit model. Table 9 shows the output of Logit model with

traditional regression where only the significant coefficients are displayed.

5.3 Stepwise, Forward Stagewise and LASSO

In practice, all three models can be realized in R package lars. We take the default parameter

t and λ in the package. These three model converge in similar ways where in each step, the

most important variable is added to the model. We limit the maximum number of steps

to 100 in our practice for demonstration purposes because it takes significantly longer to

converge if the number of steps is larger. Table 10 shows how many variables have non-zero

coefficients and which they are.

5.4 Random Forest

Random forecast is implemented in R package randomForest. The two parameters are the

number of trees and the number of variables to try at each split.

Table 11 displays the variable importance of the twelve most important variables in

determining Log Quantity using two metrics. The percentage increase in mean squared

error is the increased percentage of mean squared error if a variable is excluded from the
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Table 8: Linear Regression

Log Quantity Estimate Std. Error t value Pr(> |t|)

Log Price -0.639 0.055 -11.708 < 2e-16 ***
Promotion 0.466 0.039 11.926 < 2e-16 ***
Feature: None -0.630 0.067 -9.334 < 2e-16 ***
Display:
Minor 0.708 0.049 14.341 < 2e-16 ***
Major 0.637 0.049 13.119 < 2e-16 ***
Brand:
Herrs -0.351 0.156 -2.253 0.024 *
Jays -1.101 0.244 -4.516 0.000 ***
Kettle Chips -0.995 0.236 -4.217 0.000 ***
Lays -0.337 0.159 -2.124 0.034 *
Lays Bistro Gourmet -0.656 0.188 -3.480 0.001 ***
Lays Natural -1.662 0.327 -5.079 0.000 ***
Lays Stax -1.481 0.183 -8.104 0.000 ***
Lays Wow -0.485 0.204 -2.379 0.017 *
Michael Seasons -1.655 0.239 -6.921 0.000 ***
Pringles -0.794 0.156 -5.090 0.000 ***
Pringles Cheezums -0.644 0.211 -3.055 0.002 **
Pringles Fat Free -0.624 0.189 -3.308 0.001 ***
Pringles Prints -1.876 0.314 -5.982 0.000 ***
Pringles Right Crisps -0.881 0.128 -6.892 0.000 ***
Ruffles Natural -1.379 0.389 -3.549 0.000 ***
Ruffles Snack Kit -1.555 0.307 -5.061 0.000 ***
Utz -0.543 0.149 -3.635 0.000 ***
Wise -0.505 0.165 -3.062 0.002 **
Wise Ridgies -0.984 0.167 -5.888 0.000 ***
Volume 0.469 0.113 4.142 0.000 ***
Package:
Canister 0.437 0.091 4.800 0.000 ***
Canister In Box 0.453 0.130 3.494 0.000 ***
Flavor:
BBQ 0.167 0.066 2.534 0.011 *
Cheddar 0.241 0.080 3.026 0.002 **
Cheese -0.443 0.205 -2.164 0.031 *
Ketchup -0.680 0.244 -2.787 0.005 **
Onion 0.339 0.066 5.107 0.000 ***
Original 0.704 0.061 11.588 < 2e-16 ***
Spicy -0.211 0.105 -2.005 0.045 *
Salt: No Salt -0.446 0.212 -2.099 0.036 *
Type of Cut: Flat 0.308 0.070 4.411 0.000 ***
Store Fixed Effects Yes
Week Fixed Effects Yes

Adjusted R-squared 0.884
Significance 0 *** 0.001 ** 0.01 * 0.05 .
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Table 9: Logit with Regression Selection

Log Share Estimate Std. Error t value Pr(> |t|)

Log Price 0.296 0.113 2.624 0.009 **
Promotion -0.441 5.192 -0.085 0.932
Feature: None 0.263 0.151 1.745 0.081 .
Display:
Minor -0.215 0.104 -2.080 0.038 *
Major -0.338 0.113 -3.000 0.003 **
Brand:
Herrs 0.515 1.846 0.279 0.780
Jays 0.743 1.864 0.398 0.690
Kettle Chips 0.956 1.942 0.492 0.622
Lays 0.328 1.844 0.178 0.859
Lays Bistro Gourmet 0.145 2.331 0.062 0.951
Lays Natural 0.630 2.627 0.240 0.811
Lays Stax 1.169 3.187 0.367 0.714
Lays Wow
Michael Seasons 0.651 1.980 0.329 0.742
Pringles 0.915 3.178 0.288 0.773
Pringles Cheezums 1.607 3.456 0.465 0.642
Pringles Fat Free 0.965 3.359 0.287 0.774
Pringles Prints 1.755 3.251 0.540 0.589
Pringles Right Crisps 0.863 3.210 0.269 0.788
Ruffles Natural -0.116 2.755 -0.042 0.966
Ruffles Snack Kit -0.294 2.660 -0.110 0.912
Utz 0.447 1.845 0.242 0.809
Wise 0.738 1.859 0.397 0.691
Wise Ridgies 0.737 1.854 0.397 0.691
Volume -0.024 0.451 -0.054 0.957
Package:
Canister -0.432 0.514 -0.842 0.400
Canister In Box -0.296 0.670 -0.442 0.658
Flavor:
Bbq -0.976 1.367 -0.714 0.475
Cheddar -0.984 1.412 -0.697 0.486
Cheese -1.608 2.141 -0.751 0.453
Ketchup -0.753 1.986 -0.379 0.705
Onion -0.951 1.425 -0.668 0.504
Original -1.158 1.311 -0.883 0.377
Spicy -0.608 1.381 -0.440 0.660
Salt: No Salt 0.644 1.742 0.370 0.712
Type of Cut: Flat -0.556 0.554 -1.003 0.316
Store Fixed Effects No
Week Fixed Effects No

AIC 6884.4
Significance 0 *** 0.001 ** 0.01 * 0.05 .
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Table 10: Non-zero Coefficients

Stepwise Forward Stagewise LASSO

# of Covariates 466 466 466
# Non-zero Covariates 40 39 37

Non-zero Covariates Promotion Promotion Promotion
Volume Volume Volume

Display Minor Minor Minor
Major Major Major

Brand Baked Ruffles Lays Lays
Herrs Ruffles Ruffles
Jays Krunchers Ruffles Wow Ruffles Wow
Wavy Lays Jays Krunchers Jays Krunchers
Wise Wavy Lays Wavy Lays

Wise
Flavor BBQ Onion Onion

Chedder Original Original
Onion
Original

Cooking Crispy Crispy Kettle Cooked
Kettle Cooked Kettle Cooked

Salt Missing Missing Missing
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model. Node purity measures how much the additional variable or tree split reduces the

residual sum of squares. Thus, the increase in node purity measures the size change in node

purity if a variable is excluded from the model.

Table 11: Random Forest Variable Importance

Log Quantity
%Increase in Mean

Squared Error
Increase in Node

Purity

Log Price 0.34 580.21
Volume 0.18 330.54
Promotion 0.09 230.10
Brand: Lays 0.07 125.44
Feature: None 0.06 250.47
Product Type: Potato Chip 0.06 23.52
Display: Major 0.05 181.25
Type of Cut: Missing 0.05 18.89
Product Type: Potato Crisp 0.04 19.78
Brand: Wavy Lays 0.04 77.36
Display: Minor 0.04 133.92
Flavor: Classic 0.03 90.09

R-Squared 0.40

5.5 Support Vector Machine

Support vector machines are a penalized method of regression. The tuning parameter, ε,

controls which errors are included in the regression. Errors of sufficiently small size are

treated as zeros. Typically only a partial set of the covariates are assigned a non-zero value

in support vector machine regressions. R package e1071 is used for support vector machine.

5.6 Bagging

Bagging, short for Bootstrap Aggregation, is an early ensemble method that builds multiple

trees by resampling training data with replacement, and voting the trees for a prediction.

We use the bagging function and its default parameters in R package ipred.
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5.7 Combined Model

In order to compare models, we want to split the data into training and testing set, where

we train the model using the training set and pretend the dependent variable in the test set

is unknown and predict on the test set. Because we have eight models, we want to assign

weight to each model when building a linear combination. However, the weight based on the

training set is biased. Some models like linear model tend to get a good in-sample fit but a

bad out-of-sample fit, and this grants these model a very large in-sample weight which could

be misleading.

Therefore, we randomly split the data into three pieces to do cross validation, where

the model weights are determined on the validating set. This three way data partitioning

mitigates the possible large out-of-sample error for some models when over fitting happens.

25% of the data is used as the test set, 15% is used as the validate set, and the remaining

60% is used as the training set. Table 12 shows how the data is sliced into three pieces.

In Table 12, we compare nine models: two of them are traditional econometrics models

and seven of them are more in the context of machine learning (as introduced in the main

paper). Our purpose is to run a horse race of models by comparing out-of-sample prediction

errors. First, all the models are used to fit the data in the train set. Next, make out-of-

sample prediction on the validate set and get the weight for each model by combining them

linearly. Last, use the fitted models to predict in the test set, and use the weights from

validate set to form the linearly combined prediction.

The response variable is log of quantity sold per week. The covariates are log of price,

product attributes variables, promotional variables, store fixed effects, and week fixed effects.

We provide the same covariate matrix to all of the models expect for the Logit model, where

all the fixed effects are excluded.

Table 12 shows the comparison of the models. In the scenario of out-of-sample prediction

error, the best two models are random forest and support vector machine. The combined

model, where we regress the actual value of the response variable on a constrained linear

model of the predictions from eight models, outperforms all the eight models, which follows

the optimal combination of forecasts in Bates and Granger (1969). Random forest and sup-

port vector machine get more weights in the combined model due to their good performance

out-of-sample.

Based on Section 3, the combination of models converges to asymptotic normal distri-

bution at
√
n rate, regardless of the what individual models there are. Therefore, we could

bootstrap the combined model to get the confidence interval, knowing that it’s asymptotic
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Table 12: Model Comparison: Prediction Error

Validation Test

RMSE Std. Err. RMSE Std. Err. Weight

Linear 1.169 0.022 1.193 0.020 6.62%
Stepwise 0.983 0.012 1.004 0.011 12.13%
Forward Stagewise 0.988 0.013 1.003 0.012 0.00%
Lasso 1.178 0.017 1.222 0.012 0.00%
Random Forest 0.943 0.017 0.965 0.015 65.56%
SVM 1.046 0.024 1.068 0.018 15.69%
Bagging 1.355 0.030 1.321 0.025 0.00%
Logit (Boosting) 1.190 0.019 1.234 0.017 0.00%
Logit 1.190 0.020 1.234 0.018 0.00%

Combined 0.924 0.946 100.00%

# of Obs 226952 376980
Total Obs 1510563
% of Total 15.0% 25.0%

normal.

Table 13 provides the summary statistics of the residual between predicted and actual

values of quantity in the testing set. This is meant to be a measure of accuracy of each

model. It is obvious that the Machine Learning models fit better out of sample and the

combined model fits better than any of the individual models.

5.8 Discussion

5.8.1 Variable Selection

When the number of independent variables is large, it is common to have some degree of

multicollinearity. The shrinkage models could help us reduce the multicollinearity intelli-

gently. A usual statistics to determine multicollinearity is Variance Inflation Factors(VIF).

The VIF for covariate Xj is defined as:

V IFj =
1

1−R2
−j

(20)

where R2
−j is the R-squared by regressing covariate Xj on the rest of covariates. Table 14

shows some VIFs for the independent variables used in the linear regression model. To
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Table 13: Summary Statistics of Residual in Test Prediction

Residuals Mean
Mean

Std.Err.
Std.Dev. Min Max

Linear -1.63 0.70 25.32 -252.27 141.00
Stepwise -5.00 0.66 24.12 -314.02 129.16
Forward Stagewise -6.14 0.69 25.27 -323.43 26.64
Lasso -7.06 0.76 27.70 -346.19 5.81
Random Forest -5.56 0.68 24.89 -325.79 34.13
SVM -3.66 0.65 23.55 -277.56 66.60
Bagging -5.82 0.77 28.23 -347.98 39.54
Logit (Boosting) -7.23 0.76 27.78 -347.22 15.00
Logit -7.23 0.76 27.78 -347.29 15.00

Combined -5.44 0.67 24.40 -316.41 39.79

compare, after LASSO selects variable, we also have the VIFs for the independent variables

in the linear regression using only selected variables. The VIFs in the non-selecting case

are much higher than the LASSO selection for many variables. Using 5 as a threshold for

multicollinearity, LASSO successfully reduces multicollinearity in the independent variables.

We believe it’s more attractive than ad hoc variable selection procedures commonly used in

practice.

5.8.2 Bag of Words

The mere feat of encoding a vector of hedonic attributes commonly used in demand esti-

mation for this data could be cumbersome. In applied econometrics, researchers commonly

restrict attention to the products with the largest demand and encode regressors for brands

and a small vector of product attributes. In our application, we propose using unsupervised

learning to construct product level regressors. In particular, we use the unstructured text

that describes the product in the raw data and apply the bag of words model. This has

the advantage of being a simpler computation and allows us to avoid the arduous task of

encoding attributes for thousands of products. Since it is more scalable, it allows us to

model the demand for all of the products rather than restricting attention to the products

with the largest demand. Also, it could be viewed as less ad hoc than hand coding product

attributes since it imposes fewer a priori restrictions on the hedonic attributes that we should

include as regressors in our model. We note that there is a large literature on this form of

unsupervised learning which sometimes goes by the name of feature extraction in computer
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Table 14: Variance Inflation Factors

VIFs after Selection

Variable Linear LASSO

Product Type - Potato Chip And Dip +∞ 3.5084
Brand - Ruffles Snack Kit +∞ 3.4729
Logprice 4.1750 3.2319
Volumn 3.9775 3.1541
Cooking - Missing +∞ 3.1100
Cooking - Kettle +∞ 2.6495
Package - Canister +∞ 1.8047
Fat - Regular 76.6610 1.5930
Brand - Lays 104.5904 1.5187
Promotion 1.4806 1.4388
Feature - None 2.3398 1.3369
Brand - Kettle Chips 27.3608 1.3222
Flavor - Original 2.8610 1.2875
Brand - Ruffles 50.1427 1.2802
Salt - Regular 3.0660 1.2732
Brand - Wavy Lays 36.1675 1.1925
Brand - Lays Stax +∞ 1.1688
Display - Major 1.1710 1.1498
Brand - Ruffles Wow 19.3494 1.1398
Brand - Baked Ruffles +∞ 1.1291
Display - Minor 1.1577 1.1191
Brand - Lays Wow 16.0920 1.1173
Flavor - Missing 1.5811 1.0942
Brand - Ruffles Light 10.5084 1.0898
Type Of Cut - Thick 11.0995 1.0757
Brand - Wise Ridgies 12.4572 1.0712
Brand - Wachusett 1.7886 1.0662
Brand - Michael Seasons 4.5692 1.0594
Brand - Tastee 1.8020 1.0529
Brand - Michaels Gold N Good 2.2383 1.0462
Brand - Better Made Special 2.7512 1.0386
Brand - Pringles Prints +∞ 1.0281
Brand - Laura Scudder 3.6605 1.0236
Brand - Lance Thunder 3.1482 1.0218
...
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science. With the exception of Gentzkow and Shapiro (2010), there has been relatively little

use of this method in economics. We believe that this is promising for demand estimation

because it allows a new source of data to construct covariates such as the raw text in product

descriptions or product reviews.

Aside from structured features like package type, cut type of potato chips, the hedonic

attributes of the product can also be defined by unstructured texts that describe the product.

A bag of words model could easily turn the unstructured texts into large amounts of features.

Unsupervised learning (clustering) on these features could be a more scalable approach than

hand coding them. The procedures following the unsupervised learning are the same as

the way we deal with structured features. Yet this straightforward approach has better

prediction power than structured models.

The bag of words model analyzes a corpus of K documents, comprising a dictionary of

M words, and finds the relations of words and documents. In our case, the K documents are

the n unique potato chips descriptions. We cluster the descriptions, via manipulation of the

document-term matrix. A document-term matrix is a mathematical matrix that describes

the frequency of terms that occur in a collection of descriptions. In a document-term matrix,

rows correspond to each unique product in the collection and columns correspond to terms.

Where it is tedious to encode all the features of a product, bag of words provides a simple

way to exploit the rich features of products.

In a high dimensional learning problem, only some parts of an observation are important

to prediction. For example, the information to correctly categorizing a product may lie in a

handful of its words. The extraneous words could prove computational burdensome, so word

regularization may be helpful. Possible methods for regularization include LASSO and other

shrinkage models. Therefore it’s natural to combine the technique of bag of words with our

models. Bag of words

5.8.3 Top/Tail Products

In marketing literature, people usually prune out the tail products (for example Nevo (2001)).

But, with the new methods, we want to show that a training data set with all possible

products predicts better than a data set with only the top products. To show that, we take

only the top twenty products to train the model and predict the sales of the tail products

and compare the prediction fit to those in Table 12.

We use the same nine models as modeling examples to demonstrate the difference. We

rank all the products by total units sold and only mark the top twenty as the training set.
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Using exactly the same methodology in our main application, we get the root mean squared

error as a measure of fit for nine plus combine model. The prediction error and weights is

presented in Table 15.

As the table shows, when we only train on top twenty products, the fit out of sample

is worse than when we train on a randomly split training set for all models. As the top

twenty products may not necessarily explain all the features of the rest of the products, the

predicting power is therefore weakened.

Table 15: Top 20 Products vs. the Other Products

Top 20 Products Other Products

RMSE Std. Err. RMSE Std. Err. Weight

Linear 0.2381 0.0068 2.1910 0.0827 9.66%
Stepwise 0.7059 0.0104 1.6025 0.0248 0.00%
Forward Stagewise 0.8657 0.0156 1.1517 0.0270 53.38%
Lasso 0.8918 0.0175 1.1532 0.0202 0.00%
Random Forest 0.8728 0.0160 1.1834 0.0182 21.93%
SVM 0.4165 0.0128 1.7190 0.0513 0.00%
Bagging 0.5472 0.0162 1.3573 0.0323 15.04%
Logit (Boosting) 1.0509 0.0185 1.7017 0.0289 0.00%
Logit 1.2076 0.0278 1.5339 0.0420 0.00%

Combined 0.2381 1.1183 100.00%

# of Obs 250149 1260414
Total Obs 1510563
% of Total 16.56% 83.44%

5.8.4 Practical Advantages

There are some other practical advantages to the machine learning models or their generic

approaches.

In random forest, the missing values could be imputed, for example, as the median of its

column. This imputation will not effect accuracy much since the randomness of subsampling

and the trees grown. Another approach for categorical variables is to simply create a new

category called ”missing”. This new category might capture the behavioral differences in

observations with missing values and the ones not missing.

If we have a large dataset and we want to do model selection or model assessment, the

best approach is to randomly divide the dataset into three parts: a training set, a validation
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set, and a test set. The training set is used to fit the models; the validation set is used

to estimate prediction error for model selection; the test set is used for assessment of the

generalization error of the final chosen model. The test set should be kept separately and

be brought out only at the end of the analysis.

If, however, we do not have enough data to split three ways, we can efficiently re-use the

sample data by cross-validation or bootstrap.

In addition to the models we mentioned in our paper, there are some other very popular

machine learning approaches that could be helpful to readers in economics. For exam-

ple, EM (Expectation-Maximization) algorithm for simplifying difficult maximum likelihood

problems; Graphical models for complicated conditional expectations; Neural Networks for

extracting linear combination of features and modeling response variable as a non-linear

function of the features, and so on.

5.9 Lift Estimates

The other interesting problem we want to look at is estimating promotional lift. In our

data, a product is tagged as on promotion if the price reduction is greater than 5%. By

considering promotion as a randomized treatment, we follow the methodology suggested

by Varian (2014) to estimate the promotional lift. Our models are trained on the control

group (no promotion) and then used to predict out of sample on the treated group (on

promotion). The control/treatment partition is based on whether the product is on price

reduction promotion, instead of random assignment in the last example.

The most important variables we want to study are the price promotion as well as how

the store display the products. A product is tagged as in promotion if the price reduction

is greater than 5%. There are four levels of feature: large, medium, small and no ad. There

are three levels of display: major(including lobby and end-aisle), minor and none. Table 16

ensures that every value of the variables has some level of presentation in each data set.

If everything else is the same in the control group and the treatment group, we believe the

difference between predicted and actual in treatment group is our treatment effects. Based

on model coefficients from the control group, we predict the quantities using the independent

variables in the treated group. The difference between the predicted and the actual value of

quantity sold in the treated group is therefore our lift estimates.

The lift estimates from eight models mentioned before are in Table 17. We also use the

same weights as in the comparison of prediction error to construct the lift estimate for a

linearly combined model. All the machine-learning models calculate a positive promotional
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lift when only the linear model produces a negative lift for promotion. The big variance in

the linear model residual indicates that the negative sign of the promotional lift in the linear

model comes from variance instead of bias.

After this step, we regress the fitted residual of lift on dummies using LASSO. The

dummies we use are product attributes, store dummies and week dummies. Chernozhukov

(2013) suggests that using the selected variables from LASSO can increase the fit of the

model. We then use the selected variables in an ordinary least square and fit for the lift

residual.

Table 16: Promotion Variables

Frequency Percent

Promotion
Price Reduction<5% 1143490 75.7%
Price Reduction>5% 367373 24.3%

Total 1510563

Table 17: Model Comparison:Promotional Lift

Mean
Mean

Std.Err.
Std.Dev. Min Max

Linear 12.79 0.59 27.22 0.23 1007.06
Stepwise 10.79 0.25 11.82 0.22 302.28
Forward Stagewise 8.23 0.09 4.32 2.42 33.73
Lasso 8.24 0.09 4.32 2.45 33.76
Random Forest 9.25 0.13 5.96 1.96 50.93
SVM 11.98 0.27 12.43 0.48 131.62
Bagging 6.30 0.09 3.95 1.36 29.00
Logit (Boosting) 7.34 0.04 1.92 0.00 17.00
Logit 9.97 0.19 9.05 1.00 174.00
Combined 9.49 0.14 6.46 1.63 59.90

5.10 Computation Tools

In this application we face constraints on memory and CPU when processing the data with

millions of observations with complicated machine learning models. The time it takes to

compute a Random Forest object with data of such size using a single work station could
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be days, even weeks. A solution to solve the computation constraints is to utilize high per-

formance computing tools, such as parallel processing using Revolution R R© and MATLAB R©

Parallel Computing ToolboxTM. Both of them are available on Amazon Web Services(AWS)

Marketplace at low costs.

Revolution R has two major packages - RevoR and ScaleR. RevoR automatically uses all

available cores and processors to reduce computation times without modifying a standard

R script. A real time simulation shows it speeds up computation by three to thirty times

compared to a single core standard R process. ScaleR scales up data size to 1 to 16 tera-bytes

easily by dividing data into pieces and accessing the pieces with different processors.

In these parallel processing frameworks, a common implementation is MapReduce. It

is useful when the data is too large to be held or processed in memory. There are two

stages in MapReduce: Map and Reduce. In the Map stage the program (Revolution R R© or

MATLAB R©) pre-processes each distributed data trunk in parallel and performs preliminary

statistical modeling on each data trunk in parallel. In the Reduce stage, the program gathers

all the information for each distributed data trunk from Map stage, summarizes the infor-

mation and returns it to the user. This is much faster and takes less memory than storing

and accessing data directly from memory.

6 Conclusion

In this paper, we survey a set of models from statistics and computer science. We select a few

machine learning models to compare with traditional econometric models. The models we

focus on in this paper include linear regression as the baseline model, logit as the econometric

model, stepwise, forward stagewise, LASSO, random forest, support vector machine and

bagging as the machine learning models. We derive novel asymptotic properties for the

machine learning models.We use Monte Carlo simulation to demonstrate the properties of

the models and also show that combining all the underlying models with a linear regression

improves out-of-sample prediction accuracy.

We illustrate the properties of these models by using a real world data set with scan-

ner panel sales data of potato chips. First, we compare the prediction accuracy of these

models and the machine learning models consistently give better out-of-sample prediction

accuracy while holding in-sample prediction error comparable. By combining all the models

via weighted linear regression, we are able to improve the out-of-sample prediction accuracy

even more. Second, we compare two scenarios where one, as the traditional marketing litera-
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ture suggests, prunes the market to only the top sold products, and the other, our approach,

uses a mix of both top and tail products. Our approach has better prediction accuracy in

demand. Third, we estimate the promotion lift using the predictions for treatment effects.

Last, we explored the unstructured text of product description from the raw data and apply

the bag of words model. This has the advantage of being a simpler computation and allows

us to avoid the arduous task of encoding attributes for thousands of products.

Our approach is robust to a large number of potentially collinear regressors; it scales easily

to large data sets; the linear combination method selects the best model automatically and

produces the best in-sample and out-of-sample prediction accuracy; and the method can

flexibly approximate arbitrary non-linear functions, even when the set of regressors is high

dimensional and we also allow for fixed effects.While demand estimation is our motivating

application, we believe that the approach we have proposed can be useful in many other

microeconometric settings.
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