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Abstract

In a model with multiple Pareto-ranked equilibria we add trade in
assets that pay based on the realization of a sunspot. Asset trading
restricts the equilibrium set in a way that raises welfare by eliminat-
ing equilibria with a high likelihood of disasters. When the probabil-
ity of a disaster is high enough, the coordination game becomes like
a prisoner’s dilemma situation in which the high-output equilibrium
disappears because the portfolios that agents choose induce them to
produce less. We derive an upper bound on the disaster probability,
we derive asset pricing implications including the disaster premium,
and we study the effect on stock prices of news shocks to beliefs.

1 Introduction

Our paper combines coordination games and trade in sunspot-contingent
assets. An equilibrium is a distribution over outcomes such as output, con-
sumption and investment. In a coordination game with multiple Pareto-
ranked equilibria, an outcome can be chosen by an extrinsic device such as
a sunspot. The sunspot is a public signal that correlates players’ actions.
The mapping between sunspots and equilibrium outcomes is in most models
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exogenous, as is the distribution of the sunspot and, hence, the distribution
of outcomes.

In our model, the mapping from sunspots to equilibrium play is endoge-
nous. This is done through a prior stage in which players, before taking a real
action, trade securities that pay contingent on the realization of a sunspot.
The choice of which securities to trade reflects the Nash equilibrium beliefs
that determine the mapping between a sunspot state and an action profile
and, hence, the probabilities with which outcomes arise. Trade results in
commitments to transfers that then shape equilibrium investment decisions
in the post-trade subgame.

The model has two types of agents, rich and poor, and they differ in their
attitudes towards aggregate risk. This motivates financial trade between
these two groups. The coordination sub-game that follows the trade has two
equilibria – “adverse” and “favorable.”. Aggregate output, consumption and
investment are low in the adverse sub-game equilibrium. Thus, both types
face aggregate risk and each type is better off in the favorable equilibrium.
The poor purchase insurance against the adverse outcome, which means the
rich are paid when the outcome is favorable. The higher the likelihood of
the adverse outcome is believed to be, the larger are the transfers and, in
particular, the larger is the transfer to the rich after the favorable outcome.
But agents have a concave utility of consumption, and if the transfer is large
enough the rich are not willing to invest. The favorable outcome then fails to
be an equilibrium in the sub-game. That is, if the probability of the adverse
outcome is high enough, trading in the sunspot-contingent assets transforms
the coordination sub-game into a prisoner’s dilemma game with a unique
outcome. The set of equilibrium distributions shrinks as the less favorable
distributions of outcomes are no longer equilibria.

Adding the asset-trading stage thus changes the “macroeconomic” sub-
game itself by bounding from above the probability of the adverse, in our
context disastrous, outcome. The end result, nevertheless, is that financial
markets raise welfare – by eliminating equilibria that place too high a prob-
ability on the adverse outcome, financial trade in fact eliminates low-welfare
equilibria. Financial markets also raise welfare through the usual channel,
when the distribution of outcomes as summarized by πL is given, agents can
trade income over states.

Figure 1 illustrates both positive effects of finance on real outcomes. It
plots the welfare of the rich and poor agents in the economy with and with-
out financial trade. If the financial markets are closed both the favorable
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and the adverse outcomes are possible, and the welfare of the two types is
shown by the pairs of dots on each vertical axis. As the probability, πL, of
the bad outcome rises, agents’ welfare declines. Opening financial markets
improves everyone’s welfare conditional on πL, and also invalidates equilibria
that feature a high probability of the low outcome. Financial markets thus
eliminate the low-welfare equilibria; the one exception is the deterministic
low outcome associated with the welfare levels B1 and B2 in the Figure; no
sunspot-contingent trades can arise here because sunspots play no role when
πL = 0.
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Figure 1: Welfare with and without trade in the financial markets. At πL ∈
{0, 1}, points A1, A2, B1, B2, three is no trade in financial assets and the
welfare is the same across the two regimes.

When the sunspot shock realization selects a subgame equilibrium, then
individual expectations of aggregate investment and productivity, individual
decisions, and the level of aggregate output are uniquely determined. Thus
our results would remain unchanged if the financial assets paid not contingent
on a sunspot realization but contingent on aggregate output, as is the case
with an aggregate stock market index such as the S&P 500. We show that
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trade in equity and in a safe asset – not “exotic” assets – suffices for our
results to obtain.

The asset-pricing implications relate to the disaster-risk literature. We
interpret coordination failures as disasters and in our model they are the only
cause of disasters. Our asset prices display a disaster premium that reflects
both the size of a disaster and its probability. The disaster size is 0.29 and
the disaster probability is only 2%; both are similar to the estimates in Barro
(2006). As the probability of disasters rises, the premium grows. However, a
higher than 2% probability of a disaster is not sustainable as trading in the
financial markets changes the set of possible equilibria. Thus, we provide a
theory of disaster risk. In probable contrast to wars and natural catastrophes,
we find that the size of disasters and their frequency are positively correlated
across equilibria: The larger the disaster, the higher is the likelihood that it
can occur.

The stock market index is an early warning indicator of disasters. Had
the agents received a signal about the sunspot realization, before the trade
in sunspot-contingent assets, this information would weigh down both the
stock market index and the expected output.

The remaining related literature divides roughly into three parts: The
sequential service constraint and the possibility of bank runs, coordination-
games such as speculative attacks, and coordination games as explaining
business cycles.

Bank runs.—The results in the bank-run literature differ in two ways.
First, a set of papers study how sunspot-non-contingent bank-deposit con-
tracts depend on exogenously specified sunspot probabilities, e.g. Cooper-
Ross (1998) and Peck and Shell (2003). Another strand studies how gov-
ernment intervention affects the set of equilibria – Keister (2014). Second,
Freeman (1988) and Bental, Eckstein and Peled (1991) have studied bank
contracts that allow dependence of a deposit contract on the sunspot.1 Gold-
stein and Pauzner (2005) derive a unique probability of a bank-run using the
arguments from the global games literature.

Speculative attacks.—We endogenize the disaster probability by allowing
trade in the competitive financial markets where assets pay on the realization

1A technical difference is that such contingent contracts can specify payments on indi-
vidual actions, even off-equilibrium actions. Examples would be penalties on early with-
drawals. By contrast, the Arrow securities studied in our are contingent on the aggregate
variables/events.
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of a publicly observed signal. In a different model with a public signal,
Atkeson (2000) reached a conclusion opposite to ours. He argued that trading
on assets would raise the number of equilibria by aggregating information
that is dispersed among agents. Thus prices would serve as a coordinating
device restoring multiplicity. There is no private information in our work and
financial markets play a role by changing incentives rather than information
sets.

Business cycles.— The research on coordination failures as causes of the
real business cycle; Cooper and John (1988), Benhabib and Farmer (1999).
In their work the set of equilibria is exogenously specified and they do not
consider trading in sunspot-contingent assets.

Our paper is tangentially related to the literature on sunspot-driven asset
market cycles as in Lagos and Zhang (2013) and Benhabib and Wang (2014).
In these models multiple equilibria arise because of frictions in the financial
markets. In Lagos and Zhang it is search and Benhabib and Wang it is
market exclusion.

Plan of paper.—We begin with a model without financial markets. We
then show how capital markets restrict the equilibrium set. We then look
at asset pricing, the disaster premium and the effects of news shocks as
manifested through changes in asset prices.

2 The model

Consider a production economy with two types of individuals lasting one
period.

Endowments.—Type i receives endowment zi, with 0 < z1 < z2. The
fraction of type i agents is fi.

Preferences.—Utility depends on consumption c ≥ 0 and investment x ∈
{0, 1}:

U(c)− κx, (1)

where κ is the utility cost of investment.2

2We use this specification for analytical convenience. Ideally, one would consider a
game with two stages and individuals ranking allocations using v(c0) + u(c1). Because c0
is the difference between the fixed endowment z0 and investment the utility can be written
as v(z0 − x) + u(c1). Our specification obtains if we set v(c) = κc.
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We also assume that U ′′′ > 0. This is sufficient to insure that it will be
poor individuals that will be insured by the rich and not vice versa.

Production.—Let
x̄ =

∑

fixi

denote aggregate investment. We restrict our attention to symmetric pure
strategy equilibria in which all agents of one type invest the same amount.
As a function of own investment x and aggregate investment x̄, an agent’s
output is

y(x, x̄) = (α + x̄)x.

Aggregate output is zero when x̄ = 0, and 1 + α when x̄ = 1.

Consumption.—Consumption occurs after production has taken place and
after assets and obligations are settled. If financial markets are closed, an
agent consumes his endowment z and his output y which are his only sources
of income. That is, c = z + y(x, x̄) > 0. If financial markets are open,
consumption also includes asset payoffs.

Aggregate shocks.—The model has no intrinsic shocks. There is an ex-
trinsic variable called a “sunspot.” We depart from the literature in that we
have more sunspot realizations than there are equilibria. In fact, the sunspot
can take on a continuum of values, as does temperature for example. The
distribution of the sunspot variable is exogenous, but the mapping between
sunspots and equilibrium play is endogenous.

The mechanism that endogenizes the mapping is agents’ selection of what
portfolio to trade, and the resulting beliefs concerning equilibrium play. As
the agents choose which portfolio they want to trade among themselves, they
will endogenize the probabilities with which the equilibria are selected. That
is, they will endogenize the mapping between the sunspots and equilibrium
play. We now define our terms more precisely.

Sunspots.—A sunspot is an exogenous random variable s that is uniformly
distributed on [0, 1] or, more formally, has Lebesgue measure µ(s) over the
Borel subsets of [0, 1]. When financial markets are open, securities pay as
a function of s. We start with the setting in which there are no financial
markets.

The space of sunspot realizations is rich enough that it can be transformed
into any other space of realizations. One can generate two conceptually dif-
ferent types of financial markets. One is for securities that pay depending on
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some other extrinsic random variable taking on values in some set other than
[0, 1]. But, this can be shown to be equivalent to trading assets contingent on
realizations in [0, 1]; one simply needs to change the probabilities associated
with the new set of realizations.

Another market type, more relevant empirically, is for securities that pay
based on outcomes that depend, at least in part, on actions that agents take,
outcomes such as aggregate output. Our methods apply to such cases as
well, as we explain in Section 3.

2.1 Equilibrium without financial markets

When financial markets are closed investment, x, is the only action. We
then can talk interchangeably about equilibria and aggregate outcomes (as
summarized below by x̄). An agent’s action can depend on his endowment,
z, and on the sunspot, s. When the equilibrium is symmetric an agent’s
strategy is a function x : {z1, z2} × [0, 1] → {0, 1}.

Nash Equilibrium with no assets.—A Nash equilibrium is a function x
such that for all (z, s) ∈ {z1, z2} × [0, 1],

x (z, s) ∈ arg max
x∈{0,1}

{U (z + y [x, x̄ (s)])− κx} (2)

where

x̄ (s) =

2∑

i=1

fix (zi, s) (3)

the following equilibria may arise at a particular sunspot realization s:

Equilibrium “L”.—In the first type of equilibrium x (z, s) = x̄ (s) = 0 for
all z. No individual invests. We call this a “low” equilibrium, or equilibrium
L. For this to be an equilibrium we need the following two conditions:

U(z1) > U(z1 + α)− κ,

U(z2) > U(z2 + α)− κ.

That is, if x̄ is zero, the reward to investing is just α, and each type should
prefer not to invest. Because U is concave it is sufficient that the poor are
not willing to invest:

U(z1 + α)− U(z1) 6 κ. (4)

7



Equilibrium “H”.—At the other extreme, everyone invests and x (z, s) =
x̄ (s) = 1. We call this a “high” equilibrium, or equilibrium H. For this
equilibrium to exist we need the following two conditions:

U(z1 + α + 1)− κ ≥ U(z1),

U(z2 + α + 1)− κ ≥ U(z2).

Again, because U is concave it is sufficient that the rich are willing to invest:

U(z2 + α + 1)− U(z2) > κ. (5)

In equilibria H and L, every agent takes the same action – either every
agent invests or no agent does. There generally are, however, other equilibria
and some of these are symmetric pure strategy equilibria, some not. In all
these equilibria some agents invest while others do not.

Equilibrium M.—In this equilibrium only the poor invest and x̄ = f1. We
call this a “middle” equilibrium, or equilibrium M. For this equilibrium to
exist we need the following two conditions:

U(z1 + α + f1)− κ > U(z1),

U(z2 + α + f1)− κ < U(z2).

Neither condition implies the other. This is also a symmetric equilibrium.
Note that the conditions guaranteeing equilibria H and L do not involve the
fi, the conditions involving the existence of equilibrium M do depend on the
fi.

Asymmetric equilibria.—In these types of games the number of equilibria
is generically odd. This means that when L and H both exist (see Proposition
1), there will also be a third equilibrium. This third equilibrium will either
by asymmetric so that a fraction of agents of some type play x = 1 while the
remainder play x = 0, or it will be the symmetric equilibrium M.

We shall assume that equilibrium M and the asymmetric equilibria are
never chosen. If they sometimes were chosen, the number of cases proliferates,
but nothing conceptually new is added. Thus we only admit L and H as
possibilities. Sometimes only L exists, sometimes only H, and sometimes
both H and L do.
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Next, we define the parameter set under which both H and L exist, which
is the set of parameters for which (4) and (5) both hold:

Definition 1. Let Paut = {(z1, z2, κ) : U(z2 + α + 1)− U(z2) > κ > U(z1 +
α)− U(z1)}.

Roughly speaking, if α is high relative to κ, equilibrium L does not exist,
and if α is low relative to κ, equilibrium H does not exist. If neither extreme
obtains, L and H both exist. The set Paut is always non-empty. To see this fix
α. Then for any z > 0 we have (κ, z1, z2) = (U(z+α+0.5)−U(z), z, z) ∈ Paut.
That is there is a set, with a non-empty interior, where both the low and
the high equilibria exist. Intuitively, endowment z1 must not be too low as
then type-1 individuals would always invest and the L equilibrium would not
exist. Endowment z2 must not be too high as then type-2 individuals would
never invest and the H equilibrium would not exist.

Proposition 1. Let U (c) = ln c. Then there exists a non-empty set of
parameters (z1, z2, α, κ) such that equilibria L and H both exist.

Let δ = 1/(eκ−1) ≈ 1/κ. Then in a special case with logarithmic preferences
we have:

Put = {(z1, z2, α, δ) : αδ 6 z1 6 z2 6 (α+ 1)δ}. (6)

Figure 2 summarizes our findings. Region L(H) denotes the set of en-
dowments for which only the L(H) equilibrium exists. Our main interest is
in region H+L that consists of endowments such that both the L and the
H equilibria exist. In what follows we study conditions under which this
set persists when allow individuals to trade financial securities contingent
on sunspots and the sunspots will be correlated with the type of equilibrium
that is played at the production stage. The unmarked top left corner is where
neither of the two equilibria exists.3

2.1.1 Equilibrium selection without financial markets

Let L ⊂ [0, 1] be the set of s realizations that lead to equilibrium L, and
H = [0, 1] \L the set of s realizations that lead to equilibrium H . Define the

3In this region there exist equilibria with x̄ ∈ (0, 1). In such equilibria a fraction of
individuals of the type 1 invests while others do not.
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Figure 2: Equilibrium map

equilibrium indicator ω (s) ∈ {L, H} as follows:

ω =

{
L if s ∈ L

H if s ∈ H
(7)

Thus the probabilities of the two equilibria being played are

Pr (ω = L) = πL and (8)

Pr (ω = H) = πH, (9)

where
πL ≡ µ (L) and πH ≡ µ (H) = 1− πL. (10)

Any pair
(
πH, πL

)
of non-negative numbers summing to unity is admissi-

ble when there are no assets. With assets in the model, however, that is no
longer true.

2.2 Equilibrium with financial markets

Arrow securities.—An Arrow security is in zero net supply, and pays a unit
of consumption in a particular sunspot state s, and zero otherwise, and its
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price is Q (s). There is a continuum of such securities, one for each s. Now
an agent of type z has an additional set of actions consisting of the number
of securities, N (z, s) to hold as claims to consumption in state s. This adds
for each agent a trading strategy N : {z1, z2} × [0, 1] → R. Market clearing
then requires that for each s ∈ [0, 1]

2∑

i=1

fiN (zi, s) = 0 (11)

Budget constraint.—N (z, ·) is agent z’s portfolio. An agent trades before
he receives his endowments and before he receives the output that he will
have produced with the investment that he has made. His endowment is
not contractible and his trades must therefore net out to zero. For a type-z
agent, the portfolio N (z, ·) must then satisfy4

∫ 1

0

Q (s)N (z, s) dµ (s) = 0. (12)

Nash Equilibrium with financial markets.—It consists of three functions,
Q : [0, 1] → R++, and (x,N) : {z1, z2} × [0, 1] → {0, 1} × R such that (11)
holds and such that for all (z, s) ∈ {z1, z2} × [0, 1],

N (z, s) = argmax
N(·)

∫ 1

0

max
x∈{0,1}

[U (z + y [x, x̄ (s)] +N (z, s))− κx] dµ (s)

(13)
subject to (12), and such that investment is optimal ex post :

x (z, s) = arg max
x∈{0,1}

{U (z + y [x, x̄ (s)] +N (z, s))− κx} , (14)

4It must be true that N(z, s) = c(z, s) − z − y(s) for each type. The corresponding
inter-temporal budget constraint then is:

∫
1

0

Q(s)c(z, s)ds = z +

∫
1

0

Q(s)y(s)ds.

Our first stage budget constraint does not include z. The alternative budget constraint

formulation is:
∫ 1

0
Q (s)N (z, s)ds = z. It implies the same intertemporal budget con-

straint, because then N(z, s) = c(z, s)−y(s), and, so, leaves the solution unchanged. This
would not be true if the individuals had to make their portfolio decisions before they knew
their type z. In this case there would be incentives to insure against the risk of being a
type 1.
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where x̄ (s) is given in (3). Strictly speaking, equilibrium consists of 4 func-
tions, (Q (s) , x̄ (s) , x (z, s) , N (z, s)) satisfying (3), (11), (13) and (14).

Simple portfolios.—A simple portfolio of Arrow securities is an allocation
that places equal weights on all those securities in which an agent is long
and equal weights on those in which he is short. That is, for any subset
A ⊆ [0, 1] , a simple portfolio A implies the holdings

N (z, s) =

{
NA for s ∈ A
N˜A for s ∈ ˜A

.

A simple portfolio thus places equal weights on the securities s ∈ A, and an
equal weight on securities with s ∈ ˜A, so that (12) reads

NA

∫

A

Qsdµ (s) = −N˜A

∫

˜A

Qsdµ (s) . (15)

Other, unequally-weighted bundles are also possible, but deviations to such
portfolios will not raise any agent’s utility as we shall show later. We shall
adopt the convention that NA ≥ 0 and N˜A ≤ 0, i.e., we shall label A for
the set of securities that are assets in portfolio A, with the remainder being
liabilities. Then a portfolio is fully described by the pair (A,NA) . Given
this pair we then infer N˜A from the budget constraint. We shall refer to
a portfolio as “portfolio A.” An agent can trade portfolio A at any scale
indexed by NA.

Portfolio payoffs.—Let w (A) denote the payoff of portfolio A. Then

w (A) =

{
NA if s ∈ A
N˜A if s ∈ ˜A

. (16)

Probability of a positive payoff for portfolio A is denoted by πA:

πA ≡ µ (A) . (17)

Portfolio choices.—This choice is made after the agents have discovered
the zi that they will be receiving prior to consumption. There are only
two types of agents indexed by their endowments, rich and poor, only two
portfolios will be chosen in equilibrium. Let A denote the portfolio chosen
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by the poor. The rich will take the other side of each s-security trade, and
so the rich choose portfolio ˜A.

This equilibrium selection is consistent with trades in that the poor wish
to receive income if outcome L arises, and they pay the rich if outcome H
arises which occurs because the preferences we assume have the property
that U ′′′ > 0.

Figure 3 illustrates a portfolio of a poor agent who is long on securities
s ∈ A, and short on securities s ∈ ˜A.

Figure 3: Portfolio of a low-endowment individual (z1)

Trading strategies as functions of belief formation over x̄.—Nash equilib-
rium beliefs are over the profile of others’ actions in state s. In particular,
the profile in question is the function x (z, s). An agent cares only about
the per-capita action of others, x̄ (s), which is the following function of the
sunspot:

x̄ (s) =

{
0 if s ∈ L ⇔ ω = L
1 if s ∈ H ⇔ ω = H

,

The financial-markets-open game de facto introduces just two additional
actions, namely

(i) which portfolio A to trade, and
(ii) what quantity NA to trade.
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c) Sufficiency requires that neither agent type wants to deviate to a dif-
ferent portfolio, i.e., to a set A 6= L. What the agent wants is insurance.
Given the beliefs specified above, however, his production income depends
on ω alone. At the equilibrium portfolio, the same is true for his asset in-
come. In other words, for the poor agent, asset income is perfectly negatively
correlated with his production income, whereas for the rich, asset income is
perfectly positively correlated. We show that because U ′′′ > 0, the poor are
priced out of claims in states s ∈ H and the rich are priced out of claims in
state s ∈ L.

Trading equilibrium.—An equilibrium entails simple portfolios for all agents.
They are of the form

A = L and ∼ A = H for the poor,

A = H and ∼ A = L for the rich. (18)

That is, the disaster states s ∈ L entail transfers to the poor, whereas states
s ∈ H entail transfers to the rich.

Once A is given, all securities s ∈ L will have the same price that we shall
denote by QL, and all securities s ∈ H will have the same price that we shall
denote by QH. Then

qL = πLQL and qH = πHQH.

For the equal-weighted assets and equal-weighted liabilities portfolios we shall
now use the notation

N(z, s) ≡
{

nL
z if s ∈ L

nH
z if s ∈ H

.

In that case these new definitions and (15) imply that type-z agents’ asset
trades must satisfy the following budget constraint

qLnL
z + qHnH

z = 0.

We assume that the portfolio choices are made simultaneously and non-
cooperatively. Each security trades at the price qL if s ∈ L or qH if s ∈
H. A trading equilibrium is then indexed by L, and associated with these
equilibria is a “disaster probability” πL, defined in (17). Not all πL ∈ [0, 1]
are equilibria, as we shall see, but generally a continuum exists.
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Further suppose that there operate financial markets that trade portfolios
paying one unit of consumption good conditional on the realization of ω.
Security L (H) pays one unit if and only if state ω = L (ω = H) realizes.
Security ω is traded at price qω and the trade occurs before endowments are
delivered. We let nω

z to denote quantity of securities ω purchased by a type-z
individual.

The financial market clearing conditions for securities L and H are:

f1n
L
1 + f2n

L
2 = 0, (19a)

f1n
H
1 + f2n

H
2 = 0. (19b)

where we write ni = nzi to keep notation short.

The goods-market clearing conditions are:

f1c
ω
1 + f2c

ω
2 = Y ω, ω ∈ {L,H},

where Y ω denotes the aggregate output in state ω:

Y ω ≡
{

α + 1 if ω = H
0 if ω = L

. (20)

endow. z1, z2
assigned

portfolios
(nL

i , n
H
i ) chosen

ω
realized

production security payoffs
consumption

Figure 4: Timing of events

The first-order necessary conditions imply that for each individual the
marginal rate of substitution between consumption in the states H and L
equals the relative price:

U ′(z + α+ 1 + nH
z )

U ′(z + nL
z )

=
πL

1− πL
· q

H

qL
, z ∈ {z1, z2}. (21)

The above implies that the marginal rate of substitution is the same across
individuals: This is a standard risk-sharing result that obtains here because
markets are complete.
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To understand portfolio decisions of the two types consider the case when
the financial markets are closed. While a low-endowment type-1 individual
has lower utility in every state his relative marginal value of consumption is
higher in the low outcome:

U ′(z1)

U ′(z2)
>

U ′(z1 + α+ 1)

U ′(z2 + α+ 1)
. (22)

A sufficient condition for the above to hold is a decreasing absolute risk aver-
sion that, in turn, is true if U ′′′(c) > 0.5 So, we expect the low-endowment
type to purchase securities that pay in state ω = L, nL

1 > 0, and sell securi-
ties that pay in state ω = H (nH

1 6 0). This intuition will be used to derive
sufficient conditions for existence of equilibria.

2.3 Optimal portfolios with logarithmic utility

With U(c) = ln(c) equation (21) simplifies to:

z1 + nL
1

z1 + α + 1 + nH
1

=
z2 + nL

2

z2 + α + 1 + nH
2

=
πL

πH

qH

qL
,

and implies:
qH

qL
=

πH

πL

z̄

z̄ + α + 1
.

Using the budget constraints and the market clearing conditions allows us
solving for the optimal portfolios:6

nL
2 = −πHf1∆z

α + 1

z̄ + α + 1
, nL

1 = πHf2∆z
α + 1

z̄ + α + 1
, (23a)

nH
2 = πLf1∆z

α + 1

z̄
, nH

1 = −πLf2∆z
α + 1

z̄
. (23b)

with ∆z = z2 − z1. Notice that nH
2 > 0 as conjectured.

At the optimal portfolios agents achieve perfect insurance across the two
outcomes. By this we mean that consumption of each type is a fixed fraction
of the total good supply. This implies that consumption of any type in

5That is −u′′(c)/u′(c) must be decreasing.
6We use market clearing conditions to determine optimal purchases of securities by

type-1 individuals: nω
1 = −(f2/f1)n

ω
2 , ω ∈ {L,H}.
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outcome L is smaller than in outcome H.7 Then notice that cH2 > cH1 because
with the financial markets open the low-endowment type-1 repays the other
type in outcome H. And in outcome L, consumption ordering is implied by
the endowment ordering:

cL2 − cL1 = z2 + nL
2 − z1 − nL

1 = ∆z − πH∆z
α+ 1

z̄ + α + 1
> 0.

We state this result formally as we shall refer to it later.

Lemma 2. cLz < cHz , ∀z and there is no “consumption leapfrogging”: cω1 <
cω2 , ω = L,H.

The effect of group size.— If each individual from a larger low-endowment
type saved one unit then individuals in the other, smaller, group would receive
more than one unit. For this reason, the payment to the high-endowment
individuals in outcome H is rather large. But a large payment, as is shown
later, may destroy outcome H as an equilibrium in the subgame. That is,
we expect the financial markets to have a strong effect on the set of possible
equilibria when there is a sizable group of endowment-poor individuals. In
societies with a small fraction of poor individuals, opening the financial mar-
kets is unlikely to affect the set of equilibria. Yet, in the latter case significant
improvement in risk-sharing across outcomes can be achieved. This is true
because it costs little for the populous high-endowment group to insure a
small group of poor. Formally, |cH1 − cL1 | decreases as f2 increases. Note that
low-endowment individuals demand insurance, and high-endowment individ-
uals are willing to provide it, regardless of the group proportions (f1, f2). The
size of the two groups matters for its effect on the financial market clearing
– that is ability of one group to satisfy demands of the other.

2.4 The equilibrium set in the post-trade subgame

Next we study how the set of subgame equilibria changes as a function of
the transfers. We will later map the feasible outcomes to the underlying
probabilities which affect the transfers.

7This can be also proven directly. For type 1 we have nL
2 > 0 > nH

2 . Yet, because
f2∆z < z̄, we get:

cH1 − cL1 = (α+ 1)
[
1− πLf2∆z/z̄ − πHf2∆z/(z̄ + α+ 1)

]
> 0.

For type 2 the claim is trivial because cL
2
= z2+nL

2
6 z2 < z2+1+α 6 z2+1+α+nH

2
= cH

2
.
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Suppose that without the financial markets only the low subgame equi-
librium exists. We now ask if it is possible that after the financial markets
open both subgame equilibria would survive. In the next section we ask if
any of the equilibria could be destroyed.

Region L in figure 2: Suppose that when there are no financial markets
only the L equilibrium exists: z2 > z1 > αδ, z2 > (α+1)δ. When the financial
markets are open the H and L equilibria exist if:

z1 + nL
1 > αδ, (24a)

z2 + nL
2 > αδ, (24b)

(α + 1)δ > z1 + nH
1 , (24c)

(α + 1)δ > z2 + nH
2 . (24d)

The first inequality always holds because αδ 6 z1, 0 6 nL
1 . The second

inequality must be checked. The third inequality always holds because z1 6
(α + 1)δ, nH

1 6 0. The fourth inequality cannot hold because z2 > (α + 1)δ
and nH

2 > 0. So, the H equilibrium cannot be created.

Region H in figure 2: Suppose that when there are no financial markets
only the H equilibrium exists: z1 6 z2 6 (α + 1)δ, z1 6 αδ. When the
financial markets are open the H and L equilibria exist if the inequalities in
(24) hold. The first and the second inequality could hold. But the third
inequality cannot hold because z1 6 (1 + α)δ, nH

1 6 0. So, the L equilibrium
cannot be created either. We state these results in the following proposition.

Proposition 3. Opening financial markets cannot create the H (L) equilib-
rium if only the L (H) equilibrium existed under financial autarky.

We now ask if equilibria can be destroyed. Case 1(2) below studies if
opening the financial markets can destroy the H (L) equilibrium if the two
equilibria existed under financial autarky.

Region H+L in figure 2, case 1 : Suppose that the H and L equilibria
exist: (α + 1)δ > z2 > z1 > αδ. When the financial markets are open only
the H equilibrium exists if:

αδ > z1 + nL
1 , or αδ > z2 + nL

2 , (25a)

(α + 1)δ > z1 + nH
1 , (25b)

(α + 1)δ > z2 + nH
2 . (25c)
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The third inequality in the above system cannot hold because z1 6 (α+ 1)δ
and nH

1 6 0.

Proposition 4. Opening financial markets cannot destroy the L equilibrium
if both equilibria existed under financial autarky.

Region H+L in figure 2, case 2 : Suppose that when there are no financial
markets the H and L equilibria exist: (α + 1)δ > z2 > z1 > αδ. When the
financial markets are open only the L equilibrium exists if:

z1 + nL
1 > αδ, (26a)

z2 + nL
2 > αδ, (26b)

(α+ 1)δ 6 z1 + nH
1 , or (α + 1)δ 6 z2 + nH

2 . (26c)

The first inequality always holds. The inequality (α + 1)δ 6 z1 + nH
1 in the

third row cannot hold. So, we need to check if the intersection of {z2+nL
2 >

αδ, (α + 1)δ 6 z2 + nH
2 } and {(α + 1)δ > z2 > z1 > αδ} is non-empty. This

can be easily verified by setting z1 < z2 = (α+ 1)δ. In this case nH
2 > 0 and

z2 + nH
2 > (1 + α)δ.

Proposition 5. There exists a non-empty set of parameters such that open-
ing financial markets can destroy the H equilibrium if both equilibria existed
under financial autarky.

2.5 Admissible equilibrium values of πL

Suppose that when the financial markets are closed the L and the H equilibria
exist: (1 + α)δ > z2 > z1 > αδ. When the financial markets are open the H
and L equilibria exist if:

z1 + nL
1 > αδ, (27a)

z2 + nL
2 > αδ, (27b)

(α + 1)δ > z1 + nH
1 , (27c)

(α + 1)δ > z2 + nH
2 . (27d)

The first inequality always holds because z1 > αδ and nL
1 > 0. The second

inequality always holds because |nL
2 | < ∆z and z1 > αδ. The third inequality
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always holds because (α+ 1)δ > z1 and nH
1 6 0. The fourth inequality must

be verified. So, both equilibria survive if:8

(α + 1)δ > z2 + nH
2 > z2 > z1 > αδ. (28)

After substituting the formula for nH
2 we obtain:

πL
6

(α + 1)δ − z2
(α + 1)f1∆z/z̄

≡ π̄L (29)

The region where both equilibria exist before and after the financial markets
open is plotted in figure 2, panel B. At the upper boundary of the union of
the H and the H+L regions, the endowment-rich type 2 is indifferent between
investing and not.

Together with the condition for the existence of the two equilibria under
financial autarky, αδ 6 z1 6 z2 6 (α + 1)δ, inequality (29) is the restriction
on equilibrium beliefs and model parameters under which the two equilibria
exist regardless of the financial regime. Intuitively, the probability of the
L equilibrium, πL, cannot be too high as then the high-endowment type-2
individuals would not invest in the high equilibrium and the latter would
cease to exist. This happens because as πL grows the relative price qL/qH

and nH
2 increase. But when a payoff in any state increases incentives to invest

decrease. The restriction on πL could also be vacuous, e.g. when ∆z = 0, or
it could be “prohibitive,” e.g. when z2 = (α + 1)δ.

As explained above, the upper bound on πL stems from the restriction
that the high-endowment type-2 agents should support the H equilibrium.
The term (α + 1)δ − z2 is the largest trade that does not destroy type-2’s
incentives to invest. The term (α+1)f1∆z/z̄ determines the size of the trade,
see (23b). If there were no heterogeneity, ∆z/z̄ is close to zero, then there
would be no trade; so, any πL would do. (α + 1)f1 is the additional income
earned by the poor when the H equilibrium is selected. The larger it is the
stronger are trading motives and, hence, higher chances of destroying the
equilibrium. Figure 5 illustrates the relation between π̄L and (α, δ). Notice
that as α and/or δ increase the L equilibrium disappears. Similarly, when
α and/or δ decrease the H equilibrium disappears. For intermediate value
of (α, δ) the figure plots the limit on the probability of the L equilibrium.

8Notice that the inequality (α + 1)δ > z2 is redundant. This means that the set of
parameters for which the H equilibrium exists shrinks when the financial markets open.
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When α and/or δ are high, but not enough to destroy the L equilibrium,
the probability of the L equilibrium is unrestricted. In this case the high-
endowment type-2 individuals have a substantial “insurance capacity” and
provide for the low-endowment individuals while continuing to invest. This
area corresponds to the plateau in the figure.
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Figure 5: Relation between π̄L and (α, δ).

Observe that the upper bound on πL is linear in δ and hyperbolic in α:

π̄L = [f1∆z/z̄]
−1

[

δ − z2
α+ 1

]

. (30)

It increases with δ as this expands the area where both equilibria are possi-
ble. As α increases, two effects are operational. First, it is harder to destroy
the H equilibrium: the upper bound on consumption of a type-2 individual
increases. Second, trades increase as they are proportional to (1 + α) mea-
suring the increase in the aggregate consumption between the L and the H
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equilibrium. However, financial payoffs of any individual cannot not exceed
(1 + α), and the first effect dominates.

Lastly, the upper bound on πL depends on δ. This parameter has no
effect on the size of financial trades or equilibrium prices. It also difficult
to calibrate. For these reasons, we provide an alternative upper bound that
does not involve δ. To this end, note that for equilibrium H to exist we must
have z1 > αδ. This imposes an upper bound on δ that can, in turn, be used
in (30):

π̄L
6 [f1∆z/z̄]

−1

[
z1
α

− z2
α + 1

]

. (31)

Size of disasters vs. their frequency.—The size of disasters is governed by
α – The larger is α, the more severe is the drop in the aggregate consumption:
CL/CH = z̄/(z̄+α+1). If α is taken as a measure of disaster size, then the
size and frequency of disasters are positively related: The larger the disaster,
the higher is the likelihood that it can occur in equilibrium. Of course, this
pertains only to coordination failures; the opposite is probably true of wars
and natural catastrophes.

The effect of dispersion of endowments.—Rising inequality, as measured
by ∆z/z̄, reduces the probability of equilibrium L. The more dispersed en-
dowments are the larger are incentives to trade in equilibrium for then the
rich value consumption much less than the poor. On the other extreme, when
endowments are similar there is little incentives to trade. In this case the set
of possible sunspot equilibria is unaffected as π̄L > 1 is not restrictive. When
dispersion is small, ∆z/z̄ 6 [δ− z2/(α+1)]/f1 according to (30), then open-
ing the financial markets has no effect on the probability of equilibrium L.
This implies that if a fictitious planner could redistribute endowments across
individuals he would not choose an equal distribution. That is increased
inequality has a positive welfare effect.

The fact that inequality is beneficial echoes Hopenhayn and Vereshchag-
ina’s (2009) finding that gambling can be welfare improving. In their setting
there are two technologies – a safe and a risky technology, both offering the
same expected return. Because they can abandon a low-return project (exit)
entrepreneurs with low wealth choose to invest in risky assets. Thus, gam-
bling is welfare-improving. In our setting the incentives of the rich agents are
affected: inequality reduces incentives of the rich agents to work and destroys
multiplicity.

22



2.5.1 Effects of changes in risk-aversion

So far all of our analysis has been done under the assumption of logarith-
mic preferences that greatly simplified our derivations. However, our results
carry over to the case with any CRRA utility function.9 What role does
the risk-aversion play? Figure 6 plots purchases of Arrow security H of the
poor type-1 and the rich type-2 individuals as functions of πL. As the risk-
aversion coefficient increases from γ = 1 to γ = 5 the position in the Arrow
security H of the rich type-2 increases faster. That is the more risk-averse
individuals opt for a more equitable allocation that is supported by taking
larger portfolio positions. Such a large transfer, however, violates this type’s
“incentives constraint” – the rich type stops investing and only the L equi-
librium survives. Thus, as the level of risk-aversion increases the maximum
equilibrium probability πL decreases.

This has the following implication for asset pricing. As one increases the
risk-aversion the risk-premium would increase and the risk-free rate would
decrease bringing the model closer to the data. But the upper bound on
the probability of disasters would decrease simultaneously, limiting the risk-
premium. One should not treat the probability of a disaster as fixed while
adjusting the risk-aversion potentially. In other words, the success of the
asset-pricing models relying on the disaster risk may be limited.10

2.6 The set of equilibria, A
Having established a perfect correlation between asset positions and actions,
we may abbreviate the definition of equilibrium as follows: Instead of the

9The ratio of individual consumption and the aggregate supply of goods across the two
sub-game equilibria are all the same as in the case with logarithmic preferences. However,
the relative price of the two Arrow securities is now a non-linear function of the relative
endowment: qL/qH = πL/πH(z̄/(z̄ + α + 1))−γ . The optimal investment in the Arrow
security L by the poor type-1 individual is:

nH
2

= f1∆z

α+ 1

z̄

πLz̄1−γ

πLz̄1−γ + πH(z̄ + α+ 1)1−γ
.

The upper bound on the probability of the L equilibrium solves the following equation:
(z2 + nH

2 )1−γ = (z2 + α+ 1+ nH
2 )1−γ − (1− γ)κ. Because nH

2 is an increasing function of
πL it is easy to show that there is a unique solution for the cut-off π̄L.

10Gourio (2012) and Gabaix (2012) show that incorporating a time-varying severity of
disasters improves the model’s asset-pricing predictions along several dimensions.
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Figure 6: Optimal portfolios for different levels of risk-aversion

objects defined in (13) and (14), we shall refer to equilibrium as the set
A = L of ω values for which agents all set x = 0. I.e., it is the set of ω’s for
which equilibrium L results. The gross asset positions N (·) of the two types
of agents then follow straightforwardly.

The equilibrium set A.—The equilibrium is any set of disaster states the
measure of which does not exceed π̄L. I.e., is the collection of Borel subsets
A ⊂ [0, 1] for which πA ≤ π̄L. Thus the set of equilibria is the set

A =

{

A ∈ B ([0, 1]) |
∫

A

dµ (s) ≤ π̄L

}

. (32)

We have provided only an upper bound on πL. One may ask whether
the use of asset trades can narrow things down further if the game were
different in some way. We can see two options for narrowing down the set
equilibrium πL. One way is to use the theory of the Core in which competition
occurs among coalitions, i.e., a theory in which groups of agents can deviate
from any outcome. A second way to reduce the number of equilibria is to
add stages to the security trading game. Banks could propose securities by
sending messages to agents who then would choose where to trade. Using the
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Core equilibrium concept would lead to an open set problem in the coalitions’
choice of πL for the following reason: The upcoming Lemma shows that a
smaller value of πL Pareto dominates a larger, recognizing, of course, that
the equilibrium asset prices qL and qH depend on πL. In other words, the
equilibria, as indexed by πL, are Pareto ranked. This is our next result.

2.6.1 Welfare

The utility of a type-i individual is:

Wi = πLU(zi + nL
i ) + (1− πL)U(zi + α + 1 + nH

i ). (33)

We will later see that the type-1’s portfolio positions (nL
1 , n

H
1 ) decrease with

πL. Hence, utility of a type-1 individual is strictly decreasing in πL. The
type-2’s portfolio positions, on the other hand, increase with πL. That is,
as the probability of L rises, consumption of a type-2 individual increases in
both states but his overall utility still falls as H becomes less likely. Lemma
6 shows that W2 is decreasing in πL as long as πLπHf1∆z/z̄ < 0.5. This
constraint is not vacuous. But it is also not restrictive as it would be satisfied
if, for example, ∆z < 2z̄.

Lemma 6. If πLπHf1∆z/z̄ < 0.5 then dWi/dπ
L < 0, i = 1, 2.

Given this, competition among coalitions would lead them towards the Pareto-
optimal outcome. But at πL = 0 there can be no trade. We then would be
back in a no-financial-asset game that admits both equilibria, L and H .

Alternatively, we may add a prior stage to the security trading game.
Banks could propose securities by sending messages to agents who then would
choose where to trade. It appears that this could be formulated so as to lead
to the same outcome as the Core with the same open set problem. At the
moment, then, we cannot shrink A any further.

2.7 Asset pricing

The same allocations can be implemented by trade in risk-free bonds and
equity claims as by trade in sunspot-contingent Arrow securities. The payoff
of Arrow security L is the same as payoff of the portfolio consisting of 1 bond
and − 1

1+α
equity claims. Arrow security H is equivalent to 1

1+α
equity claims.

Suppose now that individuals also receive endowment z0 in period 0 be-
fore types are revealed in period 1. In period 1 type-i individual receives
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ω Equity Bond Arrow sec. L Arrow sec. H
L 0 1 1 0
H 1 + α 1 0 1

Table 1: Asset payoff matrix

endowment zi and chooses whether to invest or not as before. In period 0 in-
dividuals are offered to buy (equity) claims to the aggregate output Y ω, and
the risk-free bond that pays one unit of consumption regardless of the real-
ized ω. The two assets are traded at prices qe and qb that will be determined
later.

Timing of events is as follows:
1. Individuals trade bonds and claims to the aggregate output, consume;
2. Individuals learn their type, receive endowments zi;
3. Individuals trade sunspot-contingent securities, produce and consume.

The period 0 budget constraint is:

c0 + qene
0 + qbnb

0 = z0. (34)

Since all individuals are symmetric in period 0 we do not use index i. For
the same reason purchases of the two assets, equity claim and bond, is zero
in equilibrium:

ne
0 = nb

0 = 0. (35)

So, everyone simply consumes his endowment: c0 = z0. The two asset prices
satisfy the following Euler equations:

qb = βE

[
U ′(zi + nω

i )

U ′(z0)
1

]

, (36a)

qe = βE

[
U ′(zi + nω

i )

U ′(z0)
Y ω

]

, (36b)

where the expectation is over types i and states ω. The expected return on
bond is:

E[Rb] =
1

qb
=

U ′(z0)

β
∑

z

∑

ω fzU
′(z + α + 1 + nω

z )
,

and the expected return on equity is:

E[Re] =
(α + 1)(1− πL)

qe
=

U ′(z0)

β
∑

z fzU
′(z + α + 1 + nH

z )
,
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where the optimal portfolios are:

nH
1 = −πLf2∆z

α+ 1

z̄
, nH

2 = πLf1∆z
α + 1

z̄
.

As the probability πL increases, probability that an equity claim pays
decreases. So, the equity claim is valued less and it must offer a higher return.
At the borderline case with πL = 0 the risk-free bond and the equity claim
yield the same return. We state these results in the following proposition.

Proposition 7. With logarithmic preferences the expected equity premium is
a) always non-negative, and b) an increasing function of πL.

Proof. By direct differentiation.

Next, we compute the price of a disaster insurance. The disaster insurance
pays one unit of consumption good when the L equilibrium realizes. Notice
that the risk-free bond pays (1, 1) in the two states and a claim to equity
pays (α+1, 0). Then a disaster insurance claim generates the same payoff as
a portfolio comprised of 1 bond and − 1

α+1
equity claims. So, in the absence

of arbitrage the price of the disaster insurance must be:

qd = qb − 1

α + 1
qe = β

∑

z

fz
πLU ′(z + nL

z )

U ′(z0)
. (37)

endowment. This allows us computing the returns explicitly: equilibrium
L.

2.8 The effect of news shocks

The simplest treatment of a news shock is a prior signal ξ on s, drawn from
the density g (ξ | s). Denote the posterior over s by µ (s | ξ) . This in general
makes the states not equally likely but the main thing is that the signal
changes the disaster probability from µ (A) to µ (A | ξ) .

In order that the previous analysis should apply, however, it is easier to
have the new shock leave the likelihood of s unchanged, but to change the
designation of which equilibrium is associated with which value of s. We now
put a prior distribution ν over A and, derived from ν, a prior distribution λ
over

[
0, π̄L

]
. The news consists of an announcement of a particular A ∈ A
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and, hence, an implied value for πL ∈
[
0, π̄L

]
. The measure ν is an object

different from µ; the latter tells us the likelihood of various ω’s occurring,
whereas ν tells us the likelihood of which combinations of the ω’s are to lead
to equilibrium L. Thus the measure ν generally will not be Lebesgue measure
µ but, rather, can put greater weight on some Borel subsets of A and less
weight on others.

In other words, a news shock is an announcement of the list of ω ∈ [0, 1]
that are to be considered disaster states. If many ω’s are announced to be
disaster states, then disasters become more likely, and this will affect asset
prices as well as asset trading. The list of disaster states will be denoted by
A. Suppose that the announced A is drawn randomly from the equilibrium
set A taking ν (A) as the measure. This implies πL which is drawn randomly
from the set of numbers not exceeding π̄L. The prior measure over πL is λ,
where

λ(πL) =

∫

A

µ (A) dν (A) (38)

When A is announced, beliefs shift from ν to a point mass on A or, from
λ to a point mass on πL. This has the interpretation of a belief shock, since it
does not affect fundamentals. From now on we shall refer to the news shock
as the revelation of a specific value πL ∈

[
0, π̄L

]
.

Do stock prices lead output?—We ask if qe is a leading indicator of the
aggregate output Y ω. Conditional on πL, expected output is E[Y ] = (1 −
πL)(α + 1). Then before πL is revealed asset prices are:

q̃b = β

∫ π̄L

0

∑

z fz[π
LU ′(z + nL

z ) + (1− πL)U ′(z + α + 1 + nH
z )]

U ′(z0)
dλ(πL),

(39a)

q̃e = β

∫ π̄L

0

∑

z fzU
′(z + α + 1 + nH

z )

U ′(z0)
(α + 1)(1− πL)dλ(πL). (39b)

The news effect is the difference between the expected price of a portfolio
and the realized price after the πL is revealed:

Neωse ≡ q̃e − β
∑

z

fz
U ′(z + α + 1 + nH

z )

U ′(z0)
(1− πL)(α+ 1), (40a)

Neωsb ≡ q̃b − β
∑

z

fz
πLU ′(z + nL

z ) + (1− πL)U ′(z + α+ 1 + nH
z )

U ′(z0)
. (40b)

28



Because price of equity is a decreasing function of πL it is positively correlated
with the expected aggregate output E[Y ]. So, the stock market index is a
leading indicator of output.

The financial market volume11 is:

v =
∑

w∈{H,L}

|f2nw
2 | = (1 + α)f1f2

{πL

z̄
+

πH

z̄ + α + 1

}

. (41)

So, when πL increases the market volume also increases. That is, the trading
volume leads the aggregate output.

In a related paper, Angeletos and La’O (2014) also study shocks to beliefs
about the actions of others. They do not have multiplicity of equilibria as
we do, but they instead have aggregate shocks. The presence of the latter,
they show, also allows shocks to beliefs over actions to have real effects.

Is lagged consumption a sufficient statistic for current consumption?—
Hall (1978) derived the implication that no variable apart from current con-
sumption should be of any help in predicting future consumption. Hall did
find that real disposable income did not help predict aggregate consumption,
but that an index of stock prices did help predict it. In our two-period model
the question can be posed as follows: Is z0 a sufficient statistic for predicting
y? The answer is “no” since news to πL cannot be reflected in z0 which is
an endowment, and yet low πL is a good news for Y and, hence, for the con-
sumption of all agents. Although the proportions consumed by each type do
change with πL, lemma 2 shows that the consumption of each type is higher
in equilibrium H than in equilibrium L.

A low realization of πL is also a good news for the equity price, indicating
that equity prices can help predict future consumption. Assume that z0 is a
random variable drawn from a known distribution. News then consists of a
simultaneous “announcement” of (z0, π

L) that is then followed by trade in the
financial markets. It turns out that stock price is also not a sufficient statistic
for Y . The level of prices depends on z0 and therefore one needs to know z0
in order to be able to predict future consumption. But knowledge of the pair
(z0, q

e) is sufficient to predict future consumption, consistent with what Hall
finds empirically. Formally, consider a first-order approximation of qe around
(z0, π

L) = (E(z0), 0) : q
e = k0 + kzz0 − kππ

L where k0, kz, kπ > 0. Expected
aggregate consumption is: E(Cw) = z̄ + α + 1 − πL(α + 1). Then consider

11A symmetric formula can be defined using positions of a type-1 individual.
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the following regression specification relating the expected consumption to
the first-stage aggregate consumption z0 and the equity price qe: E(Cw) =
β0+βzz0+βqq

e = β0+βzz0+βq(k0+kzz0−kππ
L). One should find significant

βz and βq. Moreover, βq should be positive while the coefficient βz should be
negative.12

2.9 Example

Heathcote, Storesletten, and Violante (2006, Figure 4) report that an average
of the variance of log wages and the variance of log earnings for a 33-year-old
worker is 0.33. That is

var(z) = f1f2(ln(z2)− ln(z1))
2 = 0.33. (42)

With f1 = 0.50 we get z2/z1 = x ≡ exp(2/
√
3) ≈ 3.17. So, we get: z1 =

z̄2/(1 + x), z2 = z̄2x/(1 + x). The restrictions imposed by existence of both
equilibria are: αδ 6 z1 6 z2 6 (α + 1)δ.

We assume δ = 3.5. We choose z̄ = 2.82, α = 0.14 so that z̄/(z̄+α+1) ≈
0.71 as in Barro (2006) and the implied upper bound on πL is 0.020, similar
to Barro’s (2006) estimate of 0.017.

We set z0 so that no growth is expected in the aggregate consumption:

z0 = z̄ + (α+ 1)E[πL]. (43)

variable value moment
δ 3.50 –
f1 0.50 Groups of equal size

(z1, z2) (1.32,4.28) Coefficient of variation for endowment is 0.33
α 0.23 29% loss of output in the L equilibrium
z0 see (43) Expected consumption growth is zero

Table 2: Parameters for the numerical example

Table 2 collects all the parameter assumptions. Figure 7 plots returns
of the risk-free bond, the equity and the disaster claims. It is assumed that
z0 = z̄ + (a + 1)(1 − πL), that is the expected aggregate consumption is

12Simple coefficient matching gives: βq = (α+ 1)/kπ > 0, βz = −βqk0 < 0.
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constant. The vertical line marks the upper bound on the probability of
equilibrium L, π̄L. When πL = 0 then there is only one state of the world –
the H equilibrium – and the equity claim and the bond pay the same. When
πL reaches its upper bound 0.02 the return on equity is 0.64% and the risk-
free return is -0.23% implying a premium of 0.87%. Despite being relatively
small, the premium in the data is about 5%, we would like to emphasize that
this premium reflects only the endogenous disaster risk as there are no other
sources of uncertainty in the model. As another comparison consider the
results in Barro (2006): assuming logarithmic preferences this model predicts
only 0.24% premium.13 The premium and the return on the disaster claim are
increasing in πL. At πL = 0.04 the premium is sizeable and measures 1.74%.
Finally, the return on equity and the risk-free bond are much higher than that
if the disaster claim. The reason for this is that individuals expect a higher
consumption growth if equilibrium H realizes. This makes the disaster claim
to be very attractive as it pays when consumption is scarce; so, individuals
would be willing to purchase it despite the low return that it offers.

3 Discussion

Our results extend, in spirit, to models without external effects, and to mod-
els with intrinsic shocks. Even exchange economies can have more than one
equilibrium. The addition of pre-game trading will generally change the
equilibrium set in models even when there are no externalities present.

The literature on global games also features externalities but, unlike our
paper, it also features a real shock. In such models uniqueness can some-
times be achieved when agents have private signals about the intrinsic shock.
How would our results extend to such games? Instead of writing the output
equation as y = (α + x̄)x, we may alternatively write it as:

y = (1 + αx̄)x,

so that α could represent the return to a currency attack or some other coor-
dination game. Then we could assume that α ∈ {0, 1} is a random variable

13We assume that the bond is risk-free, that is it pays fully even if a disaster occurs.
Then, assuming logarithmic preferences, the premium equals approximately σ2

c + πd(1 −
d)(1/d−1) where σc is the consumption growth volatility, πd is the probability of a disaster,
d is the output ‘saved’ in a disaster state. Setting σc = 0 we are left with the premium
component that stems from the disaster risk alone. Setting πd = π̄L = 0.02 and d = 0.71
we get πd(1 − d)(1/d− 1) = 0.0024.
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Figure 7: Return on the bond and the claim to the aggregate output.

and that agents do not know the realization of α. It is known that in such
situations a little uncertainty can, under certain informational assumptions,
lead to a unique equilibrium. This is a different way of restricting the set
of equilibria in games that involve intrinsic uncertainty, as Goldstein and
Pauzner (2005) have shown in the context of bank-run models. Our model
restriction on equilibria applies to such models too, at least when the uncer-
tainty over α is large enough so that the Carlsson and Van Damme (1993)
argument cannot eliminate the multiplicity.

Conclusion

In a model in which multiple Pareto-ranked equilibria may arise, we have
distinguished between sunspots and the equilibria that result therefrom. By
introducing asset trading we have endogenized the mapping from the sunspot
to equilibrium play and derived a bound on the probability with which the
disaster equilibrium occurs.

We have then used the model to analyze several phenomena, including
the effects of shocks to beliefs about the actions of others and how they
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manifest themselves in asset prices, and the relation between disaster size
and probability on the one hand, and the disaster premium on the other.

Finally, we have shown that asset trading can reduce the incidence of co-
ordination failures while not eliminating them entirely. It also raises welfare,
not only through the usual channel by reallocating agents’ incomes across
states, but also by improving the distribution of aggregate outcomes.
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A Proof of lemma 6

Proof. The following is true for any utility function:

dWq

dπL
=u(z1 + nL

1 )− u(z1 + α + 1 + nH
1 )

︸ ︷︷ ︸

negative

+ πLu′(z1 + nL
1 )

dnL
1

dπL
+ (1− πL)u′(z1 + α + 1 + nH

1 )
dnH

1

dπL
︸ ︷︷ ︸

both terms are negative

< 0.

34



Letting u(c) = ln(c) one obtains:

dW2

dπL
=u(z2 + nL

2 )− u(z2 + α + 1 + nH
2 )

︸ ︷︷ ︸

negative

+ πLu′(z2 + nL
2 )

dnL
2

dπL
+ (1− πL)u′(z2 + α + 1 + nH

2 )
dnH

2

dπL
︸ ︷︷ ︸

both terms are positive

=u(z2 + nL
2 )− u(z2 + α+ 1 + nH

2 )

+ πLπHf1∆z(α+ 1)

[
u′(z2 + nL

2 )

z̄ + α + 1
+

u′(z2 + α + 1 + nH
2 )

z̄

]

,

where the last equality relies on the optimal portfolios derived in 23b. Then
by the concavity of u and the fact that u′(z2 + α + 1 + nH

2 )/u
′(z2 + nL

2 ) =
(z̄ + α+ 1)/z̄ we get

dW2

dπL
6− u′(z2 + a+ 1 + nH

2 )(α + 1)

+ πLπHf1∆z(α + 1)

[
u′(z2 + nL

2 )

z̄ + α + 1
+

u′(z2 + α + 1 + nH
2 )

z̄

]

=− u′(z2 + a+ 1 + nH
2 )(α + 1) + 2πLπHf1∆z(α + 1)u′(z2 + α+ 1 + nH

2 )/z̄

=u′(z2 + a+ 1 + nH
2 )(α + 1)[−1 + 2πLπHf1∆z/z̄] < 0.

B Contour plot of π̄L

Figure 8 plots contours of (α+1)δ−z2
(α+1)f1∆z/z̄

≡ π̄L for the parameters described in
2. To have multiple equilibria with trading of assets we need δ ≥ z2

1+α
. When

this holds as an equality, we have π̄L = 0, which is the π̄L = 0 contour.

C Optimization problem with two periods

The interim expected utility:

Vz(π
L, nb, ne) = πLU(z+nb+nL

z )+(1−πL)[U(z+α+1+nH
z +nb+(α+1)ne)−κ].
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Figure 8: Contours of π̄L

The life-time utility

max
nb,ne

U(z0 − qbnb − qene) + β
∑

z∈{z1,z2}

fzVz(π
L, nb, ne).

The first-order necessary conditions imply that the price of the risk-free bond
at nb = ne = 0 is:

qb = β
∑

z

fz
πLU ′(z + nL

z ) + (1− πL)U ′(z + α + 1 + nH
z )

U ′(z0)
. (44)

The price of a claim to the aggregate endowment (equity) is:

qe = β
∑

z

fz
U ′(z + α + 1 + nH

z )

U ′(z0)
(1− πL)(α + 1). (45)
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