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1 Introduction

As	a	recession	sets	in, confidence	in	the	prospects	of	the	economy	sinks. Firms	cut	down	on	employ-

ment	and	investment	as	they	turn	pessimistic	about	the	demand	for	their	products; consumers	reduce

spending	as	they	turn	pessimistic	about	their	job	and	income	prospects; and	the	pessimism	of	one

economic	agent	appears	to	justify, if	not	feed, that	of	others.

Workhorse	macroeconomic	models, especially	 those	used	 for	 quantitative	purposes, interpret

such	phenomena	as	the	coordinated	response	of	the	agents	to	changes	in	payoff-relevant	fundamentals

such	as	 the	general	 level	of	know-how	 (technology	 shocks)	or	 the	efficacy	of	 the	financial	 sector

(financial	 shocks). This	 leaves	 little	 room	 for	expectations	 to	play	an	autonomous	 role	 in	driving

the	business	cycle. This	in	turn	is	because	such	models	assume	away, not	only	multiple	equilibria,

but	also	frictional	coordination	in	the	form	of	higher-order	uncertainty.1 Formally, the	economy	is

modeled	as	a	game	in	which	all	players	share	a	common	prior	and	the	same	information	at	all	times,

face	no	uncertainty	about	one	another’s	beliefs	and	behavior	conditional	on	the	fundamentals, and

reach	a	perfect	consensus	about	the	current	state	and	the	future	prospects	of	the	economy.

These	are	strong	assumptions, which	are	at	odds	with	the	heterogeneity	of	expectations	evident

in	surveys. Once	these	assumptions	are	relaxed, the	expectations	of	economic	outcomes—for	in-

stance, firms’	expectations	of	consumer	spending	and	consumers’	expectations	of	employment	and

income—can	diverge	from	the	expectations	of	fundamentals. This	provides	a	novel	explanation	of

the	discrepancies	between	the	predictions	of	the	baseline	RBC model	and	the	data. It	also	accom-

modates	phenomena	akin	to	self-fulfilling	fluctuations	despite	the	uniqueness	of	equilibrium. In	this

paper, we	provide	a	tractable	formalization	of	these	ideas	and	explore	their	quantitative	potential.

Two	contributions. We	make	two	contributions, one	methodological	and	one	applied. We	first

develop	a	general	method	for	enriching	dynamic, general-equilibrium	models	with	a	tractable	form

of	aggregate	variation	in	higher-order	beliefs	(i.e., the	beliefs	of	the	beliefs	of	others). We	then	use	this

method	to	explore	the	macroeconomic	implications	of	a	certain	type	of	waves	of	optimism	and	pes-

simism	that	can	be	interpreted	as	the	product	of	frictional	coordination	and—unlike	the	one	captured

by	the	literature	on	news	shocks—regards	the	short-term	prospects	of	the	economy.

We	refer	to	these	waves	as	variation	in	“confidence”	and	explore	their	implications	within	RBC

and	New	Keynesian	models	of	either	the	textbook	or	the	medium-scale	DSGE variety.2 We	show	that

they	offer	a	parsimonious	yet	potent	explanation	of	the	business-cycle	data. We	also	argue	that	they

help	capture	a	form	of	“demand-driven	fluctuations”	that	does	not	rely	on	nominal	rigidities	and	does

not	have	to	manifest	as	comovement	between	inflation	and	real	economic	activity.

Background	and	methodological	contribution. We	build	heavily	upon	the	macroeconomic	lit-

erature	on	incomplete	 information	and	higher-order	uncertainty. This	 literature	goes	back	at	 least

to Phelps (1971)	and Townsend (1983)	and	has	been	revived	recently	by	 the	 influential	contribu-

1Higher-order	uncertainty	refers	to	the	uncertainty	that	the	agents	face	about	the	beliefs	of	others.
2RBC is	acronym	for	Real	Business	Cycles, DSGE for	Dynamic	Stochastic	General	Equilibrium.
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tions	of Morris	and	Shin (2001)	and Woodford (2002). Within	this	literature, the	closest	precursor

to	our	paper	is Angeletos	and	La’O (2013), which	has	shown	how	higher-order	uncertainty	can	help

unique-equilibrium	models	accommodate	forces	akin	to	animal	spirits	and	coordination	failures.3

We	borrow	from	this	 literature	the	insight	 that	higher-order	beliefs	can	deviate	from	first-order

beliefs, but	use	heterogeneous	priors	instead	of	complex	learning	dynamics	to	engineer	fluctuations

in	 the	gap	between	first-	and	higher-order	beliefs. This	approach	entails	a	certain	departure	 from

Rational	Expectations. But	 it	also	allows	us	 to	bypass	 the	computational	complications	 that	have

hindered	progress	in	this	literature	on	the	quantitative	front,4 and	to	develop	a	general	method	for

augmenting	macroeconomic	models	with	rich, yet	tractable, higher-order	beliefs.

In	order	to	illustrate	this	point, consider	the	baseline	RBC model. The	equilibrium	dynamics	of

this	model	can	be	summarized	by	a	policy	rule	of	the	form Xt = G(Kt, At), where At is	the	technol-

ogy	shock, Kt is	the	capital	stock, and Xt = (Yt, Nt, Ct,Kt+1) is	a	vector	that	collects	the	relevant

macroeconomic	outcomes, namely	output, employment, consumption, and	investment	or, equiva-

lently, the	next-period	capital	stock. Adding	incomplete	information	to	this	model	allows	higher-order

beliefs	to	diverge	from	first-order	beliefs	but	also	increases	the	model’s	state	space	and	considerably

complicates	its	solution. By	contrast, our	heterogeneous-prior	formulation	captures	a	similar	type	of

beliefs-driven	fluctuations	with	only	a	minimal	change	in	the	state	space: the	equilibrium	policy	rule

takes	the	formXt = G(Kt, At, ξt), where ξt is	an	exogenous	random	variable	which, by	construction,

encapsulates	the	deviation	of	higher-order	beliefs	from	first-order	beliefs.

This	gain	in	tractability	is	not	limited	to	the	baseline	RBC model. For	a	large, essentially	arbi-

trary, class	of	linear	DSGE models, our	approach	guarantees	a	minimal	increase	in	the	state	space

and	delivers	the	solution	of	the	beliefs-augmented	model	as	a	relatively	simple	transformation	of	the

solution	of	the	original	model. The	beliefs-augmented	model	can	thus	be	simulated, calibrated, and

estimated	with	essentially	the	same	facility	as	the	original	one.5

Applied	contribution. By	construction, the ξt shock	represents	variation	in	the	gap	between	the

first-	and	the	higher-order	beliefs	of	the	exogenous	fundamental	(TFP).	In	equilibrium, this	translates

into	waves	of	optimism	and	pessimism	about	aggregate	output, employment, spending, and	so	on.

We	refer	to	these	waves	as	variation	in	“confidence”	and	to ξt as	the	“confidence	shock.”
3See Angeletos	and	Lian (2016a)	 for	a	survey	and	evaluation	of	 this	 literature. Let	us	also	emphasize	 that	we	have

in	mind	situations	in	higher-order	uncertainty	is	both	present	and	of	consequence. This	differentiates	our	paper, and	the
aforementioned	literature	more	broadly, from	both Lucas (1972), who	considers	a	setting	in	which	higher-order	uncertainty
is	present	but	inconsequential, and Sims (2003), who	abstracts	from	whether	and	how	rational	inattention	can	be	conductive
to	higher-order	uncertainty.

4These	complications	were	first	highlighted	by Townsend (1983). They	include	the	need	for	large	state	spaces	in	order
to	keep	track	of	the	dynamics	of	higher-order	beliefs	and	the	fixed	point	between	the	law	of	motion	of	the	state	and	the
agents’	filtering	problem. For	detailed	expositions	of	these	complications	and	complementary	attempts	to	make	progress
on	the	quantitative	front, see Nimark (2017)	and Huo	and	Takayama (2015a,b).

5The	aforementioned	gain	may	carry	a	cost: we	abstract	from	the	restrictions	that	the	common-prior	assumption, together
with	appropriate	evidence, may	impose	on	the	magnitude	and	persistence	of	higher-order	uncertainty. We	elucidate	this
issue	in	Subsection 3.3 and	argue	that	it	may	not	matter	for	the	applied	contribution	of	our	paper.
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A distinct	attribute	of	these	waves	is	that	they	regard	the	short-term	economic	outlook. For	in-

stance, a	negative	innovation	in ξt causes	the	firms	to	become	pessimistic	about	profitability	and	re-

turns	over	the	next	few	quarters, and	the	consumers	to	become	pessimistic	about	wages	and	income

over	the	same	horizon, without	any	change	in	expectations	of	either	the	exogenous	fundamentals	at

any	horizon	or	the	endogenous	outcomes	in	the	medium	to	long	run.

This	property	underlies	our	preferred	interpretation	of	the ξt shock	as	a	vehicle	for	autonomous

variation	in	expectations	about	the	short-term	economic	outlook. It	also	distinguishes	our	contribution

from	the	literature	on	news	and	noise	shocks	(Jaimovich	and	Rebelo, 2009; Lorenzoni, 2009; Barsky

and	Sims, 2011). That	literature	stresses	beliefs	of	productivity	and	income	in	the	medium	to	long

run, a	feature	that, in	the	absence	of	appropriate	bells	and	whistles, cannot	generate	realistic	business

cycles. By	contrast, the	emphasis	on	expectations	about	 the	 short	 run	allows	our	mechanism	 to

produce	realistic	business	cycles	even	within	the	textbook	RBC model.

To	understand	why, augment	the	RBC model	with	our	mechanism	and	consider	a	negative	inno-

vation	in ξt. As	firms	expect	the	demand	for	their	products	to	be	weak	in	the	short	run, they	find

it	optimal	 to	 lower	 their	demand	 for	 labor	and	capital. In	 the	eyes	of	households, this	 translates

into	a	 transitory	 fall	 in	wages, capital	 returns, and	overall	 income. Because	 this	entails	 relatively

weak	wealth	effects	and	relatively	strong	substitution	effects, households	react	by	working	less	and

by	 reducing	both	consumption	and	saving. Variation	 in	“confidence”	 thus	generates	 strong	posi-

tive	comovement	between	employment, output, consumption, and	investment	at	the	business-cycle

frequency, without	commensurate	movements	in	labor	productivity	and	TFP at	any	frequency.

These	predictions	are	in	line	with	the	comovements	observed	in	the	US data	and	cannot	be	easily

replicated	by	alternative	theories. We	provide	support	for	these	claims	by	carrying	out	two	empirical

exercises. In	the	first, we	consider	the	conditional	moments	in	the	data	after	removing	the	effects	of

an	empirical	proxy	of	the	technology	shock. One	can	think	of	the	filtered	data	as	representing	the

“residuals”	between	the	data	and	the	predictions	of	the	baseline	RBC model. Our	theory	does	well

on	this	front: not	only	does	it	capture	the	comovements	in	these	residuals, but	it	also	outperforms

other	parsimonious	extensions	of	the	RBC model. A similar	picture	emerges	when	considering	the

wedges	along	the	lines	of Chari, Kehoe, and	McGrattan (2007).

In	 the	 second	exercise, we	estimate	medium-scale	DSGE models	 that	 include	our	confidence

shock	alongside	several	other	 shocks	and	also	contain	 familiar	bells	and	whistles	 from	 the	DSGE

literature, such	as	the	specific	types	of	consumption	and	investment	adjustment	costs	popularized

by Christiano, Eichenbaum, and	Evans (2005)	and Smets	and	Wouters (2007). This	exercise	lacks

parsimony—in	particular, it	allows	business-cycle	comovements	to	be	accounted	for	by	the	combi-

nation	of	a	plethora	of	shocks—but	corresponds	closer	to	standard	practice. Despite	the	presence	of

multiple, competing	shocks, the	confidence	shock	emerges	as	the	main	driver	of	the	business	cycle,

accounting	 for	about	one	half	of	 the	volatility	 in	 the	key	macroeconomic	quantities	 (GDP,	hours,

investment, consumption)	and	for	the	bulk	of	their	comovements.

This	finding	 is	 robust	across	 two	specifications. The	first	 includes	 sticky	prices, lets	monetary

policy	 follow	a	 realistic	Taylor	 rule, and	 is	estimated	using	both	 real	and	nominal	variables. The
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second	assumes	flexible	prices, abstracts	from	monetary	policy	and	inflation, and	is	estimated	using

only	real	quantities. Irrespective	of	the	specification, the	posterior	odds	of	the	model	that	excludes	the

confidence	shock	are	considerably	smaller	than	those	of	the	model	that	contains	it. Last	but	not	least,

our	mechanism	allows	for	fluctuations	that	resemble	those	produced	by	aggregate	demand	shocks

but	do	not	require	commensurate	movements	in	inflation, a	feature	that	seems	consistent	with	the

data	and	helps	bypass	the	empirical	failures	of	old	and	new	Philips	curves.

Because	a	direct, empirical	counterpart	to	the	confidence	shock	is	hard, if	possible	at	all, to	ob-

tain,6 these	findings	only	provide	 indirect	 support	 for	our	 theory. They	nevertheless	 indicate	 the

quantitative	potential	of	three	elements	that	are	missing	from	the	DSGE literature: frictional	coordi-

nation	in	the	form	of	higher-order	uncertainty; a	prominent	role	for	waves	of	optimism	and	pessimism

about	the	short-term	economic	outlook; and	demand-driven	fluctuations	outside	the	inflation-output

nexus	of	 the	New	Keynesian	 framework. Our	contribution	combines	all	 three	of	 these	elements.

Future	work	may	narrow	the	focus	to	one	or	another	of	these	elements.

Layout. The	 rest	of	 the	paper	 is	organized	as	 follows. Section 2 sets	up	 the	baseline	model.

Section 3 explains	the	recursive	formulation	of	the	equilibrium	and	our	solution	method. Section 4

derives, evaluates, and	interprets	the	empirical	properties	of	the	baseline	model. Section 5 extends

the	analysis	to	two	richer, estimated, models. Section 6 concludes.

2 An	RBC Prototype	with	Tractable	Higher-Order	Beliefs

In	this	section	we	set	up	our	baseline	model: an	RBC prototype, augmented	with	a	tractable	form	of

higher-order	belief	dynamics. We	first	describe	the	physical	environment, which	is	quite	standard.

We	then	specify	the	structure	of	beliefs, which	constitutes	the	main	novelty	of	our	approach.

Geography, markets, and	timing. There	is	a	continuum	of	islands, indexed	by i, and	a	mainland.

Each	island	is	inhabited	by	a	firm	and	a	household, which	interact	in	local	labor	and	capital	markets.

The	firm	uses	the	labor	and	capital	provided	by	the	household	to	produce	a	differentiated	intermediate

good. A centralized	market	for	these	goods	operates	in	the	mainland, alongside	a	market	for	a	final

good. The	latter	is	produced	with	the	use	of	the	intermediate	goods	and	is	itself	used	for	consumption

and	investment. All	markets	are	competitive.

Time	is	discrete, indexed	by t ∈ {0, 1, . . .}, and	each	period	contains	two	stages. The	labor	and
capital	markets	of	each	island	operate	in	stage	1. At	this	point, the	firm	decides	how	much	labor

and	capital	 to	demand—and, symmetrically, the	household	decides	how	much	of	 these	 inputs	 to

supply—on	the	basis	of	incomplete	information	regarding	the	concurrent	level	of	economic	activity

6Awell-known	empirical	measure	of	expectations	is	the	University	of	Michigan	Index	of	Consumer	Sentiment. This	index
comoves	with, and	in	fact	leads, the	business	cycle. Furthermore, this	index	is	uncorrelated	with	utilization-adjusted	TFP
at	all	leads	and	lags. While	these	facts	are	in	line	with	our	theory, they	do	not	rule	out	the	possibility	that	the	comovement
of	that	index	with	the	business	cycle	is	driven	by	some	other	fundamental. The	inherent	difficulty	is	that	the	definition	of
what	is	a	fundamental	and	what	is	not	depends	on	the	model	under	consideration.
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on	other	islands. In	stage	2, the	centralized	markets	for	the	intermediate	and	the	final	goods	operate,

the	actual	level	of	economic	activity	is	publicly	revealed, and	the	households	make	their	consumption

and	saving	decisions	on	the	basis	of	this	information.

Households. Consider	the	household	on	island i. Her	preferences	are	given	by

∞∑
t=0

βtU(cit, nit)

where β ∈ (0, 1) is	the	discount	factor, cit is	consumption, nit is	employment	(hours	worked), and U

is	the	per-period	utility	function. The	latter	takes	the	form U(c, n) = c1−γ−1
1−γ − n1+ν

1+ν where γ ≥ 0 is	the

inverse	of	the	elasticity	of	intertemporal	substitution	and ν ≥ 0 is	the	inverse	of	the	Frisch	elasticity

of	labor	supply. Balanced	growth	requires γ = 1, a	restriction	that	we	impose	in	our	quantitative

exercises; letting γ ̸= 1 helps	accommodate	a	useful	example	in	Section 3. The	household’s	budget

constraint	is Ptcit+Ptiit = witnit+ritkit+πit, where Pt is	the	price	of	the	final	good, iit is	investment,

wit is	the	local	wage, rit is	the	local	rent	on	capital, and πit is	the	profit	of	the	local	firm. Finally, the

law	of	motion	for	capital	is ki,t+1 = (1− δ)kit + iit, where δ ∈ (0, 1) is	the	depreciation	rate.

Intermediate-good	producers. The	output	of	the	firm	on	island i is	given	by

yit = Atn
1−α
it kαit

where At is	the	aggregate	TFP level	and kit is	the	local	capital	stock. The	firm’s	profit	is πit = pityit−
witnit − ritkit. For	future	reference, note	that	variation	in	expectations	of pit translates	in	variation	in

expectations	of	the	returns	to	capital	and	labor.

Final-good	sector. The	final	good	is	produced	with	a	Cobb-Douglas	technology, so	that logYt =∫ 1
0 log yit di. By	implication, the	demand	for	the	good	of	island i satisfies

pit
Pt

=
Yt
yit
. (1)

Without	any	loss, we	henceforth	normalize	the	price	level	so	that Pt = 1.7

The	technology	shock. TFP follows	a	random	walk: logAt = logAt−1+ vt, where vt is	the	period

t innovation. The	latter	is	drawn	from	a	Normal	distribution	with	mean 0 and	variance σ2a.

A tractable	 form	of	higher-order	uncertainty. We	open	 the	door	 to	a	gap	between	first-	and

higher-order	beliefs	by	 removing	common	knowledge	of At in	 stage	1	of	period t: each	 island i

observes	only	a	private	signal	of	 the	 form zit = logAt + εit, where εit is	an	 island-specific	error.

We	then	engineer	the	desired	variation	in	higher-order	beliefs	by	departing	from	the	common-prior

assumption	and	letting	each	island	believe	that	the	signals	of	others	are	biased: for	every i, the	prior

of	island i is	that εit ∼ N (0, σ2) and	that εjt ∼ N (ξt, σ
2) for	all j ̸= i, where ξt is	a	random	variable

7This	only	applies	to	the	present	model, which	abstract	from	nominal	rigidity	and	monetary	policy. In	the	New	Keynesian
variant	studied	in	Section 5, Pt is	determined	jointly	with	the	real	allocations.
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that	becomes	commonly	known	in	stage	1	of	period t and	that	represents	the	perceived	bias	in	one

another’s	signals. These	priors	are	commonly	known: the	agents	“agree	to	disagree”.

We	have	in	mind	a	sequence	of	models	in	which	first-	and	higher-order	beliefs	converge	to	Dirac

measures	as σ → 0. But	instead	of	studying	the	case	with σ ≈ 0, we	only	study	the	case	with σ = 0.

This	guarantees	that	the	agents	act	as	if	they	were	perfectly	informed	about	the	underlying	state	of

Nature	and	that	the	pair (At, ξt) is	a	sufficient	statistic	for	the	entire	hierarchy	of	beliefs	about	both

current	and	future	fundamentals. Together	with	the	assumption	that	the	aggregate	capital	stock	(the

endogenous	state	variable)	becomes	common	knowledge	at	the	end	of	each	period, this	guarantees

that	the	model	admits	a	tractable	recursive	solution, as	shown	in	Section 3.

The	confidence	shock. We	finally	let ξt follow	an AR(1) process: ξt = ρξt−1+ζt,where ρ ∈ [0, 1)

and ζt is	 drawn	 from	a	Normal	distribution	with	mean 0 and	variance σ2ξ . This	 helps	mimic	 an

elementary	property	of	common-prior	settings: in	such	settings, any	innovation	in	the	gap	between

first-	and	higher-order	beliefs	can	last	for	a	while	but	must	eventually	vanish	as	old	information	gets

replaced	by	new. See	Subsection 3.3 for	an	example	that	illustrates	this	point.

Remarks	and	Interpretation. Our	heterogeneous-prior	specification	puts	strains	on	the	rationality

of	the	agents. First, it	lets	the	impact	of ξt on n-th	order	beliefs	increase	with n. Second, it	ties	the

persistence	of	higher-order	beliefs	to	the	persistence	of	the ξt shock. Finally, it	implies	a	systematic

bias	in	equilibrium	expectations: although	the	firms	and	the	consumers	predict	correctly	the	sign	of

the	equilibrium	impact	of ξt on	the	relevant	economic	outcomes, they	systematically	overestimate	its

magnitude, and	they	also	fail	to	learn	from	their	past	mistakes.

One	does	not	have	to	take	these	properties	literally. Common-prior	settings	such	as	those	studied

in Angeletos	and	La’O (2013), Benhabib, Wang, and	Wen (2015), Huo	and	Takayama (2015a), Ni-

mark (2017), and Rondina	and	Walker (2014)	can	accommodate	similar	fluctuations	in	higher-order

beliefs. In	effect, what	is	“bias”	in	our	setting	becomes	“rational	confusion”	in	those	settings. Further-

more, higher-order	beliefs	can	be	persistent	in	both	cases, although	the	persistence	is	endogenous	to

the	learning	that	takes	place	over	time	in	the	latter	case. We	illustrate	these	points	in	Subsection 3.3

by	establishing	an	observational	equivalence, from	the	point	of	view	of	aggregate	data, between	a

special	case	of	our	model	and	a	common-prior	variant.

Most	importantly, the	subsequent	analysis	will	reveal	that	the	empirical	performance	of	our	theory

hinges, not	on	the	precise	micro-foundations	of	the	belief	waves	considered, but	rather	on	the	property

that	 the	beliefs	regard	firm	profitability	and	household	income	in	 the	short	 run	as	opposed	to	 the

medium	and	long	run. We	thus	encourage	the	reader	 to	adopt	a	flexible	 interpretation	of ξt as	a

modeling	device	that	helps	capture	more	generally	this	kind	of	belief	waves.8

8We	can	 imagine	 at	 least	 two	 variants	 of	 our	 framework	 that	 can	 also	 capture	 such	waves. The	one	 replaces	 our
heterogeneous-prior	specification	with	Knightean	uncertainty	(ambiguity)	about	the	information	of	others	and	allows	for,
possibly	endogenous, variation	in	the	level	of	this	uncertainty; such	a	model	could	build	a	bridge	between	our	work	and	a
literature	on	ambiguity	and	robust	control	(Hansen	and	Sargent, 2007, 2012;Woodford, 2010). The	other	allows	directly	for
irrational	shifts	in	expectations	of	profitability	and	income	in	the	short	run; such	a	model	would	fit	well	with	the	narratives
in Akerlof	and	Shiller (2009)	and Burnside, Eichenbaum, and	Rebelo (2016).
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3 Equilibrium	characterization	and	solution	method

In	this	section, we	characterize	the	equilibrium	of	the	model	and	present	our	solution	method. We

also	use	an	example	to	illustrate	the	idea	that	our	heterogeneous-prior	formulation	can	be	seen	as

convenient	proxy	for	belief	fluctuations	in	common-prior	settings	with	rich	information	structures.

3.1 Recursive	equilibrium

As	behavior	is	forward	looking, the	optimal	choices	any	agent	(or	island)	makes	at	any	point	of	time

depend	on	her	beliefs, not	only	of	the	concurrent	behavior	of	others, but	also	of	their	behavior	in

the	future. This	suggests	a	high-dimensional	fixed-point	relation	between	actual	behavior	and	the

expectations	that	agents	form	at	any	time	about	future	economic	outcomes, including	expectations

of	 the	 future	 terms	of	 trade	 (the	prices	of	 the	 island-specific	goods), wages, and	 interest	 rates. In

general, the	introduction	of	higher-order	uncertainty	can	perturb	this	kind	of	expectations	in	a	suffi-

ciently	significant	manner	as	to	render	a	low-dimensional	recursive	representation	infeasible. With

our	formulation, however, such	a	representation	is	feasible	and, indeed, relatively	straightforward.

To	start	with, note	that	the	equilibrium	allocations	on	any	given	island	can	be	obtained	by	solving

the	problem	of	a	fictitious	local	planner. The	latter	chooses	local	employment, output, consumption

and	savings	so	as	to	maximize	local	welfare	subject	to	the	following	resource	constraint:

cit + ki,t+1 = (1− δ)kit + pityit (2)

Note	that	this	constraint	depends	on pit and, thereby, on	aggregate	output, objects	that	are	endogenous

in	general	equilibrium	but	are	taken	as	given	by	the	fictitious	local	planner	(or, equivalently, in	the

partial	equilibrium	of	 the	given	 island). This	dependence	captures	 the	 type	of	aggregate-demand

externalities	and	other	general-equilibrium	effects	that	are	at	the	core	of	DSGE models.

To	make	her	optimal	decisions	at	any	given	point	of	time, the	aforementioned	planner	must	form

beliefs	about	the	value	of pit (or, equivalently, of Yt)	at	all	future	points	of	time. These	beliefs	encap-

sulate	the	beliefs	that	the	local	firm	forms	about	the	evolution	of	the	demand	for	its	product	and	of

the	costs	of	its	inputs, as	well	as	the	beliefs	that	the	local	consumer	forms	about	the	dynamics	of	local

income, wages, and	capital	returns. The	fact	that	the	various	beliefs	are	tied	together	underscores	the

cross-equations	restrictions	that	discipline	the	exercises	conducted	in	this	paper: if	expectations	were

“completely”	irrational, the	beliefs	of	different	endogenous	objects	would	not	be	tied	together. The

observable	implications	of	these	restrictions	will	be	revealed	in	what	follows. For	now, we	emphasize

that ξt matters	for	equilibrium	outcomes	because, and	only	because, it	triggers	comovement	in	the

expectations	of	the	various	actors	in	our	model.

In	a	recursive	equilibrium, these	expectations	can	be	tracked	with	the	help	of	a	small	number	of

functions, which	themselves	encapsulate	the	fixed-point	relation	between	behavior	and	beliefs. For

the	model	under	consideration, this	means	that	we	can	define	a	recursive	equilibrium	as	a	collection

of	four	functions, denoted	by P, G, V1, and V2, such	that	the	following	is	true:
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• P(z, ξ,K) captures	the	price	(the	terms	of	trade, or	equivalently, the	demand)	expected	by	an

island	in	stage	1	of	any	given	period	when	the	local	signal	is z, the	confidence	shock	is ξ, and

the	capital	stock	is K; and G(A, ξ,K) gives	the	aggregate	capital	stock	next	period	when	the

current	realized	value	of	the	aggregate	state	is (A, ξ,K).

• V1 and V2 solve	the	following	Bellman	equations:

V1(k; z, ξ,K) = max
n

V2(m̂; z, ξ,K)− 1
1+νn

1+ν

s.t. m̂ = p̂ŷ + (1− δ)k

ŷ = zkαn1−α

p̂ = P(z, ξ,K)

 (3)

V2(m;A, ξ,K) = max
c,k′

c1−γ−1
1−γ + β

∫
V1(k

′;A′, ξ′,K ′)df(A′, ξ′|A, ξ)

s.t. c+ k′ = m

K ′ = G(A, ξ,K)

 (4)

• P and G are	consistent	with	the	policy	rules	that	solve	the	local	planning	problem	in	(3)-(4).

To	 interpret	 (3)	and	 (4), note	 that V1 and V2 denote	 the	 local	planner’s	value	 functions	 in, re-

spectively, stages	1	and	2; m denotes	the	quantity	of	the	final	good	acquired	in	stage	2; and	the hat

symbol	over	a	variable	indicates	the	stage-1	belief	of	that	variable. Next, note	that	the	last	constraint

in	(3)	embeds	the	belief	that	the	price	of	the	local	good	is	governed	by	the	function P, while	the	other

two	constraints	are	the	local	production	function	and	the	local	resource	constraint. The	problem	in

(3)	therefore	describes	the	optimal	employment	and	output	choices	in	stage	1, when	the	local	cap-

ital	stock	is k, the	local	signal	of	the	aggregate	state	is (z, ξ,K), and	the	local	beliefs	of	“aggregate

demand”	are	captured	by	the	function P. The	problem	in	(4), in	turn, describes	the	optimal	consump-

tion	and	saving	decisions	in	stage	2, when	the	available	quantity	of	the	final	good	is m, the	realized

aggregate	state	is (A, ξ,K), and	the	island	expects	aggregate	capital	to	follow	the	policy	rule G.

The	decision	problem	of	the	local	planner	treats	the	functions P and G as	exogenous. In	equi-

librium, however, these	functions	must	be	consistent	with	the	policy	rules	that	solve	this	problem.

Let n(k, z; ξ,K) be	the	optimal	choice	for	employment	that	obtains	from	(3)	and g(m;A, ξ,K) be	the

optimal	policy	rule	for	capital	that	obtains	from	(4). Next, let y(z;A, ξ,K) ≡ An(z, ξ,K)1−αKα be

the	output	level	that	results	from	the	aforementioned	employment	strategy	where	the	realized	TFP is

A and	the	local	capital	stock	coincides	with	the	aggregate	one. The	relevant	equilibrium-consistency

conditions	can	then	be	expressed	as	follows:

P(z, ξ,K) =
y(z + ξ, z, ξ,K)

y(z, z, ξ,K)
(5)

G(A, ξ,K) = g
(
y(A,A, ξ,K) + (1− δ)K ;

X
A, ξ,K

)
. (6)

To	interpret	condition	(5), recall	that	in	stage	1	each	island	believes	that, with	probability	one, TFP

satisfies A = z and	the	signals	of	all	other	islands	satisfy z′ = A+ξ = z+ξ. Together	with	the	fact	that
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all	islands	make	the	same	choices	in	equilibrium	and	that	the	function y captures	their	equilibrium

production	choices, this	 implies	 that	 the	 local	beliefs	of	 local	and	aggregate	output	are	given	by,

respectively, ŷ = y(z, z, ξ,K) and Ŷ = y(z+ξ, z, ξ,K). By	the	demand	function	in	(1), it	then	follows

that	the	local	belief	of	the	price	must	satisfy p̂ = Ŷ /ŷ, which	gives	condition	(5). To	interpret	condition

(6), recall	that	all	islands	end	up	making	identical	choices	in	equilibrium, implying	that	the	available

resources	of	each	island	in	stage	2	coincide	with Y + (1 − δ)K, where Y is	the	aggregate	quantity

of	the	final	good	(aggregate	GDP).	Note	next	that	the	realized	production	level	of all islands	is	given

by y(A,A, ξ,K) and, therefore, Y is	also	given	by y(A,A, ξ,K). Together	with	the	fact	that g is	the

optimal	savings	rule, this	gives	condition	(6).

Summing	up, an	equilibrium	is	a	fixed	point	of	the	Bellman	equations	(3)-(4)	and	the	consistency

conditions	 (5)-(6). In	principle, one	can	obtain	 the	global, non-linear, solution	of	 this	fixed-point

problem	with	numerical	methods. As	in	the	DSGE literature, however, we	find	it	useful	to	concentrate

on	the	log-linear	approximation	of	the	solution	around	the	deterministic	steady	state.

3.2 Log-linear	Solution

To	obtain	the	log-linear	solution, we	first	log-linearize	the	equilibrium	equations	around	the	deter-

ministic	steady	state. With	a	slight	abuse	of	notation, we	henceforth	re-interpret	all	the	variables	in

terms	of	the	log-deviations	of	these	variables	from	their	steady-state	values.

The	terms	of	trade	faced	by	island i are pit = Yt − yit. The	associated	marginal	revenue	products

of	labor	and	capital	are, respectively, MRPLit ≡ pit + yit − nit and MRPKit ≡ pit + yit − kit. The

optimal	behavior	of	island i is	thus	characterized	by	the	following	system:

νnit = Eit [MRPLit]− γEitcit (7)

γ
(
E′
itci,t+1 − cit

)
= (1− β(1− δ))E′

it [MRPKi,t+1] (8)

pit + yit = (1− s)cit + sιit (9)

yit = At + αkit + (1− α)nit (10)

ki,t+1 = δiit + (1− δ)kit (11)

where s ≡ αβδ
1−β(1−δ) denotes	the	steady-state	investment-to-GDP ratio. The	interpretation	of	these

conditions	is	straightforward: (7)	is	the	labor-supply	condition; (8)	is	the	Euler	condition; (9)	is	the

resource	constraint; and	(10)	is	the	production	function; and	(11)	is	the	law	of	motion	for	capital.

To	convey	the	basic	idea	behind	our	solution	method, consider	momentarily	a	special	case	that

can	be	solved	by	hand: let	utility	be	linear	in	consumption	and	assume	away	capital	(γ = α = 0). In

this	case, the	equilibrium	can	be	reduced	to	the	following	fixed-point	relation:

nit = Eit[χAt + ωNt], (12)

where χ ≡ 1
1+ν and ω ≡ 1

1+ν ∈ (0, 1).9 Equilibrium	employment	can	therefore	be	understood	as	the

solution	to	a	static	beauty-contest	game, of	the	type	found	in Morris	and	Shin (2002)	and Angeletos
9To	obtain	condition	(12), note	first	that, when α = 0, investment	is	zero, output	is	given	by yit = At + nit, and	the
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and	Pavan (2007).10 In	this	game, a	player	is	an	island, her	action	is	local	employment, the	funda-

mental	is	the	underlying	TFP, χmeasures	the	direct	effect	of	the	fundamental	on	individual	outcomes

holding	constant	the	aggregate	outcomes, and ω measures	the	degree	of	strategic	complementarity.11

Importantly, an	 island	 responds	 to ξt because, and	only	because, this	 shock	 influences	 its	beliefs

about	aggregate	employment	(and	thereby	its	beliefs	about	its	terms	of	trade).

To	solve	(12), start	by	guessing	the	following	policy	rule	at	the	individual	level:

nit = Λzzit + Λξξt (13)

Aggregation	gives Nt = Λz z̄t + Λξξt. Next, note	that, due	to	our	specification	of	priors,

Eit[At] = zit and Eit[z̄t] = Eit[At + ξt] = zit + ξt.

It	follows	that Eit[Nt] = Λzzit + (Λξ +Λnz )ξt. Using	this	fact	in	(12), we	infer	that	whenever i expects

the	others	to	play	according	to	the	rule	given	by	(13), his	best	response	is	to	set

nit = (χ+ ωΛz) zit + ω(Λξ + Λz)ξt.

Matching	the	coefficients	obtained	above	with	those	in	the	proposed	policy	rule	implies	that	the	latter

is	part	of	an	equilibrium	if	and	only	if	the	following	is	true:

Λz = (χ+ ωΛz) and Λξ = ω(Λξ + Λz).

Solving	these	two	equations	for	the	coefficients Λz and Λξ gives

Λz =
χ

1− ω
=

1

ν
and Λξ =

ω

1− ω
Λz =

1

ν2
. (14)

We	infer	that	there	exists	a	unique	equilibrium	and	that	the	policy	rule	for	local	employment	in	this

equilibrium	is	given	by	(13)	along	with	(14). Finally, using	the	fact	that zit = At with	probability	one,

we	conclude	that	the	realized	aggregate	level	of	output	is	given	by

Yt = At +Nt = ΛAAt + Λξξt,

with ΛA = 1 + Λz and	with (Λz,Λξ) given	as	in	(14).

Two	properties	of	 this	 solution	are	worth	noting. First, the	coefficient ΛA, which	governs	 the

response	of Yt to At, is	the	same	as	the	one	in	the	version	of	the	model	that	imposes	common	knowl-

edge	of At and	shuts	down	the ξt shock. Second, the	coefficient Λξ, which	governs	 the	effect	of

the ξt shock, is	proportional	to ΛA by	a	factor	that	is	itself	increasing	in ω. That	is, the	impact	of

resource	constraint	reduces	to cit = pit + yit, Using	these	facts	into	the	labor-supply	condition	(9)	gives (1 + ν)nit =

Eit[pit + yit]. Finally, using pit = Yt − yit and Yt = At +Nt results	into	condition	(12).
10The	term	“beauty	contests”	is	often	used	to	refer	to	a	class	of	coordination	games	with	linear	best	responses.
11In	the	example	under	consideration, ω happens	to	coincide	with χ, but	this	is	not	generally	true. It	is	therefore	best	to

think	of ω and χ as	two	distinct	objects.
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the	confidence	shock	relative	to	that	of	the	technology	shock	increases	with	the	degree	of	strategic

complementarity. This	is	because ξt matters	only	by	influencing	the	beliefs	of	the	actions	of	others.

Go	back	now	 to	 the	 general	 case	 (α, γ > 0). The	presence	of	 an	 endogenous	 state	 variable

(capital)	and	of	forward-looking	behavior	implies	that	the	economy	can	be	thought	of	as	a dynamic

game	in	which	the	best	response	of	a	player	(or	island)	today	depends	both	on	past	outcomes	and	on

expectations	of	future	outcomes. This	complicates	the	fixed-point	problem	that	needs	to	be	solved.

The	essence, however, is	similar	to	that	in	the	above	example.

We	thus	start	by	guessing	the	following	policy	rules	at	the	island	level:

nit = Λnk(kit −Kt) + ΛnKKt + Λnz zit + Λnξ ξt (15)

cit = Γck(kit −Kt) + ΓcKKt + Γczzit + Γczzt + ΓcaAt + Γcξξt (16)

kit+1 = Ωkk(kit −Kt) + ΩkKKt +Ωkzzit +Ωkzzt +ΩkaAt +Ωkξξt (17)

where Λn, Γc, and Ωk are	coefficients	that	remain	to	be	determined. We	then	proceed	to	solve	for	the

equilibrium	values	of	these	coefficients	by	solving	the	fixed-point	problem	between	the	individual

policy	rules	and	the	associated	aggregate	outcomes	imposed	by	conditions	(7)-(11).

To	generate	data	from	the	model, we	set zit = z̄t = At and	compute	the	aggregate	outcomes

implied	by	(15)-(17). This	gives Nt, Ct and Kt+1 as	functions	of	the	vector (Kt, At, ξt), verifying	that

the	latter	is	the	state	variable	for	the	aggregate	outcomes. Note	that	setting zit = z̄t = At corresponds

to	invoking	the	objective	truth. However, to	solve	the	fixed-point	problem	between	the	individual

policy	rules	 (or	strategies)	and	 the	aggregate	outcomes, we	have	 to	 treat zit, z̄t and At as	distinct

objects. This	is	necessary	in	order	to	keep	track	of	the	difference	between	the	first-	and	the	higher-

order	beliefs	of	the	underlying	fundamental	and, thereby, between	objective	and	subjective	beliefs.

The	details	are	spelled	out	in	Online	Appendix	O.5. The	bottom	line	is	that	we	can	obtain	the

solution	of	our	model	as	a	tractable	transformation	of	that	of	the	standard	RBC model. Furthermore,

this	solution	has	two	key	properties. First, the	coefficients (ΛnK ,Γ
c
K ,Ω

k
K) and (ΛnA,Γ

c
A,Ω

k
A), which

determine	the	impact	of	the	capital	stock	and	the	technology	shock	on	aggregate	outcomes	coincide

with	those	in	the	standard	RBC model. Second, the	coefficients (Λnξ ,Γ
c
ξ,Ω

k
ξ ), which	determine	the

impact	of	the	confidence	shock, can	be	solved	as	functions	of	the	aforementioned	coefficients	and

a	few	other	coefficients, which	themselves	capture	the	degree	of	strategic	complementarity	 in	the

economy. These	properties	mirror	those	noted	in	the	example	above.

The	solution	strategy	described	above	and	the	aforementioned	properties	extend	to	a	large	class	of

linear	DSGE models; see	Online	Appendix	O.5. The	beliefs-augmented	model	can	thus	be	simulated

and	estimated	with	the	same	ease	as	the	original	model. This	facilitates	the	quantitative	explorations

conducted	in	Sections 4 and 5.

3.3 Heterogeneous	vs	Common	Priors

As	already	mentioned, the	main	advantage	of	our	approach	relative	to	common-prior, incomplete-

information	models	is	its	flexibility	and	its	straightforward	applicability	to	macroeconomic	models.
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A potential	cost	is	that	it	bypasses	the	restrictions	that	the	common-prior	assumption	imposes	on	the

size	and	dynamics	of	higher-order	uncertainty. We	now	use	an	example	to	illustrate	this	trade	off

and	to	corroborate	the	claim	that	our	heterogeneous-prior	specification	can	be	thought	as	a	proxy	for

higher-order	uncertainty	in	common-prior	settings.

In	particular, we	show	that	the	tractable	example	considered	in	the	previous	section	is	observa-

tionally	equivalent	to	a	common-prior	variant, in	a	sense	that	will	be	made	precise	below. We	then

derive	the	restrictions	that	the	common-prior	variant	imposes	on	the	volatility	and	the	persistence	of

the	kind	of	belief-driven	fluctuations	we	are	interested	in.

We	start	by	showing	that	the	special	case	of	our	model	that	was	solved	by	hand	in	the	previous

section	(namely, the	one	with α = γ = 0)	is	observationally	equivalent, in	a	sense	that	will	be	made

precise	below, to	a	common-prior	variant. This	variant	is	obtained	by	introducing	heterogeneity	in

TFP and	letting	trade	be	done	according	to	random, pairwise, matching	across	 the	islands. As	in

Angeletos	and	La’O (2013), these	modifications	allow	fluctuations	to	obtain	from	correlated	noise	in

the	rational	beliefs	that	islands	form	about	their	pairwise	terms	of	trade.

Let	us	fill	in	the	details. TFP in	island i is	given	by Ait = At + ai, where At is	the	aggregate	TFP

shock	and ai is	an	island-specific	fixed	effect. The	former	follows	a	random	walk	with	the	same	vari-

ance	as	in	the	heterogeneous-prior	economy; the	latter	is	distributed	in	the	cross-section	of	islands

according	 to	a	Normal	distribution	with	mean	zero	and	variance σ̃2a. The	 aggregate	TFP shock	is

assumed	to	be	common	knowledge. Nevertheless, higher-order	uncertainty	is	still	present	because

each	island	is	uncertain	about	the	productivity	and	the	information	of	its	trading	partner	when	choos-

ing	employment	and	production. In	particular, the	information	that	island i has	in	the	morning	of

period t about	its	current-period	match	is	summarized	by	the	following	two	signals:

zit = am(i,t) + ξ̃t and wit = ξ̃t + ui,t,

where m(i, t) denotes	the	trading	partner	of	 island i in	period t, ui,t is	orthogonal	 to am(i,t), i.i.d.

across	islands	and	unpredictable	on	the	basis	of	past	information, and ξ̃t is	an	aggregate	shock	that	is

orthogonal	to	the	aggregate	TFP shock	and	that	follows	an	AR(1)	process. More	specifically,

ξ̃t = ρ̃ξ̃t−1 + σ̃ξ ζ̃t

where ζ̃t ⇝ N (0, 1), σ̃ξ > 0, and ρ̃ ∈ [0, 1]. Literally	taken, zit is i’s	private	signal	about	the	idiosyn-

cratic	TFP of	its	trading	partner; this	signal	is	contaminated	by	common	noise, given	by ξ̃t; and wit is

a	private	signal	that	is	informative	about	this	noise.12 Clearly, the ξ̃t shock	plays	the	same	role	in	this

common-prior	setting	as	the ξt shock	in	our	heterogeneous-prior	setting.

In	the	absence	of	the	aforementioned	shocks, the	two	economies	reduce	to	the	same	underlying

RBC benchmark	and	thus	give	rise, in	equilibrium, to	the	same	observables	at	the	aggregate	level. Let

Y ∗
t denote	the	level	of	output	in	that	benchmark. From	the	results	of	the	previous	subsection, we	have

that	the	equilibrium	level	of	output	in	the	heterogeneous-prior	economy	is	given	by Yt = Y ∗
t + Λξξt,

12This	signal	can	be	recast	as	a	signal	extracted	from	past	trades; see Angeletos	and	La’O (2013)	for	details.
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with Λξ as	in	(14). And	since ξt is	an	AR(1)	process, we	conclude	that	the	“output	gap”	relative	to	the

RBC benchmark	is	also	an	AR(1)	process:

Yt − Y ∗
t = φ(Yt−1 − Y ∗

t−1) + ψεt, (18)

where εt ⇝ N (0, 1) is	i.i.d. over	time	and	independent	of	the	technology	shock,13 and	where

φ = ρ and ψ =
ωσξ

(1− ω)2
. (19)

Consider	next	the	common-prior	economy	and	let θ̃ ≡ (ρ̃, σ̃ξ, σ̃u, σ̃a) collects	its	informational	param-

eters. Its	solution	is	far	from	trivial, but	can	be	obtained	by	adapting	Theorem	1	in Huo	and	Takayama

(2015b).14 We	thus	have	that	the	output	gap	in	this	economy	also	follows	an	AR(1)	process	as	in	(18),

except	that	now φ and ψ are	given	by	the	following:

φ = Φ
(
θ̃, ω

)
≡ 1

2

[(
1
ρ̃ + ρ̃+ 1−ω

ρ̃
σ̃2
a+σ̃

2
u

σ̃2
aσ̃

2
u
σ̃2ξ

)
−

√(
1
ρ̃ + ρ̃+ 1−ω

ρ̃
σ̃2
a+σ̃

2
u

σ̃2
aσ̃

2
u
σ̃2ξ

)2
− 4

]
ψ = Ψ

(
θ̃, ω

)
≡ ωΦ(θ̃,ω)

ρ̃

(
1−ω2

ρ̃σ̃2
a+Φ(θ̃,ω)σ̃2

u
ρ̃σ̃2

a+ρ̃σ̃
2
u

) σ̃a

 (20)

By	comparing	(19)	and	(20), we	can	readily	prove	that	the	two	economies	are	observationally

equivalent	in	the	following	sense.

Proposition	1 Let θ ≡ (ρ, σξ), Θ̃ ≡ [0, 1] × R3
+, and Θ ≡ [0, 1] × R+; and	let C(θ̃) and H(θ) denote,

respectively, the	common-prior	economy	parameterized	by θ̃ and	the	heterogeneous-prior	economy

parameterized	by θ. Then:

(i)	For	any θ̃ ∈ Θ̃, there	exists	a θ ∈ Θ such	that H(θ) implies	the	same	stochastic	process	for	the

output	gap	and	all	the	macroeconomic	quantities	as C(θ̃).
(ii)	The	converse	is	also	true: for	any θ ∈ Θ, there	exists	a θ̃ ∈ Θ̃ such	that C(θ̃) implies	the	same

stochastic	process	for	the	output	gap	and	all	the	macroeconomic	quantities	as H(θ).

The	intuition	behind	this	result	is	that	the	two	economies	feature	exactly	the	same	variation	in

the	expectations	of	the	relevant	economic	outcomes: in	either	economy, a	positive	(resp., negative)

output	gap	obtains	if	and	only	if	the	firms	and	the	households	of	each	island	are	optimistic	(resp.,

pessimistic)	about	the	terms	of	trade, or	the	demand, that	their	island	is	likely	to	face	in	the	short

run. What	differs	between	the	two	economies	is	the	way	these	waves	of	optimism	and	pessimism	are

captured: in	one	economy, they	are	engineered	with	the	help	of	a	specific	departure	from	rational

expectations; in	the	other, they	are	instead	sustained	by	rational	confusion. Accordingly, whereas	the

higher-order	belief	shock	is	allowed	to	be	common	knowledge	in	the	heterogeneous-prior	economy,

13Note	that εt ≡ 1
σξ

ζt, with ζt being	the	innovation	in	the	confidence	shock.
14The	result	contained	in Huo	and	Takayama (2015b)	abstracts	from	the	aggregate	TFP shock. By	adding	such	a	shock

but	assuming	that	it	is	always	common	knowledge, we	guarantee	that	the	same	solution	applies	to	the	gap Yt − Y ∗
t .
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it	has	to	be	imperfectly	observed	in	the	common-prior	one. Nevertheless, by	choosing	the	parameters

that	govern	the	dynamics	of	that	shock	and	of	the	quality	of	learning	in	the	latter	economy, we	can

always	match	the	stochastic	process	for	the	aforementioned	expectations	in	the	former	economy, and

can	therefore	also	generate	the	same	observables	at	the	aggregate	level.

This	result	is	subject	to	the	following	qualification: the	ability	to	replicate	a	heterogeneous-prior

economy	with	a	common-prior	one	relies	on	the	freedom	to	choose	a	sufficient	high σ̃a in	the	latter.

This	is	because	the	level	of	fundamental, or	first-order	uncertainty	in	the	common-prior	economy—

parameterized	here	by σ̃a—imposes	certain	bounds	on	the	persistence	and	the	volatility	of	higher-

order	beliefs	and, equivalently, on φ and ψ. For	the	heterogeneous-prior	economy	to	respect	the	same

bounds, ρ and σξ must	satisfy	certain	restrictions. Proposition 2 below	describes	the	bounds	on φ

and ψ; Corollary 1 gives	the	corresponding	restrictions	on ρ and σξ.

Proposition	2 For	any φ ∈ [0, 1) and	any ω ∈ (0, 1), let

B(φ, ω) ≡ max
ρ̂∈[0,1],σ̂u≥0,σ̂ξ≥0

{Ψ(ρ̂, σ̂u, σ̂ξ, 1, ω) s.t. Φ(ρ̂, σ̂u, σ̂ξ, ω) = φ} .

A process	for	the	output	gap	as	in	condition	(18)	can	be	obtained	in	the	equilibrium	of	a	common-

prior	economy C(θ̃) if	and	only	if	(i) 0 ≤ φ < 1 and	(ii) 0 ≤ ψ ≤ B(φ, ω)σ̃a.

Corollary	1 A heterogeneous-prior	economy H(θ) can	be	replicated	by	a	common-prior	economy

C(θ̃) if	and	only	if	(i) 0 ≤ ρ < 1 and	(ii) σξ ≤ ω
(1−ω)2B(ρ, ω)σ̃a.

Part	(i)	of	Proposition 2 states	that	the	beliefs-driven	fluctuations	in	the	common-prior	economy

are	necessarily	transitory. This	would	be	true	even	if	we	allowed ρ̃ > 1, meaning	an	explosive	process

for	the ξ̃t shock. The	reason	is	that	these	fluctuations	are	sustained	only	by	rational	confusion, which

itself	fades	away	as	additional	information	arrives	over	time. Part	(ii), on	the	other	hand, provides	a

tight	upper	bound	on	the	volatility	of	these	fluctuations. This	bound	is	proportional	to σ̃a, because, as

already	explained, this	parameter	pins	down	the	level	of	first-order	uncertainty, which	in	turn	binds

the	level	of	higher-order	uncertainty.

Corollary 1 converts	the	above	properties	into	restrictions	on	the	parameters	of	the	heterogeneous-

prior	specification. Part	(i)	justifies	our	earlier	assertion	that	letting ρ < 1 helps	capture	within	our

framework	the	property	that	the	fluctuations	sustained	by	higher-order	uncertainty	have	to	be	transient.

Part	(ii), on	the	other, provides	an	upper	bound	on σξ.

To	 recap, we	 have	 established	 two	 lessons	 in	 the	 context	 of	 the	 example	 considered. First,

the	heterogeneous-prior	setting	is	observationally	equivalent	to	a	common-prior	variant	in	terms	of

beliefs-driven	fluctuations. Second, the	common-prior	setting	imposes	a	joint	restriction	between	the

magnitude	and	persistence	of	these	fluctuations	and	the	underlying	fundamental	uncertainty. Trans-

lating	this	restriction	to	the	heterogeneous-prior	setting	yields	a	bound	on σξ.

How	tight	is	 this	bound? In	Online	Appendix	O.1, we	use	a	back-of-the-envelope	exercise	to

argue	the	following: if	we	were	to	approach	the	US data	with	the	simple	model	considered	in	this
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subsection, the	bound	would	be	large	enough	to	allow	for	the	entire	business	cycle	to	be	driven	by

the	confidence	shock. And	although	a	similar	result	is	not	readily	available	for	the	estimated	models

of	Section 5, we	suspect	 that	our	quantitative	findings	are	consistent	with	 realistic	common-prior

models. The	recent	work	of Huo	and	Takayama (2015b)	seems	to	corroborate	this	conjecture.

4 Empirical	Properties	of	the	Confidence	Shock

We	now	use	a	parametrized	version	of	our	model	to	illustrate	the	comovements	induced	by	the	confi-

dence	shock	on	the	key	macroeconomic	quantities. We	also	explain	why	these	patterns	are	consistent

with	salient	features	of	the	data	and	why	they	are	not	shared	by	other	parsimonious	extensions	of	the

RBC model.15 We	finally	elaborate	on	the	sense	in	which	the	confidence	shock	can	be	thought	of	as

an	aggregate	demand	shock	whose	ability	to	generate	realistic	business	cycles	does	not	require	either

the	presence	of	nominal	rigidities	or	the	comovement	of	the	real	quantities	with	inflation.

4.1 Parameterization	and	IRFs

The	parameters	are	set	as	follows: the	discount	factor	is 0.99; the	elasticity	of	intertemporal	substitution

is 1; the	Frisch	elasticity	of	labor	supply	is 2; the	capital	share	in	production	is 0.3; the	depreciation

rate	is 0.015; and	the	persistence	of	the	confidence	shock	is ρ = 0.75. The	last	choice	is	somewhat

arbitrary, but	can	motivated	as	follows. First, the	implied	forecast	errors	have	a	half	life	of	less	than	a

year, which	is	broadly	in	line	with	survey	evidence	in Coibion	and	Gorodnichenko (2012). Second,

the	value	of ρ assumed	here	is	close	to	the	one	estimated	in	the	next	section	in	the	context	of	two

medium-scale, DSGE models. Finaly, to	the	extent	that	the	fluctuations	induced	by ξt in	our	model

resemble	either	the	“demand	shock”	identified	in Blanchard	and	Quah (1989)	or	the	“main	business

cycle	shock”	identified	in Angeletos, Collard, and	Dellas (2017), our	parametrization	is	consistent

with	the	evidence	in	those	papers	as	well.16

Figure 1 reports	the	Impulse	Response	Functions	(IRFs)	of	the	model’s	key	quantities	to	a	positive

innovation	in ξt. It	is	evident	that	the	shock	causes	output, hours, consumption	and	investment	move

in	the	same	direction. But	why?

We	address	this	question	in	two	steps. In	the	rest	of	this	subsection, we	explain	how	the	variation

in	higher-order	beliefs	of	the	exogenous	fundamental	(TFP) translates	into	variation	in	the	expectations

of	the	aggregate	economic	activity	and	the	terms	of	trade. In	the	next	subsection, we	clarify	how	the

empirical	performance	of	the	theory	hinges	on	the	horizon	of	the	latter	kind	of	expectations.

Start	by	inspecting	conditions	(7)-(11), which	determine	the	equilibrium	behavior. The	following

property	is	evident: the	optimal	behavior	of	an	island	depends	on	its	higher-order	beliefs	of	aggregate

15The	performance	of	our	mechanism	within	richer, medium-scale, DSGE models	is	addressed	in	Section 5.
16Note	that	we	have	not	specified σa and σξ, the	standard	deviations	of	the	two	shocks. This	is	not	necessary	for	the

purposes	of	this	section, because	we	focus	on	comovement	patterns	and	do	not	attempt	to	match	the	overall	volatility	in
the	data. See, however, the	remarks	in	footnote 21.
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Figure 1: Impulse	responses	to	a	positive	confidence	shock

TFP only through	its	first-order	beliefs	of	its	terms	of	trade, which	in	turn	coincide	with	its	first-order

beliefs	of	aggregate	output. This	reveals	the	ultimate	modeling	role	of	the ξt shock, which	is	to	capture

extrinsic	variation	in	the	expectations	of	the	relevant	economic	outcomes.

This	perspective	applies	more	generally. In	the	class	of	models	we	are	interested	in, the	equi-

librium	expectations	of	the	endogenous	outcomes	can	be	expressed	as	a	function	of	the	hierarchy

of	beliefs	about	the	underlying	fundamentals	regardless	of	the	information	structure. However, dif-

ferent	assumptions	about	the	information	structure	lead	to	different	predictions	about	the	stochastic

properties	of	the	expectations	of	economic	outcomes. In	the	standard	practice, these	expectations

are	spanned	by	the	expectations	of	fundamentals	because	higher-order	beliefs	collapse	to	first-order

beliefs. By	contrast, our	approach	leaves	room	for	autonomous	variation	in	the	expectations	of	eco-

nomic	outcomes	by	letting	the	higher-order	beliefs	to	deviate	from	the	first-order	beliefs.

4.2 The	Key	Mechanism: Beliefs	about	the	Short-Term	Economic	Outlook

So	far, we	have	argued	that	it	is	best	to	think	of ξt shock	as	a	modeling	device	for	introducing	au-

tonomous	variation	in	the	expectations	of	the	relevant	economic	outcomes. This	is	important, but	it

is	not	the	whole	story. Because	behavior	is	forward	looking, the	horizon	of	these	expectations	is	a

crucial	determinant	of	how	actual	outcomes	respond	to	shifts	in	them. We	now	build	on	this	basic

observation	to	explain	why	the	comovement	patterns	seen	in	Figure 1 hinge	on	the	property	that	the

ξt shock	captures	expectations	of	the	short-term	economic	outlook, as	opposed	to	expectations	of	the

medium-	or	long-run	prospects.

To	reveal	the	short-term	nature	of	the	belief	waves	triggered	by	the ξt shock, we	present	the	effects

of	the	shock	on	the	“term	structure	of	expectations”. Consider, in	particular, the	forecasts	that	island

i forms	in	period t about	about	its	terms	of	trade k periods	ahead, namely, Eiτ [pi,τ+k], for	all k ≥ 1.

As	already	noted, these	forecasts	are	tied	to	the	forecasts	that	the	firms	make	about	their	sales, that

the	households	form	about	their	income, and	that	everybody	forms	about	aggregate	output. Figure 2

draws	the	average	forecast	at	different	horizons	(namely, for k ∈ {1, . . . , 12}), both	at	the	moment	the

shock	hits	the	economy	(solid	line)	and	four	quarters	later	(dashed	line).
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Figure 2: Forecasts	of	terms	of	trade, following	a	confidence	shock

As	is	evident	in	the	figure, a	positive	innovation	in ξt raises	the	expected	expected	terms	of	trade

in	the	next	few	quarterswithoutmoving	the	corresponding	expectations	at	longer	horizons. The	same

point	applies	to	the	forecasts	of	the	aggregate	levels	of	output, hours, consumption	and	investment. As

time	passes, the	optimism	fades	away	and	the	curve	in	Figure 2 shifts	down. Nevertheless, the	curve

remains	downward-sloping, underscoring	that	the	waves	of	optimism	(and	pessimism)	accommodated

in	our	paper	regard exclusively the	short-term	economic	outlook.

This	property	is	key	to	understanding	the	comovement	patterns	seen	in	Figure 1. In	the	eyes	of

the	firms, a	positive	innovation	in ξt means	a	short-lived	increase	in	the	expected	demand	for	their

product. To	take	advantage	of	this, the	firms	raise	their	demand	for	both	labor	and	capital, pushing

the	wage	and	the	rental	rate	of	capital	up. As	a	result, the	households	experience	a	transitory	increase

in	their	income	and	in	the	returns	to	labor	and	capital. Because	this	entails	only	a	small	increase	in

permanent	income, the	wealth	effect	on	labor	supply	is	easily	dominated	by	the	competing	substitu-

tion	effect. This	guarantees	that	hours, and	hence	also	output	and	income, increase	in	equilibrium.

Finally, because	the	boom	is	expected	to	be	transitory, the	households	find	it	optimal	to	consume	only

a	fraction	of	the	realized	increase	in	their	income	and	to	save	the	rest. All	in	all, the	shock	therefore

causes	a	joint	increase	in	hours, output, consumption	and	investment, and	without	a	commensurate

shift	in	TFP and	labor	productivity, just	as	seen	in	Figure 1.

As	noted	in	the	introduction, this	mechanism	is	different	from	the	one	in	the	literature	on	news	and

noise	shocks	(Beaudry	and	Portier, 2006; Jaimovich	and	Rebelo, 2009; Lorenzoni, 2009; Barsky	and

Sims, 2011). To	illustrate	the	difference, consider Barsky	and	Sims (2012), an	example	of	that	literature

that	accommodates	both	news	and	noise	shocks. Aggregate	TFP is	given	by At = At−1 + γt−1 + εa,t,

where γt = ργγt−1 + εγ,t, ργ ∈ (0, 1), and εa,t ∼ N (0, σ2a) and εγ,t ∼ N (0, σ2γ) are	independent	of

one	another	and	serially	uncorrelated. Furthermore, the	representative	agent	observes At perfectly,

but	only	receives	a	noisy	signal	of γt. Finally, this	signal	is	given	by zt = γt+ ηt, where ηt ∼ N (0, σ2η)

is	uncorrelated	over	time	and	independent	of	the	current	and	past	values	of	the	innovations εa,t and

εγ,t. In	this	formulation, εγ,t moves	both	the	expectations	and	the	actual	realizations	of	future	TFP,
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whereas εη,t moves	the	expectations	without	moving	the	actual	realizations. The	former	represents	a

news	shock, the	latter	a	noise	shock.
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Figure 3: Forecasts	of	output	at	different	horizons, following	a	news	and	a	noise	shock.

Figure 3 reports	the	impact	of	these	shocks	on	the	expectations	of	aggregate	output	at	different

horizons, both	right	after	the	realization	of	the	shock	(solid	line)	and	four	quarters	later	(dashed	line).

The	left	panel	corresponds	to	the	news	shock, the	right	to	the	noise	shock. By	comparing	the	two

panels, we	see	that	the	two	shocks	have	qualitatively	similar	effects	on	impact. As	time	passes	and

more	information	arrives, the	agents	can	tell	whether	the	initial	shift	in	their	beliefs	was	due	to	a	true

increase	in	the	long-run	level	of	TFP or	due	to	noise. This	explains	why	the	effects	of	the	news	shock

get	reinforced	with	the	passage	of	time, while	those	of	the	noise	fade	away. The	nature	of	optimism,

however, is	the	same	across	these	two	cases—and	it	is	very	different	from	the	one	seen	in	Figure 2.

While	the	confidence	shock	shifts	the	expectations	of	the	short-term	economic	outlook, the	news	and

noise	shocks	shift	expectations	of	the	medium-	and	long-run	prospects.

It	is	precisely	this	difference	that	accounts	for	the	superior	quantitative	performance	of	our	mecha-

nism. As	already	explained, the	confidence	shock	triggers	small	shifts	in	expected	permanent	income

and	large	shifts	in	the	expected	short-run	returns	to	capital	and	labor. The	opposite	is	true	with	the

kind	of	news	and	noise	shocks	studied	in	the	extant	literature. When	a	positive	news	or	noise	shock

hits	the	economy, the	firms	do	not	change	their	demand	for	labor	and	capital	because	they	perceive

no	immediate	change	in	their	short-term	returns, but	the	households	reduce	both	their	supply	of	labor

and	their	saving	because	they	expect	higher	wages	and	higher	income	in	the	future: a	positive	news

shock	is	a	good	time	both	to	consume	more	and	to	take	a	vacation. As	a	result, the	equilibrium	levels

of	employment	and	investment	move	in	the	opposite	direction	than	that	of	consumption, which	in

turn	explains	why	these	shocks	fail	to	generate	realistic	business	cycles	within	baseline	versions	of

either	the	RBC or	the	New	Keynesian	model.17

17To	overcome	this	challenge, Jaimovich	and	Rebelo (2009)	augment	the	baseline	RBC model	with	adjustment	costs	that
makes	investment	today	increase	in	anticipation	of	higher	investment	in	the	future; and	with	a	particular	form	of	internal
habit	that	generates	a	negative	income	effect	on	leisure	in	the	short	run. Lorenzoni (2009), on	the	other	hand, abstracts
from	investment, adds	nominal	rigidity, and	lets	monetary	policy	induce	pro-cyclical	output	gaps. Yet, this	mechanism
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4.3 Conditional	Moments

We	have	shown	that	the	confidence	shock	produces	transitory	comovements	in	the	key	macroeco-

nomic	quantities, without	commensurate	movement	 in	TFP and	labor	productivity. We	have	also

offered	the	economic	intuition	for	this	result. But	is	this	prediction	consistent	with	the	data?

One	could	 imagine	answering	 this	question	by	obtaining	an	empirical	 counterpart	of ξt from

surveys	of	higher-order	beliefs	of	TFP.	However, such	 surveys	are	not	available. But	even	 if	 they

were	available, they	would	only	help	under	a	literal, narrow	interpretation	of ξt, which	is	not	our

preferred	way	 to	 think	about	 the applied contribution	of	our	paper. Instead, we	believe	 that	 this

contribution	is	maximized	by	interpreting ξt as	a	proxy	for	autonomous	variation	in	the first-order

beliefs	of	 the	endogenous	economic	outcomes	over	 the	business	cycle—think	of	 the	expectations

that	the	firms	form	about	the	demand	for	their	products, or	those	that	the	consumers	in	turn	form

about	their	employment	and	income.

Because	these	expectations	are	part	of	the	equilibrium	and	are	jointly	determined	with	the	actual

outcomes, it	is	unclear	how	one	could	identify ξt through, say, a	SVAR approach	analogous	to	those

used	in	the	identification	of	technology	and	monetary	shocks. Lacking	a	better	alternative, we	thus

proceed	to	evaluate	the	empirical	performance	of	our	theory	in	a	more	indirect	way, by	comparing

two	sets	of	conditional	moments: those	generated	in	our	model	by	the	confidence	shock	alone; and

those	observed	in	the	data	after	filtering	them	from	the	effects	of	an	empirical	proxy	of	the	technology

shock. We	view	this	comparison	of	conditional	moments	as	a	crucial	test	of	any	parsimonious	theory

that	aspires	to	improve	upon	the	baseline	RBC model: if	such	a	theory	fails	to	account	for	the	TFP-

filtered	“residuals”	of	the	data, then	it	fails	to	achieve	this	objective.

We	obtain	the	relevant	component	of	the	data	in	one	of	two	ways. In	the	one, we	regress	each

variable	of	 interest	on	 the	current	 level	and	 the	 four	 lags	of	TFP,	as	measured	by Fernald (2014),

and	extract	the	residuals. In	the	other, we	include	all	the	variables	in	a	SVAR;	identify	the	technology

shock	as	in Galí (1999), that	is, as	the	only	shock	that	exerts	an	effect	on	labor	productivity	in	the	long-

run; and	then	take	the	residuals	from	the	projection	of	the	data	on	the	identified	technology	shock.

Although	none	of	these	approaches	offers	a	bullet-proof	identification	of	the	technology	shock, they

generate	macroeconomic	variables	that	can	be	used	to	test	parsimonious	theories	that	seek	to	explain

the	business	cycle	with	a	single	shock	besides	the	standard	technology	shock.

The	first	two	columns	of	Table 1 report	the	relevant	moments	in	the	data, namely, the	business-

cycle	correlations	and	the	relative	volatilities	of	the	aforementioned	residuals, under	the	two	specifi-

cations	described	above.18 The	third	column	reports	the	relevant	moments	in	our	model, namely, the

correlations	and	relative	volatilities	induced	by	the	confidence	shock. The	information	contained	in

is	not	sufficiently	strong	to	offset	the	negative	comovement	of	the	underlying	flexible-price	quantities	once	investment	is
added	to	that	model, unless	additional	“bells	and	whistles”	are	added	to	the	model.

18The	moments	have	been	computed	on	bandpass-filtered	series	at	frequencies	corresponding	to	6–32	quarters. This
filter	is	preferable	to	the	simpler	HP filter	because	it	removes	not	only	low-frequency	trends	but	also	high	frequency	“noise”
such	as	seasonal	fluctuations	and	measurement	error; see	Stock	and	Watson	(1999). Note, though, that	the	picture	that
emerges	from	Table 1 is	not	sensitive	to	the	choice	of	the	filter.
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Table 1: Conditional	Comovements	(6-32	quarters)

Filtered	Data Our	Theory Alternative	Theories

(a) (b) ξ shock I shock C shock News	shock E shock

σn/σy 1.05 1.29 1.43 1.44 1.44 0.74 0.59

σc/σy 0.63 0.41 0.25 1.21 1.19 0.35 0.19

σi/σy 3.35 4.04 3.92 8.93 8.93 5.06 4.26

σy/h/σy 0.45 0.63 0.44 0.51 0.49 0.37 0.43

corr(c, y) 0.86 0.80 0.85 -0.92 -0.94 -0.17 0.65

corr(i, y) 0.94 0.95 0.99 0.98 0.99 0.97 0.99

corr(n, y) 0.91 0.88 0.99 0.98 0.98 0.95 0.99

corr(c, n) 0.80 0.93 0.81 -0.98 -0.99 -0.46 0.51

corr(i, n) 0.86 0.82 0.99 0.99 0.99 0.99 0.99

corr(c, i) 0.73 0.76 0.78 -0.98 -0.98 -0.40 0.55

corr(y, y/n) 0.12 -0.23 -0.96 -0.79 -0.84 0.78 0.97

corr(n, y/n) -0.31 -0.66 -0.98 -0.91 -0.92 0.56 0.92

Note: Columns (a) and (b) refer	to	the	residuals	that	obtain, respectively, from	the	projection	of	the	data	on	current	and
past	TFP and	from	the	removal	of	the	technology	shock	identified	in	the	same	was	as	in Galí (1999). All	other	columns
refer	to	theoretical	predictions.

this	column	is, of	course, the	same	as	the	one	contained	in	the	IRFs	of	the	confidence	shock: the	shock

causes	hours, output, consumption	and	investment	to	comove, without	commensurate	comovement

in	labor	productivity. The	next	three	columns	report	the	corresponding	moments	for	three	other	can-

didate	shocks, which	are	often	used	in	the	literature	as	proxies	for	demand	shocks: a	discount-rate,

or	consumption-specific, shock; an	investment-specific	shock, and	a	news	shocks.19 The	last	col-

umn	considers	a	transitory	shock	to	the	efficiency	wedge; this	can	be	thought	of	as	a	proxy	for	the

supply-side	effects	of	financial	or	uncertainty	shocks.20

The	main	 lesson	 that	 emerges	 from	 inspection	of	Table 1 is	 that	 the	confidence	shock	does	a

good	job	in	matching	the	conditional	patterns	in	the	data	both	absolutely	and	relatively	to	the	other

shocks. This	 is	because	none	of	 the	aforementioned	demand	shocks	is	able	 to	generated	positive

comovement	between	hours, consumption, and	investment	within	the	baseline	RBC model; and	the

efficiency-wedge	shock	can	generate	such	comovement	only	by	predicting	a	positive	comovement

between	hours	and	labor	productivity, which	is	exactly	the	opposite	of	what	is	observed	in	the	data.

As	shown	in	Online	Appendix	O.1, the	same	picture	emerges	if	we	consider	a	New	Keynesian

19To	obtain	the	predictions	of	each	of	 these	alternative	shocks, we	maintain	the	parameterization	of	preferences	and
technologies	and	merely	replace	the	confidence	shock	with	the	considered	alternative.

20Such	a	shock	is	not	removed	by	the	specification	used	by Galí (1999), because	that	approach	identifies	only	permanent
technology	shocks. It	may	also	not	be	removed	by	our	specification	based	on	regressing	the	macroeconomic	quantities	on
current	and	past	TFP to	the	extent	that	there	is	measurement	error	in	the	available	TFP measure.
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variant	that	adds	sticky	prices	and	lets	monetary	policy	follow	a	realistic	Taylor	rule. In	principle, these

modifications	help	improve	the	empirical	performance	of	the	aforementioned	kind	of	demand	shocks

by	letting	these	shocks	induce	procyclical	output	gaps, that	is, by	letting	output	increase	relative	to	its

flexible-price	counterpart	in	response	to	positive	demand	shock. Yet, unless	one	adds	various	bells

and	whistles, the	predicted	output	gaps	are	not	large	enough	to	undo	the	counterfactual	comovement

properties	of	the	underlying	flexible-price	allocations.

Of	course, these	findings	do	not	mean	that	no	other	model	can	match	the	conditional	moments

reported	in	the	first	two	columns. For	instance, DSGE models	such	as Smets	and	Wouters (2007)	are

able	to	do	so	by	attributing	the	aforementioned	residuals	to	the	joint	contribution	of	several	shocks,

despite	the	fact	that	none	of	these	shocks	can	by	itself	generate	the	right	comovement	patterns. Nev-

ertheless, these	findings	 illustrate	 in	a	 simple	and	 transparent	manner	 that	our	 theory	does	better

relative	to	a	number	of	comparable, parsimonious	formalizations	of	either	demand-	or	supply-driven

fluctuations—a	property	that	we	view	as	valuable.

Additional	support	is	provided	by	the	evidence	in	a	companion	paper	(Angeletos, Collard, and

Dellas, 2017), where	we	use	a	SVAR approach	to	document	that	the	bulk	of	the	business-cycle	volatil-

ity	in	output, hours, investment	and	consumption	in	US data	can	be	accounted	for	by	a	single	shock

whose	IRFs	look	very	much	like	those	seen	in	Figure 1. A similar	picture	is	also	painted	in	Section 5,

where	the	confidence	shock	emerges	as	the	main	driver	of	the	business	cycle	within	medium-scale

DSGE models	that	contain	multiple	other	shocks.21

4.4 Wedges, Output	Gaps, and	Aggregate	Demand

We	conclude	this	section	by	offering	two	additional	perspectives	on	the	empirical	performance	of

our	theory	and	its	interpretation.

Suppose	first	that	one	approaches	the	data	generated	by	our	model	through	the	lenses	of	the	RBC

model	augmented	with	various	wedges, as	suggested	by Chari, Kehoe, and	McGrattan (2007). In

21Throughout	this	section, we	have	focused	attention	on	comparing	features	of	the	data	to	theoretical	counterparts	that
do	not	require	us	to	parameterize	the	standard	deviation	of	either	the	confidence	shock	or	the	technology	shock: the	IRFs
seen	in	Figure 1, and	the	conditional	correlations	and	relative	volatilities	reported	in	Table 1 are	invariant	to	the	choice	of
σξ and σa. But	what	about	the	ability	of	our	baseline	model	to	capture	the	unconditional	moments	of	the	data? Clearly, this
depends	on	the	choice	of σξ and σa. Suppose	we	pick σξ and σa so	as	to	minimize	the	distance	between	the	unconditional
volatilities	of	hours, output, consumption	and	investment	predicted	by	our	baseline	model	from	those	found	in	the	data.
This	exercise	yields σa = 0.79 and σξ = 5.77; it	also	attributes	almost	all	of	the	volatility	of	hours	to	the	confidence	shock.
We	find	these	properties	of	our	baseline	model	problematic	for	two	reasons. First, σξ is	too	large	compared	to σa, a	property
that	questions	the	plausibility	of	the	interpretation	of ξt as	a	bias	in	the	signals	of	aggregate	TFP.	(We	thank	a	referee	for
pointing	this	out.) Second, our	prior	is	that	coordination	frictions	cannot	possibly	explain	so	much	of	the	business	cycle.
In	Section 5, we	alleviate	the	first	concern, not	only	by	allowing	for	other	shocks	to	absorb	part	of	the	volatility	in	the	data,
but	also	by	modifying	the	degree	of	strategic	complementarity. This	concern	can	also	be	alleviated	by	re-interpreting ξt

as	a	shock	to	higher-order	beliefs	of	idiosyncratic	fundamentals, and	thereby	to	first-order	beliefs	of	idiosyncratic	terms	of
trade, along	the	lines	discussed	in	Angeletos	and	La’O (2013), Huo	and	Takayama	(2015), and	Subsection 3.3 of	our	paper.
Regarding	the	second	concern, we	are	open	to	the	idea	that	our	mechanism	is	proxying	for	other	forces, whose	effects	are
similar	to	those	of	the	confidence	shock	but	whose	micro-foundations	remain	to	be	discovered.
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Online	Appendix	O.1, we	show	that	the	confidence	shock	manifests	itself	as	a	combination	of	wedges

in	the	equilibrium	conditions	that	characterize	the	behavior	of	the	households	and	of	the	firms. This

is	 true	whether	we	 consider	 the	 total	wedges	between	 the	marginal	 rates	 of	 substitution	 and	 the

corresponding	marginal	rates	of	transformation, or	their	household-side	and	firm-side	components.

What	is	more, the	predicted	wedges	are	consistent	with	those	estimated	in	the	data.

These	findings	speak	to	our	theory’s	ability	to	capture	the	“residuals”	between	the	data	and	the

predictions	of	the	baseline	RBC model. More	generally, they	illustrate	how	higher-order	uncertainty

offers	a	theory	of	beliefs-driven	wedges. The	wedges	emerge	because, and	only	because, the	agents

in	the	model	use	a	distorted	expectations	operator	relative	to	the	complete-information, common-

prior, fully-rational	benchmark. The	magnitude	and	correlation	structure	of	these	wedges	is	tied	to

the	underlying	structure	of	the	market	interactions	and	the	degree	of	strategic	complementarity. For

instance, were	we	to	shut	down	trade	across	islands	in	our	own	model, strategic	complementarity

and	wedges	would	vanish.22

Suppose	next	that	one	tries	to	interpret	the	data	generated	by	our	model	through	the	lenses	of	the

New	Keynesian	framework. In	our	setting, prices	are	flexible. Yet, because	firms	make	their	input

choices	prior	to	observing	the	demand	for	their	products, a	drop	in	confidence	can	manifest	itself	as

an	increase	in	the	realized	markup. Furthermore, the	resulting	recession	will	register	as	a	negative

output	gap	insofar	as	the	latter	is	measured	relative	to	the	frictionless	RBC benchmark, a	property

clearly	illustrated	by	the	example	in	Subsection 3.3. Consequently, an	adverse	confidence	shock	in

our	setting	looks	like	a	negative	demand	shock	in	the	New	Keynesian	model.

Nonetheless, there	is	an	important	difference: in	our	setting, fluctuations	in	this	output	gap	can

arise	without	any	variation	in	inflation. This	is	because	our	mechanism	does	not	need	to	satisfy	the

restriction	between	the	output	gap	and	inflation	imposed	by	the	New	Keynesian	Philips	Curve, or

its	ancestors. We	view	this	as	an	advantage	of	our	 theory	because	the	aforementioned	restriction

receives	little	support	from	the	data, as	the	empirical	Philips-curve	literature	has	demonstrated; see

Mavroeidis, Plagborg-Møller, and	Stock (2014)	for	a	review. The	evidence	provided	in	a	companion

paper	 (Angeletos, Collard, and	Dellas, 2017)	also	speaks	against	 this	 restriction	and	 in	 favor	of	a

mechanism	like	the	one	accommodated	here: in	that	paper, we	use	a	SVAR approach	to	document

that	the	bulk	of	the	business-cycle	variation	in	output	can	be	explained	by	a	structural	shock	that	can

be	thought	of	as	an	“non-inflationary	demand	shock”	in	the	sense	that	it	triggers	strong	comovement

between	employment, output, consumption	and	investment	at	the	business-cycle	frequencies	without

commensurate	comovements	in	either	TFP and	labor	productivity	or	inflation	at	any	frequency.23 Last

but	not	least, the	inflation-output	implications	of	Phillips	curves	are	hard	to	reconcile	with	the	Great

Recession, where	the	severe	contraction	in	output	and	employment	was	not	accompanied	by	severe

deflation.
22These	points	indicate	a	close	relation	between	our	paper	and	recent	work	that	considers	other	forms	of	belief	distortions,

such	as Ilut	and	Saijo (2016), Bhandari, Borovicka, and	Ho (2016), and Pei (2017).
23The	empirical	IRFs	of	the	shock	identified	in	our	companion	paper	are	actually	quite	similar	to	the	theoretical	IRFs	of

the	confidence	shock	in	the	present	paper.
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With	this	backdrop, we	like	to	interpret	our	confidence	shock	as	a	form	of	demand	shock	that	does

not	hinge	either	on	nominal	rigidity	or	on	the	inflation-output	nexus	of	the	Keynesian	paradigm.24

One	may, however, object	to	this	interpretation	on	the	following	grounds. In	our	model, employ-

ment	and	output	are	fixed	in	the	morning	of	each	period, whereas	consumption	and	investment	are

determined	in	the	afternoon. In	this	sense, supply	is	determined	first	and	prices	adjust	to	make	sure

that	demand	meets	supply. By	contrast, the	Keynesian	paradigm	assumes	that	prices	are	determined

first	and	supply	adjusts	to	meet	demand.

We	now	show	that	changing	the	timing	of	decisions	in	our	model	so	that	demand	is	determined

first	does	not	change	the	nature	of	the	business-cycle	fluctuations	generated	by	the	confidence	shock.

We	establish	this	by	requiring	that	consumption	and	investment	be	fixed	in	the	morning	of	each	period

and	letting	employment	and	output	adjust	in	the	afternoon. This	timing	protocol	makes	our	model

seem	more	in	the	spirit	of	the	Keynesian	view	that	“demand	drives	supply”. Yet, as	is	evident	in	Figure

4, the	observable	implications	differ	very	little	across	the	two	protocols.
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Figure 4: Impulse	Responses	to	a	Positive	Confidence	Shock, under	Different	Timing	Protocols

The	solid	red	lines	in	Figure 4 repeat	the	IRFs	of	the	baseline	model	(previously	reported	in	Figure

1). The	blue	crosses	report	the	IRFs	of	the	variant	in	which	consumption	and	investment	are	deter-

mined	first. With	the	exception	of	consumption, where	there	is	only	a	modest	difference, the	IRFs	of

the	two	models	line	up	almost	perfectly	on	top	of	each	other. Not	surprisingly, this	similarity	extends

to	the	kind	of	business-cycle	moments	we	reported	earlier	in	Table 1.

Let	us	explain	why. In	the	baseline, supply-first	version	of	our	model, a	positive	confidence	shock

causes	employment	and	output	to	increase	in	the	morning. The	overall	spending	therefore has to

increase	in	the	afternoon. Its	composition, however, is	free	to	adjust. The	only	reason	that	consump-

tion	and	investment	co-move	at	that	point	is	that	the	optimism	applies	only	to	the	short	run—which	is

also	the	reason	why	employment	increases	in	the	first	place	during	the	morning. In	the	demand-first

variant, consumption	and	investment	are	determined	first. The	only	reason	that	they	both	increase	in

response	to	a	positive	confidence	shock	is, once	again, that	the	shock	causes	the	agents	to	become

24In	this	regard, our	work	is	related	to	that	of Beaudry	and	Portier (2013), which	offers	a	different	theory	of	non-inflationary,
demand	shocks	but	does	not	explore	its	quantitative	potential.
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optimistic	about	the	short	run. If, instead, the	shock	caused	the	agents	to	become	optimistic	about

income	in	the	medium	to	long	run, the	agents	would	like	to	borrow	against	their	future	income, so

consumption	and	investment	would	move	in	the	opposite	direction.

We	conclude	that	the	predictions	of	our	theory	are	not	unduly	sensitive	to	the	timing	protocol

and, in	 this	 sense, to	whether	output	 is	 supply-	or	demand-determined. Each	protocol, however,

is	useful	 for	different	purposes. On	the	one	hand, the	protocol	used	in	our	baseline	model	is	 the

same	as	the	one	assumed	in	the	related	works	of Angeletos	and	La’O (2013), Benhabib, Wang, and

Wen (2015), Huo	and	Takayama (2015b), and Ilut	and	Saijo (2016). On	the	other	hand, the	variant

introduced	here	better	captures	the	Keynesian	spirit	of	demand-driven	fluctuations; it	seems	more

consistent	with	the	idea	of	sluggish	adjustment	in	aggregate	demand;25 and	it	boosts	the	degree	of

strategic	complementarity, helping	generate	larger	fluctuations	in	the	macroeconomic	quantities	out

of	the	same	volatility	in	higher-order	beliefs.26 For	all	of	these	reasons, we	opt	for	the	new	protocol

in	the	quantitative	explorations	conducted	in	the	next	section.

5 Extension	and	Estimation

In	this	section, we	apply	our	method	to	two	medium-scale	DSGE models, which	are	estimated	using

US data. This	requires	the	introduction	of	various	bells	and	whistles, which	are	standard	in	the	DSGE

literature	but	are	at	odds	with	our	desire	for	parsimony. The	main	goal	of	this	section	is	therefore, not

to	write	and	estimate	our	preferred	models, but	rather	to	illustrate	the	robustness	of	our	theoretical

mechanism	as	we	move	from	the	baseline	RBC model	to	richer	DSGE models, and	as	we	switch	on

and	off	the	role	of	nominal	rigidities	and	monetary	policy.

5.1 Two	medium-scale	models

We	start	with	a	brief	description	of	the	main	features	of	the	two	models. A more	detailed	description

and	the	relevant	equations	can	be	found	in	the	Appendix.

In	order	to	accommodate	price-setting	behavior, we	let	each	island	contain	a	large	number	of

monopolistic	firms, each	of	which	produces	 a	differentiated	commodity. These	commodities	 are

combined	through	a	CES aggregator	into	an	island-specific	composite	good, which	in	turn	enters	the

production	of	the	final	good	in	the	mainland	through	another	CES aggregator. The	elasticity	parameter

25Such	sluggishness	is	captured	in	the	DSGE literature	with	habit	persistence	in	consumption	and	adjustment	costs	in
investment	of	the	type	considered	in	the	next	section.

26To	understand	why, consider	the	knife-edge	case	in	which	the	income	and	the	substitution	effects	of	higher	terms	of
trade	on	labor	supply	cancel	each	other	out. This	eliminates	the	macroeconomic	effects	of	the	confidence	shock	in	the
supply-first	version	of	the	model: as	the	income	and	substitution	effects	of	the	confidence	shock	offset	each	other, labor
and	production	do	not	move	 in	 the	morning, implying	 that	consumption	and	 investment	also	do	not	move	during	 the
afternoon. In	the	demand-first	version, however, the	confidence	shock	continues	to	generate	a	realistic	business	cycle: the
expectation	of	better	terms	causes	consumption	and	investment	to	increase	in	the	morning, requiring	higher	employment
and	production	in	the	afternoon.
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in	the	first	aggregator	is	denoted	by η and	pins	down	the	monopoly	markup; the	one	in	the	second

aggregator	is	denoted	by ϱ and	controls, in	conjuction	with	all	the	other	preference	and	technology

parameters, the	degree	of	strategic	complementarity	across	the	islands.27

In	one	of	 the	 two	models, firms	are	 free	 to	 adjust	 their	 price	 in	 each	and	every	period, after

observing	the	realized	demand	for	their	product	(the	flexible-price	model). In	the	other, firms	can	only

adjust	prices	infrequently, in	the	familiar	Calvo	fashion	(the	sticky-price	model). The	latter	models

also	contains	a	conventional	Taylor	rule	for	monetary	policy.

In	order	 to	 let	other	business	 cycle	drivers	 compete	with	our	mechanism	we	 include	 several,

additional	shocks: a	permanent	and	a	transitory	TFP shock; a	permanent	and	a	transitory	investment-

specific	shock; a	news	shock	regarding	future	productivity; a	transitory	discount-rate	shock; a	government-

spending	shock; and, in	the	sticky-price	model, a	monetary	shock.28

We	finally	introduce	adjustment	costs	in	investment	and	habit	persistence	in	consumption, of	the

type	assumed	in Christiano, Eichenbaum, and	Evans (2005)	and Smets	and	Wouters (2007). Although

these	modeling	features	lack	compelling	micro-foundations, they	have	become	standard	in	the	litera-

ture	because	they	serve, not	only	as	sources	of	persistence, but	also	as	mechanisms	that	help	improve

the	empirical	performance	of	certain	shocks, including	monetary, investment-specific, discount-rate,

and	news	shocks. Their	inclusion	make	our	results	more	easily	comparable	to	those	in	the	literature

and	also	and	gives	these	competing	shocks	a	better	chance	to	outperform	the	confidence	shock.

5.2 Estimation

We	estimate	our	models	using	Bayesian	maximum	likelihood	in	the	frequency	domain, focusing	on

business-cycle	frequencies. The	method	is	described	in	the	Appendix. Here, we	discuss	briefly	the

rational	behind	this	empirical	strategy, the	data	used, and	the	priors	and	the	posteriors.

Rationale. The	models	described	above—like	other	business-cycle	models—cater	to	business-

cycle	phenomena	and	therefore	omit	shocks	and	mechanisms	that	may	account	for	medium-	to	long-

run	phenomena, such	as	trends	in	demographics	and	labor-market	participation, structural	transfor-

mation, regime	changes	in	productivity	growth	or	 inflation, and	so	on. Because	of	 this	omission,

estimating	our	models	by	simple	maximum	likelihood	is	likely	to	lead	to	erroneous	inferences	about

their	business-cycle	properties. This	is	because	the	estimation	will	guide	the	parameters	of	the	model

27The	baseline	model	is	nested	with η = 0 and ϱ = 1. Letting η > 0 accommodates	monopoly	power. Letting ϱ ̸= 1

helps	parameterize	the	degree	of	strategic	complementarity.
28The	motivation	 for	 the	 inclusion	 of	 these	 particular	 shocks	 is	 as	 follows. First, previous	 research	 has	 argued	 that

investment-specific	 technology	 shocks	are	at	 least	 as	 important	 as	neutral, TFP shocks	 (Fisher, 2006). Second, mone-
tary, fiscal, and	 transitory	discount-rate	or	 investment-specific	 shocks, as	well	as	news	shocks, have	been	proposed	as
formalizations	of	the	notion	of	“aggregate	demand	shocks”	within	the	NK framework. Third, transitory	TFP,	 investment-
specific, or	discount-rate	shocks	are	often	used	as	proxies	for	financial	frictions	that	lead	to, respectively, misallocation, a
wedge	in	the	firm’s	investment	decisions, or	a	wedge	in	the	consumer’s	saving	decisions; see Christiano, Eichenbaum, and
Trabandt (2015)	for	a	recent	example	of	these	short-cuts. Fourth, the	introduction	of	multiple	transitory	shocks, whatever
their	interpretation, increases	the	chance	that	these	shocks	will	pick	up	the	transitory	fluctuations	in	the	data.
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towards	matching	all	the	frequencies	of	the	data, as	opposed	to	only	those	that	pertain	to	business-

cycle	phenomena. In	a	nutshell, there	 is	 a	 risk	of	contamination	of	 the	estimates	of	a	model	by

frequencies	that	the	model	was	not	designed	to	capture.

This	problem	was	first	discussed	by Hansen	and	Sargent (1993)	and Sims (1993)	in	the	context	of

seasonal	adjustment, but	the	logic	applies	more	generally. Sala (2015)	has	recently	documented	the

relevance	of	this	problem	for	standard	DSGE practice: estimating	the	model	of Smets	and	Wouters

(2007)	over	different	frequency	bands	leads	to	different	estimates	of	the	model’s	impulse	responses	and

of	the	underlying	parameters, a	fact	that	underscores	the	importance	of	making	a	judicious	selection

of	the	band	of	frequencies	used	to	estimate	the	model.

Figure 5 indicates	that	 this	concern	may	be	particularly	relevant	in	the	context	of	 the	exercise

carried	out	in	this	section. This	figure	inspects	the	spectral	density	of	hours.29 The	red	line	corre-

sponds	to	the	raw	data; the	blue	line	results	from	application	of	a	bandpass	filter	that	keeps	only	the

business-cycle	frequencies, namely	those	ranging	from	6	to	32	quarters. The	figure	reveals	substantial

movements	at	the	medium	and	long-run	frequencies. Such	movements	may	originate	from	changes

in	demographics	or	in	the	labor-market	participation	of	women, structural	transformation, and	other

mechanisms	which	our	models	have	neither	hope	nor	ambition	to	capture.
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Figure 5: Spectral	Density	of	Hours, 1960Q1-2007Q4.

There	are	two	possible	ways	to	try	to	mitigate	the	problem. One	is	to	add	the	missing	mechanisms

that	would	enable	the	model(s)	to	account	for	all	the	frequencies	at	once. Another	is	to	estimate	the

model(s)	on	the	basis	of	only	the	business-cycle	frequencies. We	follow	the	latter	route	because	of

two	reasons. First, while	we	believe	that	our	mechanism	and	the	models	considered	in	this	paper

are	useful	for	understanding	business-cycle	phenomena, we	are	relatively	less	confident	about	the

“right”	choice	of	mechanisms	that	can	account	for	the	medium-	to	long-term	phenomena; adding	the

29The	spectrum	is	computed	as	the	smoothed	periodogram, a	Hamming	window	with	a	bandwidth	parameter	of	15	is
used, and	the x-axis	is	represented	in	periods	rather	than	frequencies	to	ease	interpretation. A similar	figure	appears	in
Beaudry, Galizia, and	Portier (2015), although	that	paper	uses	it	towards	a	different	goal: to	motivate	a	model	that	actually
connects	the	short	to	the	medium	rum.

26



“wrong”	mechanisms	could	aggravate	the	mis-specification	problem. Second, we	believe	that	low

frequencies	of	the	data	contain	relative	little	information	about	the	business-cycle	properties	of	the

model, especially	those	that	regard	the	confidence	shock	or	any	other	transitory	shock; inclusion	of

the	low	frequencies	is	therefore	more	likely	to	contaminate, than	to	improve, the	estimation	of	the

business-cycle	properties.

Data. The	data	used	in	the	estimation	includes	GDP,	consumption, investment, hours	worked, the

inflation	rate, and	the	federal	fund	rate	for	the	period	1960Q1	to	2007Q4; a	detailed	description	is	in

Online	Appendix	O.2. The	first	four	variables	are	in	logs	and	linearly	de-trended; the	remaining	two

are	in	percentage	points.Our	sticky-price	model	is	estimated	on	the	basis	of	all	these	six	variables	while

flexible-price	model	is	estimated	on	the	basis	of	real	quantities	only	(GDP,	consumption, investment,

and	hours). The	rationale	is	that	the	latter	model	is	not	designed	to	capture	the	properties	of	nominal

data.

Remark	on ϱ and σξ. A challenge	faced	in	the	estimation	of	the	two	models	is	the	following. Con-

sider	the	parameter ϱ. Holding	constant	all	the	other	parameters, this	parameter	governs	the	degree	of

strategic	complementarity	across	the	islands. In	so	doing, this	parameter	also	governs	the	magnitude

of	the	response	of	the	macroeconomic	quantities	to	the	confidence	shock, without	however	affecting

their	covariation	structure. It	follows	that	this	parameter	cannot	be	identified	separately	from σξ, the

standard	deviation	of	the	confidence	shock, on	the	basis	of	the	macroeconomic	times-series	alone.

For	our	main	estimation	exercise, we	fix ϱ exogenously	at 0.75; this	yields	an	estimate	for σξ that	is

lower	than	the	estimated	volatility	in	aggregate	TFP.	In	Online	Appendix	O.4, we	motivate	this	choice

with	an	exercise	that	tries	to	identify	both	parameters	jointly	by	combining	the	macroeconomic	times

series	with	the	time	series	of	the	University	of	Michigan	Index	of	Consumer	Sentiment	and	by	making

an	assumption	about	how	to	extract	the	expectations	that	are	relevant	for	our	theory	from	that	index.

This	leads	to	an	estimate	of ϱ that	is	in	the	neighborhood	of 0.75 and	to	results	that	are	similar	to	those

reported	below.

However, we	do	not	wish	to	push	this	exercise	too	far, because	it	hinges	on	delicate	assump-

tions	about	the	mapping	between	that	index	and	our	theory. We	thus	invite	the	reader	to	adopt	a

broader	perspective	in	thinking	about	what	the	estimation	results	mean	for	our	theory. Namely, that

they	illustrate	that	the	considered	models	can	match	the	data	with	plausible	assumptions	about	the

magnitude	of	the	underlying	higher-order	uncertainty, but	leave	unanswered	the	delicate	question	of

whether	and	how	additional	discipline	in	the	estimation	of	the	confidence	shock	could	be	provided

from	sources	outside	the	standard	macroeconomic	time	series.

Priors	and	posteriors. The	priors	and	 the	estimated	values	of	all	 the	parameters	are	 reported

in	Table 8 in	Online	Appendix	O.3	and	broadly	 in	 line	with	 the	 literature. Posterior	distributions

were	obtained	with	the	MCMC algorithm. The	estimated	values	of	the	preference, technology, and

monetary	parameters	are	similar	to	those	found	in	the	extant	literature, an	indication	that	the	only

essential	difference	from	the	state	of	the	art	is	the	accommodation	of	the	confidence	shock.
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5.3 Results

Here	we	review	the	main	findings. Online	Appendix	O.3	contains	additional	results.

The	confidence	shock. Figure 6 reports	the	estimated	IRFs	to	a	positive	confidence	shock. The

solid	blue	lines	correspond	to	the	flexible-price	model, the	red	dashed	lines	to	the	sticky-price	model.

As	far	as	real	quantities	are	concerned, the	IRFs	are	similar	across	the	two	models, as	well	as	similar

to	those	in	our	baseline	model. The	introduction	of	investment-adjustment	costs	and	consumption

habit	adds	a	hump	but	does	not	alter	the	comovement	patterns	found	in	the	baseline	model. This

underscores	the	robustness	of	the	key	positive	implications	of	our	mechanism	as	we	move	across	RBC

and	NK settings, or, as	we	add	various	bells	and	whistles.
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Figure 6: Theoretical	IRFs	to	Confidence	Shock

The	top	half	of	Table 2 reports	the	estimated	contribution	of	the	confidence	shock	to	the	volatility

of	the	key	macroeconomic	variables	at	business-cycle	frequencies	(6–32	quarters). Despite	all	the

competing	shocks, the	confidence	shock	emerges	as	the	single	most	important	source	of	volatility	in

real	quantities. For	example, the	confidence	shock	accounts	for 55% of	the	business-cycle	volatility

in	output	in	the	flexible-price	model, and	for 51% in	the	sticky-price	model.

Table 2: Contribution	of	Confidence	Shock	(6–32	Quarters)

Variances Y C I N π R

Flexible	Prices 54.72 70.21 41.60 68.32 – –

Sticky	Prices 51.28 61.95 38.50 64.15 11.64 40.84

Covariances (Y,N ) (Y, I) (Y,C) (N, I) (N,C) (I, C)

Flexible	Prices 74.88 53.74 78.49 66.41 105.08 94.73

Sticky	Prices 68.10 50.83 70.95 58.29 104.26 94.89

The	bottom	half	of	Table 2 completes	the	picture	by	reporting	the	estimated	contribution	of	the

confidence	shock	to	the covariances of	output, hours, investment, and	consumption. The	confidence
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shock	is, by	a	significant	margin, the	main	driving	force	behind	the	comovement	of	all	these	vari-

ables, underscoring	once	again	the	ability	of	our	theory	to	capture	this	comovement. In	particular,

confidence	 shock	explains more that	one	hundred	percent	of	 the	covariance	between	hours	 and

consumption, precisely	because, as	anticipated	in	the	previous	section, many	of	the	other	structural

shocks	tend	to	generate	the	opposite	comovement	than	the	one	seen	in	the	data.

Are	these	findings	too	good	to	be	true? It	depends	on	how	one	reads	them. In	our	eyes, they	do

not	mean	that	our	theory	is	the	“true”	explanation	of	the	business	cycle. They	nevertheless	reinforce

the	lessons	of	the	previous	section: not	only	is	our	theory	consistent	with	salient	features	of	the	data,

but	it	is	also	more	potent	than	other, more	familiar, structural	interpretations	of	the	data.

Table 3: Moments	(6-32	quarters)

Data FP SP SW Data FP SP SW

Standard	Deviations Correlations	with	Output

Y 1.41 1.28 1.36 1.42

I 5.12 4.46 4.88 4.86 0.94 0.88 0.86 0.74

N 1.56 1.59 1.66 0.97 0.87 0.82 0.83 0.81

C 0.76 0.82 0.91 1.11 0.85 0.78 0.77 0.67

Y /N 0.76 0.91 0.90 0.84 0.07 -0.02 -0.03 0.74

π 0.23 – 0.25 0.34 0.21 – 0.37 0.13

R 0.35 – 0.34 0.35 0.33 – 0.54 0.06

Correlations	with	Investment Correlations	with	Hours

N 0.82 0.79 0.82 0.67

C 0.73 0.56 0.47 0.30 0.83 0.65 0.58 0.59

Y /N 0.07 -0.14 -0.21 0.47 -0.43 -0.58 -0.56 0.22

π 0.09 – 0.41 0.18 0.44 – 0.48 0.23

R 0.23 – 0.60 0.23 0.61 – 0.70 0.21
Note: FP and	SP stand	for	our	estimated	flexible-	and	sticky-price	models, respectively.
SW stands	for	the	model	in Smets	and	Wouters (2007).

Business-cycle	moments. Table 3 reports	some	key	moments	of	 the	data	 (first	column); those

predicted	by	our	estimated	models	(second	and	third	column); and, for	comparison	purposes, those

predicted	by	the	model	in Smets	and	Wouters (2007)	(fourth	column). Inspection	of	this	table	leads

to	the	following	conclusions. First, both	of	our	models	do	a	good	job	on	the	real	side	of	the	economy.

Second, our	sticky-price	model	does	a	good	job	in	matching	also	the	nominal	side	of	the	data. Finally,

our	sticky-price	model	appears	to	outperform	the	model	of Smets	and	Wouters (2007)	in	terms	of

matching	the	moments	of	the	real	quantities	as	well	as	the	correlations	of	the	nominal	variables	with

output	and	hours. Of	course, this	does	not	mean	that	our	model	is	as	good	as	theirs	in, say, matching

the	responses	to	identified	monetary	shocks	or	in	out-of-sample	forecasting. It	nevertheless	indicates
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that	the	inclusion	of	our	mechanism	in	New	Keynesian	models	does	not	interfere	with	their	ability

to	capture	the	nominal	side	of	the	data	and	that	our	mechanism	itself	is	robust	to	the	introduction	of

realistic	nominal	rigidities.

5.4 On	Demand-Driven	Business	Cycles

We	conclude	this	section	by	exploring	how	our	mechanism, viewed	as	a	formalization	of	demand-

driven	business	cycles, compares	to	that	of	the	New	Keynesian	model.

To	this	goal, Table 4 reports	the	posterior	odds	of	four	models, starting	from	a	uniform	prior	and

estimating	them	on	the	real	data	only. The	models	differ	on	whether	they	assume	flexible	or	sticky

prices, and	on	whether	they	contain	the	confidence	shock	or	not. We	concentrate	on	the	real	data,

not	only	because	the	flexible-price	models	are	not	designed	to	capture	the	nominal	variables, but

also	because	we	wish	to	evaluate	both	kinds	of	models	on	the	basis	of	the	comovements	of	the	real

quantities. Once	we	drop	the	nominal	data	for	this	exercise, the	nominal	parameters	of	the	sticky-

price	models	 are	not	well	 identified. We	have	 thus	chosen	 to	fix	 these	parameters	 at	 the	values

that	obtained	when	the	models	were	estimated	on	both	real	and	nominal	data. We	nevertheless	re-

estimate	the	preference	and	technology	parameters	and	the	shock	processes	in	order	to	give	each

model	a	fair	chance	to	match	the	data	on	the	real	quantities.

Table 4: Posterior	Odds	of	Model	A vs	Model	B

Model	A → sticky	prices
Model	B ↓ without with

flex	prices, without	confidence 1.00 1.00
flex	prices, with	confidence 0.36 0.84
sticky	prices, without	confidence – 0.90

Consider	first	the	pair	of	models	that	abstract	from	the	confidence	shock. In	this	case, the	sticky-

price	model	wins: the	posterior	odds	that	the	data	are	generated	by	that	model	are	nearly 100%. But

once	the	flexible-price	model	is	augmented	with	the	confidence	shock, the	odds	of	the	sticky-price

model	fall	below 50%, to 36%. By	this	metric, our	mechanism	appears	to	be	more	potent	than	the

NK mechanism	when	the	two	are	viewed	in	isolation. Finally, the	sticky-price	model	that	contains

the	confidence	shock	wins	90-10	over	the	the	sticky-price	model	that	excludes	it. By	this	metric, the

inclusion	of	our	mechanism	improves	significantly	the	empirical	performance	of	the	NK model.

We	 interpret	 these	 results	 as	 follows. Insofar	 as	we	 abstract	 from	monetary	 phenomena, our

approach	emerges	 as	 a	potent	 substitute	 for	 the	NK formalization	of	demand-driven	fluctuations.

Perhaps	more	fruitfully, our	approach	can	complement	the	NK framework	by	offering	what, in	our

view, is	a	more	appealing	structural	interpretation	of	the	observed	business	cycles—one	that	attributes

the	“deficiency	in	aggregate	demand”	during	a	recession	in	part	to	a	coordination	failure	and	to	lack

of	confidence.
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6 Conclusion

By	relying	on	the	rational-expectations	solution	concept	together	with	the	auxiliary	assumption	that	all

agents	share	the	same	information	about	the	aggregate	state	of	the	economy, standard	macroeconomic

models	impose	a	rigid	structure	on	how	agents	form	beliefs	about	endogenous	economic	outcomes

and	how	they	coordinate	their	behavior. In	this	paper, we	propose	a	certain	relaxation	of	this	structure

and	explore	its	quantitative	implications.

In	particular, we	develop	a	method	for	augmenting	macroeconomic	models	with	a	tractable	form

of	higher-order	belief	dynamics. We	argue	that	this	method	helps	proxy	for	the	effects	of	incomplete

information	and	frictional	coordination	and	can	be	used	to	accommodate	a	certain	kind	of	waves

of	optimism	and	pessimism	about	 the	 the	short-term	outlook	of	 the	economy. We	document	 the

quantitative	importance	of	such	waves	within	the	context	of	RBC and	New	Keynesian	models	of	both

the	textbook	and	the	medium-scale	variety.

We	believe	 that	our	paper	adds	 to	 the	understanding	of	business-cycle	phenomena	along	 the

following	dimensions:

• It	highlights	the	distinct	role	played	by	expectations	of	the	short-run	prospects	of	the	economy,

as	opposed	to	expectations	of	productivity	and	growth	in	the	medium	to	long	run.

• It	offers	a	parsimonious	explanation	of	salient	features	of	the	macroeconomic	data	and	does	so

in	a	manner	that	appears	to	outperform	alternative	narratives	found	in	the	literature.

• It	offers	a	formalization	of	the	notion	of	demand-driven	fluctuations	that	is	both	conceptually

and	empirically	distinct	from	the	one	found	in	the	New	Keynesian	paradigm.

• It	leads	to	a	structural	interpretation	of	the	observed	recessions	that	attributes	a	significant	role

to	“coordination	failures,” “lack	of	confidence,” or	“market	sentiment.”

These	findings	naturally	raise	the	question	of	where	the	variation	in	confidence	comes	from. Hav-

ing	attributed	this	variation	to	a	confidence	shock	that	is	both	exogenous	to	economic	activity	and

orthogonal	to	other	structural	shocks, we	can	not	offer	a	meaningful	answer	to	this	question.30 Nev-

ertheless, our	analysis	has	revealed	the	potential	 importance	of	 two	previously	overlooked	forces,

namely	frictional	coordination	and	belief	waves	regarding	the	short-term	economic	outlook, and	so

it	can	provide	the	impetus	for	future	research	on	these	subjects.

There	is	an	emerging	literature	in	this	area. Ilut	and	Saijo (2016)	and Angeletos	and	Lian (2016b)

consider	models	that	feature	a	similar	kind	of	belief-driven	wedges	as	the	one	found	here, except

that	these	wedges	are	allowed	to	covary	with	conventional	structural	shocks; this	has	the	interesting

implication	that	a	drop	in	confidence	may	be	triggered	by	an	adverse	financial	shock, while	a	boost

30This	 limitation	is	not	specific	to	 this	paper: any	formal	model	must	ultimately	attribute	 the	business	cycle	 to	some
exogenous	trigger, whether	this	is	a	technology	shock, an	uncertainty	shock, or	a	sunspot.
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in	confidence	may	be	accomplished	by	a	fiscal	stimulus. Huo	and	Takayama (2015b)	obtain	quanti-

tative	findings	that	are	broadly	consistent	with	ours	while	maintaining	the	common-prior	assumption.

Angeletos, Collard, and	Dellas (2017)	provide	VAR-based	evidence	that	the	business	cycle	in	the	US

data	can	be	explained	by	a	shock	that	has	similar	properties	to	the	one	we	have	accommodated	in

our	theory. Levchenko	and	Pandalai-Nayar (2015)	provide	additional	corroborating	evidence	in	an

international	context.

Finally, it	is	worth	iterating	how	the	belief	waves	formalized	and	quantified	in	this	paper	compare

to	those	found	in	the	existing	literature	on	news	and	noise	shocks. Our	confidence	shock	resembles

the	noise	shocks	of	 that	 literature	 in	 that	both	 types	of	shocks	are	 transitory. Yet, our	mechanism

captures	a	very	different	type	of	beliefs. In	that	literature, recessions	are	periods	in	which	the	agents

expect	the	economy	to	do	badly	for	a	long	time, and	more	so	in	the	long	run	than	in	the	short	run;

in	our	paper, they	are	periods	in	which	the	agents	expect	the	economy	to	recover	after	a	few	years.

Future	work	could	shed	further	light	on	which	formalization, and	accompanying	narrative, is	more

relevant	empirically.

Appendix	A.	Estimated	Models

In	this	appendix	we	fill	in	the	details	of	the	two	models	considered	in	Section 5; we	next	describe

the	estimation	method, the	assumed	priors, and	 the	obtained	posteriors; we	finally	 review	a	 few

additional	findings	that	were	omitted	from	the	main	text.

The	details	of	the	two	models. As	mentioned	in	the	main	text, the	two	models	share	the	same

backbone	as	our	baseline	model, but	add	a	number	of	structural	shocks	along	with	certain	forms	of

habit	persistent	in	consumption	and	adjustment	costs	in	investment, as	in Christiano, Eichenbaum,

and	Evans (2005)	and Smets	 and	Wouters (2007). To	accommodate	monopoly	power	and	 sticky

prices, we	also	introduce	product	differentiation	within	each	island. We	finally	assume	that	there

exists	a	lump	sum	transfer	that	eliminates	the	effects	of	the	markup	rate	in	steady	state.

Fix	an	island i ∈ [0, 1]. Index	the	firms	in	this	island	by j ∈ [0, 1] and	let yijt denote	the	output

produced	by	firm j in	period t. The	composite	output	of	the	island	is	given	by

yit =

(∫ 1

0
y

1
1+η

ijt dj

)1+η

,

where η > 0 is	a	parameter	that	pins	down	the	monopoly	power. The	aggregate	quantity	of	the	final

good, on	the	other	hand, is	given	by

Yt =

(∫ 1

0
y1−ϱit di

) 1
1−ϱ

,
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where ϱ > 0 is	a	parameter	that	ultimately	governs	the	degree	of	strategic	complementarity.

The	technology	is	the	same	as	before, so	that	the	output	of	firm j in	island i is

yijt = exp(ζat )(uijtkijt)
αn1−αijt ;

but	now	TFP is	given	by	the	sum	of	a	permanent	and	a	transitory	component. More	specifically,

ζat = aτt + apt ,

where aτt is	the	transitory	component, modeled	as	an	AR(1), and apt is	given	by

apt = apt−1 + ant−1 + ε
p
t

where εpt is	the	unanticipated	innovation	and a
n
t−1 captures	all	the	TFP changes	that	agents	anticipated

in	earlier	periods. The	latter	is	given	by	an	AR(1)	process	of	the	form

ant = ρna
n
t−1 + εnt

where εnt is	the	innovation	to	the	anticipated	component	of	TFP.31 In	line	with	our	baseline	model,

the	confidence	shock	is	now	modeled	as	a	shock	to	higher-order	beliefs	of apt .

To	accommodate	for	a	form	of	habit	in	consumption	as	well	as	discount-rate	shocks, we	let	the

per-period	utility	be	as	follows:

u(cit, nit; ζ
c
t , Ct−1) = exp(ζct )

(
log(cit − bCt−1)− θ

n1+νit

1 + ν

)
where ζct is	a	transitory	preference	shock, modeled	as	an	AR(1), b ∈ (0, 1) is	a	parameter	that	controls

for	the	degree	of	habit	persistence, and Ct−1 denotes	the	aggregate	consumption	in	the	last	period.32

To	accommodate	permanent	shocks	to	the	relative	price	of	investment	as	well	as	transitory	shocks

to	government	spoending, we	let	the	resource	constraint	of	the	island	be	given	by	the	following:

cit + exp(ζ ipt )iit +Gt + exp(ζ ipt )Ψ(uit)kit = pityit

where ζ ipt measures	 the	cost	of	 investment, Gt is	government	spending, and exp(ζ ipt )Ψ(uit) is	 the

cost	of	utilization	per	unit	of	capital. The	latter	is	scaled	by exp(ζ ipt ) in	order	to	transform	the	units

of	capital	 to	units	of	 the	final	good, and	 thereby	also	guaranteed	a	balanced-growth	path. ζ
ip
t is

modeled	as	a	random	walk: ζ ipt = ζ
ip
t−1 + ε

ip
t . Literally	taken, this	represents	an	investment-specific

technology shock. But	since	our	estimations	do	not	include	data	on	the	relative	price	of	invest, this

shock	can	readily	be	re-interpreted	as	a	demand-side	shock. The	utilization-cost	function	satisfies

uΨ′′(u)/Ψ′(u) = ψ
1−ψ , with ψ ∈ (0, 1). and	government	spending	is	given	by Gt = Ḡ exp(G̃t), where

31We	have	experimented	with	alternative	forms	of	diffusion, as	well	as	with	specifications	such	as ζnt = εnt−4, and	we
have	found	very	similar	results.

32Note	that	we	are	assuming	that	habit	is	external. We	experimented	with	internal	habit, as	in Christiano, Eichenbaum,
and	Evans (2005), and	the	results	were	virtually	unaffected.
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Ḡ is	a	constant	and G̃t = ζgt +
1

1−αa
p
t− α

1−αζ
ip
t . In	this	equation, ζ

g
t denotes	a	transitory	shock, modeled

as	an	AR(1), and	the	other	terms	are	present	in	order	to	guarantee	a	balanced-growth	path.

Finally, to	accommodate	adjustment	costs	to	investment	as	well	as	transitory	investment-specific

shocks, we	let	the	law	of	motion	of	capital	on	island i take	the	following	form:

kit+1 = exp(ζ itt )iit

(
1− Φ

(
iit
iit−1

))
+ (1− δ)kit

We	impose Φ′(·) > 0, Φ′′(·) > 0, Φ(1) = Φ′(1) = 0, and Φ′′(1) = φ, so	that φ parameterizes	the

curvature	of	the	adjustment	cost	to	investment. ζ itt is	a	temporary	shock, modeled	as	an	AR(1)	and

shifting	the	demand	for	investment, as	in Justiniano, Primiceri, and	Tambalotti (2010).

The	above	description	completes	the	specification	of	the	flexible-price	model	of	Section 5. The

sticky-price	model	is	then	obtained	by	embedding	the	Calvo	friction	and	a	Taylor	rule	form	monetary

policy. In	particular, the	probability	that	any	given	firm	resets	its	price	in	any	given	period	is	given	by

1− χ, with χ ∈ (0, 1). As	for	the	Taylor	rule, the	reaction	to	inflation	is	given	by κπ > 1, the	reaction

to	 the	output	gap	 is	given	by κy > 0, and	 the	parameter	 that	controls	 the	degree	of	 interest-rate

smoothing	is	given	by κR ∈ (0, 1); see	condition	(31)	below.

In	 the	 sticky-price	model, the	 log-linear	version	of	 the	 set	of	 the	equations	characterizing	 the

general	equilibrium	of	the	economy	is	thus	given	by	the	following:

Eit [ζct + νñit] = ζct − 1
1−b c̃it +

b
1−b C̃t−1 + Eit

[
s̃it + ϱỸt + (1− ϱ)ỹit − ñit

]
(21)

Eit
[
λ̃it + q̃it

]
= Eit

[
λ̃it+1 + β(1− δ)q̃it+1+

+(1− β(1− δ))
(
s̃it+1 + ϱỸt+1 + (1− ϱ)ỹit+1 − ũit+1 − k̃it+1

) ]
(22)

ỹit = at + α(ũit + k̃it) + (1− α)ñit (23)

Zt +
1

1−ψ ũit = s̃it + ϱỸt + (1− ϱ)ỹit − k̃it (24)

ϱỸt + (1− ϱ)ỹit = scc̃it + (1− sc − sg)(ζ
ip
t + ı̃it) + sgG̃t + αũit (25)

k̃it+1 = δ(ζ itt + ı̃it) + (1− δ)k̃it (26)

q̃it = (1 + β)φı̃it − φı̃t−1 − βφE′
itı̃it+1 + ζ

ip
t − ζ itt (27)

λ̃it = ζct − 1
1−b c̃it +

b
1−b C̃t−1 (28)

R̃t = ζct − (1 + ν)ñit − s̃it − ϱYt − (1− ϱ)yit − E′
it

[
λ̃it+1 − π̃it+1

]
(29)

x̃it = scc̃it + (1− sc − sg)(ζ
ip
t + ı̃it) + sgG̃t (30)

R̃t = κRR̃t−1 + (1− κR)
(
κππ̃it + κy(x̃it − x̃Fit)

)
+ ζmt (31)

χ(1 + χ(1− β))π̃it = (1− χ)(1− βχ)s̃it + βχ(1− χ)Π̃t + βχE′
itπ̃it+1 (32)

where	uppercases	stand	for	aggregate	variables, λit and sit denote, respectively, the	marginal	utility

of	consumption	and	the	realized	markup	in	island i, π̃it ≡ p̃it − p̃it−1 and Π̃t ≡ P̃t − P̃t−1 denote,

respectively, the	local	and	the	aggregate	inflation	rate, xit denotes	the	measured	of	GDP on	island i,

XF
it denotes	the	GDP that	would	be	attained	in	a	flexible	price	allocation, and sc and sg denote	the

steady-state	ratios	of	consumption	and	government	spending	to	output.
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The	interpretation	of	the	above	system	is	straightforward. Conditions	(21)	and	(22)	give, respec-

tively, the	consumption	and	investment	decisions. Conditions	(23)	and	(24)	characterizes	the	equi-

librium	employment	and	utilization	levels. Condition	(25)	gives	the	local	resource	constraint. Con-

ditions	 (26)	and	 (27)	give	 the	 local	 law	of	motion	of	capital	and	 the	equilibrium	price	of	capital.

Condition	(28)	and	(29)	give	the	marginal	utility	of	consumption	and	the	optimal	bond	holdings	de-

cision. Condition	(30)	gives	the	measured	aggregate	GDP.	Conditions	(31)	gives	the	Taylor	rule	for

monetary	policy. Finally, condition	(32)	gives	the	inflation	rate	in	each	island; aggregating	this	con-

dition	across	islands	gives	our	model’s	New	Keynesian	Phillips	Curve. The	only	essential	novelty	in

all	the	above	is	the	presence	of	the	subjective	expectation	operators	in	the	conditions	characterizing

the	local	equilibrium	outcomes	of	each	island.

Finally, the	flexible-price	allocations	are	obtained	by	the	same	set	of	equations, modulo	the	fol-

lowing	changes: we	set sit = 0, meaning	that	the	realized	markup	is	always	equal	to	the	optimal

markup; we	restate	the	Euler	condition	(29)	in	terms	of	the	real	interest	rate; and	we	drop	the	nominal

side	of	this	system, namely	conditions	(31)	and	(32).

Estimation. As	mentioned	in	the	main	text, we	follow Christiano	and	Vigfusson (2003)	and Sala

(2015)	and	estimate	 the	model	using	a	Bayesian	maximum	likelihood	 technique	 in	 the	 frequency

domain. This	method	amounts	to	maximizing	the	following	posterior	likelihood	function:

L(θ|YT ) ∝ f(θ)× L(θ|YT )

where YT denotes	the	set	of	data	(for t = 1 . . . T )	used	for	estimation, θ is	the	vector	of	structural

parameters	to	be	estimated, f(θ) is	the	joint	prior	distribution	of	the	structural	parameters, and L(θ|Yt)
is	the	likelihood	of	the	model	expressed	in	the	frequency	domain. Note	that	the	log-linear	solution

of	the	model	admits	a	state-space	representation	of	the	following	form:

Yt =My(θ)Xt

Xt+1 =Mx(θ)Xt +Meεt+1

Here, Yt andXt denote, respectively, the	vector	of	observed	variables	and	the	underlying	state	vector

of	the	model; ε is	the	vector	of	the	exogenous	structural	shocks, drawn	from	a	Normal	distribution	with

mean	zero	and	variance-covariance	matrix Σ(θ);My(θ) andMx(θ) are	matrices	whose	elements	are

(non-linear)	functions	of	the	underlying	structural	parameters θ; and	finally Me is	a	selection	matrix

that	describes	how	each	of	the	structural	shocks	impacts	on	the	state	vector. As	shown	in Whittle

(1951), Hannan (1970)	and Harvey (1991), the	likelihood	function	is	asymptotically	given	by

log(L(θ|YT )) ∝ −1

2

T∑
j=1

γj
(
log(detSY (ωj , θ) + tr

(
SY (ωj , θ)

−1IY (ωj)
))

where ωj = 2πj/T , j = 1 . . . T and	where IY (ωj) denotes	 the	periodogram	of YT evaluated	at

frequency ωj . SY (ω, θ) is	the	model	spectral	density	of	the	vector Yt, given	by

SY (ω, θ) =
1

2π
My(θ)(I −Mx(θ)e

−iω)−1MeΣ(θ)M
′
e(I −Mx(θ)

′eiω)−1My(θ)
′′
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Following Christiano	and	Vigfusson (2003)	and Sala (2015), we	include	a	weight γj in	the	computation

of	the	likelihood	in	order	to	select	the	desirable	frequencies: this	weight	is	1	when	the	frequency	falls

between	6	and	32	quarters, and	0	otherwise.

Priors. The	following	parameters	are	estimated	in	both	models: the	inverse	labor	supply	elastic-

ity, ν; the	capital	share, α; the	utilization	elasticity	parameter, ψ; the	habit	persistence	parameter, b;

the	parameter	governing	the	size	of	investment	adjustment	costs, φ; and	the	standard	deviations	and

persistences	of	all	the	structural	shocks. In	the	sticky-price	model, the	Calvo	parameter, χ, and	pa-

rameters	of	the	Taylor	rule, κR, κπ, and κy, are	also	estimated. The	priors	used	for	all	these	parameters

are	reported	in	Table 8 in	Online	Appendix	O.3	and	are	broadly	consistent	with	those	used	in	the

DSGE literature. The	prior	for	the	confidence	shock	was	set	in	line	with	the	other	shocks. Finally, the

following	parameters	are	fixed: the	discount	factor, β, is 0.99; the	depreciation	rate, δ, is 0.025; the

parameter, η, is	such	that	the	monopoly	markup	is	15%; and	the	parameter ϱ is 0.75 for	the	reasons

explained	in	the	main	text.

Posteriors. Posterior	distributions	were	obtained	with	the	MCMC algorithm, with	an	acceptance

rate	of	37%. We	generated	2	chains	of	200,000	observations	each. The	posteriors	for	all	the	param-

eters	are	reported	in	the	last	four	columns	of	Table 8. The	posteriors	for	the	preference, technology,

and	monetary	parameters	are	broadly	consistent	with	other	estimates	in	the	literature.

IRFs	and	Variance/Covariance	Decompositions. The	IRFs	of	our	estimated	models	with	respect

to	all	the	structural	shocks	are	delegated	to	Online	Appendix	O.3: see	Figures 8–9 therein. With	the

exception	of	the	confidence	shock, which	is	novel, the	IRFs	to	all	the	other	shocks	are	comparable	to

those	found	in	the	literature.

The	estimated	contribution	of	the	shocks	to, respectively, the	variances	and	the	co-variances	of

the	key	variables	at	business-cycle	frequencies	is	reported	in	the	same	appendix, in	Tables 9 and 10.

For	comparison	purposes, we	also	include	the	estimated	contributions	that	obtain	in	the	variants	of

the	models	that	remove	the	confidence	shock. Three	findings	are	worth	mentioning.

First, unlike	the	case	of	the	confidence	shock, the	variance/covariance	contributions	of	some	of

the	other	shocks	changes	significantly	as	we	move	from	the	flexible-price	to	the	sticky-price	model.

Second, in	the	models	that	assume	away	the	confidence	shocks, the	combination	of	permanent

and	transitory	investment	shocks	emerge	as	the	main	driver	of	the	business	cycle. This	is	consistent

with	existing	findings	in	the	DSGE literature	(e.g., Justiniano, Primiceri, and	Tambalotti, 2010)	and

confirms	that, apart	from	the	inclusion	of	the	confidence	shock, our	exercises	are	quite	typical.

Finally, in	all	models, neither	the	investment-specific	shocks, nor	the	news	or	discount-rate	shocks

are	able	to	contribute	to	a	positive	covariation	between	all	of	the	key	real	quantities	(output, con-

sumption, investment, hours)	at	the	same	time. This	illustrates, once	again, the	superior	ability	of	our

mechanism	to	generate	the	right	kind	of	comovement	patterns.
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O.1 Additional	Material	for	Sections 3 and 4

In	this	appendix, we	provide	few	results	that	complement	the	analysis	in	Section 3 and 4.

Heterogeneous	vs	Common	Priors	(continued)

In	Subsection 3.3 of	the	main	text, we	established	an	observational	equivalence	between	a	special

case	of	our	heterogeneous-prior	model	and	a	common-prior	variant	 featuring	idiosyncratic	uncer-

tainty. We	now	elaborate	on	the	bounds	that	this	mapping	can	impose	on	the	magnitude	and	the

persistence	of	the ξt shock	in	our	setting.

Suppose	that	we	had	data	that	allowed	the	estimation	of	the	AR(1)	process	described	in	condition

(18). Suppose	next	that	we	possessed	information	on	the	value	for σ̃a, perhaps	from	micro-economic

observations. This	information	could	be	used	in	Proposition 2 to	derive	the	bounds	on (φ,ψ) and

then, using	Corollary 1, to	get	bounds	on (ρξ, σξ).

Figure 7 depicts	these	bounds. To	construct	this	figure, we	let ν = 0.5 and σ̃a = 0.2. The	latter

value	is	based	on	the	observation	that σ̃a determines	the	uncertainty	that	islands	face	about	their	terms

of	trade	(demand	for	their	products), and	may	thus	be	proxied	by	the	idiosyncratic	risk	that	the	typical

firm	faces	about	its	productivity	and	sales.33 In	the	left	panel	of	the	figure, we	plot	the	set	of	the (φ,ψ)

pairs	that	satisfy	the	bounds	in	Proposition 2, under	the	assumed	value	for σ̃a. Using	Corollary 1, we

can	translate	this	set	into	corresponding	values	for (ρξ, σξ).

In	the	right	panel	of	the	figure, we	plot	a	more	useful	transformation	of	this	set: instead	of	mea-

suring σξ on	the	vertical	axis, we	measure	the	corresponding	value	of σy, where σy henceforth	stands

for	the	standard	deviation	of	the	business-cycle	component	of	output	(i.e., of	output	bandpass	filtered

over	6-32	quarters)	that	is	accounted	by	the	confidence	shock. Finally, the	dot	indicates	the	values

of φ (in	the	left	panel)	and	of σy (in	the	right	panel)	that	obtain	when	we	fix ρξ = 0.75 and	calibrate

the	volatilities	of	the	confidence	shock	and	the	technology	shock	in	the	model	so	as	to	match	the

volatilities	of	aggregate	output	and	employment	in	the	data. The	figure	shows	that	under	a	plausible

value	for σ̃a, the	range	of	values	for σξ that	would	be	consistent	with	the	restrictions	imposed	by	a

common-prior	specification	is	very	large.

33Empirical	estimates	of	the	volatility	of	firm-level	productivity	suggest	setting σ̃a between	0.2	to	0.43	(Abraham	and
White, 2006, Foster, Haltiwanger, and	Syverson, 2008). In	a	similar	setting	as	ours, Huo	and	Takayama (2015b)	use	a	value
of	0.14.
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Figure 7: The	bounds	on	persistence	and	volatility

Note	that	the	relevant	bound	remains	large	even	for	lower	values	of σ̃a, say 4%. Such	a	value

would	not	appear	implausibly	large	even	if	we	confined	first-order	uncertainty	to	concern	aggregate

fundamentals. For	instance, this	value	is	only	about	twice	as	large	as	the	standard	deviation	of	the

quarterly	 innovations	 in	 the	aggregate	Solow	residual. Furthermore, as	 the	behavior	 in	 the	 richer

models	used	in	the	quantitative	exercises	in	this	paper	is	forward-looking, it	seems	more	appropriate

to	think	about	a	present-value	measure	of	the	uncertainty	in	fundamentals, as	opposed	to	merely	the

quarter-by-quarter	changes. Therefore, even	though	we	can	not	extend	the	results	of	this	subsection

to	such	richer	models, we	feel	confident	that	our	quantitative	findings	are	consistent	with	realistic

common-prior	models. The	recent	work	of Huo	and	Takayama (2015b)	seems	to	corroborate	this

conjecture. That	said, there	is	no	reason	to	view	our	approach exclusively as	a	proxy	for	incomplete

information	and	rational	confusion.

The	Confidence	Shock	in	the	Baseline	New	Keynesian	Model

In	Section 4 of	the	main	text, we	compared	the	comovement	patterns	generated	by	the	confidence

shock	to	those	of	a	few	alternative	shocks	within	the	context	fo	the	baseline	RBC model. We	now

extend	the	comparison	to	the	baseline	New	Keynesian	model. The	latter	is	obtained	from	the	former

by	adding	monopoly	power, sticky	prices, and	a	Taylor	rule	for	monetary	policy.

Table 5 revisits	the	exercise	conducted	in	Table 1. The	preferences, the	technology	and	the	con-

fidence	shock	remain	as	before; the	monopoly	distortion	is	offset	by	a	subsidy; the	Calvo	parameter

is	set	to	0.75; and	the	Taylor	rule	is	specified	as Rt = ϕππt with ϕπ = 1.5.

The	following	key	findings	emerge. First, the	good	and	superior	to	other	shocks	empirical	per-

formance	of	the	confidence	shock	survives	as	we	move	from	the	RBC model	to	the	New	Keynesian

model. Second, with	the	exception	of	the	monetary	shock, none	of	the	competing	shocks	is	able	to

generate	realistic	comovements	patterns	in	the	relevant	quantities. Finally, the	similarity	between	the

real	effects	of	the	confidence	shock	and	those	of	the	monetary	shock	provide	further	justification	for

our	claim	that	the	confidence	plays	similar	role	in	the	RBC framework	as	demand	shocks
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Table 5: Conditional	Comovements	(6-32	quarters)

Filtering Our	Mechanism Alternative	Mechanisms

(a) (b) (c) (d) I shock C shock News E shock M shock

σn/σy 0.87 1.07 1.43 1.43 1.44 1.44 0.87 0.70 1.44
σc/σy 0.56 0.52 0.25 0.22 0.44 1.01 0.16 0.19 0.13
σi/σy 3.54 3.65 3.92 4.10 6.09 8.26 4.80 4.30 4.52
σy/n/σy 0.40 0.63 0.44 0.44 0.47 0.49 0.18 0.33 0.45

corr(c, y) 0.86 0.85 0.85 0.76 -0.83 -0.94 -0.16 0.60 0.38
corr(i, y) 0.94 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99
corr(n, y) 0.91 0.82 0.99 1.00 0.99 0.98 0.99 0.99 1.00
corr(c, n) 0.86 0.75 0.81 0.70 -0.90 -0.99 -0.25 0.47 0.31
corr(i, n) 0.85 0.81 0.99 1.00 1.00 1.00 1.00 1.00 1.00
corr(c, i) 0.75 0.79 0.78 0.67 -0.90 -0.98 -0.27 0.50 0.29
corr(y, y/n) -0.03 0.21 -0.96 -0.96 -0.90 -0.86 0.76 0.94 -0.97
corr(n, y/n) -0.43 -0.40 -0.98 -0.98 -0.95 -0.93 0.67 0.87 -0.99

σπ/σy 0.16 0.42 – 0.07 0.22 0.04 0.07 0.03 0.10
σR/σy 0.24 0.72 – 0.10 0.34 0.06 0.10 0.05 0.02
corr(y, π) 0.21 -0.90 – 0.96 0.99 0.42 0.37 0.84 0.99
corr(y,R) 0.38 -0.81 – 0.96 0.99 0.42 0.37 0.84 -0.38

Note: Columns (a) and (b) refer	to	the	residuals	that	obtain, respectively, from	the	projection	of	the	data	on
current	and	past	TFP and	from	the	removal	of	the	technology	shock	identified	in	the	same	was	as	in Galí (1999).
Column (c) refers	to	the	predictions	of	our	baseline	model	and	column (d) to	those	of	its	NK variant. All	other
columns	refer	to	alternative	NK models.

Belief-Driven	Wedges

In	this	section	we	derive	the	predictions	of	our	theories	about	the	wedges. We	consider	both	the

overall	wedges	between	the	marginal	rates	of	substitution	and	the	corresponding	marginal	rates	of

transformation, and	their	decomposition	in	household-	and	firm-side	wedges.

Let	us	fill	in	the	details. First, denote	with MRSNt ≡ νNt + γCt the	measured	marginal	rate	of

intra-temporal	substitution	between	leisure	and	consumption; with MRSCt,t+1 ≡ γ (Ct+1 − Ct) the

measured	marginal	rate	of	inter-temporal	substitution	in	consumption; with MPLt ≡ Yt − Nt the

measured	marginal	product	of	labor; and	with MPKt = Yt −Kt the	measured	marginal	product	of

capital. Next, define	the	wedges τnht , τkht , τnft , and τkft so	that	the	following	conditions	hold:

MRSNt = wt − τnht Et[MRSCt,t+1] = (1− β(1− δ))(Rt − τkht ) (33)

MPLt = wt + τnft Et[MPKt+1] = Rt + τkft . (34)

This	means	that τnht and τkht can	be	interpreted	as	taxes	payed	by	the	household	on	labor	income

and	on	the	return	to	savings, while τnft and τkft can	be	interpreted	as	taxes	payed	by	the	firm	on	the

use	of	labor	and	capital. We	finally	measure	the	total	labor	wedge	by τn ≡ τnht + τnf and	the	total

capital	wedge	by τk ≡ τkht + τkf .
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When	the	data	is	generated	by	the	plain-vanilla	RBC model, all	the	wedges	are	zero. At	the	other

extreme, the	wedges	can	be	arbitrary	stochastic	processes	if	the	data	is	generated	by	a	medium-scale

model	that	lets	each	of	the	optimality	conditions	of	the	RBC model	be	perturbed	by	a	different	shock.

Our	model	is	in	between	these	two	extremes, arguably	closer	to	the	plain-vanilla	RBC model	than	to

DSGE models	such	as Smets	and	Wouters (2007): the	wedges	differ	from	zero	but	they	are	all	linear

functions	of	the	underlying	confidence	shock.

Furthermore, as	shown	next, ξt > 0 maps	to τnht > 0, τkht > 0, τnft < 0, and τkft < 0. That	is,

whenever	there	is	a	boost	in	confidence, it	is as	if the	household	faces	a	positive	tax	on	its	supply

of	labor	and	savings, while	the	firm	faces	a	positive	subsidy	on	its	use	of	labor	and	capital	services.

The	first	property	reflects	the	excessive	optimism	that	the	households	have	about	their	income	during

a	confidence-driven	boom; the	second	property	reflects	the	excessive	optimism	that	the	firms	have

about	the	demand	for	their	product	and	their	terms	of	trade. Finally, the	combination	of	these	forces

gives	rise	to	a	procylical	labor	wedge	and	a	countercylical	capital	wedge, in	line	with	the	US data.

The	labor	wedge	on	the	household	side. Consider	first τnht , which	is	is	defined	as	the	equivalent

of	a	labor-income	tax	faced	by	the	as-if	representative	household:

τnht ≡ wt −MRSNt = wt − (Ct + νNt)

In	the	equilibrium	of	our	model, the	household	of	every	island i equates	the	local	wage	to	the	local

expectation	of	its	marginal	rate	of	substitution	between	consumption	and	leisure:

wi,t = Eit[ci,t]− νni,t.

In	addition, the	realized	outcomes	satisfy wi,t = wt, ni,t = Nt, and ci,t = Ct for	all i. It	follows	that

τnht = Eit[ci,t]− Ct = Eit[ci,t]− cit ∀i,

which	reveals	that τnht captures	the	excessive	optimism	(during	a	boom)	or	pessimism	(during	a	re-

cession)	of	the	households	about	their	own	consumption. Condition	(13)	in	the	main	text, together

with	the	fact	that kit = Kt for	all i, implies	that cit = ΓcKKt+Γczzit+Γczzt+ΓcaAt+Γcξξt and	therefore

Eit[cit] = ΓcKKt+(Γcz +Γcz +Γca)At+(Γcξ+Γcz)ξt. Realized	consumption, on	the	other	hand, is	given

by Ct = ΓcKKt + (Γcz + Γcz + Γca)At + Γcξξt. Combining, we	infer	that

τnht = Γczξt

The	adopted	parameterization	implies τnht = 0.0152ξt.

The	labor	wedge	on	the	firm	side. Consider	next τnft , which	is	defined	as	the	equivalent	of	a

payroll	tax	faced	by	the	as-if	representative	firm:

τnft ≡MPLt − wt = (Yt −Nt)− wt

In	the	equilibrium	of	our	model, the	firm	of	every	island i equates	the	local	wage	to	the	local	expec-

tation	of	the	marginal	revenue	product	of	labor:

wi,t = Eit[MRPLit] = Eit[pit + yit − nit] = Eit[Yt]− nit ∀i

4



In	addition, the	realized	outcomes	satisfy wit = wt and nit = Nt for	all i. It	follows	that

τnft = Yt − Eit[Yt] ∀i,

which	reveals	that τnft captures	the	excessive	optimism	or	pessimism	of	the	firms	about	aggregate

income	and	the	resulting	demand	for	the	local	good. Using	conditions	(12)	and	(15)	from	the	main

text	along	with	the	production	function, we	have	that Yt = ΓyKKt+ΓyaAt+Γyzzt+Γyξξt and	therefore

Eit[Yt] = ΓyKKt + (Γya + Γyz)At + (Γyz + Γyξ)ξt. It	follows	that

τnft ≡ −Γyzξt

For	our	parameterization, we	have τnft = −0.2548ξt.

The	capital	wedge	on	the	firm	side. Consider	now τkft , which	is	defined	as	the	equivalent	of	an

investment	tax	faced	by	the	as-if	representative	firm:

τkft ≡ Et[MPKt+1]−Rt = Et[Yt+1]−Kt+1 −Rt,

where Et is	the	rational	(or	objective)	expectation	operator. In	the	equilibrium	of	our	model,

Rt = E′
it[MRPKi,t+1] = E′

it[pi,t+1 + yi,t+1 − ki,t+1] = E′
it[Yt+1]− ki,t+1 ∀i,

where Ei,t is	the	subjective	expectation	operator	in	the	morning	of	period t. It	follows	that

τkft = Et[Yt+1]− E′
it[Yt+1] ∀i,

which	reveals	that τkft captures	the	excessive	optimism	or	pessimism	of	the	firms	about	aggregate

income	and	demand	next	period. Using	similar	steps	as	before, we	can	show	that

τkft = −Γyzρξt

where Γyz is	the	elasticity	of	the	realized	income	of	each	island	with	respect	to	the	realized	average

signal. For	our	calibration, we	have τkft = −0.1911ξt.

The	savings	wedge	on	the	household	side. Consider τkht , which	is	defined	as	the	tax	on	the	returns

to	savings	faced	by	the	as-if	representative	household:

τkht ≡ Rt − 1
1−β(1−δ)Et[MRSCt,t+1] = Rt +

γ
1−β(1−δ)Et[Ct+1 − Ct]

In	the	equilibrium	of	our	model,

Rt =
1

1−β(1−δ)E
′
it[MRSCi,t,t+1] =

γ
1−β(1−δ)E

′
it[ci,t+1 − ct],

where E′
it is	the	subjective	operator	in	the	afternoon	of	period t. It	follows	that

τkht = γ
1−β(1−δ)

(
E′
it[cit+1]− Et[Ct+1]

)
= γ

1−β(1−δ)
(
E′
it[cit+1]− Et[ci,t+1]

)
,
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which	reveals	that τkht captures	the	excessive	optimism	or	pessimism	of	the	households	about	their

future	consumption. From	the	policy	rules	for	individual	and	aggregate	consumption:

E′
it[cit+1] = ΓcKKt+1 + (Γcz + Γcz + Γca)At + (Γcz + Γcξ)ρξt

Et[Ct+1] = ΓcKKt+1 + (Γcz + Γcz + Γca)At + Γcξρξt

Combining, we	infer	that

τkht =
Γczρ

1− β(1− δ)
ξt

For	our	parameterization, we	have τkht = 0.3277ξt.

The	total	wedges	in	the	model. Combining	the	above	results, we	conclude	that	the	total	labor

wedge	in	the	calibrated	version	of	our	baseline	model	 is	given	by τnt = τnht + τnft = −0.2396ξt,

whereas	the	total	capital	wedge	is	given	by τkt = τkht + τkft = 0.1366ξt. That	is, the	labor	wedge

is	negatively	correlated	with	the	confidence	shock, and	therefore	countercyclical, while	the	capital

wedge	is	positively	correlated	with	the	confidence	shock, and	therefore	procyclical.

In	the	main	text	we	claimed	that	both	of	these	predictions	are	driven	by	the	fact	that	the ξt shock

shifts	the	perceptions	of	short-run	returns	without	moving	much	the	perceptions	of	permanent	income.

Let	us	now	explain	why	this	is	the	case. As	noted	above, our	model	predicts	that	the	wedges	for	firms

and	households	move	in	opposite	directions. Furthermore, the	procyclicality	of τnht is	 tied	to	 the

effect	of	the	confidence	shock	on	perceived	permanent	income, while	the	countercyclicality	of τnt f

is	 tied	 to	 the	effect	on	 the	perceived	marginal	 return	 to	 labor. For	 the	reasons	already	explained,

the	 latter	effect	dominates	 the	 former. Consequently, the	overall	 labor	wedge, τnt , is	predicted	 to

be	countercyclical. The	opposite	is	 true	for	 the	capital	wedge, τkt . To	see	why, note	first	 that	 the

Euler	condition	equates	expected	consumption	growth	with	a	quantity	that	is	equal	to	unity	plus	the

expected	return	to	capital. Note	next	that, while	the	variation	in τkft is	of	similar	magnitude	to	the

variation	in τnft , it	 represents	a	small	component	in	the	aforementioned	quantity, and	is	 therefore

overwhelmed	by	the	variation	in τkht , which	captures	the	household’s	optimism	and	pessimism	about

future	consumption. It	follows τkt shares	the	cyclical	properties	of τkht , that	is, the	total	capital	wedge

is	procyclical.

Estimation	of	wedges	in	the	data. We	now	turn	attention	to	the	estimation	of	the	wedges	US data.

This	is	done	in	a	similar	fashion	as	in Chari, Kehoe, and	McGrattan (2007).

The	estimation	is	based	on	the	baseline	RBC model, augmented	with	ad	hoc	stochastic	processes

for	the	following	four	wedges: an	efficiency	wedge, τ et , a	labor	wedge, τ
n
t , a	capital	wedge, τ

k
t , and

a	resource	wedge τ gt . Accordingly, the	system	to	be	estimated	is	the	following:

νNt + Ct = Yt −Nt − τnt (35)

Et[Ct+1]− Ct = (1− β(1− δ))(Et[Yt+1 −Kt+1]− τkt ) (36)

Yt + (1− δ)Kt = Ct +Kt+1 + τ gt (37)

Yt = τ et + αKt + (1− α)Nt (38)
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We	set	the	structural	parameters ν, α, β and δ to	the	values	chosen	in	our	baseline	calibration. As

in Chari, Kehoe, and	McGrattan (2007), we	assume	that	the	vector Tt = (τ et , τ
n
t , τ

k
t , τ

g
t )

′ follows	a

VAR(1)	process	of	the	form

Tt = ΦTt−1 + Et

where Φ is	a	matrix, Et = (εet , ε
n
t , ε

k
t , ε

g
t )

′ is	normally	distributed	with E(Et) = 0 and E(EtE ′
t) = ΩΩ′,

and Ω is	a	lower-triangular	matrix. We	finally	estimate	the	matrices Φ and Ω using	data	on	GDP,

investment, hours, and	the	difference	between	GDP and	the	sum	of	investment	and	consumption,

over	the	period	1960Q1-2007Q4. The	estimation	yields

Φ =


0.6537 0.1184 0.2268 0.0049

−0.2487 1.0716 0.1605 0.0089

−0.2808 0.0883 1.1620 0.0068

0.2017 −0.1390 −0.1741 0.9829

 and Ω =


0.6148 0.0000 0.0000 0.0000

0.2580 0.8828 0.0000 0.0000

0.6261 −0.3505 0.1793 0.0000

0.2492 0.2278 0.4964 1.5210

 ,

and	results	to	the	moments	reported	in	Table 6. We	thus	see	that	the	labor	wedge	is	countercyclical

and	the	capital	wedge	procyclical, just	as	predicted	by	our	theory.

Table 6: Wedges	in	the	Data

Efficiency Labor Capital

Standard	Deviation 0.86 1.40 1.04

Correlation	with	Output 0.78 -0.57 0.91

O.2 Data

In	 this	Appendix	we	describe	 the	 data	we	use	 in	 this	 paper	 to	 obtain	 the	 various	 business-cycle

moments	and	to	estimate	the	models	considered	in	Section 5.

Table 7 summarizes	the	data, all	of	which	is	from	FRED,	the	Economic	Database	of	the	Federal

Reserve	Bank	of	Saint-Louis. GDP, Y , is	measured	by	the	seasonally	adjusted	GDP.	Consumption, C,

is	measured	by	the	sum	of	personal	consumption	expenditures	in	nondurables	goods	(CND) and	ser-

vices	(CS).	Investment, I, is	measured	by	the	sum	of	personal	consumption	expenditures	on	durables

goods	(CD),	fixed	private	investment	(FPI) and	changes	in	inventories	(DI).	Government	Spending,

G, is	measured	by	government	consumption	expenditures	(GCE).	Hours	worked, N , are	measured

by	hours	of	all	persons	in	the	non-farm	business	sector. Labor	productivity, Y /N , is	measured	by

real	output	per	hour	of	all	persons	in	the	non-farm	business	sector. The	inflation	rate, π, is	the	log-

change	in	the	implicit	GDP deflator. The	nominal	interest	rate, R,	is	the	effective	federal	funds	rate

measured	on	a	quarterly	basis. Given	that	the	effective	federal	funds	rate	is	available	at	the	monthly

frequency, we	use	the	average	over	the	quarter	(denoted	FEDFUNDS).	Finally, when	relevant, Total

Factor	Productivity	(TFP) is	measured	as	in Fernald (2014), which	adjusts	for	utilization.

7



The	sample	ranges	from	the	first	quarter	of	1960	to	the	last	quarter	of	2007. We	dropped	the	post-

2007	data	because	the	models	we	study	are	not	to	designed	to	deal	with	the	financial	phenomena

that	 appear	 to	have	play	a	more	crucial	 role	 in	 the	 recent	 recession	as	opposed	 to	earlier	 times.

All	quantities	are	expressed	in	real, per	capita	terms—that	is, deflated	by	the	implicit	GDP deflator

(GDPDEF) and	by	the	civilian	non-institutional	population	(CNP16OV).	Because	the	latter	is	reported

monthly, we	used	the	last	month	of	each	quarter	as	the	quarterly	observation.

Table 7: Description	of	the	Data

Description	of	the	Data

Data Formula

GDP Y=GDP/(GDPDEF×CNP16OV)
Consumption C=(CND+CS)/(GDPDEF×CNP16OV)
Investment I=(CD+FPI+DI)/(GDPDEF×CNP16OV)
Government	Spending G=GCE/(GDPDEF×CNP16OV)
Hours	Worked H=HOANBS/CNP16OV
Labor	Productivity GDP/H
Inflation	Rate π=log(GDPDEF)-log(GDPDEF)−1

Nominal	Interest	Rate R=FEDFUNDS/4

Mnemonic Source

GDP http://research.stlouisfed.org/fred2/series/GDP
CND http://research.stlouisfed.org/fred2/series/PCND
CD http://research.stlouisfed.org/fred2/series/PCEDG
CS http://research.stlouisfed.org/fred2/series/PCESV
FPI http://research.stlouisfed.org/fred2/series/FPI
DI http://research.stlouisfed.org/fred2/series/CBI
GCE http://research.stlouisfed.org/fred2/series/GCE
HOANBS http://research.stlouisfed.org/fred2/series/HOANBS
GDPDEF http://research.stlouisfed.org/fred2/series/GDPDEF
FEDFUNDS http://research.stlouisfed.org/fred2/series/FEDFUNDS
CNP16OV http://research.stlouisfed.org/fred2/series/CNP16OV

O.3 Additional	Material	for	Section 5

This	appendix	contains	additional	material	regarding	the	two	estimated	models	in	Section 5. Table 8

reports	the	priors	and	the	posteriors	of	the	estimated	parameters. Figures 8–9 report	the	IRFs	of	our

estimated	models	with	respect	to	all	the	structural	shocks. Tables 9 and 10 report	and	the	estimated

contribution	of	the	shocks	to, respectively, the	variances	and	the	co-variances	of	the	key	variables

at	business-cycle	frequencies. The	confidence	shock	is	omitted	here, because	its	contributions	were

reported	in	the	main	text.
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Table 8: Estimated	Parameters

Priors Posteriors

Flexible	Price	Model Sticky	Price	Model

Shape Mean Std. Dev. Median 90%HPDI Median 90%HPDI

ν G 0.500 0.200 0.456 [0.226,0.814] 0.282 [0.161,0.429]
α B 0.300 0.150 0.261 [0.234,0.286] 0.255 [0.229,0.280]
ψ B 0.500 0.200 0.576 [0.255,0.856] 0.500 [0.315,0.708]
φ G 2.000 1.000 3.370 [2.026,5.346] 3.312 [1.917,5.394]
b B 0.500 0.200 0.860 [0.809,0.899] 0.758 [0.649,0.836]

χ B 0.660 0.100 – – 0.732 [0.673,0.782]
κR B 0.600 0.200 – – 0.198 [0.072,0.371]
κπ N 1.700 0.300 – – 2.271 [1.901,2.660]
κy N 0.125 0.050 – – 0.121 [0.052,0.199]

ρa B 0.500 0.200 0.394 [0.126,0.747] 0.412 [0.115,0.846]
ρn B 0.500 0.200 0.309 [0.113,0.545] 0.224 [0.075,0.428]
ρi B 0.500 0.200 0.365 [0.136,0.626] 0.374 [0.155,0.604]
ρc B 0.500 0.200 0.477 [0.175,0.786] 0.888 [0.802,0.964]
ρg B 0.500 0.200 0.787 [0.588,0.921] 0.786 [0.632,0.902]
ρm B 0.500 0.200 – – 0.647 [0.471,0.753]
ρξ B 0.500 0.200 0.620 [0.369,0.804] 0.833 [0.717,0.911]

σ
p
a IG 1.000 4.000 0.396 [0.270,0.565] 0.406 [0.278,0.569]
σta IG 1.000 4.000 0.338 [0.239,0.489] 0.347 [0.244,0.498]
σn IG 1.000 4.000 0.376 [0.266,0.521] 0.378 [0.263,0.520]
σ
p
i IG 1.000 4.000 0.845 [0.358,2.252] 0.610 [0.321,1.306]
σti IG 1.000 4.000 5.961 [2.046,11.657] 5.805 [2.839,11.029]
σc IG 1.000 4.000 0.658 [0.327,2.676] 0.357 [0.244,0.564]
σg IG 1.000 4.000 1.675 [1.387,2.072] 1.705 [1.431,2.076]
σm IG 1.000 4.000 – – 0.313 [0.256,0.388]
σξ IG 1.000 4.000 1.798 [1.208,2.839] 0.613 [0.348,1.194]

Note: B,	G,	IG,	N stand	respectively	for	Beta, Gamma, Inverse	Gamma	and	Normal	distribution.
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Figure 8: Theoretical	IRFs, Part	I
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Figure 9: Theoretical	IRFs, Part	II
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O.4 Estimating ϱ and σξ

In	the	main	text, we	noted	that	the	data	considered	in	Section 5 do	not	allow	us	to	identify	separately

the	standard	deviation	of	the	confidence	shock	and	the	degree	of	strategic	complementary. Never-

theless, this	may	be	achieved	if	the	data	set	were	augmented	to	include	data	on	expectations. In	this

Appendix, we	elaborate	on	these	points	and	describe	the	“augmented	estimation”	that	motivates	the

value	of ϱ used	in	Section 5.

To	illustrate	the	main	identification	issue, consider	again	the	example	studied	in	Subsections 3.2

and 3.3. From	conditions	(18)	and	(19), we	see	that	the	volatility	of	the	non-fundamental	(confidence-

driven)	innovations	in	output	is	given	by

V ar (Yt − Y ∗
t |history) = ψ2 =

ω2

(1− ω)4
σ2ξ , (39)

where Y ∗
t is	the	fundamental	(TFP-driven)	component, σξ is	the	standard	deviation	of	the	confidence

shock, and ω is	the	degree	of	strategic	complementarity. Under	the	assumption, made	in	the	baseline

model, that	the	CES aggregator	across	the	islands	is	Cobb-Douglas, ϱ is	unity. Relaxing	this	assumption

gives ω as	a	monotone	function	of ϱ. From	condition	(39)	it	is	then	evident	that	exactly	the	same	non-

fundamental	volatility	in	output	can	be	accounted	for	by	a	continuum	of	values	for	the	pair (ϱ, σξ).

This	is	the	crux	of	the	identification	issue	faced	in	Section 5: the	models	of	that	section	are	more

complicated, something	that	hinders	analytical	results, but	the	issue	remains	the	same.

To	illustrate	how	data	on	expectations	could	possibly	aid	identification, aggregate	condition	(12)

to	obtain	the	following	equation:

Nt −N∗
t = ω · Ēt[Nt −N∗

t ],

where N∗
t denote	the	fundamental	component	of	employment. This	condition	reveals	how	expecta-

tions	of	employment	(or	some	other	variable)	together	with	a	measure	of	its	“fundamental”	component

can	be	used	to	identify	the	degree	of	strategic	complementarity, and	therefore ϱ.

The	procedure, thought, is	 fraught	with	difficulties. Unlike	 the	example	discussed	above, the

models	of	Section 5 have	expectations	mattering	through	multiple	horizons	and	multiple	channels. It

is	not	clear	how	to	combine	these	expectations	into	a	single	measure, or	how	to	map	the	theoretical

objects	to	the	available	empirical	measures. For	instance, the	University	of	Michigan	Index	of	Con-

sumer	Sentiment, which	is	known	to	forecast	future	employment	and	output, is	constructed	on	the

basis	of	answers	to	qualitative	questions	that	do	not	have	an	immediate	counterpart	in	the	theory.

These	challenges, in	combination	with	the	desire	to	stay	as	close	as	possible	to	standard	practice,

account	for	our	choice	to	estimate	the	models	of	Section 5 on	the	macroeconomic	data	alone. Note,

though, that	this	choice	does	not	matter	for	the	estimated	contribution	of	the	confidence	shock	to	the

business	cycle. Fixing	the	value	of ϱ or	allowing	it	to	be	estimated	freely	makes	little	difference	for	the

shock’s	estimated	contribution	to	the	variances	and	covariances	of	the	macroeconomic	quantities.

Does	the	lack	of	identification	of σξ and ϱ pose	a	problem	for	our	assertion	that	confidence	shocks

are	a	major	driver	of	the	business	cycle? We	think	it	does	not. Not	being	able	to	rule	out	values	of
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σξ that	seem	implausibly	high	relative	to	the	innovations	in	aggregate	TFP and	other	fundamentals

only	implies	that	a	narrow	interpretation	of	the	confidence	shock	as	capturing	mis-coordination	and

higher-order	uncertainty	may	be	tenuous. But	it	allows	our	shock	to	proxy	for	alternative	kinds	of

waves	of	optimism	and	pessimism, for	instance, irrational	beliefs.

Notwithstanding	our	preference	for	a	broad	interpretation	of	the	confident	shock, we	now	describe

an	exercise	that	supports	the	more	narrow	interpretation	and	justifies	the	value	of ϱ used	in	Section

5. Consider	either	one	of	the	models	of	Section 5 and	construct	an	“augmented”	model	by	adding

the	following	equation, for	some k ≥ 0 :

mcsit = λĒt[Nt+k] + ηt (40)

where Nt+k is	aggregate	employment k periods	ahead, λ is	a	scalar, and ηt is	a	random	variable, that

is	orthogonal	to	the	confidence	shock	and	other	structural	shocks, and	that	follows	an	AR(1)	process

ηt = ρηηt−1+ε
η
t where ρη ∈ [0, 1) and εηt ⇝ N (0, σ2η). We	take mcsit as	the	theoretical	counterpart	of

the	University	of	Michigan	Consumer	Sentiment	Index; ηt as	measurement	error, or	as	a	crude	proxy

for	mis-specification	in	the	“true”	relation	between	the	theory	and	the	aforementioned	index;34 and

λ as	a	scaling	parameter.

Now	let θ be	the	vector	that	collects	all	the	parameters	of	the	original	model, inclusive	of σξ and

ϱ. The	parameters	of	the	augmented	model	are	given	by	the	union	of θ and (λ, ση, ρη). Trying	to

estimate	all	the	parameters	jointly	creates	a	new	problem	that	prevents	the	MCMC from	converging

properly. This	seems	to	be	due	to	the	fact	that	the	same	covariation	between	the	sentiment	index	and

the	macroeconomic	variables	can	be	captured	with	different	combinations	of	the	scaling	parameter

λ, the	volatility	of	the	measurement	error, and	the	degree	of	strategic	complementarity. To	cut	the

Gordian	knot, we	chose	to	impose	an ad-hoc identification	restriction	that	requires	the	augmented

model	to	produce	a	particular	value	for	the	share	of	the	variance	in mcsit that	is	accounted	for	by	the

measurement	error ηt. This	is	equivalent	to	imposing	one’s	prior	on	the	noise-to-signal	ratio	in	the

sentiment	index.

More	specifically, for	any k ≥ 0, there	exists	a	function vk such	that

Var
(
Ēt[Nt+k]

)
= vk(θ).

This	function	is	generated	by	the	same	system	of	equations	as	the	one	that	pins	down	the	equilibrium

outcomes	and	is	not	affected	by	the	addition	of	equation	(40). It	follows	that	the	relative	contribution

of	the	measurement	error	in	the	theoretical	counterpart	of	the	sentiment	index	is	given	by

Var(ηt)
Var(mcsit)

= M(λ, θ′) ≡
σ2η

(1− ρη)λ2vk(θ) + σ2η

where θ′ ≡ (θ, ση, ρη). For	any θ′ and	any	target me ∈ (0, 1) for	the	contribution	of	the	measurement

error, solving	 the	equation M(λ, θ′) = me gives	 the	value	of λ that	 is	consistent	with	 that	 target.
34In	the	data, the	correlation	of	the	Consumer	Sentiment	Index	with	hours	worked	attains	a	maximal	value	of	about 0.7

when	the	former	leads	the	latter	by	3	quarters. To	some	extent, this	corroborates	the	specification	assumed	above	and
suggests k = 3 as	a	possible	benchmark.
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Fixing	a	value	for me is	therefore	equivalent	to	adding	an	identification	restriction	on	the	parameters

of	the	augmented	model; in	that	case	the	MCMC converges	properly	and θ′ is	well	identified	for	any

givenme. Our	strategy	is	therefore	to	select	various	values	forme and	to	estimate θ′ on	the	data	used

in	Section 5 together	with	the	times	series	of	the	aforementioned	index.

Table 11: Estimating	both σξ and ϱ

Estimated Variance	Contribution

Parameters of	Confidence	Shock

k me ϱ σξ σ2ξ/σ
2
a Y C I N

Flexible-Price	Model

0 0.25 0.70 0.64 0.99 54.26 54.45 50.29 84.56

0.50 0.72 0.57 0.78 54.41 52.35 52.01 85.19

4 0.25 0.70 0.43 0.40 45.80 24.40 47.79 84.01

0.50 0.70 0.45 0.44 46.26 29.53 49.25 84.78

20 0.25 0.79 0.44 0.41 58.09 46.31 61.04 85.33

0.50 0.77 0.45 0.47 55.60 44.49 58.58 84.75

Sticky-Price	Model

0 0.25 0.60 0.58 0.27 12.37 13.52 10.04 21.69

0.50 0.72 0.36 0.32 53.99 50.74 51.06 71.50

4 0.25 0.69 0.36 0.30 45.15 41.93 39.87 64.26

0.50 0.72 0.36 0.30 46.12 43.28 43.05 67.51

20 0.25 0.65 0.38 0.33 50.80 39.60 46.87 70.36

0.50 0.69 0.38 0.33 49.45 41.89 46.34 69.84

The	results	from	the	“augmented”	estimation	are	reported	in	Table 11. Let	us	focus	on	the	flexible-

price	model	and	consider	two	values	for me, the	share	of	the	measurement	error, and	three	values

for k, the	horizon	of	the	expectations	that	show	up	in	condition	(40). For	each k and me (first	two

columns), the	table	reports	the	estimated	values	for ϱ and σξ (next	two	columns), the	ratio	of	the	esti-

mated σξ to	the	estimated σa (fifth	column), and	the	estimated	contributions	of	the	confidence	shock

to	the	business-cycle	volatilities	of	output, consumption, investment	and	hours	(last	four	columns).

The	findings	suggest	a	value	of ϱ in	the	neighborhood	of 0.75, which	in	turn	motivates	the	value	used

in	Section 5. Furthermore, the	estimated σξ is	smaller	than	the	estimated σa, allowing	for	a	narrow

interpretation	of	the	confidence	shock. Finally, the	estimated	contribution	of	the	confidence	shock	to

the	business	cycle	is	of	the	same	magnitude	as	the	one	estimated	in	Section 5. There	are, however,

two	notable	differences: the	confidence	shock	now	explains	a	larger	share	of	the	volatility	in	hours

and	a	smaller	in	consumption.

We	find	the	results	of	this	exercise	useful	even	if	they	do	not	constitute	proof	that ϱ and σξ lie	in

those	ranges.
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O.5 Log-Linear	Solution

In	this	appendix	we	explain	how	to	augment	a	large	class	of	DSGE models	with	our	proposed	type

of	higher-order	belief	dynamics	and	how	to	obtain	the	solution	of	the	augmented	model	as	a	simple

transformation	of	the	solution	of	the	original	model.

A Prelude. Before	considering	the	general	case	it	is	instructive	to	review	the	linearized	version	of

our	baseline	model.

The	log-linearized	equilibrium	conditions	of	the	model	are	given	by	(7)-(11)	in	Section 3 and	have

a	familiar	interpretation. The	only	novelty	is	the	presence	of	two	distinct	expectation	operators Eit and
E′
it, which	denote	local	expectations	in	stage	1	and	stage	2	of	period t respectively. The	difference

between	these	two	expectation	operators	derives	from	the	fact	that	islands	form	beliefs	about	one

another’s	signals	and	thereby	about Yt in	stage	1	on	the	basis	of	their	mis-specified	priors, but	observe

the	true	state	of	nature	and	the	true	realized Yt in	stage	2. Under	the	supply	first	timing	protocol,

the	first	expectation	shows	up	in	the	optimality	condition	for	labor, while	the	second	shows	up	in	the

optimality	condition	for	consumption/saving.

The	following	points	are	worth	emphasizing. The	aggregate-level	variables	are, of	course, ob-

tained	from	averaging	the	individual-level	variables	across	all	islands. In	equilibrium, the realized

values	of	the	aggregate	variables	coincide	with	the	realized	values	of	the	corresponding	individual

variables; e.g., yit = Yt for	all i, all t, and	all	realizations	of	uncertainty. This	is	because	all	islands

receive	the	same	signals	and	the	same	fundamentals. However, this	does	not	mean	that	one	can	just

replace	the	island-specific	variables	in	the	above	conditions	with	the	aggregate	ones, or	vice	versa.

Even	though	the	“objective	truth”	is	that	all	islands	receive	the	same	signals, in	stage	1	of	each	period

each	island	believes	that	the	signals	of	other	islands	can	differ	from	its	own	signal. Accordingly, each

island	reasons	that yit can	differ	form Yt, even	when	all	other	islands	follow	the	same	strategy	as	itself

and	receive	the	same	TFP shock.

Keeping	track	of	this	delicate	difference	between	the	realizations	and	the	beliefs	of	different	vari-

ables	is	key	to	obtaining	the	solution	to	the	model. Our	method	deals	with	this	delicate	matter	by

(i)	using	appropriate	notation	to	distinguish	the	signal	received	by	each	agent/island	from	either	the

average	signal	in	the	population	or	the	true	underlying	shock	to	fundamentals; and	(ii)	choosing	ap-

propriate	state	spaces	for	both	the	individual	policy	rules	and	the	aggregate	ones.

In	what	 follows, we	first	 set	up	 the	general	class	of	 log-linear	DSGE models	 that	our	 solution

method	handles. We	next	introduce	a	class	of	linear	policy	rules, which	describe	the	behavior	of	each

agent	as	a	function	of	his	information	set. Assuming	that	all	other	islands	follow	such	a	policy	rules,

we	can	use	the	equilibrium	conditions	of	the	model	to	obtain	the	policy	rules	that	are	optimal	for	the

individual	island; that	is, we	can	characterize	the	best	responses	of	the	model. Since	the	policy	rules

are	linear, they	are	parameterized	by	a	collection	of	coefficients	(matrices), and	the	aforementioned

best	responses	reduce	to	a	system	of	equations	in	these	coefficients. The	solution	to	this	system	gives

the	equilibrium	of	the	model.
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A “generic”	DSGE model. We	henceforth	consider	an	economy	whose	equilibrium	is	represented

by	the	following	linear	dynamic	system:

Myyyit =Myxx
b
it +MyXX

b
t +MyY EitYt +MyfEitxfit +MyFEitXf

t +Myszit

Mxx0x
b
it+1 =Mxx1x

b
it +MxX1X

b
t +Mxy1yit +MxY 1Yt +Mxf1x

f
it +MxF1X

f
t +Mxs1st

Mff0E′
itx

f
it+1 =MfF0E′

itX
f
t+1 +Mff1x

f
it +MfF1X

f
t +Mfx0x

b
it+1 +Mfx1x

b
it +MfX1X

b
t

+Mfy0E′
ityit+1 +MfY 0E′

itYt+1 +Mfy1yit +MfY 1Yt +Mfs0E′
itst+1 +Mfs1st

st = Rst−1 + εt

ξt = Qξt−1 + νt

This	system	is	a	generalization	of	the	one	we	obtained	in	our	baseline	RBCmodel. Here, xb, xf , y, s,

and ξ are	allowed	to	be	vectors; xb collects	backward-looking	variables	(such	as	capital	in	our	model);

xf collects	forward-looking	variables	that	are	chosen	in	stage	2	of	each	period	(such	as	consumption

and	investment	 in	our	model); y collects	 the	variables	 that	are	 instead	chosen	in	stage	1	(such	as

employment	in	our	model); s collects	the	shocks	to	payoff	(such	as	technology); and	finally ξ is	meant

to	capture	the	shocks	to	higher-order	beliefs. Xb, Xf and Y correspond	to	the	aggregate	versions	of,

respectively, xb, xf and y.

Beliefs. We	assume	that, as	of	stage	2, the	realizations	of st, of	all	 the	signals, and	of	all	 the

stage-1	choices	become	commonly	known, which	 implies	 that yit, x
f
it, x

b
it+1 and Yt, X

f
t , X

b
t+1 are

also	commonly	known	 in	equilibrium). Furthermore, the	actual	 realizations	of	 the	 signals	 satisfy

zit = st for	all t and	all i. However, the	agents	have	misspecified	belief	in	stage	1. In	particular, for

all i, all j ̸= i, all t, and	all	states	of	nature, agent i’s	belief	during	stage	1	satisfy

Eit[st] = zit,

Eit[Ejtst] = Eit[zjt] = zit +∆ξt,

where zit is	the	signal	received	by	agent i, ξt is	the	higher-order	belief	shocks, and ∆ is	a	loading

matrix. We	next	 let z̄t denote	the	average	signal	 in	the	economy	and	note	that	 the	“truth”	is	 that

zit = z̄t = st. Yet, this	truth	is	publicly	revealed	only	in	stage	2	of	period t. In	stage	1, instead, each

island	believes, incorrectly, that

Eitz̄t = zit +∆ξt.

Note	next	that	the	stage-1	variables, yit, can	depend	on	the	local	signal zit, along	with	the	commonly-

observed	belief	shock ξt and	the	backward-looking	(predetermined)	state	variables xbit and X
b
t , but

cannot	depend	on	either	 the	aggregate	signal z̄t or	 the	underlying	 fundamental st, because	 these

variables	are	not	known	in	stage	1. By	contrast, the	stage-2	decisions	depend	on	the	entire	triplet

(zit, z̄t, st). As	 already	mentioned, the	 truth	 is	 that	 these	 three	 variables	 coincide. Nevertheless,

the	islands	believe	in	stage	1	that	the	average	signal	can	differ	from	either	their	own	signal	or	the

actual	fundamental. Accordingly, it	is	important	to	write	stage-2	strategies	as	functions	of	the	three

conceptually	distinct	objects	in (zit, z̄t, st) in	order	to	do	specify	the	appropriate	equilibrium	beliefs
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in	stage-1. (Note	that	this	is	equivalent	to	expressing	the	stage-2	strategies	as	functions	of	the	realized

values	of	the	stage-1	variables y and Y , which	is	the	approach	we	took	in	the	characterization	of	the

recursive	equilibrium	in	Section 3.) In	what	follows, we	show	how	this	belief	structure	facilitates	a

tractable	solution	of	the	aforementioned	general	DSGE model.

Preview	of	key	result. To	preview	the	key	result, let	us	first	consider	the	underlying	“belief-free”

model, that	is, of	the	complete-information, representative-agent, counterpart	of	the	model	we	are

studying. The	equilibrium	system	is	given	by	the	following:

Yt =MXX
b
t +MEY Yt +MFX

f
t +Msst

Xb
t+1 = NXX

b
t +NY Yt +NFX

f
t +Nsst

(Pf0 − PF0)EtXf
t+1 = PF1X

f
t + PY 0EtYt+1 + PXX

b
t + PY 1Yt + Psst

st = Rst−1 + εt

ξt = Qξt−1 + νt

(This	system	can	be	obtained	from	the	one	we	introduced	before	once	we	impose	the	restriction	that

all	period-t variables	are	commonly	known	in	period t, which	means	 that E′
it[xt] = Eit[xt] = xt

for	any	variable x.) It	is	well	known	how	to	obtain	the	policy	rules	of	such	a	representative-agent

model. Our	goal	in	this	appendix	is	to	show	how	the	policy	rules	of	the	belief-augmented	model	that

we	described	above	can	be	obtained	as	a	simple, tractable	transformation	of	the	policy	rules	of	the

representative-agent	benchmark.

In	particular, we	will	show	that	the	policy	rules	for	our	general	DSGE economy	are	as	follows:

Xt = ΘXX
b
t +Θsst +Θξξt,

where Xt = (Yt, X
f
t , X

b
t+1) collects	all	the	variables, ΘX and Θs are	the	same	matrices	as	those	that

appear	in	the	solution	of	the	underlying	belief-free	model, andΘξ is	a	new	matrix, which	encapsulates

the	effects	of	higher-order	beliefs.

The	model, restated. To	ease	 subsequent	 algebraic	manipulations, we	henceforth	 restate	 the

model	as	follows:

yit =Mx(x
b
it −Xb

t ) +MXX
b
t +MEY EitYt +MfEit(xfit −Xf

t ) +MFEitXf
t +Mszit (41)

xbit+1 = Nx(x
b
it −Xb

t ) +NXX
b
t +Ny(yit − Yt) +NY Yt +Nf (x

f
it −Xf

t ) +NFX
f
t +Nsst (42)

Pf0E′
itx

f
it+1 = Pf1(x

f
it −Xf

t ) + PF0E′
itX

f
t+1 + PF1X

f
t + Px(x

b
it −Xb

t ) + PXX
b
t+

+ Py0(E′
ityit+1 − E′

itYt+1) + PY 0E′
itYt+1 + Py1(yit − Yt) + PY 1Yt + Psst (43)

where

Mx =M−1
yy Myx, MX =M−1

yy (Myx +MyX), MEY =M−1
yy MyY ,

Mf =M−1
yy Myf , MF =M−1

yy (Myf +MyF ), Ms =M−1
yy Mys

Nx =M−1
xx0Mxx1, NX =M−1

xx0(Mxx1 +MxX1), Ny =M−1
xx0Mxy1, NY =M−1

xx0(Mxy1 +MxY 1),

Nf =M−1
xx0Mxf1, NF =M−1

xx0(Mxf1 +MxF1), Ns =M−1
xx0Mxs1
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Pf0 =Mff0, Pf1 =Mff1 +Mfx0Nf , PF0 =MfF0, PF1 =MfF1 +Mff1 +Mfx0NF

Px =Mfx1 +Mfx0Nx, PX =MfX1 +Mfx1 +Mfx0NX ,

Py0 =Mfy0, PY 0 =MfY 0 +Mfy0, Py1 =Mfy1 +Mfx0Ny, PY =Mfy1 +MfY 1 +Mfx0NY ,

Ps =Mfs0R+Mfs1 +Mfx0Ns

Proposed	Policy	Rules. We	propose	that	the	equilibrium	policy	rules	take	the	following	form:

yit = Λx(x
b
it −Xb

t ) + ΛXX
b
t + Λzzit + Λξξt (44)

xfit = Γx(x
b
it −Xb

t ) + ΓXX
b
t + Γzzit + Γz̄ z̄t + Γsst + Γξξt (45)

where	the Λ’s	and Γ’s	are	coefficients	(matrices), whose	equilibrium	values	are	to	be	obtained	in	the

sequel. Following	our	earlier	discussion, note	that	the	stage-2	policy	rules	are	allowed	to	depend	on

the	triplet (zit, z̄t, st), while	the	stage-1	policy	rules	are	restricted	to	depend	only	on	the	local	signal

zit. It	is	also	useful	to	note	that	we	would	obtain	the	same	solution	if	we	were	to	represent	the	stage-2

policy	rules	as	functions	of yit and Yt in	place	of, respectively, zit and z̄t: the	latter	two	variables

enter	the	equilibrium	conditions	that	determine	the	stage-2	decisions, namely	conditions	(42)	and

(43), only through	the	realized	values	of	the	stage-1	outcomes yit and Yt.

Obtaining	the	solution. We	obtain	the	solution	in	three	steps. In	step	1, we	start	by	characterizing

the	equilibrium	determination	of	the	stage-1	policy	rules, taking	as	given	the	stage-2	rules. Formally,

we	fix	 an	 arbitrary	 rule	 in	 (45); we	 assume	 that	 all	 islands	 believe	 that	 the	 stage-2	 variables	 are

determined	according	 to	 this	 rule; and	we	then	look	for	 the	particular	 rule	 in	 (44)	 that	solves	 the

fixed-point	relation	between yit and Yt described	in	(41)	under	this	assumption. This	step, which

we	can	think	of	as	the	“static”	component	of	the	equilibrium, gives	as	a	mapping	from Γ matrices

to	the Λ matrices. In	step	2, we	obtain	a	converse	mapping	by	characterize	the	policy	rules	for	the

forward-looking	variables	that	solve	conditions	(42)	and	(43)	under	the	assumption	that	the	stage-1

outcomes	are	determined	according	to	an	arbitrary	rule	in	(45). We	can	think	of	this	step	as	solving

for	the	“dynamic”	component	of	the	equilibrium. In	step	3, we	use	the	fixed-point	between	these	two

mappings	to	obtain	the	overall	solution	to	the	model.

Step	1. As	noted	above, we	start	by	studying	the	equilibrium	determination	of	the	stage-1	policy

rules, taking	as	given	the	stage-2	policy	rules.

Thus	suppose	that	all	islands	follow	a	policy	rule	as	in	(45)	and	consider	the	beliefs	that	a	given

island i forms, under	this	assumption, about	the	stage-2	variables xfit and X
f
t . From	(45), we	have

xfit = Γx(x
b
it −Xb

t ) + ΓXX
b
t + Γzzit + Γz̄ z̄t + Γsst + Γξξt

Xf
t = ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt

Along	with	the	fact	that Eit[st] = zit and Eit[z̄t] = zit +∆ξt, the	above	gives

Eitxfit = Γx(x
b
it −Xb

t ) + ΓXX
b
t + (Γz + Γz̄ + Γs)zit + (Γξ + Γz̄∆)ξt

EitXf
t = ΓXX

b
t + (Γz + Γz̄ + Γs)zit + (Γξ + (Γz + Γz̄)∆) ξt
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which	also	implies	that

xfit −Xf
t = Γx(x

b
it −Xb

t ) + Γz(zit − z̄t)

Eit(xfit −Xf
t ) = Γx(x

b
it −Xb

t )− Γz∆ξt

Plugging	the	above	in	(41), the	equilibrium	equation	for yit, we	get

yit = Mx(x
b
it −Xb

t ) +MXX
b
t +MEY EitYt +MfEit(xfit −Xf

t ) +MFEitXf
t +Mszit

= Mx(x
b
it −Xb

t ) +MXX
b
t +MEY EitYt +Mf

[
Γx(x

b
it −Xb

t )− Γz∆ξt

]
+MF

[
ΓXX

b
t + (Γz + Γz̄ + Γs)zit + (Γξ + (Γz + Γz̄)∆)ξt

]
+Mszit

Equivalently,

yit = (Mx +MfΓx)(x
b
it −Xb

t ) + (MX +MFΓX)X
b
t +MEY EitYt (46)

+ (Ms +MF (Γz + Γz̄ + Γs))zit + (MFΓξ +MFΓz̄∆+ (MF −Mf )Γz∆) ξt

Note	 that	 the	 above	 represents	 a static fixed-point	 relation	between yit and Yt. This	 relation

is	 itself	determined	by	the Γ matrices	 (i.e., by	 the	presumed	policy	rule	 for	 the	stage-2	variables).

Notwithstanding	this	fact, we	now	focus	on	the	solution	of	this	static	fixed	point.

Thus	suppose	that	this	solution	takes	the	form	of	a	policy	rule	as	in	(44). If	all	other	island	follow

this	rule, then	at	the	aggregate	we	have

Yt = ΛXX
b
t + Λz z̄t + Λξξt

and	therefore	the	stage-1	forecast	of	island i about Yt is	given	by

EitYt = ΛXX
b
t + Λzzit + (Λξ + Λz∆)ξt

Plugging	this	into	(46), we	obtain	the	following	best	response	for	island i:

yit =(Mx +MfΓx)(x
b
it −Xb

t ) + (MX +MFΓX)X
b
t +MEY

(
ΛXX

b
t + Λzzit + (Λξ + Λz∆)ξt

)
+ (Ms +MF (Γz + Γz̄ + Γs))zit + (MF (Γξ + Γz̄∆) + (MF −Mf )Γz∆) ξt

For	this	to	be	consistent	with	our	guess	in	(44), we	must	have

Λx =Mx +MfΓx (47)

ΛX = (I −MEY )
−1(MX +MFΓX) (48)

Λz = (I −MEY )
−1 [Ms +MF (Γz + Γz̄ + Γs)] (49)

Λξ = (I −MEY )
−1 {MF (Γξ + Γz̄∆) + (MF −Mf )Γz∆+MEY Λz∆} (50)

This	completes	the	first	step	of	our	solution	strategy: we	have	characterized	the	“static”	component

of	the	equilibrium	and	have	thus	obtained	the Λ coefficients	as	functions	of	primitives	and	of	the Γ

coefficients.
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Step	2. We	now	proceed	with	the	second	step, which	is	to	characterize	the	equilibrium	behavior

in	stage	2, taking	as	given	the	behavior	in	stage	1.

Recall	that, once	agents	enter	stage	2, they	observe	the	true	current	values	of	the	triplet (zit, z̄t, st)

along	with	the	realized	values	of	the	past	stage-1	outcomes, yit and Yt. Furthermore, in	equilibrium

this	implies	common	certainly	of	current	choices, namely	of	the	variables xfit and X
f
t , and	thereby

also	of	 the	variables xbit+1 and Xb
t+1. Nevertheless, agents	 face	uncertainty	about	 the	next-period

realizations	of	the	aforementioned	triplet	and	of	the	corresponding	endogenous	variables. In	what

follows, we	thus	take	special	care	in	characterizing	the	beliefs	that	agents	form	about	the	relevant

future	outcomes.

Consider	first	an	agent’s	beliefs	about	the	aggregate	next-period	stage-1	variables:

Yt+1 = ΛXX
b
t+1 + Λz z̄t+1 + Λξξt+1

Eit+1Yt+1 = ΛXX
b
t+1 + Λzzit+1 + (Λξ + Λz∆)ξt+1

E′
itYt+1 = ΛXX

b
t+1 + ΛzRst + (Λξ + Λz∆)Qξt

Consider	next	his	beliefs	about	his	own	next-period	stage-1	variables:

yit+1 = Λx(x
b
it+1 −Xb

t+1) + ΛXX
b
t+1 + Λzzit+1 + Λξξt+1

E′
ityit+1 = Λx(x

b
it+1 −Xb

t+1) + ΛXX
b
t+1 + ΛzRst + ΛξQξt

It	follows	that

E′
it(yit+1 − Yt+1) = Λx(x

b
it+1 −Xb

t+1)− Λz∆Qξt

Consider	now	his	beliefs	about	his	own	next-period	forward	variables:

xfit+1 = Γx(x
b
it+1 −Xb

t+1) + ΓXX
b
t+1 + Γzzit+1 + Γz̄ z̄t+1 + Γsst+1 + Γξξt+1

Eit+1x
f
it+1 = Γx(x

b
it+1 −Xb

t+1) + ΓXX
b
t+1 + (Γz + Γz̄ + Γs)zit+1 + (Γξ + Γz̄∆)ξt+1

E′
itx

f
it+1 = Γx(x

b
it+1 −Xb

t+1) + ΓXX
b
t+1 + (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄∆)Qξt

For	the	aggregate	next-period	forward	variables	we	have

Eit+1X
f
t+1 = ΓXX

b
t+1 + (Γz + Γz̄ + Γs)zit+1 + (Γξ + (Γz + Γz̄)∆)ξt+1

E′
itX

f
t+1 = ΓXX

b
t+1 + (Γz + Γz̄ + Γs)Rst + (Γξ + (Γz + Γz̄)∆)Qξt

and	therefore

E′
it(x

f
it+1 −Xf

t+1) = Γx(x
b
it+1 −Xb

t+1)− Γz∆Qξt

Next, note	that	our	guesses	for	the	policy	rules	imply	the	following	properties	for	the	current-period

variables:

yit − Yt = Λx(x
b
it −Xb

t ) + Λz(zit − z̄t)

xfit −Xf
t = Γx(x

b
it −Xb

t ) + Γz(zit − z̄t)

Yt = ΛXX
b
t + Λz z̄t + Λξξt

Xf
t = ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt
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Plugging	these	results	in	the	law	of	motion	of	backward	variables, we	get

xbit+1 = Nx(x
b
it −Xb

t ) +NXX
b
t +Ny(yit − Yt) +NY Yt +Nf (x

f
it −Xf

t ) +NFX
f
t +Nsst

= Nx(x
b
it −Xb

t ) +NXX
b
t +Ny

{
Λx(x

b
it −Xb

t ) + Λz(zit − z̄t)
}
+NY

{
ΛXX

b
t + Λz z̄t + Λξξt

}
+Nf

{
Γx(x

b
it −Xb

t ) + Γz(zit − z̄t)
}
+NF

{
ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt

}
+Nsst

Equivalently,

xbit+1 = Ωx(x
b
it −Xb

t ) + ΩXX
b
t +Ωzzit +Ωz̄ z̄ +Ωsst +Ωξξt

and	hence

Xb
t+1 = ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt

xbit+1 −Xb
t+1 = Ωx(x

b
it −Xb

t ) + Ωz(zit − z̄t)

where

Ωx = Nx +NyΛx +NfΓx Ωz = NyΛz +NfΓz

ΩX = NX +NY ΛX +NFΓX Ωz̄ = (NY −Ny)Λz + (NF −Nf )Γz +NFΓz̄

Ωs = Ns +NFΓs Ωξ = NY Λξ +NFΓξ

It	follows	that

E′
itx

f
it+1 = Γx(x

b
it+1 −Xb

t+1) + ΓXX
b
t+1 + (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄∆)Qξt

= Γx

{
Ωx(x

b
it −Xb

t ) + Ωz(zit − z̄t)
}
+ ΓX

{
ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt

}
+ (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄∆)Qξt

or	equivalently

E′
itx

f
it+1 = Φx(x

b
it −Xb

t ) + ΦXX
b
t +Φzzit +Φz̄ z̄t +Φsst +Φξξt (51)

where

Φx = ΓxΩx Φz = ΓxΩz Φs = ΓXΩs + (Γz + Γz̄ + Γs)R

ΦX = ΓXΩX Φz̄ = (ΓX − Γx)Ωz + ΓXΩz̄ Φξ = ΓXΩξ + (Γξ + Γz̄∆)Q

Similarly, the	expectation	of	the	corresponding	aggregate	variable	is	given	by

E′
itX

f
t+1 = ΦXX

b
t +Φzzit +Φzzt +Φsst + (Φξ + Γz∆Q)ξt (52)

With	the	above	steps, we	have	calculated	all	the	objects	that	enter	the	Euler	condition	(43). We

can	thus	proceed	to	characterize	the	fixed-point	relation	that	pins	down	the	solution	for	the	stage-2

policy	rule.

To	ease	the	exposition, let	us	repeat	the	Euler	condition	(43)	below:

Pf0E′
itx

f
it+1 = Pf1(x

f
it −Xf

t ) + PF0E′
itX

f
t+1 + PF1X

f
t + Px(x

b
it −Xb

t ) + PXX
b
t+

+ Py0(E′
ityit+1 − E′

itYt+1) + PY 0E′
itYt+1 + Py1(yit − Yt) + PY 1Yt + Psst
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Use	now	(51)	to	write	the	left-hand-side	of	the	Euler	condition	as

Pf0E′
itx

f
it+1 = Pf0

{
Φx(x

b
it −Xb

t ) + ΦXX
b
t +Φzzit +Φz̄ z̄t +Φsst +Φξξt

}
Next, use	our	preceding	results	to	replace	all	the	expectations	that	show	up	in	the	right-hand-side	of

the	Euler	condition, as	well	as	the	stage-1	outcomes. This	gives

Pf0E′
itx

f
it+1 = Pf1

{
Γx(x

b
it −Xb

t ) + Γz(zit − z̄t)
}
+

+ PF0

{
ΦXX

b
t + (Φz +Φz̄)z̄t +Φsst + (Φξ + Γz∆Q)ξt

}
+ PF1

{
ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt

}
+ Px

{
xbit −Xb

t

}
+ PXX

b
t + Py0

{
Λx

(
Ωx(x

b
it −Xb

t ) + Ωz(zit − z̄t)
)
− Λz∆Qξt

}
+ PY 0

{
ΛX

(
ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt

)
+ ΛzRst + (Λξ + Λz∆)Qξt

}
+ Py1

{
Λx(x

b
it −Xb

t ) + Λz(zit − z̄t)
}
+ PY 1

{
ΛXX

b
t + Λz z̄t + Λξξt

}
+ Psst

For	our	guess	to	be	correct, the	above	two	expressions	must	coincide	in	all	states	of	nature, and	the

following	must	therefore	be	true:

Pf0Φx = Px + Pf1Γx + Py0ΛxΩx + Py1Λx (53)

(Pf0 − PF0)ΦX = PF1ΓX + PX + PY 0ΛXΩX + PY 1ΛX (54)

Pf0Φz = Pf1Γz + Py0ΛxΩz + Py1Λz (55)

(Pf0 − PF0)Φz̄ = PF0Φz + (PF1 − Pf1)Γz + PF1Γz̄ + PY 0ΛX(Ωz +Ωz̄)

− Py0ΛxΩz + (PY 1 − Py1)Λz (56)

(Pf0 − PF0)Φs = PF1Γs + PY 0(ΛXΩs + ΛzR) + Ps (57)

(Pf0 − PF0)Φξ = PF0Γz∆Q+ PF1Γξ + PY 0 {ΛXΩξ + ΛξQ}+ (PY 0 − Py0)Λz∆Q+ PY 1Λξ (58)

Recall	that	the Φ and Ω matrices	are	themselves	transformations	of	the Γ and Λ matrices. Therefore,

the	above	system	is	effectively	a	system	of	equations	in Γ and Λ matrices. This	completes	Step	2.

Step	3. Steps	1	and	2	 resulted	 in	 two	systems	of	equations	 in	 the Λ and Γ matrices, namely

system	(47)-(50)	and	system	(53)-(58). We	now	look	at	the	joint	solution	of	these	two	systems, which

completes	our	guess-and-verify	strategy	and	gives	the	sought-after	equilibrium	policy	rules.

First, let	as	write	the	solution	of	the	underlying	representative-agent	model	as

Yt = Λ∗
XX

b
t + Λ∗

sst and Xf
t = Γ∗

XX
b
t + Γ∗

sst

It	is	straightforward	to	check	that	the	solution	to	the	beliefs-augmentend	model	satisfies	the	following:

ΛX = Λ∗
X , Λz = Λ∗

s, ΓX = Γ∗
X , and Γz + Γz̄ + Γs = Γ∗

s.

That	is, the	solution	for	the	matrices ΛX , Λz, and ΓX , and	for	the	sum Γ̄s ≡ Γz +Γz̄ +Γs, can	readily

be	obtained	from	the	solution	of	the	underlying	representative-agent	model.
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With	 the	sum Γ̄s ≡ Γz + Γz̄ + Γs determined	as	above, we	can	next	obtain	each	of	 its	 three

components	as	follows. First, Γs can	be	obtained	from	(57):

(Pf0 − PF0)Φs = PF1Γs + PY 0(ΛXΩs + ΛzR) + Ps

Plugging	the	definition	of Φs and Ωs in	the	above, we	have

−{((PF0 − Pf0)ΓX + PY 0ΛX)NF + PF1}︸ ︷︷ ︸
AS

Γs = Ps + PY 0(ΛzR+ ΛXNs) + (PF0 − Pf0)(Γ̄sR+ ΓXNs)︸ ︷︷ ︸
BS

and	therefore Γs = A−1
S BS . Next, Γz can	be	obtained	from	(55). Plugging	the	definition	of Φz and

Ωz in	this	condition, we	have

((Pf0Γx − Py0Λx)Nf − Pf1)︸ ︷︷ ︸
AZ

Γz = Py1Λz − (Pf0Γx − Py0Λx)NyΛz︸ ︷︷ ︸
BZ

and	therefore Γz = A−1
Z BZ . Finally, we	obtain Γz̄ simply	from	the	fact	that Γz̄ = Γ̄s − Γz − Γs.

Consider	now	the	matrices Λx and Γx. These	are	readily	obtained	from	(47)	and	(53)	once	we

replace	the	already-obtained	results. It	is	also	straightforward	to	check	that	these	matrices	correspond

to	the	solution	of	the	version	of	the	model	that	shuts	down	all	kinds	of	uncertainty	but	allows	for

heterogeneity	in	the	backward-looking	state	variables	(“wealth”).

To	complete	our	solution, what	remains	is	to	determine	the	matrices Γξ and Λξ. These	matrices

solve	conditions	(50)	and	(58), which	we	repeat	below:

Λξ = (I −MEY )
−1 {MF (Γξ + Γz̄∆) + (MF −Mf )Γz∆+MEY Λz∆}

(Pf0 − PF0)Φξ = PF0Γz∆Q+ PF1Γξ + PY 0 {ΛXΩξ + ΛξQ}+ (PY 0 − Py0)Λz∆Q+ PY 1Λξ

Let	us	use	the	first	condition	to	substitute	away Λξ from	the	second, and	then	the	facts	that

Ωξ = NY Λξ +NFΓξ

Φξ = ΓX(NY Λξ +NFΓξ) + (Γξ + Γz̄∆)Q

to	substitute	away	also Ωξ and Φξ. We	then	obtain	a	single	equation	in Γξ, namely

BΓξ +AΓξQ+ C = 0

where

A ≡(PF0 − Pf0) + PY 0(I −MEY )
−1MF

B ≡((PF0 − Pf0)ΓXNY + PY 0ΛXNY + PY 1)(I −MEY )
−1MF + (PF0 − Pf0)ΓXNF + PF1 + PY 0ΛXNF

C ≡
(
PF0Γz∆Q+ (PY 0 − Py0)Λz + (PF0 − Pf0)Γz̄ + PY 0(I −MEY )

−1 [MFΓz̄ + (MF −Mf )Γz +MEY Λz]
)
∆Q

+ ((PF0 − Pf0)ΓXNY + PY 0ΛXNY + PY 1) (I −MEY )
−1 [MFΓz̄ + (MF −Mf )Γz +MEY Λz]∆

Note	that A,B, and C are	determined	by	primitives, plus	some	of	the	coefficients	that	we	have	also

characterized. The	 above	 equation	 therefore	 gives	us	 the	unique	 solution	 for	 the	matrix Γξ as	 a

function	of	the	primitives	of	the	model. Λξ is	then	readily	obtained	from	(50). This	completes	the

solution.
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