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1 Introduction

The recent financial crisis, often attributed in part to contagion emanating from pervasive entangle-

ments among financial institutions, has rekindled interest in the role of complex economic, finan-

cial or social interlinkages as channels for propagation and amplification of shocks. In the words of

Charles Plosser, the president of the Federal Reserve Bank of Philadelphia:

“due to the complexity and interconnectivity of today’s financial markets the failure of

a major counterparty has the potential to severely disrupt many other financial institu-

tions, their customers, and other markets” (Plosser, 2009).

Similar ideas on the role of interconnections and the possibility of cascades have also surfaced

in a variety of other contexts. For instance, Acemoglu et al. (2012, 2014b) and Jones (2013) have ar-

gued that idiosyncratic shocks at the firm or sectoral level can propagate over input-output linkages

within the economy, with potentially significant implications for macroeconomic volatility and eco-

nomic growth, while Caplin and Leahy (1993) and Chamley and Gale (1994) have emphasized the

spread of economic shocks across firms due to learning and imitation.

Though the domains studied by these and other related papers are often different, their under-

lying approaches share important economic and mathematical parallels. Most importantly, in each

case, the problem is one of a set of interacting agents who influence each other, thus opening the

way for shocks to one agent to propagate to the rest of the economy. Furthermore, on the method-

ological side, almost all these papers rely on a network model to capture the pattern and extent of

interactions between agents. Despite these parallels, there is a bewildering array of different (and

sometimes even contradictory) results, often presented and developed with little linkage to other

findings in the literature.

The disparity in the predictions and results of different studies in the literature can be best il-

lustrated by focusing on a concrete setting, namely, that of financial interactions. The models of

financial interactions studied in a variety of papers (such as Allen and Gale (2000), Giesecke and We-

ber (2006), Blume et al. (2011), Battiston et al. (2012), Elliott, Golub, and Jackson (2014), Cabrales,

Gottardi, and Vega-Redondo (2014) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015b)) are, at

least on the surface, very similar. In each case, a financial institution’s “state”, which for example

captures its health or ability to meet its obligations, depends on the state of other financial institu-

tions to which it is connected.1 Consequently, shocks to a given institution can propagate to other

institutions within the economy, potentially snowballing into a systemic crisis. Despite such com-

monalities, the predictions of many of the papers in this literature are quite different or sometimes

even contradictory. For example, in the models of Allen and Gale (2000) and Freixas, Parigi, and

Rochet (2000), denser interconnections mitigate systemic risk, whereas several other papers, such

1For instance, in the context of counterparty relationships considered by Acemoglu et al. (2015b), the connections
capture the extent of prior interbank lending and borrowing and each bank’s state captures its ability to meet those obli-
gations. As highlighted in Cabrales, Gale, and Gottardi (2015), other forms of interlinkages operate in a similar fashion.
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as Vivier-Lirimont (2006) and Blume et al. (2011), have suggested that such dense interconnections

can act as a destabilizing force.

Our aim in this chapter is to unify and improve the understanding of the key economic and

mathematical mechanisms in much of the literature on the effects of network interactions on the

economy’s aggregate performance. We start with a general reduced-form model in which n agents

interact with one another. Each agent is assigned a real-valued variable, known as its state which,

depending on the context, may capture her choice of actions (e.g., output or investment) or some

other economic variable of interest. Our reduced-form model consists of three key ingredients:

(i) a fairly general interaction function that links each agent’s state to a summary measure of the

states of other agents; (ii) an (interaction) network that specifies how these summary measures are

determined as a function of other agents’ states; and (iii) an aggregation function that describes

how agent-level states collectively shape the macroeconomic variable of interest.

We first show that our general framework nests a wide variety of problems studied in the liter-

ature, including those mentioned above. We also show that under fairly general conditions on the

interaction function, an equilibrium — defined as a mutually consistent set of states for all agents in

the network — always exists and is generically unique. We then use our framework to study how the

nature of inter-agent interactions shape various measures of aggregate performance. Our analysis

not only nests the main results obtained in several papers in the literature, but also clarifies where

the sources of differences lie.

In order to obtain sharp and analytical predictions for the role of network interactions in shaping

economic outcomes, we focus on an economy in which agent-level shocks are small. This assump-

tion enables us to approximate the equilibrium state of each agent and the economy’s macroeco-

nomic state by the first few terms of their Taylor expansions. Our results show that the impact of

network structure depends on the properties of the economy’s Leontief matrix corresponding to the

underlying interaction network. This matrix, which is defined in a manner analogous to the same

concept used in the literature on input-output economies, accounts for all possible direct and in-

direct effects of interactions between any pair of agents. Using this characterization, we show that

the curvatures of the interaction and aggregation functions play a central role in how the economy’s

underlying network translates microeconomic shocks into macroeconomic outcomes.

As our first characterization result, we show that as long as the interaction and aggregation func-

tions are linear, the economy exhibits a “certainty equivalence” property from an ex ante perspec-

tive, in the sense that the expected value of the economy’s macro state is equal to its unperturbed

value when no shocks are present. This observation means that, in a linear world, the economy’s

aggregate performance, in expectation, does not depend on the intricate details of its underlying

interaction network.

Our next set of results illustrates that this certainty equivalence property may no longer hold

if either the aggregation or interaction function is non-linear. Rather, in the presence of a non-

linear interaction or aggregation function, the exact nature of these non-linearities are central to

determining how the economy’s underlying interaction network affects its ex ante performance.
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We show that with a non-linear aggregation function, the economy’s ex ante performance de-

pends on the heterogeneity in the extent to which agents interact with one another. In particular,

if the aggregation function is concave — for example, to capture the idea that volatility is detri-

mental to the economy’s aggregate performance — a more uniform distribution of inter-agent in-

teractions increases macroeconomic performance in expectation. An important corollary to this

result establishes that with a concave aggregation function, regular economies (in which the over-

all influence of each agent on the rest of the agents is identical across the network) outperform all

other economies. These results are consistent with, and in some ways generalize, those of Ace-

moglu et al. (2012), who, in the context of input-output economies, show that the volatility of the

economy’s aggregate output increases in the extent of heterogeneity in the role of different firms

as input-suppliers. Our results thus clarify that it is the concavity of economy’s aggregation func-

tion — resulting from the focus on volatility — that lies at the heart of the results in Acemoglu et al.

(2012).

We then focus on understanding how non-linearities in the interaction function shape the econ-

omy’s ex ante performance. Our results illustrate that when the interaction function is concave,

economies with denser interconnections outperform those whose interaction networks are more

sparse. In particular, the complete network, in which interlinkages are maximally dense, outper-

forms all other (symmetric) economies. Furthermore, we show that with a convex interaction func-

tion, this performance ordering flips entirely, making the complete network the worst performing

economy. This flip in the comparative statics of aggregate performance with respect to the network

structure parallels the findings in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015b), who show that,

in the context of financial interactions, whether the complete network fosters stability or instability

depends on the size and number of shocks: with a few small shocks, the complete network is the

most stable of all economies, whereas when shocks are numerous or large, there is a phase transi-

tion, making the complete network the least stable financial arrangement. Our results here clarify

that the findings of Acemoglu et al. (2015b) are essentially due to the fact that increasing the size or

the number of shocks corresponds to a shift from a concave to a convex region of the interaction

function, thus reversing the role of interbank connections in curtailing or causing systemic risk.

They also highlight that similar phase transitions transforming the role of network interconnec-

tions in shaping aggregate performance can emerge in other settings with non-linear interactions.

Overall, our results highlight that the relationship between the economy’s aggregate perfor-

mance and its underlying network structure depends on two important economic variables: (i) the

nature of economic interactions, as captured by our interaction function; and (ii) the properties of

the aggregate performance metric, as captured by the notion of aggregation function in our model.

We also use our framework to provide a characterization of how the nature of interactions de-

termine the agents’ relative importance in shaping aggregate outcomes. As long as agent-level in-

teractions are linear, the well-known notion of Bonacich centrality serves as a sufficient statistic for

agents’ “systemic importance”: negative shocks to an agent with a higher Bonacich centrality leads

to a larger drop in the economy’s macro state. We also demonstrate that, in the presence of small
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enough shocks, this result generalizes to economies with non-linear interactions, but with one im-

portant caveat: even though a strictly larger Bonacich centrality means that the agent has a more

pronounced impact on the economy’s macro state, two agents with identical Bonacich centralities

are not necessarily equally important. This is due to the fact that Bonacich centrality only provides

a first-order approximation to the agents’ impact on aggregate variables. Therefore, a meaning-

ful comparison of systemic importance of two agents with identical Bonacich centralities (as in a

regular network) requires that we also take their higher-order effects into account. As our final re-

sult, we provide such a characterization of agents’ systemic importance in regular economies. We

show that the second-order impact of an agent on the economy’s macro state is summarized via a

novel notion of centrality, called concentration centrality, which captures the concentration of an

agent’s influence on the rest of the agents (as opposed to its overall influence captured via Bonacich

centrality).

These characterization results thus highlight that relying on standard and off-the-shelf notions

of network centrality (such as Bonacich, eigenvector, or betweenness centralities) for the purpose of

identifying systemically important agents may be misleading. Rather, the proper network statistic

has to be informed by the nature of microeconomic interactions between different agents.

Related Literature As already indicated, this chapter relates to several strands of literature on so-

cial and economic networks, such as the literature on network games, various models of systemic

risk, and the literature that studies microeconomic foundations of macroeconomic fluctuations.

Many of the papers related to our setup are discussed in the next section when we describe how

different models are nested within our general framework. Here, we provide a brief overview of the

literature and some of the key references.

The critical building block of our general framework is an interaction network, whereby each

player’s “state” is a function of the state of its neighbors in a directed, weighted network. These in-

terlinked states could be thought of as best responses of each player to the actions of her neighbors.

As such, our setup builds on various different contributions on the network games literature, such

as Calvó-Armengol and Zenou (2004), Ballester, Calvó-Armengol, and Zenou (2006), Candogan,

Bimpikis, and Ozdaglar (2012), Allouch (2012), Badev (2013), Bramoullé, Kranton, and D’Amours

(2014) and Elliott and Golub (2014), several of which can be cast as special cases of our general

framework.2 Several papers consider applications of network games to various specific domains.

For example, Calvó-Armengol, Patacchini, and Zenou (2009) study peer effect and education de-

cisions in social networks; Calvó-Armengol and Jackson (2004) study the role of referral networks

in the labor market; and Galeotti and Rogers (2013), Acemoglu, Malekian, and Ozdaglar (2013) and

Dziubiński and Goyal (2014) consider a network of interlinked players making endogenous secu-

rity investments against an infection or an attack. Jackson and Zenou (2015) and Bramoullé and

Kranton (2015) provide thorough surveys of the network games literature.

Even though the literature on network games does not generally consider the propagation of id-

2Network games of incomplete information are studied in Galeotti et al. (2010).
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iosyncratic shocks, our results highlight that, depending on the specific economic question at hand,

the interaction models at the heart of this literature could be used for the study of such propagation.

A related literature has directly originated from the study of cascades. Various models have

been developed in the computer science and network science literatures, including the widely-used

threshold models (Granovetter, 1978) and percolation models (Watts, 2002). A few works have ap-

plied these ideas to various economic settings, including Durlauf (1993) and Bak et al. (1993) in

the context of economic fluctuations; Morris (2000) in the context of contagion of different types of

strategies in coordination games; and more recently, Gai and Kapadia (2010) and Blume et al. (2011)

in the context of spread of an epidemic-like financial contagion.

The framework developed in this chapter is also closely linked to a small literature in macroeco-

nomics that studies the propagation of microeconomic shocks over input-output linkages. This lit-

erature, which builds on the seminal paper by Long and Plosser (1983), has witnessed a recent theo-

retical and empirical revival. On the theoretical side, Acemoglu et al. (2012, 2014b) and Jones (2013)

argue that the propagation of idiosyncratic shocks and distortions over input-output linkages can

have potentially significant implications for macroeconomic volatility and economic growth.3 On

the empirical side, Foerster, Sarte, and Watson (2011), Carvalho (2014), di Giovanni, Levchenko,

and Méjean (2014), Acemoglu, Autor, Dorn, Hanson, and Price (2015a) and Carvalho, Nirei, Saito,

and Tahbaz-Salehi (2015) provide evidence for the relevance of such propagation mechanisms in

different countries.

As mentioned earlier, this chapter is also closely related to the growing literature on the spread

of financial shocks over a network of interconnected financial institutions. The seminal papers

of Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000) developed some of the first formal

models of contagion over financial networks. The recent financial crisis resulted in further attention

to this line of work. Some of the more recent examples include Gai, Haldane, and Kapadia (2011),

Battiston et al. (2012), Alvarez and Barlevy (2014) and Glasserman and Young (2015).

Within this literature, four recent papers deserve further discussion. The first, which is our own

work (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015b), considers a network of banks linked through

unsecured debt obligations and studies the emergence of financial cascades resulting from coun-

terparty risk. This paper, which in turn builds on and extends Eisenberg and Noe (2001)’s seminal

framework of financial interlinkages, is explicitly treated as a special case of our general framework

here. The second is the related paper by Elliott, Golub, and Jackson (2014), which also considers

financial contagion in a network, though based on microfoundations linked to cross-shareholdings

across institutions rather than the counterparty risk as in our own previous work. The third is

Cabrales, Gottardi, and Vega-Redondo (2014), which is closely connected to Elliott et al. (2014) and

in addition considers the endogenous formation of the financial network.4 Finally, Cabrales, Gale,

and Gottardi (2015) provide a unified treatment of the previous three papers, highlighting various

3Relatedly, Gabaix (2011) argues that microeconomic shocks can lead to aggregate fluctuations if the firm-size distri-
bution within the economy exhibits a heavy enough tail, even in the absence of input-output linkages.

4Other papers that study network formation in related contexts include Bala and Goyal (2000), Babus (2014), Zawad-
owski (2013), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014c), Farboodi (2014), and Erol and Vohra (2014).
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commonalities as well as some important differences between them. The key distinction between

their unified treatment and ours is that they start with the fixed point equation resulting from the

interactions in the various financial network models, whereas we develop a more general frame-

work starting from the best response equations or the equations linking each agent’s state to her

neighbors’. This formulation enables us to nest not only existing models of financial networks but a

wider array of network interactions, use first and second-order approximations to provide a sharper

characterization of the structure of equilibrium, and clarify the role of interaction and aggregation

functions in transforming small, agent-level shocks into differences in aggregate performance or

volatility.

Outline The rest of this chapter is organized as follows. In Section 2, we provide our general frame-

work for the study of network interactions and present a few examples of how our setup maps to

different applications. In Section 3, we provide a second-order approximation to the macro state

of the economy in terms of the economy’s underlying interaction network. Section 4 uses these

results to characterize how the nature of interactions between different agents impacts the macro

state of the economy from an ex ante perspective, whereas Section 5 provides a characterization of

the systemic importance of different agents. Section 6 concludes.

2 General Framework

Consider an economy consisting of n agents indexed by N = {1, . . . , n}. Of key interest to our

analysis is each agent i’s state, xi ∈ R, which captures the agent’s choice of action (e.g., output or

investment) or some other economic variable of interest (such as the solvency of a financial institu-

tion). In the next three subsections we will provide concrete examples clarifying the interpretation

of these states. For the time being, however, we find it convenient to work with a general, reduced-

form setup without taking a specific position on how to interpret the agents or their states.

The key feature of the environment is that the states of different agents are interlinked. Such

interdependencies may arise due to strategic considerations, contractual agreements, or some ex-

ogenous (e.g., technological) constraints on the agents. Formally, the state of any given agent i

depends on the states of other agents via the relationship

xi = f

 n∑
j=1

wijxj + εi

 , (1)

where f is a continuous and increasing function, which we refer to as the economy’s interaction

function. As the name suggests, this function represents the nature of interactions between the

agents in the economy. The variable εi is an “agent-level” shock, which captures stochastic distur-

bances to i’s state. We assume that these shocks are independently and identically distributed (so

that they correspond to “idiosyncratic” shocks) and have mean zero and variance σ2.

The constant wij ≥ 0 in (1) captures the extent of interaction between agents i and j. In partic-

ular, a higher wij means that the state of agent i is more sensitive to the state of agent j, whereas

6



wij = 0 implies that agent j does not have a direct impact on i’s state. Without much loss of gen-

erality, we assume that
∑n

j=1wij = 1, which guarantees that the extent to which the state of each

agent depends on the rest of the agents is constant. We say the economy is symmetric if wij = wji

for all pairs of agents i and j.

For a given f , the interactions between agents can be also represented by a weighted, directed

graph on n vertices, which we refer to as the economy’s interaction network. Each vertex in this

network corresponds to an agent and a directed edge from vertex j to vertex i is present if wij > 0,

that is, if the state of agent i is directly affected by the state of agent j.

Finally, we define the macro state of the economy as

y = g (h(x1) + · · ·+ h(xn)) , (2)

where g, h : R → R. As we will clarify in what follows, y represents some macroeconomic outcome

of interest that is obtained by aggregating the individual states of all agents. Throughout the paper,

we refer to g as the economy’s aggregation function.

An equilibrium in this economy is defined in the usual fashion by requiring each agent’s state to

be consistent with those of others. Formally:

Definition 1. Given the realization of the shocks (ε1, . . . , εn), an equilibrium of the economy is a

collection of states (x1, . . . , xn) such that equation (1) holds for all agents i simultaneously.

As the above definition clarifies, our solution concept is an ex post equilibrium notion, in the

sense that agents’ states are determined after the shocks are realized. This notion enables us to

study how the equilibrium varies as a function of the shock realizations.

Throughout the paper, we assume that f(0) = g(0) = h(0) = 0. This normalization guarantees

that, in the absence of shocks, the equilibrium state of all agents and the economy’s macro state are

equal to zero.

We next show how a wide variety of different applications can be cast as special cases of the

general framework developed above.

2.1 Example: Network Games

Our framework nests a general class of network games as a special case. Consider, for example, an

n-player, complete information game, in which the utility function of agent i is given by

ui(x1, . . . , xn) = −1

2
x2i + xif

 n∑
j=1

wijxj + εi

 ,

where xi denotes the action of player i and εi is realization of some shock to her payoffs. That is,

the payoff of player i depends not only on her own action, but also on those of her neighbors via

the interaction function f . In this context, the underlying network, encoded in terms of coefficients

wij , captures the pattern and strength of strategic interactions between various players in the game.
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It is immediate to verify that as long as the interaction function f satisfies certain regularity

conditions — essentially to ensure that one can use the first-order conditions — and that wii = 0

for all i, the best-response of player i as a function of the actions of other players is given by equation

(1). Consequently, the collection (x1, . . . , xn) that solves the system of equations (1) corresponds to

the Nash equilibrium of the game.

The game described above nests a wide variety of models studied in the literature. Note that

since f is increasing, the players face a game of strategic complements over the network: the benefit

of taking a higher action to player i increases the higher the actions of her neighbors are. Examples

of such network games include research collaboration among firms (Goyal and Moraga-González,

2001), crime networks (Ballester, Calvó-Armengol, and Zenou, 2006), peer effect and education de-

cisions in social networks (Calvó-Armengol, Patacchini, and Zenou, 2009), and local consumption

externalities (Candogan, Bimpikis, and Ozdaglar, 2012). On the other hand, had we assumed that

the interaction function f is decreasing, the players would have faced a network game of strategic

substitutes, as in Bramoullé and Kranton (2007) who study information sharing and the provision

of local public goods.5

An important subclass of network games is the case in which players’ payoff functions are quadratic,

ui(x1, . . . , xn) = −1

2
x2i + α

n∑
j=1

wijxixj + αxiεi, (3)

where α ∈ (0, 1) is some constant.6 Under such a specification, the corresponding interaction func-

tion is given by f(z) = αz, hence, implying that the equilibrium of the game can be characterized

as a solution to a system of linear equations.

We end our discussion by pointing out two natural candidates for the economy’s macro state in

this context. The first is the sum (or the average) of the agents’ equilibrium actions,

yagg = x1 + · · ·+ xn,

representing the aggregate level of activity in the economy. In our general framework, this corre-

sponds to the assumption that g(z) = h(z) = z. The second is the total or average utility (or equiva-

lently total social surplus) in the equilibrium, given by ysw =
∑n

i=1 ui. Although summing both sides

of equation (3) over all players i shows that social surplus depends not only on the agents’ states,

but also on weights wij and the realizations of the shocks εi, using the fact that equilibrium actions

satisfy (1) enables us to write ysw in the form of equation (2) as

ysw =
1

2

n∑
i=1

x2i ,

which corresponds to g(z) = z and h(z) = z2/2 in our general framework.

5Allowing both for strategic complementarities and substitutabilities, Acemoglu, Garcia-Jimeno, and Robinson (2014a)
develop an application of these models in the context of local municipalities’ state capacity choices, and estimate the
model’s parameters using Colombian data.

6See Zenou (2015) for a discussion and a variety of extensions of the baseline network game with quadratic payoffs.
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2.2 Example: Production Networks

Our general setup also nests a class of models that focus on the propagation of shocks in the real

economy. In this subsection, we provide an example of one such model along the lines of Long and

Plosser (1983) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), and show that it can

be cast as a special case of our general framework.

Consider an economy consisting of n competitive firms (or sectors) denoted by {1, 2, . . . , n},
each of which producing a distinct product.7 Each product can be either consumed by a mass of

consumers or used as an input for production of other goods. All firms employ Cobb-Douglas pro-

duction technologies with constant returns to scale that transform labor and intermediate goods to

final products. Production is subject to some idiosyncratic technology shock. More specifically, the

output of firm i, which we denote by Xi, is equal to

Xi = biA
α
i l

1−α
i

 n∏
j=1

X
wij

ij

α

, (4)

where Ai is the corresponding productivity shock; li is the amount of labor hired by firm i; Xij is

the amount of good j used for production of good i; bi is a constant; and α ∈ (0, 1) is the share of

intermediate goods in production. The exponent wij ≥ 0 in (4) captures the share of good j in the

production technology of good i: a higher wij means that good j is more important in producing

i, whereas wij = 0 implies that good j is not a required input for i’s production technology. The

assumption that firms employ constant returns to scale technologies implies that
∑n

j=1wij = 1 for

all i.

The economy also contains a unit mass of identical consumers. Each consumer is endowed with

one unit of labor which can be hired by the firms for the purpose of production. We assume that

the representative consumer has symmetric Cobb-Douglas preferences over the n goods produced

in the economy. In particular,

u(c1, . . . , cn) = b̃

n∏
i=1

c
1/n
i ,

where ci is the amount of good i consumed and b̃ is some positive constant.

One can naturally recast the interactions between different firms in such an economy in terms of

a network, with each vertex corresponding to a firm and the factor shareswij capturing the intensity

of interactions between them. Furthermore, given the log-linear nature of Cobb-Douglas produc-

tion technologies, the equilibrium (log) output of each firm can be written in the form of equation

(1), linking it to the outputs of its input suppliers and the productivity shocks in the economy.

To see this, consider the first-order conditions corresponding to firm i’s problem:

Xij = αwijpiXi/pj (5)

li = (1− α)piXi/ω, (6)

7Since each one of these firms is supposed to act competitively, they can also be interpreted as “representative firms”
standing in for a set of competitive firms within each of the n sectors.
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where ω denotes the market wage and pi is the price of good i. The market clearing condition for

good i, given by Xi = ci +
∑n

j=1Xji, implies that

si = ω/n+ α

n∑
j=1

wjisj ,

where si = piXi is the equilibrium sales of firm i. Note that in deriving the above expression, we

are using the fact that the first-order condition of the consumer’s problem requires that ci = ω/npi.

Given that the above equality defines a linear system of equations in terms of the equilibrium sales

of different firms, it is straightforward to show that si = piXi = ζiω for some constant ζi.8 Therefore,

replacing for equilibrium price pi in equations (5) and (6) in terms of the output of firm i yields

Xij = αwijζiXj/ζj and li = (1 − α)ζi. Plugging these quantities back into the production function

of firm i leads to

Xi = biζi(1− α)1−αAαi

n∏
j=1

(αwijXi/ζj)
αwij .

Now it is immediate that with the proper choice of constants bi, the log output of firm i, denoted by

xi = log(Xi), satisfies

xi = α

n∑
j=1

wijxj + αεi, (7)

where εi = log(Ai) is the log productivity shock to firm i. In other words, the interactions between

different firms can be cast as a special case of our general framework in equation (1) with linear

interaction function f(z) = αz.

We end our discussion by remarking that the logarithm of real value added in the economy,

which is the natural candidate for the economy’s macro state y, can also be expressed in terms of our

general formulation in (2). Because of the constant returns to scale assumption, firms make zero

profits in equilibrium, all the surplus in the economy goes to the consumers, and as a consequence,

value added is simply equal to the market wage ω. Choosing the ideal price index as the numeraire,

that is, n
b̃
(p1 . . . pn)1/n = 1, and using the fact that pi = ζiω/Xi, we obtain that the log real value

added in the economy is equal to

log(ω) =
1

n

n∑
i=1

log(Xi)−
1

n

n∑
i=1

log(ζi) + log(b̃/n).

Therefore, with the appropriate choice of b̃, we can rewrite log(GDP) as

y = log(GDP) =
1

n

n∑
i=1

xi, (8)

as in (2) in our general framework with g(z) = z/n.

8To be more precise, ζi = vi/n, where vi is the i-th column sum of matrix (I − αW )−1. In Section 3, we show that this
quantity coincides with the notion of Bonacich centrality of firm i in the economy.
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2.3 Example: Financial Contagion

As a final example, we show that our general framework also nests models of financial contagion

over networks. As a concrete example, we focus on a variant of a model along the lines of Eisenberg

and Noe (2001) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015b), who study how the patterns

of interbank liabilities determine the extent of financial contagion.

Consider an economy consisting of n financial institutions (or banks), which are linked to one

another via unsecured debt contracts of equal seniority. Each bank i has a claim of size ξij = wijξ

on bank j, where we assume that
∑n

j=1wij =
∑n

j=1wji = 1, thus guaranteeing that all banks have

identical total claims (of size ξ) on the rest of the banking system. In addition to its interbank claims

and liabilities, bank i has an outside asset of net value a and is subject to some liquidity shock εi.

Following the realizations of these liquidity shocks, banks need to repay their creditors. If a

bank cannot meet its liabilities in full, it defaults and repays its creditors on a pro rata basis. Let

zim denote the repayment of bank m on its debt to bank i. The cash flow of bank i is thus equal to

ci = a+εi+
∑n

m=1 zim. Therefore, as long as ci ≥ ξ, bank i can meet its liabilities in full, guaranteeing

that zji = wjiξ for all banks j. If, on the other hand, ci ∈ (0, ξ), the bank defaults and its creditors

are repaid in proportion to the face value of their contracts, i.e., zji = wjici. Finally, if ci ≤ 0, bank i’s

creditors receive nothing, that is, zji = 0. Putting the above together implies that the repayment of

bank i on its debt to a given bank j is equal to

zji = max

{
min

{
wji

(
a+ εi +

n∑
m=1

zim

)
, wjiξ

}
, 0

}
.

Summing both sides of the above equation over the set of banks j and letting xi =
∑n

j=1 zji denote

the total out-payment of bank i to its creditors imply

xi = max

{
min

{
n∑

m=1

wimxm + a+ εi, ξ

}
, 0

}
, (9)

where we are using the fact that zim = wimxm.

It is then straightforward to see that the interactions between different banks can be represented

as a network, with each vertex corresponding to a bank and the size of bank i’s obligation to bank j

representing the intensity of interactions between the two. Furthermore, the specific nature of in-

terbank repayments can be cast as a special case of our general model (1) with interaction function

f(z) = max{min{z + a, ξ}, 0}.
Note that unlike the examples presented in Subsections 2.1 and 2.2, this interaction function

does not satisfy the normalization assumption f(0) = 0 if a > 0. Nevertheless, this is not of ma-

jor consequence, as a simple change of variables would restore the original normalization: re-

defining the state of agent i as x̂i = xi − ξ leads to the modified interaction function f̂(z) =

max{min{z + a, 0},−ξ}, which satisfies f̂(0) = 0 whenever a > 0. Given that all our results and

their corresponding economic insights are robust to the choice of normalization, we find it easier

to work with the original model.
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Finally, assuming that each default results in a deadweight loss of size A (for example, because

of the cost of early liquidation of long-term projects as in our previous work), the social surplus in

the economy is equal to

y = A

n∑
i=1

1{xi ≥ ξ},

corresponding to g(z) = z and h(z) = A1{z ≥ ξ} in our general framework.

2.4 Existence and Uniqueness of Equilibrium

We now return to the general framework introduced above and establish the existence and (generic)

uniqueness of equilibrium. In general, the set of equilibria not only depends on the economy’s

interaction network, but also on the properties of the interaction function. We impose the following

regularity assumption on f :

Assumption 1. There exists β ≤ 1 such that |f(z) − f(z̃)| ≤ β|z − z̃| for all z, z̃ ∈ R. Furthermore, if

β = 1, then there exists δ > 0 such that |f(z)| < δ for all z ∈ R.

This assumption, which is satisfied in each of the economies discussed in Subsections 2.1–2.3

as well as in most other natural applications of this framework, guarantees that the economy’s in-

teraction function is either (i) a contraction with Lipschitz constant β < 1; or alternatively, (ii) a

bounded non-expansive mapping. Either way, it is easy to establish that an equilibrium always ex-

ists. In particular, when β < 1, the contraction mapping theorem implies that (1) always has a fixed

point, whereas if f is bounded, the existence of equilibrium is guaranteed by the Brouwer fixed

point theorem.

Our first formal result shows that beyond existence, Assumption 1 is also sufficient to guarantee

that the equilibrium is uniquely determined over a generic set of shock realizations.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, an equilibrium always exists and is gener-

ically unique.

A formal proof of the above result is provided in the Appendix. Intuitively, when β < 1, the con-

traction mapping theorem ensures that the economy has a unique equilibrium. The economy may

have multiple equilibria, however, when β = 1 (for example, as in the financial contagion example

in Subsection 2.3). Nevertheless, Theorem 1 guarantees that the equilibrium is generically unique,

in the sense that the economy has multiple equilibria only for a measure zero set of realizations of

agents-level shocks.

3 Smooth Economies

In the remainder of this chapter, we study how the economy’s underlying network structure as well

as different properties of the aggregation and interaction functions, shape economic outcomes. In
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particular, we are interested in characterizing how these features determine the extent of propaga-

tion and amplification of shocks within the economy.

To achieve this objective, we impose two further assumptions on our model. First, we assume

that the underlying economy is smooth, in the sense that functions f , g and h are continuous and

at least twice differentiable. The class of smooth economies nests many of the standard models

studied in the literature, such as variants of the network games and the production economy pre-

sented in Subsections 2.1 and 2.2. On the other hand, the model of financial interactions presented

in Subsection 2.3 is not nested within this class, as the corresponding interaction function is not

differentiable everywhere. Nevertheless, this non-smoothness is not of major consequence, as the

interaction function f can be arbitrarily closely approximated by a smooth function f̃ in such a way

that economic implications of the model under this smooth approximation are identical to those of

the original model.9

As our second assumption, we focus on the case where agent-level shocks are small. This as-

sumption enables us to approximate the equilibrium state of each agent and the economy’s macro

state by the first few terms of their Taylor expansions. Even though it may appear restrictive, our

following results highlight that such a “small-shock analysis” can lead to fairly general and robust

insights on how different network interactions shape economic outcomes.

3.1 First-Order Approximation

We start our analysis by providing a first-order (that is, linear) approximation to the agents’ equi-

librium states around the point where εi = 0 for all i. If the size of the agent-level shocks are small,

such an approximation captures the dominant effects of how shocks shape the economy’s macro

state.

Let us first use the implicit function theorem to differentiate both sides of the interaction equa-

tion (1) with respect to the shock to agent r:

∂xi
∂εr

= f ′

(
n∑

m=1

wimxm + εi

)(
n∑

m=1

wim
∂xm
∂εr

+ 1{r = i}

)
. (10)

Evaluating the above equation at the point ε = (ε1, . . . , εn) = 0 yields

∂xi
∂εr

∣∣∣∣
ε=0

= f ′(0)

(
n∑

m=1

wim
∂xr
∂εi

∣∣∣∣
ε=0

+ 1{r = i}

)
,

where we are using the fact that in the absence of shocks xm = 0 for all m. This equation can be

rewritten in matrix form as ∂x/∂εr|ε=0 = f ′(0)W∂x/∂εr|ε=0 + f ′(0)er, where x = (x1, . . . , xn)′ is the

vector of agents’ states and er represents the r-th unit vector. It is therefore immediate that the

derivative of the agents’ states with respect to the shock to agent r is given by

∂x

∂εr

∣∣∣∣
ε=0

= f ′(0)
[
I − f ′(0)W

]−1
er. (11)

9More specifically, it is sufficient for f̃ to satisfy Assumption 1 and, as f , be initially concave and then convex.
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Note that, as long as f ′(0) < 1, the matrix I − f ′(0)W is invertible, implying that the right-hand side

of (11) is well-defined. We find it useful to define the following concept:

Definition 2. The Leontief matrix of the economy with parameter α ∈ [0, 1) is L = (I − αW )−1,

where W = [wij ] is the economy’s interaction matrix.

In view of the above definition, we can rewrite equation (11) as

∂xi
∂εr

∣∣∣∣
ε=0

= α`ir, (12)

where α = f ′(0) and `ir is the (i, r) element of the economy’s Leontief matrix with parameter α. The

equilibrium state of agent i around the point ε = 0 can then be linearly approximated as

xi = α

n∑
r=1

`irεr. (13)

In other words, when the agent-level shocks are small (so that we can rely on a linear approxima-

tion), the economy’s Leontief matrix serves as a sufficient statistic for the network’s role in deter-

mining the state of agent i. More specifically, the impact of a shock to agent r on the equilibrium

state of agent i is simply captured by `ir.

Before continuing with our derivations, a few remarks are in order. First, note that Definition

2 generalizes the well-known concept of the Leontief input-output matrix to an economy with a

general form of interaction among agents. In particular, the (i, r) element of the matrix, not only

captures the direct interaction between agents i and r, but also accounts for all possible indirect

interactions between the two. To see this, note that `ir can be rewritten as

`ir = 1 + αwir + α2
n∑
k=1

wikwkr + . . . , (14)

where the higher-order terms account for the possibility of indirect interactions between i and r.

Thus, essentially, equation (14) shows that a shock to agent r impacts agent i not only through their

direct interaction termwir, but also via indirect interactions with the rest of the agents: such a shock

may impact the state of some agent k and then indirectly propagate to agent i. However, note that

the impact of a shock to agent r on i’s state is deflated by a factor α < 1 whenever the length of the

indirect interaction chain between the two agents is increased by one.

In view of the interpretation that `mi captures the equilibrium impact of agent i on the state of

agent m, it is natural to interpret
∑n

m=1 `mi as the extent of agent i’s overall influence on the rest of

the agents in the economy. We define the following concept, which is well-known in the study of

social and economic networks:

Definition 3. For a given parameter α ∈ [0, 1), the Bonacich centrality of agent i is vi =
∑n

m=1 `mi,

where L = [`ij ] is the corresponding Leontief matrix of the economy.
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Figure 1. The star interaction network.

To see how the above concept captures an intuitive notion of network centrality as well as the

overall extent of agents’ influence on one another, consider the star interaction network depicted

in Figure 1. As the figure suggests, a shock to agent 1, which takes a more central position in the

network, should have a larger impact on other agents’ states compared to a shock to agent i 6= 1.

Indeed, it is easy to verify that the Bonacich centrality of agent 1 is equal to v1 = 1 + αn/(1 − α),

whereas vi = 1 for i 6= 1.

More generally, in any given interaction network, agent i’s Bonacich centrality can be written

recursively in terms of the centralities of the rest of the agents in the economy:

vi = 1 + α

n∑
j=1

vjwji. (15)

This expression shows that i has a higher centrality (and hence a more pronounced impact on the

rest of the agents) if it interacts strongly with agents that are themselves central.

Returning to our derivations, we next provide a linear approximation to the economy’s macro

state y in the presence of small shocks. Differentiating (2) with respect to εr yields

∂y

∂εr
= g′(h(x1) + · · ·+ h(xn))

n∑
m=1

h′(xm)
∂xm
∂εr

. (16)

Evaluating this expression at ε = 0 and replacing for the derivative of agent i’s state from (12), we

obtain

∂y

∂εr

∣∣∣∣
ε=0

= αg′(0)h′(0)

n∑
m=1

`mr, (17)

where we have again used that fact that, in the absence of shocks, xm = 0 for all m and that h(0) =

0. Putting Definition 3 and equation (17) together leads to the following linear approximation to

the economy’s macro state as a function of its underlying interaction network, the interaction and

aggregation functions, and the agent-level shocks:
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Theorem 2. Suppose that f ′(0) < 1. Then, the first-order approximation to the macro state of the

economy is

y1st = f ′(0)g′(0)h′(0)

n∑
i=1

viεi, (18)

where vi is the Bonacich centrality of agent i with parameter f ′(0).

The above result highlights that, as long as one is concerned with the first-order effects, the

agents’ Bonacich centralities serve as sufficient statistics for how shocks impact the economy’s

macro state. In particular, shocks to agents who take more central roles in the economy’s inter-

action network have a more pronounced influence on economy’s macro state. The intuition under-

lying this result can be understood in terms of the recursive definition of agents’ centralities in (15):

a shock to an agent with a higher Bonacich centrality impacts the states of other relatively central

agents, which in turn propagate the shock further to other agents, and so on, eventually leading to

a larger aggregate impact.

We end our discussion by remarking that when the interaction and aggregation functions are

linear, Theorem 2 provides an exact characterization of — as opposed to a linear approximation

to — the macro state of the economy in terms of the agent-level shocks. For example, recall the

special case of network games with quadratic utilities studied in Subsection 2.1. By Theorem 2, the

aggregate level of activity in such an economy is proportional to a convex combination of agent–

level shocks, with weights given by each agent’s Bonacich centrality in the network:

yagg = α

n∑
j=1

vjεj .

This result coincides with those of Ballester et al. (2006) and Calvó-Armengol et al. (2009), to cite

two examples. Similarly, in the context of production economies with Cobb-Douglas production

functions studied in Subsection 2.2, recall from (7) that the log output of any firm i is a linear func-

tion of the log-output of its suppliers. Using the log-value added, defined in (8), as the macro state

of the economy, Theorem 2 implies that

log(GDP) =
α

n

n∑
j=1

vjεj ,

where εj is the log productivity shock to firm j, confirming a representation used in Acemoglu et al.

(2012).

3.2 Second-Order Approximation

The linear approximation provided in the previous subsection characterizes how, in the presence of

small shocks, the nature and strength of interactions between agents shape the economy’s macro

state. An important limitation of such an approximation is that the solution exhibits a certainty

equivalence property, in the sense that the expected value of the economy’s macro state is equal
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to its unperturbed value when no shocks are present. More specifically, as Corollary 1 below will

show, E[y1st] = 0 regardless of the economy’s interaction network or the shape of the interaction and

aggregation functions.10 Consequently, even though potentially useful from an ex post perspective,

the first-order approximation provided in Theorem 2 is not particularly informative about how the

economy’s interaction network shapes aggregate outcomes from an ex ante point of view. In order

to go beyond this certainty equivalence property, we next provide a second-order approximation

to the economy’s macro state. As our results in the following sections will show, taking the second-

order effects into account provides a more refined characterization of how agent-level shocks shape

economic outcomes.

We start by differentiating both sides of equation (10) with respect to the shock to agent j:

∂2xi
∂εrεj

= f ′′

(
n∑

m=1

wimxm + εi

)(
n∑

m=1

wim
∂xm
∂εr

+ 1{i = r}

)(
n∑

m=1

wim
∂xm
∂εj

+ 1{i = j}

)

+ f ′

(
n∑

m=1

wimxm + εi

)(
n∑

m=1

wim
∂2xm
∂εr∂εj

)
.

Evaluating this expression at ε = 0 implies

∂2xi
∂εrεj

∣∣∣∣
ε=0

= f ′′(0)

(
α

n∑
m=1

wim`mr + 1{i = r}

)(
α

n∑
m=1

wim`mj + 1{r = j}

)
+ α

n∑
m=1

wim
∂2xm
∂εr∂εj

∣∣∣∣
ε=0

,

where, once again, we are using the fact that xm = 0 for all m and that the first derivative of the

agents’ states with respect to the shocks can be written in terms of the economy’s Leontief matrix,

as given by (12). On the other hand, one can show that α
∑n

m=1wim`mr = `ir−1{i = r}.11 Therefore,

the previous expression can be simplified to

∂2xi
∂εrεj

∣∣∣∣
ε=0

= f ′′(0)`ir`ij + α

n∑
m=1

wim
∂2xm
∂εr∂εj

∣∣∣∣
ε=0

,

leading to

∂2xi
∂εrεj

∣∣∣∣
ε=0

= f ′′(0)

n∑
m=1

`im`mr`mj , (19)

where we are using the definition of the Leontief matrix. The above equation thus provides the

second-order derivates of agents’ equilibrium states as a function of the interaction function and

the Leontief matrix of the economy.

To obtain a second-order approximation to the macro state of the economy, we need to also

differentiate (16) with respect to εj :

∂2y

∂εr∂εj
= g′′(h(x1) + · · ·+ h(xn))

n∑
m=1

n∑
i=1

h′(xm)h′(xi)

(
∂xm
∂εr

)(
∂xi
∂εj

)

+ g′(h(x1) + · · ·+ h(xn))

n∑
m=1

[
h′(xm)

∂2xm
∂εrεj

+ h′′(xm)
∂xm
∂εr

∂xm
∂εj

]
.

10See Schmitt-Grohé and Uribe (2004) for a similar argument in the context of a general class of discrete-time rational
expectations models.

11To see this, recall that the Leontief matrix can be rewritten as L =
∑∞
k=0 α

kW k, which implies that αWL = L− I.
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Replacing for the first-order and second-order derivates of agents’ equilibrium states from (13) and

(19), respectively, leads to

∂2y

∂εr∂εj

∣∣∣∣
ε=0

= α2g′′(0)
[
h′(0)

]2 n∑
m=1

n∑
i=1

`mr`ij + g′(0)

n∑
m=1

[
h′(0)f ′′(0)

n∑
k=1

`mk`kr`kj + α2h′′(0)`mr`mj

]
,

which can be further simplified to

∂2y

∂εr∂εj

∣∣∣∣
ε=0

= g′(0)h′(0)f ′′(0)

n∑
m=1

vm`mr`mj + α2g′′(0)
[
h′(0)

]2
vrvj + α2g′(0)h′′(0)

n∑
m=1

`mi`mj ,

where vm is the Bonacich centrality of agent m with parameter α. Combining the above with (17)

leads to the following result:

Theorem 3. Suppose that f ′(0) < 1. Then, the second-order approximation to the macro state of the

economy is given by

y2nd = f ′(0)g′(0)h′(0)

n∑
i=1

viεi

+
1

2
g′′(0)

[
f ′(0)h′(0)

]2 n∑
i=1

n∑
j=1

vivjεiεj (20)

+
1

2
g′(0)

n∑
i=1

n∑
j=1

(
h′(0)f ′′(0)

n∑
m=1

vm`mi`mj +
[
f ′(0)

]2
h′′(0)

n∑
m=1

`mi`mj

)
εiεj ,

where L = [`ij ] is the economy’s Leontief matrix with parameter α = f ′(0) and vi is the corresponding

Bonacich centrality of agent i.

This result thus refines Theorem 2 by providing a second-order approximation to the role of

agent-level shocks in shaping the economy’s macro state. Note that the first line of (20) is simply

the first-order approximation, y1st, characterized in (18). The rest of the terms, which depend on the

curvatures of the interaction and aggregation functions, capture the second-order aggregate effects.

The second line, in particular, corresponds to additional terms resulting from the non-linearity of

the aggregation function, g. Note that these terms depend simply on Bonacich centralities, the vi
terms. This is due to the fact that as long as the interaction function f is linear, the total influence

of agent i on the rest of the agents in the economy is given by the Bonacich centrality of agent i,

vi =
∑n

m=1 `mi. The third line, on the other hand, shows that if either the interaction function f

or the h function is non-linear, the centrality measures are no longer sufficient statistics for the

shocks’ second-order effects. Rather, other network statistics — in particular,
∑n

m=1 `mi`mj and∑n
m=1 vm`mi`mj — also play a key role in how shocks propagate throughout the economy.

It is also worth noting that as long as shocks are small enough and the linear approximation

is non-trivial, the second-order terms in (20) are dominated by the effect of the first-order terms.

However, as our following results will show, in many applications the linear terms are equal to

zero (reflecting the above-mentioned certainty equivalence property), and hence are uninformative

about the nature of the economy’s macro state, making the second-order approximation essential

for a meaningful characterization of the aggregate impact of microeconomic shocks.
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4 Ex Ante Aggregate Performance

In the remainder of this chapter, we use Theorems 2 and 3 to characterize how network interactions

translate small, agent-level shocks into aggregate effects measured by the economy’s macro state.

This section provides a comparative study of the role of the economy’s underlying network

structure — as well as its interaction and aggregation functions — in shaping y from an ex ante

perspective, by interpreting the expectation of the macro state y as the economy’s “performance

metric”. Formally:

Definition 4. An economy outperforms another if E[y] is larger in the former than the latter.

A natural first step to obtain a comparison between the performance of different economies in

the presence of small shocks is to compare their first-order approximations. Recall from Theorem 2

that the first-order approximation of an economy’s macro state is equal to a linear combination of

agent-level shocks with the corresponding weights given by the agents’ Bonacich centralities, i.e.,

y1st = f ′(0)g′(0)h′(0)
∑n

i=1 viεi, leading to the following immediate corollary:

Corollary 1. E[y1st] = 0.

This simple corollary shows that the economy exhibits a certainty equivalence property from an

ex ante perspective up to a first-order approximation: the expected value of the economy’s macro

state is equal to its unperturbed value when no shocks are present, regardless of the nature of pair-

wise interactions or the shape of the interaction and aggregation functions. The more important

implication, however, is that the linear approximation provided in Theorem 2 is not informative

about the comparative performance of different economies, even in the presence of small shocks.

Rather, a meaningful comparison between the ex ante performance of two economies requires that

we also take the higher-order terms into account.

Thus, a natural next step is to use the second-order approximation provided in Theorem 3.

Equation (20) shows that once second-order terms are taken into account, the ex ante performance

of the economy, E[y2nd], depends on the curvatures of the interaction and aggregation functions. In

order to tease out these effects in a transparent manner, in the remainder of this section, we focus

on how non-linearities in each of these functions shape the economy’s macro state, while assuming

that the rest of the functions are linear.

4.1 Non-Linear Aggregation: Volatility

We first consider an economy with a general, potentially non-linear aggregation function g, while

assuming that f and h are increasing, linear functions. In this case, the ex ante performance of the

economy is given by

E[y] = Eg(x1 + · · ·+ xn).

This observation highlights that the curvature of g essentially captures the extent to which society

cares about volatility, for instance because of risk-aversion at the aggregate level. To see this, sup-

pose that g is concave. In this case, the economy’s performance is reduced the more correlated
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agents’ states are with one another. In fact, if g(z) = −z2, the economy’s ex ante performance sim-

ply captures the volatility of x1 + · · ·+xn. On the other hand, a convex g corresponds to the scenario

in which performance increases with volatility.

In either case, Theorem 3 implies that the expected value of the economy’s macro state, up to a

second-order approximation, is given by

E[y2nd] =
1

2
σ2g′′(0)

[
f ′(0)h′(0)

]2 n∑
i=1

v2i , (21)

where we are using the assumption that all shocks are independent with mean zero and variance

σ2 and the assumption that functions f and h are linear. Equation (21) shows that, in contrast to

Corollary 1, not all economies have identical performances once second-order terms are taken into

account. Rather, the economy’s ex ante performance depends on
∑n

i=1 v
2
i , which in turn, can be

rewritten as
n∑
i=1

v2i = n · var(v1, . . . , vn) +
n

(1− α)2
,

where α = f ′(0), thus leading to the following result:

Proposition 4. Suppose that the aggregation function g is concave (convex). An economy’s ex ante

performance decreases (increases) in var(v1, . . . , vn).

This proposition implies that, if g is concave, networks in which agents exhibit a less heteroge-

nous distribution of Bonacich centralities outperform those with a more unequal distribution. This

is due to the fact that a more equal distribution of Bonacich centralities means that shocks to dif-

ferent agents have a more homogenous impact on the economy’s macro state, and thus wash each

other out more effectively at the aggregate level. On the other hand, a more unequal distribution of

centralities implies that shocks to some agents play a disproportionally larger role in shaping y and

as a result, are not canceled out by the rest of the agent-level shocks, increasing the overall volatility

and reducing the value of E[y] whenever g is concave.

To see the implications of Proposition 4, consider an economy with the underlying star inter-

action network depicted in Figure 1. As already mentioned, the Bonacich centralities of agents in

such an economy are highly unequal as agent 1 has a disproportionally large impact on the states

of the rest of the agents. In fact, it is easy to show that
∑n

i=1 v
2
i is maximized for the star interaction

network. This implies that when g is concave, the star network has the least ex ante performance

(and hence, the highest level of volatility) among all economies.12

At the other end of the spectrum are regular economies in which the extent of interaction of

each agent with the rest of the agents is constant. More formally,

Definition 5. An economy is regular if
∑n

j=1wji = 1 for all agents i.

12Note that by Hölder’s inequality,
∑
i v

2
i ≤ (maxi vi)(

∑
i vi) = nmaxi vi/(1−α) ≤ n(1 − α + αn)/(1 − α)2, regardless

of the economy’s interaction network, where recall that α = f ′(0). This inequality is tight for the star network, implying
that

∑
i v

2
i obtains its maximal value.
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Figure 2. Two regular economies

Figures 2(a) and 2(b) depict two regular networks, known as the ring and complete interaction

networks, respectively. Because they are symmetric, all agents in both economies should have iden-

tical Bonacich centralities. In fact, summing both sides of (14) over i in an arbitrary regular economy

implies that

vr = 1 + α+ α2 + · · · = 1/(1− α)

for all r, where recall that α = f ′(0). This implies the following result:

Lemma 1. In any regular economy, all agents have identical Bonacich centralities.

Therefore, var(v1, . . . , vn) is minimized for all regular economies, implying that with a concave g,

they outperform all other economies from an ex ante perspective: all agent-level shocks in such an

economy take symmetric roles in determining the macro state, and minimize the overall volatility

of x1 + · · ·+ xn and thus increase E[y]. This implies the following corollary to Proposition 4:

Corollary 2. Suppose that aggregation function g is concave (convex). Any regular economy outper-

forms (underperforms) all other economies, whereas the economy with the star interaction network

underperforms (outperforms) all others.

This corollary and Proposition 4 are closely connected to the results in Acemoglu et al. (2012),

who show that in the context of the production economies presented in Subsection 2.2, aggregate

output volatility is increasing in the extent of heterogeneity in the firms’ centralities and is maxi-

mized (minimized) for the star (regular) network. This parallel can be better appreciated by not-

ing that the logarithm of output of a given firm i satisfies linear equation (7) and that log(GDP) =

(1/n)
∑n

i=1 xi. Therefore, the volatility of log value added is simply

var (log(GDP)) =
1

n2
E(x1 + · · ·+ xn)2.

Setting g(z) = −(z/n)2 implies that economies that have a higher ex ante performance in the sense

of Definition 4 are less volatile at the aggregate level. Hence, Proposition 4 and Corollary 2 guar-
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antee that any economy in which firms exhibit more heterogeneity in terms of their roles as input-

suppliers exhibits higher levels of aggregate (log) output volatility due to idiosyncratic firm-level

shocks. Our results thus show that it is the concavity of economy’s aggregation function that lies at

the heart of the findings of Acemoglu et al. (2012).

4.2 Non-Linear Interactions

We now focus on the role of non-linear interactions in shaping the economy’s ex ante performance.

To illustrate this role in a transparent manner, we consider an economy with a general, non-linear

interaction function f , while assuming that g and h are increasing, linear functions.13 The ex ante

performance of such an economy is given by

E[y] =

n∑
i=1

E[xi] =

n∑
i=1

Ef

 n∑
j=1

wijxj + εi

 .

The above equation highlights that the curvature of the interaction function f captures the extent

of “risk-aversion” at the micro-level.

To understand the role of interlinkages in affecting economic performance, we focus on the set

of symmetric, regular economies.14 Recall from Theorem 3 that, in the presence of small shocks,

the expected value of the economy’s macro state can be approximated by

E[y2nd] =
1

2
σ2g′(0)h′(0)f ′′(0)

n∑
i=1

n∑
m=1

vm`
2
mi. (22)

Note that as before, we need to rely on a second-order approximation, as the first-order terms are

not informative about the comparative performance of different economies; that is E[y1st] = 0 re-

gardless of the shape of f or the economy’s interaction network. Given that all agents in a regular

network have identical Bonacich centralities, Equation (22) shows that the economy’s performance

depends on the value of
∑

i,m `
2
mi. On the other hand, it is easy to verify that

n∑
m=1

`2mi = v2/n+ var(`1i, . . . , `ni), (23)

where v =
∑n

m=1 `mi = 1/(1− α) is the agents’ (common) Bonacich centrality, thus suggesting that

the term
∑n

i=1

∑n
m=1 `

2
mi decreases if inter-agent influences `mi are more evenly distributed. The

following result, which is proved in the Appendix, captures this idea formally:

Corollary 3. Suppose that there are no self-interaction terms, that is, wii = 0. If the interaction

function f is concave (convex), then the complete network outperforms (underperforms) all other

symmetric economies.

13The results, and in fact the expressions, are essentially identical when h is also non-linear.
14Recall that an economy is said to be symmetric if wij = wji for all i 6= j.
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Figure 3. The interaction function f(z) = max{min{z + a, ξ}, 0} corresponding to the model of financial in-
teractions in Subsection 2.3. Panels (a) and (b) plot the function for the case that a > ξ and a < 0, respectively.
The thin red line in each panel depicts a smooth approximation to the interaction function.

This corollary is related to the findings of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015b), who,

in the context of the model of financial interactions presented in Subsection 2.3, show that the com-

plete financial network exhibits a “phase transition”: when the total net asset value of the financial

system is large enough, the complete network is the financial network with the least number of de-

faults. However, as the net asset value of the financial system is reduced, beyond a certain point,

the complete network flips to be the economy with the maximal number of bank failures.15

To see the connection between their results and Corollary 3, recall that the corresponding inter-

action function in such an economy is given by f(z) = max{min{z + a, ξ}, 0}. As depicted in Figure

3(a), for large enough values of a (in particular, when a > ξ), this interaction function is concave in

the neighborhood of 0. Therefore, Corollary 3 implies that the complete network outperforms all

other economies.16 In contrast, once the banks’ net asset value a become small enough, the inter-

action function is locally convex around 0, as depicted in Figure 3(b). In stark contrast to the former

case, Corollary 3 now implies that all other economies would outperform the complete network.

Thus, our characterization results clarify that the findings of Acemoglu et al. (2015b) are due to the

fact that reducing the banks’ net asset values (for example, due to some exogenous shocks) essen-

tially corresponds to a shift from the concave to the convex region of the interaction function, thus

reversing the role of interbank connections.

In addition to providing a different perspective on the results of Acemoglu et al. (2015b), Corol-

lary 3 presents a partial answer to the question posed in the Introduction, related to the sometimes

contradictory claims on the role of dense network interconnections in creating systemic risk and

instability. It shows that when economic (financial) interactions correspond to a concave f , denser

interconnections are stabilizing (as in Allen and Gale (2000)), whereas they play the role of generat-

15To be more precise, Acemoglu et al. (2015b) state their results in terms of whether exogenous shocks that hit financial
institutions are small or large. Nevertheless, given that such shocks simply impact the net asset value of the banks, their
results can be equivalently stated in terms of the size of the net asset value of the banks, a.

16As already noted, even though the corresponding interaction function is not smooth, it can be arbitrarily closely
approximated by a smooth function in such a way that the economic implications of the model under this smooth ap-
proximation are identical to those of the original model. Figure 3 depicts one such smooth approximation.
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ing systemic risk when these interactions correspond to a convex f function. Finally, our result that

more densely interconnected networks are more unstable in the presence of convex interactions is

akin to similar results in the epidemic-like cascade models (such as Blume et al. (2011)), in which a

bank fails once the number of its defaulting counterparties passes a certain threshold.

5 Systemically Important Agents

A central concern in many analyses of economic and social networks is the identification of “key

players” or “systemically important agents”(e.g., Ballester et al. (2006) and Zenou (2015)). Loosely

speaking, these are entities that have a disproportionally high impact on some aggregate statistic

of interest. For example, Banerjee, Chandrasekhar, Duflo, and Jackson (2013, 2014) study how the

social network position of the first individual to receive information about a new product within

a village can increase the extent of information diffusion within that community. Similarly, in the

context of multi-agent contracting in the presence of externalities, Bernstein and Winter (2012)

are interested in obtaining an ordering of agents who when subsidized induce the maximal level

of participation by other agents. Relatedly, in the context of the example presented in Subsection

2.3, Acemoglu et al. (2015b) characterize the set of systemically important institutions in a financial

network, a shock to whom would lead to a large cascade of defaults.

In this section, we utilize Theorems 2 and 3 to study how different features of the environment

determine the impact of each agent on the macro state of the economy and provide a characteriza-

tion of the set of agents that are more important from a systemic perspective. We start by defining

this concept formally:

Definition 6. Agent i is said to be systemically more important than agent j if y(i) < y(j), where y(i)
denotes the macro state of the economy when agent i is hit with a negative shock.

In other words, agent i is systemically more important than agent j if a shock to i leads to a

larger drop in the economy’s macro state. Note that in general, the relative systemic importance

of an agent may depend on the size of the negative shock. Nevertheless, we can use our results

in Section 3 to provide a characterization of the systemic importance of different agents for small

enough shocks.

We should also remark that our notion of a systemically important agents is related to, but dis-

tinct from the notion of “key players” studied by Ballester et al. (2006) and Zenou (2015). Whereas

our focus is on how a shock to a given agent impacts some macroeconomic variable of interest,

these papers study the impact of the removal of an agent from the network.

5.1 Linear Interactions

We start by focusing on economies where the interaction and aggregation functions are linear. This

enables us to highlight, in a transparent manner, how the presence of non-linearities can shape

equilibrium outcomes.
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Recall that when the interaction and aggregation functions are linear, Theorem 2 provides an

exact characterization of the economy’s macro state in equilibrium. More specifically, it shows that

y is a linear combination of the idiosyncratic, agent-level shocks, with the weights proportional to

the Bonacich centralities of the corresponding agents, leading to the following result:

Proposition 5. Suppose that the economy’s interaction function is linear. Then agent i is more sys-

temically important than agent j if vi > vj , where vi is the Bonacich centrality of agent i.

In other words, in an economy with linear interactions, a negative shock to the agent with the

highest Bonacich centrality leads to the largest drop in the economy’s macro state. The intuition

underlying this result is simple and well-known in the literature: shocks to more central agents

propagate more extensively over the network and as a result have larger impacts on the economy’s

macro state.

To see the implications of the above result, consider the economies depicted in Figures 1 and 2.

Given that the ring and complete networks depicted in Figure 2 are regular, Proposition 5 suggests

that in the presence of linear interactions, all agents in such economies are equally systemically

important. In contrast, in the economy depicted in Figure 1, agent 1 takes a more central position

with respect to the rest of the agents, leading to the intuitive result that it is the most systemically

important agent within the economy.

Proposition 5 also has sharp predictions for the set of systemically important agents in the class

of network games with quadratic payoffs discussed in Subsection 2.1. Recall that the first-order

conditions in such games can be represented in the form of a linear interaction function. Thus, by

Proposition 5, the player with the highest Bonacich centrality would be the most influential player

in the game. This is indeed in line with the observations of Candogan, Bimpikis, and Ozdaglar

(2012), who argue that subsidizing players with the highest centrality would induce the largest in-

crease in the level of aggregate activity in the economy.

Similarly, in the context of production economies with Cobb-Douglas (and hence, log-linear)

production technologies discussed in Subsection 2.2, Acemoglu et al. (2012) show that productivity

shocks to firms with higher centralities have a larger impact on the economy’s aggregate output,

an observation consistent with the predictions of Proposition 5. More specifically in line with the

examples we discussed above, they also argue that, compared to a shock of equal size to one of the

more peripheral firms, a shock to firm 1 in the star network depicted in Figure 1 would have a much

larger impact on the log value added of the economy.

Finally, Proposition 5 also echoes some of the results in the literature on social learning that

studies the long-run implications of different learning rules. In particular, Golub and Jackson (2010)

show that if agents update their beliefs as a linear combination of their neighbors’ opinions (what

is commonly known as DeGroot-style learning), the information available to those with higher cen-

tralities plays a more prominent role in the eventual beliefs in the society. Relatedly, Jadbabaie et al.

(2012, 2013) show that the rate of information aggregation in a social network is more sensitive to
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the quality of the signals observed by the more central agents.17

5.2 Non-Linear Interactions

Our previous results show that if the economy’s interaction function is linear, Bonacich centrality

provides a comprehensive measure for agents’ systemic importance. This observation also means

that, as long as agent-level shocks are small enough, more central agents would play a more promi-

nent role in shaping the economy’s macro state, even if the interactions are non-linear. This is due

to the fact that by Theorem 2, the economy’s macro state can be linearly approximated by

y1st(i) = f ′(0)g′(0)h′(0)viεi,

leading to the following result:

Corollary 4. If vi > vj , then agent i is systemically more important than agent j for all interaction

functions f .

This conclusion is subject to an important caveat: even though vi > vj implies that i is more

systemically important than j in the presence of small shocks, vi = vj does not guarantee that the

two agents are equally systemically important. Rather, in such a scenario, a meaningful comparison

of the agents’ systemic importance requires that we also take their higher-order effects into account.

Thus, Corollary 4 is simply not applicable to regular economies, in which all agents have identical

Bonacich centralities.

In order to obtain a meaningful measure for agents’ systemic importance in a regular economy,

a natural step would be to utilize Theorem 3 to compare the second-order effects of agent-level

shocks on the economy’s macro state. From (20), we have that, in any regular economy,

y2nd(i) = f ′(0)g′(0)h′(0)vε+
g′′(0)

2

(
f ′(0)h′(0)

)2
v2ε2 +

1

2
g′(0)

(
vh′(0)f ′′(0) +

[
f ′(0)

]2
h′′(0)

)( n∑
m=1

`2mi

)
ε2,

where v = 1/(1 − α) is the agents’ (common) Bonacich centrality, thus implying that agent i’s sys-

temic importance is determined by the value of
∑n

m=1 `
2
mi. On the other hand, recall from (23) that∑n

m=1 `
2
mi essentially measures the variation in the extent to which agent i influences other agents

in the economy. We define the following concept:

Definition 7. The concentration centrality of agent i is di = stdev(`1i, . . . , `ni), where L = [`ij ] is the

economy’s Leontief matrix.

Thus, a smaller di means that agent i’s influence is more evenly distributed throughout the

economy. In other words, whereas an agent’s Bonacich centrality captures its overall influence,

concentration centrality measures how evenly the agent’s influence is distributed across the rest

17The main results in this literature are in terms of agents’ eigenvector centralities, defined as a limiting case of Bonacich
centrality. In particular, the eigenvector centrality of agent i satisfies v̂i = limα→1(1 − α)vi. See Jackson (2008) for a
discussion on other notions of centrality and their relationships to one another.
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Figure 4. A regular economy where agents’ have identical centralities, but differ in their concentration cen-
tralities.

of the agents. As an example, consider the economy depicted in Figure 4. It is easy to verify that

the depicted network corresponds to a regular economy, implying that all agents have identical

Bonacich centralities. However, the extent of dispersion is not identical across agents. Rather, for

large enough values of n, d1 < di for all i 6= 1, as agent 1’s interactions are more evenly distributed

throughout the economy, whereas all other agents interact with only a handful of others.

This discussion is summarized in the next proposition.

Proposition 6. Suppose that the economy’s interaction network is regular.

(a) If f is concave, then i is systemically more important than j if and only if di > dj .

(b) If f is convex, then i is systemically more important than j if and only if di < dj .

Taken together, Proposition 6 and Corollary 4 suggest that while Bonacich centralities summa-

rize the first-order effects of agent-level shocks on aggregate outcomes, the second-order effects

are captured by the agents’ concentration centralities. These second-order effects become criti-

cal in a regular network, where first-order terms are simply uninformative about agents’ systemic

importance.

Proposition 6 also reenforces an observation made by Acemoglu et al. (2015b) that relying on

standard and off-the-shelf notions of network centrality (such eigenvector or betweenness central-

ities) for the purpose of identifying systemically important agents may be misleading. As Proposi-

tion 6 suggests, the proper notion of network centrality has to be informed by the nature of microe-

conomic interactions between different agents.

6 Conclusion

This chapter presented a unified framework nesting a wide variety of network interaction models,

such as various classes of network games, models of macroeconomic risk built up from microeco-

nomic shocks, and models of financial interactions. Under the assumption that shocks are small
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(and the relevant interactions are smooth), our main results provide a fairly complete characteriza-

tion of the equilibrium, highlighting the role of different types of network interactions in affecting

the macroeconomic performance of the economy. Our characterization delineates how microe-

conomic interactions function as a channel for the propagation of shocks and enables us to pro-

vide a comparative study of the role of the economy’s underlying network structure — as well as

its interaction and aggregation functions — in shaping macroeconomic outcomes. In addition to

clarifying the relationship between disparate models (for example, those focusing on input-output

linkages, financial contagion and general cascades), our framework also highlights some of the rea-

sons behind the apparently contradictory conclusions in the literature on to the role of network

interactions in the emergence of systemic risk.

Our hope is that the framework provided here will be useful in future work on understanding

network interactions in general and the study of network games, macroeconomic risk and financial

contagion in particular. We believe that several important issues remain open to future research.

First, our framework focuses on an environment in which shock realizations are common knowl-

edge. Generalizing this setup to environments with incomplete and private information would en-

able us to understand the interplay between network interactions and information asymmetries. A

second direction for future research would be to apply similar analyses to economies that exhibit

richer strategic interactions (such, general imperfect competition rather than competitive or mo-

nopolistically competitive economies). Finally, a systematic investigation of endogenous network

formation in the presence of rich propagation and cascade dynamics remains an important area

for future research.
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A Technical Appendix

Lemma 2. Suppose that |f(z̃)−f(z)| = |z̃−z| for a pair of points z̃ > z. Then, the interaction function

f is linear in the interval [z, z̃] with a unit slope.

Proof. Pick an arbitrary point ẑ ∈ [z, z̃]. Given Assumption 1 and the monotonicity of the interaction

function, it must be the case that

f(z̃)− f(ẑ) ≤ z̃ − ẑ

f(ẑ)− f(z) ≤ ẑ − z.

Summing the above inequalities immediately implies that both inequalities have to be tight simul-

taneously. Therefore, for any ẑ in the interval [z, z̃], it must be the case that f(ẑ) = ẑ + f(z)− z.

Lemma 3. The interaction function f has at most countably many discontinuity points.

Proof. Let D denote the set of points where f is discontinuous. For any z ∈ D, define

f(z−) = lim
t↑z

f(t)

f(z+) = lim
t↓z

f(t).

Given the fact that f is nondecreasing, it must be the case that f(z−) < f(z+). Therefore, there

exists a rational number F (z) ∈ Q such that

f(z−) < F (z) < f(z+).

Furthermore, for any pair of points z, z̃ ∈ D satisfying z < z̃, it is immediate that F (z) < F (z̃).

Consequently, F : D → Q has to be an injection, proving that D is at most countable.

Proof of Theorem 1

We prove this result for two separate cases depending on whether (i) β < 1 or (ii) β = 1. Throughout,

we assume that the economy’s interaction network is strongly connected in the sense that there

exists a directed path from each agent to any other agent in the economy. In case of a disconnected

interaction network, the proof would apply to any connected component separately.

Case (i) First, suppose that β < 1. Define the mapping Φ : Rn → Rn as

Φi(x1, . . . , xn) = f

 n∑
j=1

wijxj + εi

 . (24)

For any x, x̃ ∈ Rn, we have

|Φi(x1, . . . , xn)− Φi(x1, . . . , xn)| ≤ β

∣∣∣∣∣∣
n∑
j=1

wij(xj − x̃j)

∣∣∣∣∣∣
≤ β

n∑
j=1

wij |xj − x̃j | ,
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where the first inequality is a consequence of Assumption 1 and the second inequality follows from

a simple application of the triangle inequality. The fact that
∑n

j=1wij = 1 implies that

|Φi(x1, . . . , xn)− Φi(x1, . . . , xn)| ≤ βmax
j
|xj − x̃j |,

and as a consequence,

max
i
|Φi(x1, . . . , xn)− Φi(x1, . . . , xn)| ≤ βmax

j
|xj − x̃j |.

In other words,

‖Φ(x)− Φ(x̃)‖∞ ≤ β ‖x− x̃‖∞ .

Therefore, the mapping Φ is a contraction with respect to the infinity norm with a Lipschitz constant

β < 1. The contraction mapping theorem then immediately implies that the mapping has a unique

fixed point x∗ = Φ(x∗), for all shock realizations (ε1, . . . , εn) ∈ Rn.

Case (ii) Next, suppose that β = 1. In this case, Assumption 1 guarantees that there exists δ > 0

such that |f(z)| < δ for all z.

Recall mapping Φ from (24). By assumption, it is continuous and maps the compact and convex

set [−δ, δ]n to itself. Therefore, by the Brouwer fixed point theorem, there exists x∗ ∈ [−δ, δ]n such

that Φ(x∗) = x∗, thus proving the existence of an equilibrium.

Next, we prove that this equilibrium is generically unique. Suppose that the economy has two

distinct equilibria, denoted by x and x̃. Let e = |x− x̃| ∈ Rn be the element-wise difference between

the two equilibria, which by assumption, is a non-zero vector. By definition, for any given agent i,

we have

ei =
∣∣∣f( n∑

j=1

wijxj + εi

)
− f

( n∑
j=1

wij x̃j + εi

)∣∣∣
≤
∣∣ n∑
j=1

wij(xj − x̃j)
∣∣ (25)

≤
n∑
j=1

wijej , (26)

where the first inequality is a consequence of Assumption 1. We now show that both inequalities

above are tight for all agents i.

Suppose that either inequality holds strictly for some agent i, implying that ei <
∑n

j=1wijej .

Let q ∈ Rn denote the left eigenvector corresponding to the top eigenvalue of matrix W . By the

Perron-Frobenius theorem, vector q is element-wise strictly positive.18 Multiplying both sides by qi
and summing over all agents i implies that

n∑
i=1

qiei <

n∑
j=1

n∑
i=1

qiwijej =

n∑
j=1

qjej ,

18For more on the Perron-Frobenius theorem, see Chapter 2 of Berman and Plemmons (1979).

30



leading to a contradiction. Therefore, it is immediate that (25) and (26) hold as equalities, thus

implying that ei =
∑n

j=1wijej for all agents i, or in matrix notation, We = e.

Consequently, by the Perron-Frobenius theorem, e has to be proportional to the Perron vector

of matrix W which is the vector of all ones. In other words, ei = c for all i and some strictly positive

constant c. Furthermore, the fact that (26) holds as an equality implies that xi−x′i has the same sign

for all i. Assuming that xi < x̃i, it must be the case that x̃i = xi + c for all agents i.

Summarizing the above implies that for all agent i,

xi = f

 n∑
j=1

wijxj + εi


and

xi + c = f

 n∑
j=1

wijxj + εi + c

 .

Letting zi =
∑n

j=1wijxj + εi and subtracting both sides of the above equalities lead to

|f(zi + c)− f(zi)| = c.

Thus, by Lemma 2, the interaction function f has to be linear with a unit slope within the interval

[zi, zi + c]. Consequently, there exists some constant bi such that f(z) = z + bi for all z ∈ [zi, zi + c].

Therefore,

xi =

n∑
j=1

wijxj + εi + bi

for all i. Multiplying both sides of the above equality by qi and summing over all agents i lead to
n∑
i=1

qiεi = −
n∑
i=1

qibi, (27)

where once again we are using the fact that
∑n

i=1 qiwij = qj . Therefore, the economy has two dis-

tinct equilibria if and only if the agent-level shocks satisfy (27). Now, Lemma 3 guarantees that

there are at most countably many of such values bi, as otherwise the interaction function f would

have uncountably many points of discontinuity. In other words, for the economy to have multiple

equilibria, the term
∑n

i=1 qiεi has to belong to a countable set B. This coupled with the observa-

tion that qi > 0 guarantees that the economy has a unique equilibrium for a generic set of shock

realizations.

Proof of Corollary 3

Suppose that f is concave. The proof for the case in which f is convex is identical. Recall from

Equation (22) that the ex ante performance the economy is decreasing in
∑n

i=1

∑n
m=1 `

2
mi, which

can be rewritten as
n∑
i=1

n∑
m=1

`2mi = trace(L2).
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Denoting the k-th largest eigenvalue of a generic matrix X with λk(X), we have:

trace(L2) =

n∑
k=1

λ2k(L) =

n∑
k=1

(1− αλk(W ))−2 ,

where the second inequality is a consequence of the fact that L = (I − αW )−1.

On the other hand, the assumption that wii = 0 implies that trace(W ) =
∑n

k=1 λk(W ) = 0,

whereas
∑n

j=1wij = 1 guarantees that λ1(W ) = 1. Putting these two observation together implies

that
∑n

k=2 λk(W ) = −1. Therefore,

trace(L2) =
1

(1− α)2
+

n∑
k=2

(1− αλk(W ))−2 (28)

≥ 1

(1− α)2
+ (n− 1)

(
1 +

α

n− 1

)−2
, (29)

where the second equality is due to the fact that functionQ(z) = (1− αz)−2 is convex. On the other

hand, it easy to show that for the complete network, λk(W ) = −1/(n−1) for all k 6= 1. Therefore, the

complete network obtains the lower bound in (29), and hence, has maximal ex ante performance

when the interaction function is concave.
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Bramoullé, Andrea Galeotti, and Brian Rogers, eds.), Oxford University Press.

36

http://www.phil.frb.org/publications/speeches/plosser/2009/03-06-09_nyu-restoring-financial-stability.pdf
http://www.phil.frb.org/publications/speeches/plosser/2009/03-06-09_nyu-restoring-financial-stability.pdf

	Introduction
	General Framework
	Example: Network Games
	Example: Production Networks
	Example: Financial Contagion
	Existence and Uniqueness of Equilibrium

	Smooth Economies
	First-Order Approximation
	Second-Order Approximation

	Ex Ante Aggregate Performance
	Non-Linear Aggregation: Volatility
	Non-Linear Interactions

	Systemically Important Agents
	Linear Interactions
	Non-Linear Interactions

	Conclusion
	Technical Appendix

