
NBER WORKING PAPER SERIES

GLOBAL SUNSPOTS AND ASSET PRICES IN A MONETARY ECONOMY

Roger E.A. Farmer

Working Paper 20831
http://www.nber.org/papers/w20831

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2015

I would like to thank Fernando Alvarez, Markus K. Brunnermeir, Emmanuel Farhi, Leland E. Farmer,
Xavier Gabaix, Nicolae Garleanu, Valentin Haddad, Lars Peter Hansen, Nobuhiro Kiyotaki, Robert
E. Lucas Jr., N. Gregory Mankiw, Nancy L. Stokey, Harald Uhlig, Ivan Werning and Pawel Zabczyk
for their comments on earlier versions of the ideas contained in this paper. I would also like to thank
participants at the NBER Economic Fluctuations and Growth Meeting in February of 2014, the NBER
2014 summer workshop on Asset pricing, the 2014 summer meetings of the Society for Economic
Dynamics in Toronto Canada, and the Brigham Young University Computational Public Economics
Conference in Park City Utah, December 2014. Earlier versions of this work were presented at the
Bank of England, the Board of Governors of the Federal Reserve, Harvard University, the International
Monetary Fund, the London School of Economics, the London Business School, Penn State University,
the University of Chicago, the Wharton School and Warwick University. I would especially like to
thank C. Roxanne Farmer for her editorial assistance. The views expressed herein are those of the
author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2015 by Roger E.A. Farmer. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Global Sunspots and Asset Prices in a Monetary Economy
Roger E.A. Farmer
NBER Working Paper No. 20831
January 2015, Revised February 2015
JEL No. E3,E43,G12

ABSTRACT

This paper constructs a simple model in which asset price fluctuations are caused by sunspots. Most
existing sunspot models use local linear approximations: instead, I construct global sunspot equilibria.
My agents are expected utility maximizers with logarithmic utility functions, there are no fundamental
shocks and markets are sequentially complete. Despite the simplicity of these assumptions, I am able
to go a considerable way towards explaining features of asset pricing data that have presented an obstacle
to previous models that adopted similar assumptions. My model generates volatile persistent swings
in asset prices, a substantial term premium for long bonds and bursts of conditional volatility in rates
of return.

Roger E.A. Farmer
UCLA
Department of Economics
Box 951477
Los Angeles, CA 90095-1477
and NBER
rfarmer@econ.ucla.edu



1 Introduction

The representative agent (RA) model has been used by macroeconomists to

understand business cycles for more than thirty years. This model, when

supplemented by price rigidities and financial frictions, does a reasonable

job of replicating the co-movements of consumption, investment, GDP and

employment in past data (Smets and Wouters, 2003, 2007). But it fails badly

when confronted with financial market facts (Cochrane, 2011).

This paper constructs a heterogenous agent general equilibrium model

to explain asset prices. In this model, asset price fluctuations are caused by

random shocks to the price level that reallocate consumption across two kinds

of people. Asset prices are volatile and price dividend ratios are persistent

even though there is no fundamental uncertainty and financial markets are

sequentially complete. Following David Cass and Karl Shell (1983), I refer

to the random variables that drive equilibria as ‘sunspots’.

My work differs in three ways from standard asset pricing models. First,

I allow for birth and death by exploiting Blanchard’s (1985) concept of per-

petual youth. Second, there are two types of people that differ in the rate

at which they discount the future. Third, my model contains an asset, gov-

ernment debt, denominated in dollars. All three of these assumptions have

appeared before in previous work.1 My contribution is to combine them in

a way that generates novel results.

Because I am interested in the effects of distributional shocks, my baseline

model has no fundamental uncertainty of any kind. The model has a set of

perfect foresight equilibria that are solutions to a difference equation which

converges to a unique steady state. Because debt is denominated in dollars,

1Farmer (2002a) develops a version of Blanchard’s (1985) perpetual youth model with

capital and aggregate uncertainty and Farmer (2002b) adds nominal government debt to

this framework to explain asset price volatility. Farmer, Nourry, and Venditti (2012), Gâr-

leanu, Kogan, and Panageas (2012) and Gârleanu and Panageas (2014) develop versions

of the Blanchard framework with two agents. The results in the current paper rely on all

three of these pieces; perpetual youth, multiple types and nominal debt.
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the initial price level is indeterminate. And because the initial price level

is indeterminate, there is more than one solution to the difference equation,

each of which is an equilibrium, and each of which begins at a different initial

point.

I exploit the indeterminacy of the set of the perfect foresight equilibria

to construct a rational expectations equilibrium in which uncertainty is non-

fundamental. The people in my model come to believe that the future price

level is a random variable, driven by a sunspot, and they write financial

contracts contingent on its realization. But the unborn cannot participate

in the financial markets that open before they are born. As a consequence,

sunspot shocks reallocate resources between people of different generations.

Most sunspot models add a shock to the perfect foresight equilibria of

a model that has been linearized around an indeterminate steady state.2

This method may be used to generate local sunspot equilibria but there is no

guarantee that the sunspot solutions of a linear approximation are close to the

equilibria of the original model once the variance of the shocks becomes large.

In this paper, I exploit the nonlinear nature of my solution to compute global

sunspot equilibria. This feature enables the model to generate a substantial

term premium for assets that exhibit duration risk.

Although I model an endowment economy, the framework I provide can

easily be extended to allow for production by adding capital and a labor

market. If my explanation for asset price volatility is accepted, models that

build on this framework have the potential to unify macroeconomics with

finance theory in a simple and parsimonious way.

2Farmer andWoodford (1984, 1997) is the first example of this type in a one dimensional

model and Woodford (1986) extends the technique to higher dimensions. See Benhabib

and Farmer (1999) and Farmer (1999), for further applications of this method to business

cycle models.
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2 Antecedents

An active body of scholars seek to explain asset price data using the repre-

sentative agent model. Some of the modifications to this model that have

been tried include richer utility specifications (Abel, 1990; Constantinides,

1990; Campbell and Cochrane, 1999) adding technology shocks with exoge-

nous time-varying volatility (Bansal and Yaron, 2004), and assuming that

technology is occasionally hit by rare disasters (Reitz, 1988; Barro, 2005,

2006; Wachter, 2013; Gabaix, 2012). Here, I take an alternative approach.

I draw on ideas developed at the University of Pennsylvania in the 1980s.3

Using the term sunspots to refer to nonfundamental uncertainty, David Cass

and Karl Shell (1983) showed that sunspots can have real effects on con-

sumption, even in the presence of a complete set of financial markets. Using

the term ‘self-fulfilling prophecies’ to refer to nonfundamental uncertainty,

Costas Azariadis (1981) showed that nonfundamental shocks could be added

to a DSGE model to drive business cycles. Drawing on both of these ideas,

Roger Farmer and Michael Woodford (1984; 1997) combined self-fulfilling

prophecies with indeterminacy to generate a model where sunspot shocks

explain persistent fluctuations in GDP.

In this paper I move the sunspot research agenda forward by developing

a model of asset pricing that represents an alternative to the widely used

representative agent approach (Abel, 1990; Campbell and Cochrane, 1999;

Bansal and Yaron, 2004).

My work is most closely related to four unpublished working papers,

Farmer (2002a,b, 2014a) and Farmer, Nourry, and Venditti (2012). In Farmer

(2002a) and Farmer (2002b) I constructed a perpetual youth model of the

kind developed by Blanchard (1985). I added aggregate shocks, and I used

the resulting framework to understand features of asset pricing data. The

models developed in those papers exploited the existence of an indeterminate

3Farmer (2014b) surveys the history of sunspots and self-fulfilling prophecies.
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steady state, but they relied on the unrealistic feature that the equilibrium

is dynamically inefficient.

In joint work with Carine Nourry and Alain Venditti (Farmer, Nourry, and

Venditti, 2012) we thought we had solved the problem of dynamic inefficiency

by constructing sunspot equilibria in a model with a unique perfect foresight

equilibrium. Unfortunately, that turns out not to be the case as the putative

equilibria we construct in that working paper fail to equate the marginal

rates of substitution of each type of agent in every state. Consequently, the

paper does not fulfil its claim to generate sunspot equilibria.

In this paper I combine ideas from all four of these working papers in a

novel way. First, I build on the perpetual youth model of Blanchard (1985) as

in Farmer (2002a). Second, I reintroduce nominally denominated government

debt as in my (2002b) paper. Third, I exploit the idea that there are two

types of agents, as in Farmer, Nourry, and Venditti (2012). And fourth, I

introduce a technique to construct global sunspots that is a development of

an idea first introduced in Farmer (2014a).

This is not the only paper to explore heterogenous agents models to un-

derstand asset pricing data. Gârleanu, Kogan, and Panageas (2012) build a

two agent lifecycle model where the agents have recursive preferences but a

common discount factor and they show that this model generates intergener-

ational shifts in consumption patterns that they call ‘displacement risk’. In a

related paper Gârleanu and Panageas (2014) study asset pricing in a contin-

uous time stochastic overlapping generations model. In contrast to my work,

these papers focus on fundamental equilibria and they adopt the common

assumption of Epstein Zin preferences (Epstein and Zin, 1991, 1989).

Challe (2004) generates return predictability in an overlapping gener-

ations model and Guvenen (2009) constructs a production economy that

he solves computationally. Constantinides and Duffie (1996) exploit cross-

section heterogeneity of the income process to show that uninsurable income

risk across consumers can potentially explain any observed process for asset
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prices. Kubler and Schmedders (2011) construct a heterogenous agent over-

lapping generations model with sequentially complete markets. By dropping

the rational expectations assumption, they are able to generate substantial

asset price volatility. In a related paper, Feng and Hoelle (2014) generate

large welfare distortions from sunspot fluctuations.

My work differs from these papers by providing a simple and analytically

tractable model that provides a bridge between asset pricing models and

business cycle models. In contrast to the now familiar assumption of Epstein

Zin preferences, my agents are Von-Neumann Morgenstern expected utility

maximizers with logarithmic utility functions. I abstract from fundamental

shocks and I assume that markets are sequentially complete. Despite the

simplicity of these assumptions, I am able to go a considerable way towards

explaining features of asset pricing models.

3 The Main Ideas

I construct a model in which people have infinite horizons but finite lives.

These people survive from one period to the next with an age-invariant prob-

ability. There are two types of people, one of which is more patient than the

other. There is no production, and each type is endowed with a single com-

modity in every period. In the absence of money, the unique equilibrium of

this model is characterized by a difference equation in a single state vari-

able that converges to a unique steady state. The initial condition of this

difference equation is the net indebtedness in the first period, of patient to

impatient types.

In a steady state equilibrium, patient people consume less than their en-

dowment when young and more than their endowment when old: impatient

people consume more than their endowment when young and less than their

endowment when old. In the steady state, there is an exponential age distri-

bution of each type.
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I add a government to this model that consists of a treasury and a central

bank. The treasury issues dollar denominated debt and, although money is

used as a unit of account, no agent in the model holds money.4 Each period,

the treasury raises lump sum taxes that it uses to pay the interest on its debt

and to roll over the principal. The central bank fixes the nominal interest

rate at a constant.

The model possesses a set of perfect foresight equilibria that are solutions

to a first order difference equation. There is more than one perfect foresight

equilibrium because the initial price level is a free variable. I use this fact to

construct a rational expectations equilibrium in which the price level is ran-

dom. In this equilibrium, price-level fluctuations reallocate the tax burden of

government debt between current and future generations. These fluctuations

exist as equilibria, even in the presence of a complete set of state-contingent

securities, because the unborn cannot insure against the state of the world

into which they are born.

We have many theoretical models of sunspot equilibria, most of which

cannot easily be mapped into real world data. This paper presents a model

that combines standard assumptions about preferences with a plausible de-

mographic structure to generate equilibria, driven by self-fulfilling prophecies,

that exhibit many of the features that we see in real world asset markets.

4 The Structure of the Model

This section lays out the structure of the model. Sections 4.1 — 4.4 ex-

plain the environment and Section 4.5 discusses an important implication of

the absence of intergenerational transfers. This assumption implies that the

model is non-Ricardian in the sense of Barro (1974).

4This assumption is widely used in monetary models and can be thought of the limiting

case of an economy where the medium of exchange function of money is small (Woodford,

1998).
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4.1 Assumptions about people, apples and trees

There are two types of people. Each type is endowed with one unit of a

unique perishable commodity in every period in which he is alive; I call this

an apple. The wealth of a person in the year of his birth is equal to the

discounted present value of his apples. I call this a tree.

People have logarithmic preferences and discount factors 1 and 2. Type

1 people are more patient than type 2 people. This assumption is represented

by the inequalities,

0  2  1  1. (1)

People of each type die with probability 1− and when a person dies he

is replaced by a new person of the same type. The model contains  type 

people, where
P

  = 1, hence, there is a constant population of measure 1.

4.2 Assumptions about uncertainty

Uncertainty in period  is indexed by a random variable  with compact

support S

 ∈ S

I refer to a −period sequence 
 as a −period history with root ,


 = { +1 } 

The root is the initial date-state pair and a history, 
 is a  −  dimensional

random variable with support S−
 .

In the remainder of the paper, I will drop  subscripts to cut down on

notation. Instead, I will use the notation  to refer to  () and  (0)

to refer to +1 (
0)  All real date  variables are functions of the current

realization of .
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4.3 Assumptions about the asset markets

Asset markets are sequentially complete. Three assets are actively traded;

Arrow securities, government debt, and trees.

An Arrow security costs  (0) apples at date  and pays one apple at

date + 1 if and only if state 0 occurs. In aggregate, people of type  hold

 () type  securities at date  in state . The quantities of each security

demanded by each type may be positive or negative.5

Government debt costs 0 dollars at date  and is a claim to0 dollars

at date  + 1. Because the dollar price of apples is a random variable, the

real return to government debt is also random.

A tree costs  apples at date  and delivers one apple every period in

which the issuer of the asset remains alive. The price of a tree is computed

recursively from the pricing equation,

 = 1 +  [ (
0) (0)] 

The term  appears in this expression to reflect the fact that the tree will be

worthless next period with probability (1− ). This reflects the probability

that the person issuing the claim has died.

Let 
¡



¢
be the price today of a claim to one apple in history 

 . I

assume that

lim inf
→∞


¡



¢
= 0 for all 

 

This is the stochastic generalization, for this economy, of the assumption that

the interest rate is greater than the growth rate and it rules out equilibria

that are dynamically inefficient.

5Because I make assumptions that allow me to aggregate the consumption decision of

each type, I do not refer to the asset holdings of individual agents. But in fact these asset

holdings display a rich pattern of heterogeneity. Asset holdings depend not just on type,

but also on the state into which a person was born.
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4.4 Assumptions about government

Government consists of a central bank and a treasury. The treasury issues

dollar denominated one-period debt and faces the budget constraint

0 =  −  (2)

at every date  where  is the proportional tax rate and  is the dollar price

of an apple.

The central bank sets the gross interest rate equal to a constant, that I

denote by   where  ≡ 1 , in every period. A monetary policy rule

of this kind is called passive. The treasury issues sufficient nominal debt to

roll over its existing debt, net of tax revenues. A fiscal policy of this kind is

called active.6

MichaelWoodford (1995), has shown that, in representative agent economies,

the combination of an active fiscal policy and a passive monetary policy leads

to a unique equilibrium price level. This result is known as the fiscal theory

of the price level and it does not hold in the model I develop in this paper.7

Dividing Equation (2) by  and multiplying and dividing the left-hand

side by 0, we can write the following expression for the evolution of govern-

ment debt

00 = −   (3)

where

 ≡ 


 and 0 =

0




In Section 6.2 I will combine Equation (3) with a difference equation in 

and  that arises from the assumption that the marginal rates of substitution

6This terminology is due to Leeper (1991).
7The fiscal theory of the price level treats the government budget constraint as a val-

uation equation. For a given net present value of tax revenues, there is a unique price

level for which the budget is exactly balanced. That is not true in my model. Instead,

variations in the price level redistribute the tax burden of the debt between the current

generation and future generations.
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of each type are equal state by state. This leads to two difference equations

in two variables,  and . For any given initial condition, pinned down by

the initial price of apples, these difference equations fully characterize the set

of perfect foresight equilibria.

4.5 Aggregate wealth and Ricardian equivalence

The aggregate wealth of the private sector consists of the after tax value of

existing trees, plus the value of government debt.

I will use the symbol  to represent aggregate private wealth,

 =  −  +  (4)

and the symbols  and  to represent the tax rate and the tax obligations

of current generations.  and  are related by the identity,

 ≡  

Because the economy is closed, government debt is the liability of private

agents. But some of the people who will repay that debt have not yet been

born.8 Using ̄ to represent the tax liability of future generations, the net

present value of the government’s assets must equal the net present value of

its liabilities,

 ≡  + ̄  (5)

Note however that

 6= 

8Gârleanu, Kogan, and Panageas (2012) refer to the risk introduced by incomplete

participation as ‘displacement risk’. In their work, all uncertainty is fundamental. Farmer,

Nourry, and Venditti (2012) also cite incomplete participation as a reason for the existence

of sunspot equilibria. However, their paper does not allow for a nominal asset. As a

consequence, the equilibrium in Farmer, Nourry, and Venditti (2012) is unique. I am

indebted to Pawel Zabczyk, Markus Brunnermeir and Valentin Haddad for discussions

which helped me to clarify this issue.
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This model is non-Ricardian in the sense of Barro (1974) because future,

as yet unborn generations, are partially liable for the debts incurred by the

treasury on behalf of the current generation.

The fact that the model is non-Ricardian depends, not just on demograph-

ics, but also on the assumption that there are no active intergenerational

transfers. This is an important assumption because it allows me to construct

sunspot equilibria in which people born into different sunspot states have

different utilities. One might think that, if people cared for their children,

they would make asset market trades on their behalf that would eliminate

the effects of nonfundamental uncertainty. That argument is incorrect.

In order for asset market trades to eliminate sunspot uncertainty it must

be possible for a person to leave his children with positive bequests in some

states of nature and with negative bequests in others. Although these trades

would never be observed on the equilibrium path, their conceptual existence

is required in order to enforce uniqueness of the fundamental equilibrium.

The fact that western legal codes prohibit debt bondage is sufficient to rule

out trades of this kind.

5 Household choice

In this section I solve individual maximization problems and, in Sections 6

and 8, I put the solutions to these problems together with the market clearing

conditions to characterize equilibria.

5.1 Utility maximization as a recursive problem

Agents have logarithmic preferences and an agent of type  solves the problem

 [] = max
{(0)}

{log +  [
0
 (

0)]} 
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such that X
0

 (0) 0
 (

0) +  ≤  ()  (6)

and

 ≡  () 

Here,  [] is the maximum attainable utility by household  with wealth

 at date  in state , and  is the holding of a type  agent of security .

In the period of his birth, the wealth of a person of type  is equal to

0 =  () (1− )  (7)

5.2 Annuities and the lifecycle

Because this is an economy in which the set of agents is changing over time, I

must keep track of peoples’ assets when they die. I follow Blanchard (1985) by

assuming that there exist complete annuities markets. The term  multiplies

each security price in Equation (6) because a person who holds a positive

amount of security 0 simultaneously purchases an annuities contract. He

earns a return greater than the market return in state 0 in return for leaving

his assets to the annuities company in the event of his death. Similarly, a

person who borrows security 0 is required to purchase a life insurance policy

that discharges his debt in the event of his death.

5.3 Consumption demand functions

I have made three strong assumptions. First, every person has the same

probability of death, independent of his current age. Second, preferences are

logarithmic, and third, markets are sequentially complete. The first two of

these assumptions are common to all models that use Blanchard’s 1985 per-

petual youth model. The third assumption, of sequentially complete markets,

allows me to easily solve my model when there are two types of people.
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I show, in Appendix A, that these assumptions imply that the aggregate

consumption of the two types are linear functions of their wealth.

1 =1 ≡ 1 ()  2 =2 ≡ 2 ()  (8)

where the parameters  and  are functions of the discount factors,  and

of the survival probability, 

 =
1

1− 1
  =

1

1− 2


The assumption that type 1 agents are more patient than type 2 agents

implies that

  

6 An expression for the pricing kernel

A pricing kernel, 0, is a random variable with the property that the price of

any asset can be computed as the expected value of its product with 0. In

this section I derive an expression for the pricing kernel as a function of three

variables; the current price of tree, the current value of government debt, and

the future value of government debt. An important part of this derivation,

is the assumption that people born in the future cannot participate in the

asset markets.

6.1 Marginal rates of substitution

Let  be the marginal rate of substitution of a type  person who is alive

in two consecutive periods. When preferences are logarithmic and markets

are complete, the marginal rates of substitution of each type are equal to the

ratios of their consumptions in consecutive date-state pairs, weighted by the

13



discount rate and the probability that they will survive,

1 =
11 ()

1 (
0)

 and 2 =
22 ()

2 (
0)

 for all  (9)

Note that this equation holds for all possible values of  and 0. In the

remainder of the paper, I will drop the dependence of current period variables

on  to keep the notation more readable.

I am using lower-case  to represent the consumption of an individual

person of type , and upper case  to mean the aggregate consumption of

all people of type . The superscript  on the term  indexes a person who

was alive in the previous period.

Following this convention,  (
0) is the consumption, next period in state

0, of a type  person who is still alive and 
 (

0) is the aggregate consump-

tion of all of these people. I show in Appendix B, that Equation (9) can be

aggregated across people and that the ratios of consumptions of each type

in two consecutive periods obeys the same equation as individual marginal

utilities,

1 =
11


1 (

0)
 and 2 =

22


2 (

0)
 (10)

The price of an Arrow security, 0 (0)  is related to the marginal rate of

substitution of each type, , by the expression

0 (0) =  (0) (
0)  for  ∈ {1 2}  (11)

where  (0) is the probability that state 0 will occur and the random vari-

able

 (
0) ≡ 0 (0)

 (0)
 (12)

is the pricing kernel.

I seek an expression for  (
0) as a function of the components of wealth

at consecutive dates. I show in Appendix B, that the numerators and de-
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nominators of Equations (10) can be expressed as affine functions of   
0


and 0

 = 0 + 1 [ (1− ) + ]  (13)


 (

0) = 0 + 1
0
 (

0) (1− ) + 2 (
0)  (14)

where the coefficients of these equations are functions of the deep parameters,

1 2 and .

Although the coefficients of  depend only on the sum,  +  , the

terms  (
0) and  (0) appear in the expression for 

 (
0) with different

coefficients. This important property follows from the fact that the newborns

next period do not hold government debt. It is important because the fact

that 1 and 2 are different implies that variations in the composition of

wealth between trees and government debt will influence the pricing kernel.

6.2 The pricing kernel

Combining equations (10), (13) and (14), one can derive an expression for

the pricing kernel as a function of   and 0 (0). First, note that trade in

asset markets links 0 (
0) to 0 (0),  and . I will describe this dependence

by a function  (·).
To derive this function I exploit the fact that in a competitive equilibrium

with complete markets, the marginal rates of substitution of each type must

be equal in every state. Combining equations (10), (13) and (14), these

marginal rates of substitution can be written as functions of   
0
 and 0

1 [  
0
 (

0)  0 (0)] = 2 [  
0
 (

0)  0 (0)]  (15)

Solving (15) for 0 leads to the definition of the function  (·),

0 (
0) =  [  

0 (0)]  (16)

Next, I seek an expression for the pricing kernel, which I describe by a
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function  (·). Replacing Equation (16) in the either of the functions  (·),
for  ∈ {1 2} we obtain the following definition,

 [  
0 (0)] ≡  [   [  

0 (0)]  0 (0)] . (17)

The pricing kernel is related to the price of an Arrow security by the identity,

 (  
0) ≡  (0)

 (0)
 (18)

7 Characterizing equilibria

An equilibrium is a possibly stochastic sequence { }, that satisfies the
following pair of stochastic difference equations,

0 =  [  
0 (0)]  (19)

 =  + { [  0 (0)] 0 (0)}  (20)

I derived Equation (19) in Section 6.2, Equation (16). Equation (20) is a

valuation equation for the current value of government debt.

Suppose first, that we consider only perfect foresight equilibria. These

equilibria are characterized by non-stochastic sequences that satisfy equa-

tions (19) and (20). I show in this section, that for a calibrated version of

this model, there is a single steady state solution to (19) and (20) and that

this steady state is a saddle. The saddle path, also called the stable manifold,

is a one-dimensional manifold of points with the property that trajectories

that begin on this manifold converge to the steady state (Guckenheimer and

Holmes, 1983).

In economics, we are used to associating saddle-paths with uniqueness

of equilibrium. For example, the canonical real business cycle model can

be described as a first order difference equation in consumption and capital
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that has a unique saddlepath stable steady state. This model is associated

with an initial condition for the capital stock. For every value of capital,

there is a unique value of consumption that places the system on the stable

manifold. The stable branch of the saddle, plus the initial value of capital,

fully characterizes the unique perfect foresight equilibrium.

The model I have described here is different. Although there is a unique

stable saddle path, the initial value of outstanding government debt depends

on the initial price level: And this can take on a continuum of values in an

open set. Because of the dependence of the initial condition on the dollar

price of apples, this model is associated with a continuum of perfect foresight

equilibria. An equilibrium is characterized by a sequence that begins at an

arbitrary point on the stable manifold and converges to the unique steady

state over time.

7.1 Perfect foresight equilibria

To study the properties of a perfect foresight equilibrium, I define a variable

0

0 =  (  
0)  (21)

and, in Appendix , I derive a transformation of variables that rewrites

perfect foresight solutions to equations (19) and (20) as an equivalent system

in the variables {}.9
The transformed system has the form,"

0 −  ( )

0 − ( )

#
= 0 (22)

In a separate Appendix, available online, I publish the code used to solve

the model and I show that, for the parameter values used in a calibrated

9This transformation is convenient because, given an expression for the evolution of

the sequence {}, I can price any asset by computing the conditional expectation of its
return with 0.
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version of the model, there exists a unique feasible steady state,
©
̄ ̄

ª
that

satisfies the equation "
̄− 

¡
̄ ̄

¢
̄−

¡
̄ ̄

¢ # = 0 (23)

Further, this steady state is a saddle point.

.

1D

2D
'm

m

m

b b 'b
Figure 1: The set of pefect foresight equilibria

Figure 1 depicts the dynamical system { }→ {0 0} defined by equa-
tion (22). The axes of this figure represent values of {}. The map defined
in Equation (22) sends every point in this space to some other point. The

upward sloping solid curve is the stable manifold and the downward sloping

dashed curve is the unstable manifold.

The stable manifold is a set  = [1 2] and a function  : → R,

 =  ()  (24)

with the property that every point that begins on this manifold follows a
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first order difference equation  : → 

0 =  ()  (25)

that converges to the steady state
©
̄ ̄

ª
.

7.2 Why there are multiple perfect foresight equilibria

The stable manifold,  () is one of two solutions to the functional equation,

0 =  [  ()] ≡  () 

 (0) =  [  ()] ≡  [ ()] 
(26)

The other is the unstable manifold (the dashed curve on Figure 1). All feasi-

ble bounded trajectories must start on, and remain on, the stable manifold.

In the first period of the model, type 1 people enter the period with a

net claim on type 2 people that I represent by 10. This initial condition

imposes a linear restriction on the three variable 10 0 and 0

0 + 10 + 20 = 10 (27)

where 0 1 and 2 are functions of the deep parameters. After transforming

the system to the new coordinates { }, Equation (27) implicitly imposes
a linear restriction on 10, 0 and 0. The trajectory that originates at

{0 0}, calculated by iterating the equation,

0 =  ()  (28)

characterizes a perfect foresight equilibrium.

If government debt were denominated in units of apples, Equation (27)

would define a unique value of 0 for every value of initial indebtedness,

10. Instead, when debt is denominated in dollars, there are many feasible
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initial pairs {0 0}  all of which lie on the stable manifold and all of which
satisfy the initial condition, Equation (27).

8 Rational expectations equilibria

In this section, I show how to construct a set of rational expectations equi-

libria by randomizing over the perfect foresight equilibria of the underlying

model. In these equilibria, people form self-fulfilling beliefs about the distri-

bution of future prices.

8.1 Randomizations over perfect foresight equilibria

In the finite Arrow-Debreu model there is, generically, a finite odd number of

equilibria. But one cannot construct new stochastic equilibria by randomiz-

ing across the existing perfect foresight equilibria. This is a direct implication

of the first welfare theorem which asserts that every competitive equilibrium

is Pareto optimal. Because people are assumed to be risk averse, they would

always prefer the mean of a gamble to the gamble itself. And, in the case of

sunspot fluctuations, that mean is available.

That result breaks down when there is incomplete participation in asset

markets as a consequence of birth and death (Cass and Shell, 1983). When

there is incomplete participation in the asset markets, one can construct

randomizations across the perfect foresight equilibria of the model that are

themselves equilibria.

To construct equilibria of this kind, I generate sequences of random vari-

ables {  } that satisfy the equations,

0 (
0) =  [ (

0)   0 (0)]  (29)

 =  + [0 (0)0 (0)]  (30)

0 (0) ≡  [ (
0)   0 (0)]  (31)
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Because there are multiple perfect foresight equilibria, there are multiple

possible values of 0, 
0 and0 from the perspective of date . In a stationary

environment, people come to understand that the future price is a random

variable and they form beliefs that are indexed to an observable shock, 0.

This shock is a sunspot that is unrelated to fundamentals.

8.2 Beliefs and sunspots

What coordinates beliefs on a sunspot equilibrium? Suppose that Mr.  and

Mr.  believe the writing of an influential financial journalist, Mr.  Mr.

 writes a weekly column for the fictitious Lombard Street Journal and his

writing is known to be an uncannily accurate prediction of asset prices. Mr.

 only ever writes two types of article; one of them, his optimistic piece,

has historically been associated with a 10% increase in the price of trees. His

second, pessimistic piece, is always associated with a 10% fall in the price of

trees.

Mr.  and Mr.  are both aware that Mr.  makes accurate predictions

and, wishing to insure against wealth fluctuations, they use the articles of

Mr.  to write a contract. In the event that Mr.  writes an optimistic

piece, Mr.  agrees, in advance, that he will transfer wealth to Mr. .

In the event that Mr.  writes a pessimistic piece, the transfer is in the

other direction. These contracts have the effect of ensuring that Mr.  ’s

predictions are self-fulfilling.10 How can that be an equilibrium?

There are three groups of people involved in any potential trade. Pa-

tient agents alive today, impatient agents alive today, and agents of both

types who will be born tomorrow. Fluctuations in the price of trees cause a

wealth redistribution from the newly born to the existing generations. This

10I have shown in Farmer (2002c), that self-fulfilling beliefs can be enforced by what

I call a ‘belief function’; a new fundamental that has the same methodological status as

preferences, technology and endowments. In Farmer (2012), I estimated a model in which

the belief function is a primitive and I showed that it fits post-war US data better than a

standard New-Keynesian model.

21



wealth redistribution operates by a transfer of tax obligations to or from the

unborn. Because the existing agents have different propensities to consume

out of wealth, they choose to change their net obligations to each other in

different ways depending on whether the transfer from the unborn is positive

or negative. In a rational expectations equilibrium, the different behaviors

of Mr. A and Mr. B are self-fulfilling.

8.3 Constructing a sunspot equilibrium with two fu-

ture states

I will construct a rational expectations equilibrium in which agents correctly

forecast that only two values, 0 () and 0 () will occur in equilibrium. I

will call the event of an optimistic forecast by Mr. W, event {} and a
pessimistic forecast, event {}. Suppose further that the economy begins in
a perfect foresight equilibrium in which

̄ =  (̄)  and ̄ = 
¡
̄
¢
 (32)

At some special date  , everybody correctly forecasts that, at date  +1,

the price level, and therefore the value of 0, will take one of two values, 0 ()

or 0 (). Recognizing that these events will occur, those people alive at date

 trade a pair of Arrow securities that sell for prices 0
 and 0

 where

0



= 

£
 ̄ 

0 ()
¤
 and

0



= 

£
 ̄ 

0 ()
¤
 (33)

The events 0 =  and 0 =  occur with known probabilities,  and 

and the pricing kernel,  (·)  equates the marginal rates of substitution of
types 1 and 2, state by state.11

11Not all values of 0 () and 0 () are feasible; feasibility requires that the consumption
of both groups is non-negative ate date +1. That condition places an upper bound on the

value of 0 and, therefore, a lower bound on 0 There is, however, an open set of feasible
values for 0 (0), each of which is associated with a different value, next period, for the
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By assumption, the equilibrium up to and including date  has the prop-

erty that  = ̄ and  = ̄ and the equilibria from date  + 1 on satisfy

the equations 0 =  () and 0 =  (0)  Although there are two possible

values of  at date  + 1, at all other dates, the economy is in a perfect

foresight equilibrium.

The real value of debt at date  , equal to ̄ must satisfy the valuation

equation,

̄−  = 
£
 ̄ 

0 ()
¤
0 () + 

£
 ̄ 

0 ()
¤
0 ()  (34)

For two arbitrary values of 0 (0), Equation (34) defines the value of .12

There is a further condition to be verified. For arbitrary choice of 0 (0),

there is no guarantee that the system remains on the stable manifold in both

states. That condition adds the additional restriction, that

0 (0) =  [0 (0)]  (37)

and it implies that 0 () cannot be chosen independently of 0 ()  To guar-

antee that equation (37) holds, I will require that

 [
0] =  (̄)  (38)

where

0 (0) ≡ 
£
 ̄ 

0 (0)
¤
 (39)

price of commodities,  (0).
12Because Walras law holds, Equation (34) can be stated equivalently as a valuation

equation for trees,

 = 1 + 
©


£
 ̄ 

0 ()
¤
0 () + 

£
 ̄ 

0 ()
¤
0 ()

ª
 (35)

where

0 () = 
£
 ̄ 

0 ()
¤
  ∈ { }  (36)
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Equations (37) and (38) imply that, if both continuation values are on the

stable manifold, we cannot choose 0 () independently of 0 (). We are,

however, free to pick an arbitrary value for 0 () and an arbitrary proba-

bility  (). There is a lot of flexibility in defining a rational expectations

equilibrium, even in the case of only two states.

8.4 Constructing a sunspot equilibrium: the general

case

This section generalizes the idea of randomizing over perfect foresight equi-

libria to the case in which people come to believe that there are many possible

continuation values for the price level at every possible date.

To generate sunspot equilibria, I randomize over the set of perfect fore-

sight equilibria. Every perfect foresight equilibrium is uniquely characterized

by an initial value of the pricing kernel,0 and a pair of functions,  : → 

and  : → R such that

0 =  ()   =  ()  and 0 =  (0)  (40)

where the functions  (·) and g(·) are defined as solutions to the operator
equation

0 =  [  ()] ≡  () 

 (0) =  [  ()] ≡  [ ()] 
(41)

To construct a rational expectations equilibrium, I select continuation

values 0 (0) with the property that

 [0] =  ()  (42)

and I determine  from the valuation equation,

 = 1 +  [
00]  (43)
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where

0 =  [  ()   (
0)]  (44)

The expectation in (42) is taken with respect to a probability measure that

defines the properties of the equilibrium. In my simulations, I used a Beta

distribution, but that is only one of many possibilities. In a sunspot model,

the beliefs of people about future outcomes are self-fulfilling and the proba-

bility measure over outcomes is a primitive of the model.

9 Global numerical approximations to equi-

libria

In this section I introduce a new method for computing sunspot-driven ratio-

nal expectations equilibria. The usual method of computing sunspot equilib-

ria proceeds by linearizing a dynamic stochastic general equilibrium model

around an indeterminate steady state and adding random shocks to the re-

sulting linear system (Farmer, 1999; Woodford, 1986). This method produces

a valid approximation to the equilibria of a non-linear model but the accuracy

of the approximation decreases as the variance of the shocks becomes larger.

In this section, I show how to construct a higher order global approximation

that remains valid for shocks that move the pricing kernel over the entire

range of its support.

9.1 The method described

To construct global sunspot equilibria, I map the pricing kernel into the

interval [0 1] and I assume that, for any value of , the variable 0 has a

Beta distribution with mean  (), where 0 =  () is the stable manifold

of the map (22). That assumption implies that in any given period, people

believe that0 is a random variable with support for every value of ∈ .

In words, however well the economy is doing today, there is always positive
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probability that the next period will be associated with an extreme value in

which the discount factor is at its upper or lower bound.

The Beta distribution, (Johnson, Kotz, and Balakrishnan, 1995, Chap-

ter 21), is characterized by two parameters,  and  and if 0 has a beta

distribution, its conditional expectation is given by the expression,

 [0 | ] = 

+ 
.

Alternatively, one may parameterize the Beta distribution by the mean 

and the ‘sample size’,  , where

 =   and  =  (1− ) 

By modeling 0 as a Beta distributed random variable, I am able to

capture in a parsimonious way, the idea that people believe that equilibria

will be selected by the psychology of market participants.

One possible approach to modeling sunspots would be to fix the sample

size,  . This leads to the following dependence of the parameters  and 

on 

 () =   ()   () =  (1−  ()) 

This approach is problematic since for  close to 1 or 2, probability mass

piles up at the boundaries. It seems desirable to retain the property that

the distribution has a single interior peak, a condition that requires that 

and  are both greater than 1. For that reason, I chose to let  be state

dependent.

In my simulations, I chose a parameter   1 and I picked  such that

 () = max

∙
1

 ()


1

1−  ()

¸
 (45)

This choice of  guarantees that  and  are both greater than 1, and hence
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the distribution has a single interior mode.

Figure 2 depicts the distribution of0 for three different values of The

figure is drawn for the choice of  = 4, which corresponds to my baseline

calibration. Higher values of  generate pictures with the same qualitative

features but with a lower variance for each distribution.
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Figure 2: The Distribution of 0 when  = 4

The three dashed vertical red lines on Figure 2 depict values of. I chose

values,

 =
h
0903 0945 0988

i


which correspond to the midpoint of the support of 0 and a distance of 001

from each end.

The dot-dashed vertical green lines depict the function  (). These

correspond to the values,

 () =
h
0904 0947 0987

i

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For each value of  the associated single-peaked curve is the Beta distri-

bution associated with that realization of 0, with mean  (). Notice that

the variance of 0 is greater when  is in the center of the set  than at

either end. This property is dictated by three assumptions. First, 0 has

a Beta distribution, second, 0 has full support for every , and third, the

distribution of 0 has a single interior mode.

9.2 Calibrating the model to understand the behavior

of asset prices

We have many examples of sunspot models. The interesting question is

whether a calibrated version of a sunspot model can help us understand the

behavior of asset prices. To address this question, I calibrated the model to

the parameter values reported in Table 1.

Table 1

Parameter Description Parameter Name Parameter Value

Survival probability  098

Fraction of type 1 in the population 1 05

Gross nominal interest rate  105

Discount factor of type 1 1 098

Discount factor of type 2 2 090

Variance parameter  4

Primary surplus  002

The parameter  is the probability that a person will survive into the

subsequent period and, when  = 098, the typical person has an expected

life of 50 years. I arrived at this number by splitting the age distribution of the

US population into quintiles and weighting each quintile by life expectancy

using mortality tables.
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The choice of 1 to be 05 was arbitrary. I did, however, conduct robust-

ness checks and the results I report below are not sensitive to alternative

choices.

To describe monetary policy, I chose  = 105. That choice is frequently

cited by central bankers as the ‘normal value’ for interest rates and it is

consistent with a safe real rate of 3% and an inflation target of 2%. This

choice has no effect on the equilibrium behavior of  and  since these are

real variables. It will, however, influence the behavior of the inflation rate.13

The parameters 1 and 2, affect the steady state discount factor and

one can show that

2  ̄  1

I chose values of 098 and 09 by experimenting with the model to find values

that led to a mean safe rate of 3%. The gap between these two discount

factors determines the possible range of sunspot fluctuations and it needs to

be relatively large if the model is to have a hope of capturing observed asset

price movements.

Table 2

Variable Name Parameter Name Parameter Value

Equilibrium discount factor ̄ 097

Equilibrium government debt ̄ 069

Equilibrium asset price ̄ 206

Return to a tree  103

Return to debt  103

For any value of the support of 0, the parameter  determines the vari-

ance of the sunspot distribution for any given . I experimented with differ-

13In my simulations, I have assumed that all government debt is one-period. In that

case, a policy of fixing the interest rate leads to price level volatility of a similar magnitude

to that of asset price volatility. More generally, if debt is of longer maturity, movements

in the pricing kernel will cause revaluations in the price of long bonds and a more muted

response of prices.
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ent values of  and chose  = 4 to match asset returns with an approximate

range of plus or minus 20%. Higher values of  lead to lower asset return

volatility and lower values lead to higher volatility. Finally, I chose a value

of  of 2% to match the mean post-war primary government budget surplus.

The calibration of Table 1 implies the steady state values for ̄, ̄ ̄ 


and , reported in Table 2. Here,  and  are the real gross returns to

holding a tree, or to holding government debt, in the non-stochastic steady

state. These are the same and both are equal to 103, corresponding to a

real interest rate of 3%.

9.3 Approximate global solutions

A perfect foresight solution to the model is characterized by a set  and a

pair of functions  () : →  and  () : → R such that

0 =  [  ()] ≡  () 

 (0) =  [  ()] ≡  [ ()] 
(46)

for all  ∈ . To solve these equations I used Chebyshev collocation as

described in Judd (1998). That method converts the operator equation,

(46), into a non-linear algebraic equation in the coefficients of two unknown

polynomials ̂ () and ̂ (). These polynomials approximate the functions

 () and  () and by increasing the number of terms in the polynomial,

one can achieve an arbitrary close approximation to  and . In practice, I

used polynomials of order 4.

To compute the boundaries of the set , I derived an expression for the

aggregate consumption of each type, as functions of  and  and I solved

Equation (47)

1 [1  (1)] = 0 2 [2  (2)] = 0 (47)

This calculation gave me the two points where one or the other type consumes
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the entire endowment of the economy. For the calibration from Table 1 the

lower boundary, 1 is equal to 0893 and the upper boundary, 2, is equal

to 0998. When  = 1, type 2 agents consume all of GDP. When  = 2,

type 1 agents consume everything.
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Figure 3: Some properties of the global solution

The top left panel of Figure 3 graphs the function ̂ () −  on the

vertical axis as a function of  on the horizontal axis. The point where the

curve crosses the zero axis corresponds to the steady state ̄ = 097 and

the range of  is defined by the set . I have graphed the change in 

as a function of  rather than 0 as a function of , because in a plot of

0 against , it is difficult to discern the difference between 0 and the 45

degree line.

The top right panel of Figure 2 graphs the consumption of type 1 people,

this is the upward sloping curve, and the consumption of type 2 people, this is

the downward sloping curve. The lower left panel of Figure 3 is the function
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 = ̂ (). This panel shows that, when the primary surplus is 2% of GDP,

government debt can attain values between 20% and 85% of GDP.

The lower right panel of Figure 3 is the price of a tree as a function of .

This panel demonstrates that, for the calibration in Table 1, the price of a

tree varies between 8 and 24. This fact is significant since  determines the

lifetime wealth of a newborn. A person born into the world when  = 24

will be three times better off during his life than a person born into the world

when  = 8.

10 Explaining data with a global sunspot model

Representative agent models are difficult to square with three features of asset

price data. 1) Asset prices are persistent and volatile and price dividend

ratios are mean reverting. 2) Aggregate consumption is smooth but the

return to a riskless asset is five hundred basis points less than the return to

the stock market. 3) Asset price volatility is non-constant and non-Gaussian,

and models that assume that asset prices are log normally distributed with

time-invariant volatility are rejected decisively by the data (Bollerslev, Engle,

and Nelson, 1994).

This section presents a series of graphs that depict the characteristics of

data simulated from the global sunspot model and it demonstrates that these

simulations go a long way towards explaining all three of these features.

10.1 Excess volatility

To simulate data, I initialized 0 = ̄ and I generated 60 years of data

by drawing a sequence of Beta distributed random variables that obey the

recursion,

0 = 
h
 ()  ̂ ()

i

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where  ( ) is the beta distribution parameterized by sample size  and

mean . I chose  to be a function of , using the method described in

Section 9.1, Equation (45).
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Figure 4: Sixty years of simulated data

Figure 4 plots the data generated from a single 60 year simulation. The

right panel is the price of a tree. This represents a claim to one tree and one

apple next period and with probability  and nothing with probability 1−.
To construct the series for , I used the definitions of the functions

 (·)   (·) and the bond valuation equation, (20), to derive a function  (·) :
 × R→ R+

0 =  [0  (0)]  (48)

and I solved the asset price valuation equation

 = 1 + 

Z 2

1

 [0 ̂ (0)] Pr
h
0; ()  ̂ ()

i
0 (49)

where Pr
h
0; ()  ̂ ()

i
is the density function of a Beta distributed

random variable, defined over the set , with mean ̂ () and sample size

 ().
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If we think of the death of the tree as a random event,  represents an

equity claim to one apple every period with a default probability in any given

period of 1− . Under that interpretation, the price of the tree is the model

counterpart of the average price-earning ratio in the stock market. In the

simulated series of sixty years of data reported in Figure 4, the model PE

ratio varies between 24 and 16 and is both persistent and mean reverting.

The left panel of Figure 4 plots the safe rate, the risky rate and the

expected inflation rate. The safe rate is the return to a claim to one apple

for sure and the risky rate is the return to buying a tree and selling it one

period later. The risky rate is defined by the equation,

 ≡ 100
µ

0
 − 1 − 1

¶
 (50)

and the real safe return  is equal to

 ≡ 100
µ

1

 [0]
− 1
¶


where

 [0] ≡  () 

Expected inflation is defined as

Π ≡  [0] 

where  = 105

Table 3 reports the means and standard deviations of  and  for this

draw of sixty years of data, along with the Sharpe ratio, defined as

Sharpe =
 − 




where  is the standard deviation of .
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Table 3: Safe Rate Risky Rate Sharpe Ratio

Mean 215 304

Std. Dev. 107 57 016

Two features stand out from this simulation. First; the risky return is

highly volatile fluctuating in this sample between a high of 22% and a low of

−10%. Second; the return from buying a long claim and holding it for a year
has a return which is almost 1% higher than the riskless rate. The fact that

asset prices are volatile and mean reverting, even when aggregate consump-

tion is constant, is the first feature of the data that I set out to understand.

The following section probes more deeply into the second feature, the ability

of this model to understand the equity premium puzzle.

10.2 The Sharpe ratio, the equity premium and the

term premium

In the US data, the mean return to equity has been, on average, 5% higher

than the return to government bonds. Because it is possible to leverage

returns through borrowing, finance economists focus instead on a different

statistic; the Sharpe ratio. The Sharpe ratio, defined as the excess return

on a risky asset divided by its standard deviation, has varied in US data

between 025 and 05 depending on the time period and the frequency over

which it is measured (Cochrane, 2001).

Figure 4 suggests my model can explain part, but not all, of the equity

premium. In one simulated data series of 60 years, the excess return was

approximately 1% and the Sharpe ratio was 016. This fact raises several

questions. First; is the result a fluke?

The average Sharpe ratio in 60 years of simulated data is a random vari-

able and because asset returns are so volatile, its standard deviation is high.

To examine the ability of my model to produce a high Sharpe ratio, I simu-

lated 6 000 draws of 60 years of data and I plotted the empirical frequency
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distributions of the riskless rate, the mean return to holding a tree and the

Sharpe ratio. The results are graphed in Figure 5.
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Figure 5: The Sharpe Ratio and the Returns to Safe and Risky Assets

The lower panel of Figure 5 plots the distributions over these 6 000 draws

of the average safe and risky returns in 60 year time series. The dashed line,

is the safe return and the solid line is the risky rate. This figure shows

that a 1% equity premium is not a fluke; it is characteristic of the invariant

distribution of returns.

The upper panel of Figure 5 plots the distribution of Sharpe ratios in

these simulations. Although the modal risky rate is 1% higher than the

safe rate for this model, there is a huge dispersion in average Sharpe ratios

even when data are averaged over sixty years. Note, from the lower panel,

that in the right tail of the distribution, the average safe rate exceeds the
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risky rate. It is this feature that explains the bimodal distribution of Sharpe

ratios in the upper panel of the figure. These data demonstrate that that the

dominant mode of the distribution has a Sharpe ratio of 01 and that there

is a non-trivial probability of observing a Sharpe ratio of 02 or higher. In

this sample 93% of the draws had a Sharpe ratio of 02 or greater.

Andrew Abel (1999) has pointed to the important distinction between the

equity premium and the term premium. The equity premium is the excess

return to holding a long dated claim to an uncertain income stream such as

equity. The term premium is the excess return to holding a long-dated claim

to a safe income stream such as a thirty year treasury bond. Abel finds that

about 14 of the equity premium puzzle can be attributed solely to the term

premium, a finding that is consistent with the data generated by my model.

Is this a success? Partially. The model has logarithmic preferences, ex-

pected utility and no fundamental uncertainty; and yet, it is able to generate

a substantial Sharpe ratio. It seems likely that a version of this model that

allows for more risk aversion and aggregate fundamental uncertainty will be

able to do much better in this dimension.

10.3 Endogenous conditional volatility

Traditional asset pricing models rely on time varying volatility to explain

asset prices (Bansal and Yaron, 2004). The fact that asset prices display

bursts of volatility was highlighted by the ARCH and GARCH models of

Engle (1982) and Bollerslev (1986) and has since become a staple feature of

asset pricing models.

In much of the finance literature, conditional volatility is introduced by

assuming that shocks to dividend growth are driven by an exogenous sto-

chastic process with a time-varying standard deviation. The model I develop

in this paper generates endogenous conditional volatility.
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The intuition for this result is contained in Figure 2 in which I plotted

conditional Beta distributions for three different values of . The assump-

tion that expectations are rational requires that the pricing kernel should be

mean reverting. The fact that the support of 0 is bounded implies that the

variance of 0 is endogenously higher when  is in the middle of its support

than when it is at either end.

If the discount factor strays towards the middle of its range following

a large negative shock, there is an increased probability that it will be hit

with an even larger negative shock that sends it towards the lower bound

of its support. Once it reaches that region, the variance of future shocks

falls and it takes a longer time to escape back towards the mean of the

invariant distribution. This feature generates endogenous bursts of stochastic

volatility.

One such burst is depicted in Figure 6. The top panel of this figure depicts

the risky rate and the safe rate for one draw of sixty years of data beginning

in 1955 and ending in 2015. The shaded region between observations 1980

and 2004 depicts an episode where the volatility of the return to a tree is

higher than at other times. The middle panel blows up this picture and

replaces the risky rate with the expected inflation rate. Notice that a period

of high volatility is associated with a higher than average safe rate and a

period of deflation.

The bottom panel of Figure 6 shows the consumption of types 1 and 2

over this period. Notice that a period of high volatility is associated with

a reversal of the fraction of GDP consumed by each type. In normal times,

the economy is close to the non-stochastic steady state. The risky rate is

relatively smooth and the safe rate is low and stable. In these periods,

patient people consume roughly 80% of GDP and impatient people consume

the remaining 20%.

Occasionally, the economy is hit by a large shock which moves the sto-

chastic discount factor away from its steady state and towards the middle
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of its support. Once it reaches this point, volatility increases and the safe

return spikes. In the series generated in this example, the safe rate stays

elevated at approximately 8% for a period of more than twenty years. Over

this period, the consumption patterns of the patient and impatient people

are reversed and it is the impatient people who consume the larger fraction

of GDP. These results are suggestive of the Great Depression or the 2008

financial crisis.

11 Conclusion

In this paper, I have presented a theory that explains asset pricing data in

a new way. In contrast to much of the existing literature in both macro-

economics and finance, my work is based on the idea that most asset price

fluctuations are caused by non-fundamental shocks to beliefs. My model pro-

duces data that display volatile asset prices, a sizeable term premium and

bursts of time varying volatility. If one accepts the argument that a simpler

explanation is a better one, the fact that I am able to reproduce these empir-

ical facts in a model with logarithmic preferences and no fundamental shocks

suggests that the model is on the right track.

My model is rich in its implications. It provides a simple theory of the

pricing kernel that can be used to price other assets. The model is open

to more rigorous econometric testing and its parameters can be estimated,

rather than calibrated, using non-linear methods. It provides a theory of

the term structure of interest rates that can be tested against observed bond

yields and by adding a richer theory, in which output fluctuates as a conse-

quence of labor supply or because of movements in the unemployment rate,

the theory can be expanded to distinguish between the term premium and the

equity premium. I view all of these extensions as grist for the mill of future

research. Conducting these extensions is important because my model is not

just a positive theory of asset prices; it is ripe with normative implications.
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In my baseline calibration, I chose parameters to match key features of

the data and I generated simulated data series that closely mimic observed

interest rates and asset prices in the real world. In these simulations, as-

set price fluctuations cause Pareto inefficient reallocations of wealth between

current and future generations and these reallocations lead to substantial

fluctuations in welfare. If my model is correct, and these fluctuations are the

main reason why asset prices move in the real world, stabilizing asset prices

through monetary and fiscal interventions will be unambiguously welfare im-

proving.

Appendix A: Optimal decision rules

Let  ( ) represent the value function of a person of type . This function

obeys the Bellman equation,

 [] = max
{(0)}

(
log

"
 −

X
0

 (0) 0
 (

0)

#
+ [

0
 (

0)]}  (A1)

where

 −
X
0

 (0) 0
 (

0) ≡  (A2)

The unknown functions  ( ) must satisfy the following envelope condition,

 [] =
1



 (A3)

and the Euler equations for each state

− (
0)

1
+  (

0) [
0 (0)] = 0 (A4)
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Since this is a logarithmic problem with complete markets I will guess that

the value functions take the form

1 ( ) =  log (1)  2 () =  log (2)  (A5)

and verify this conjecture by finding values for the numbers  and  such

that equations (A3) and (A4) hold. By replacing the unknown functions

 (·) with their conjectured functional forms from Equation (A5) we arrive

at Equations (A6) and (A7).

1 =
1


 2 =

2


 (A6)

1 =
0 (0) 0

1 (
0)

 (0)
 2 =

0 (0) 0
2 (

0)
 (0)

 (A7)

The two budget equations, for each type, (A2), together with the four first

order conditions, (A6) — (A7), constitute six equations in the six unknowns,

 0
1, 

0
2 1, 2,  and . To solve these equations, substitute from (A7),

state by state, into Equation (A2), use the fact that
P

 (0) = 1, and cancel

 from each side to give the expressions

 =
1

1− 1
  =

1

1− 2
 (A8)

Combining these solutions for  and  with (A6) gives the consumption

rules that we seek.
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Appendix B: Deriving an expression for the

pricing kernel

In Appendix B we seek to establish that the first order condition

 (0) (0) =


0 (0)
 (B1)

implies that

 (0) (0) =
0 + 1 [ (1− ) + ]

0 + 1
0
 (

0) (1− ) + 2
0 (0)

 (B2)

The following argument follows closely from the argument developed in Farmer,

Nourry, and Venditti (2011). We begin with some definitions. Let  be the

consumption of a type  person who was alive in the previous period and let

 denote the consumption of a newborn of type . Further, let 

 be the

aggregate consumption of all newborns of type . To prove that (B2) follows

from (B1), we must find expressions for  and 0 as functions of  and .

The following steps imply that Equation (B1) must also hold not only for

individuals, but also in aggregate. Multiplying both sides of (B1) by 0 (
0)

and adding up over all people of type  who are alive in two consecutive

periods gives the expression,

 (0) (0) 0
 =  (B3)

Rearranging, leads to the expression.

 (0) (0) =


 0
 (

0)
 (B4)

This establishes the claim following Equation (9) in Section 6.1.
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Goods and asset market clearing imply

1 + 2 = 1 (B5)

and

1 +2 =  (1− ) +  (B6)

Combing these equations with the solutions for consumption from Appendix

, we have that,

1 =
[ (1− ) + −]

−
 and 2 =

[−  (1− )− ]

−
 (B7)

It follows that the coefficients of the numerators of (B2) are given by the

following definitions,

10 ≡ −1
−

 11 ≡ 1

−
 (B8)

20 ≡ 2

−
 21 ≡ −2

−
 (B9)

Next we seek expressions for the denominator of Equation (B2).

The aggregate consumption of all type  people alive in period + 1 can

be decomposed into the consumption of those who were alive in period  and

the consumption of the newborns. Let A be the index set of all type  people

alive at date  and let N+1 be the index set of all type  newborns at date

+ 1. Using these definitions,X
A+1

0 (
0) = 

X
A

0 (
0) +

X
N+1

0 (
0)  (B10)

where  premultiplies the first term on the right-side of this expression to

reflect the fact a fraction 1− of the previous generations have died. We can
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rewrite Equation (B10), using the definitions of  0
 

0
 and  0

  as follows,

 0
 (

0) =
 0
 (

0)−  0
 (

0)


 (B11)

Now we seek an expression for  0
 () as a function of wealth. There are

1− newborns of each type, each of whom consumes a fraction of his wealth.
These facts lead to the equations,

 0
1 (

0) = −1 (
0) (1− ) (1− )  (B12)

and

 0
2 (

0) = −1 (
0) (1− ) (1− )  (B13)

which determine the aggregate consumptions of newborns of each type. Com-

bining (B12) and (B13) with (B11), making use of (B7), leads to the expres-

sions we seek,

 0
1 (

0) =
[ (

0) (1− ) +  (0)−]

 (−)
−  (

0) (1− ) (1− )


 (B14)

and

 0
2 (

0) =
[−  (

0) (1− )−  (0)]
 (−)

−  (
0) (1− ) (1− )


 (B15)

These equations express the denominators of Equations (B2) as functions of

the components of wealth. It follows that the coefficients 0 1 and 2

from Equation (14) in Section 6.1 are defined as,

10 ≡
−

 (−)
 11 ≡ (1− )

∙
1

 (−)
− (1− )



¸
 (B16)

12 ≡
1

 (−)

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and

20 ≡


 (−)
 21 ≡ − (1− )

∙
1

 (−)
+
(1− )



¸
 (B17)

22 ≡
−1

 (−)


Appendix C: Transforming variables

We seek to derive a map {}→ {00} given the functions  and ,

0 =  (  
0)  (C1)

0 =  (  
0)  (C2)

and the government budget equation,

 = 00 +   (C3)

Equations (C1)—(C3) constitute three equations in the three unknowns , 

and 0 which may be solved to find three functions

 = 1 (
00)  0 = 2 (

00) and  = 3 (
00)  (C4)

Substituting 2 (·) and 3 (·) from (C4) into (C1),

2 (
00) =  [3 (

00)   0]  (C5)

Solving equations (C3) and (C5) for 0 and 0 as functions of  and  leads

to the functions we seek,

0 =  ( )  (C6)

0 =  ( )  (C7)

The existence of the functions  and is not guaranteed for all parameter
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values. The online Appendix provides code to compute  and  for my

baseline calibration and to establish numerically that equations (C6) and

(C7) have a unique steady state for which debt and the consumptions of

each group are non-negative.
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