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1 Introduction

The importance of cognitive and socio-emotional ability in explaining schooling attainment and

labor market outcomes has received considerable attention in the literature. Over the last decades,

multiple studies have shown that both dimensions positively affect the acquisition of skills and

education as well as labor market productivity as measured by wages. (See Cawley, Heckman and

Vytlacil, 2001; O’Neill, 1990; Neal and Johnson, 1996; Herrnstein and Murray, 1994; Bowles, Gintis

and Osborne, 2001; Farkas, 2003; Heckman, Stixrud and Urzua, 2006; Urzua, 2008, among others).

But ability is multidimensional in nature and thus, it is reasonable to expect that other dimen-

sions may also affect individual’s decisions and outcomes. In fact, economists have recognized that

this multidimensionality must be at the “center stage of the theoretical and empirical research on

child development, educational attainment and labor market careers” (Altonji, 2010). Following

this idea, recent studies in economics, psychology, and other social sciences have explored different

components of socio-emotional ability, generally in the form of personality traits (Borghans et al.,

2008; Heckman and Kautz, 2013), but the exploration of other facets had received less consider-

ation, especially those that might be related to cognition. Furthermore, there is no theoretical

reason to expect that all dimensions affect outcomes in the same direction.

This paper investigates a dimension of ability that has been overlooked by economists when

analyzing schooling decisions and adult outcomes. This dimension is related to motor skills, visual

motor integration, and potentially, to manual dexterity. We label it “mechanical ability”.1

To analyze the empirical importance of mechanical ability, jointly with the conventional dimen-

sions, we implement a Roy model of self-selection into college and counter factual adult wages with

unobserved heterogeneity. This framework is similar to the setup analyzed in Carneiro, Hansen

and Heckman (2003) and Heckman, Stixrud and Urzua (2006), so we follow their identification

strategy. In particular, we augment our Roy model with a set of test scores (measurement system)

from which we identify the distribution of a three-dimensional vector of latent abilities: cognitive,

socio-emotional and mechanical. The analysis is carried out using data from the National Longi-

tudinal Study of Youth of 1979 (NLSY79) and we identify mechanical ability from a subset of the

1Other papers have studied the importance of aspects connected to the idea of “mechanical ability”, and their
association with labor market outcomes (see for example Hartog and Sluis, 2010; Yamaguchi, 2012; Boehm, 2013,
among others). However, unlike this paper, the literature does not simultaneously analyze multiple abilities, schooling
decisions and labor market outcomes.
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Armed Services Vocational Aptitude Battery (ASVAB).

This paper contributes to the literature by documenting that mechanical ability matters. We

show that it affects schooling decisions and labor market outcomes differently than other, more

conventional dimensions. In particular, we show that mechanical, like socio-emotional and other

cognitive dimensions, has positive returns on wages, but in contrast to them, it predicts the choice

of low levels of schooling. Specifically, it reduces the probability of attending four-year college. In

this context, we expand the set of abilities that explain differences in human capital and wages in

the population.2

In addition, our study provides insight into the schooling choices and labor market outcomes

of individuals conventionally classified as low-ability, but who might be endowed with a high level

of mechanical ability. We present evidence that for them, after obtaining a high school degree,

not attending four-year college implies a higher expected hourly wage compared to the alternative

of doing so. This has important implications for public policies promoting general enrollment in

four-year colleges.

The document also presents an alternative use of the ASVAB that has been historically used by

the military to determine qualification for enlistment in the United States armed forces. Despite its

popularity, the literature has investigated only a subset of these questions, the battery of tests used

to calculate the Armed Forces Qualification Test (AFQT) score, which is commonly interpreted as

a proxy for cognition. This paper highlights the importance of using the technical composites of

the ASVAB to capture another facet of ability.

The paper has six sections. Section 2 describes mechanical ability and discusses the tests used to

identify it. Section 3 describes the data used, explores the relation between mechanical ability test

and other more conventional tests, and finally presents reduced-form estimates of the implied effect

of mechanical ability tests on schooling choices and wages, conditional on observed measures of the

cognitive and the socio-emotional dimensions. Section 4 contains the details of our augmented Roy

model and the estimation strategy. Section 5 presents the main results. Section 6 concludes.

2Conceptually, mechanical ability might well be another dimension of ability or a different dimension of cognitive
ability. The conceptual definition goes beyond the purpose of this paper but we decided to use a model of three
abilities to highlight the differential effect of mechanical ability on choices and outcomes.
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2 Beyond Conventional Taxonomy: Mechanical Ability

A large proportion of the literature on the effect of ability on schooling, labor market outcomes,

and social behaviors has concentrated on cognitive skills: brain-based skills that are related to the

mechanisms behind learning, remembering, problem-solving, and paying attention. In recent years,

this literature has successfully incorporated socio-emotional abilities (e.g., persistence, grit, self-

control, self-esteem) into the analysis. For example, Heckman, Stixrud and Urzua (2006) presents

strong evidence of the importance of personality traits in explaining economic outcomes and a range

of social behaviors. The same traits had already been linked to economic behavior by sociologists

and psychologists (see, e.g. Bowles and Gintis, 1976; Edwards, 1976; Jencks, Christopher, 1979;

Wolfe and Johnson, 1995, among many others).

However, there might be other potential dimensions of ability determining, for example, human

capital accumulation and labor market productivity. Indeed, common sense suggests that motor,

manual dexterity, or even physical abilities may give an advantage to individuals in the labor

market, specially if they are employed in certain occupations. We study a dimension of ability

related to these aspects and label it mechanical ability. We borrow the name from the set of ability

measures (test scores) available in our data, although we recognize that previous work has used a

similar terminology.

But beyond the label, defining mechanical ability is a complex task. In fact, the term mechani-

cal ability has never been rigidly and unambiguously defined, although it has been an expression for

the abilities required for creditable work with tools and machinery (Wittenborn, 1945). Cognitive

and vocational psychologists as well as neuroscientists have utilized concepts such as mechanical

aptitude, mechanical reasoning, and mechanical sense to describe this dimension.3 Nevertheless,

two distinctive components emerge from the multiple definitions of mechanical ability. The first

component, commonly named mechanical reasoning, is related to the ability to perceive and under-

stand the movement or function of a mechanism either from interacting with it or by observing the

mechanism. The second component is related to the ability to describe a mechanism that when,

given some specified input, will produce a desired output (Blauvelt, 2006).

On the empirical side of this literature, the rising of the field of industrial psychology has

3See Blauvelt (2006) for a detailed literature review.
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fueled the interest in identifying the underlying traits leading to success in specific careers and

occupations.4

On the other hand, the recent research on cognitive analysis, conducted by cognitive psychol-

ogists, has focused on understanding how people reason mechanical devices and concepts. More

specifically, this research has provided insights into how the brain acquires, processes, and uses

information about mechanisms and machines.5 This explains why most of the literature seeking to

define mechanical ability focuses on the identification of rules used by the individuals to accomplish

these tasks and to account for individual differences in performance.6 The main abilities identified

by these types of studies relate directly to visual-motor integration and the visuospatial reasoning

factors of spatial perception and spatial visualization (Hegarty, Just and Morrison, 1988; Carpenter

and Just, 1989; Hegarty, 1992).7

In economics, the few attempts trying to understand the role of mechanical abilities have exam-

ined its predictability power over schooling and labor market outcomes. Willis and Rosen (1979)

included mechanical scores and manual dexterity test in their study of the decision of going to

college, obtaining that these dimensions reduce the probability of pursuing a college degree. Our

results are consistent with this unexplored finding, although they are not fully comparable given the

differences in sources of information and empirical approaches between the two papers. Yamaguchi

(2012) on the other hand, computes a measure of motor skills in his analysis of occupational choices

throughout the life cycle. He finds that motor skills explains a large fraction of the observed wage

variance and also a large fraction of wage growth but only for high school dropouts. In addition,

4Studies from vocational psychologists emerged early in the twentieth century (Stenquist, 1923; Cox, 1928; Pater-
son et al., 1930). In particular, Cox (1928) and Paterson et al. (1930) were interested in finding a special mechanical
intelligence which was separate from and complementary to Spearman’s general intelligence quotient (Spearman,
1923).

5Most of the research from cognitive psychologists was produced during the 1980’s (Hegarty, Just and Morrison,
1988; Hegarty, 1992; Carpenter and Just, 1989; Heiser and Tversky, 2002, to name a few). Studies from neuroscientist
concentrate on more specific abilities such as spatial visualization, spatial orientation, visual-motor integration, motor
abilities and the like.

6And in consequence to investigate the processes that distinguish people who score high or low in psychometric
tests of mechanical ability.

7The degree to which these abilities can be classified as cognitive is relative and it strongly depends on the theory
of intelligence accepted. Some studies classify mechanical ability tests in the same category of other cognitive or
intelligence test (Carroll, 1993), while other studies recognize the presence of two separate components: one highly
correlated with cognition (spatial visualization and perception) and the other more related to motor abilities such
as dexterity, movement, steadiness and psychomotor abilities (Wittenborn, 1945) and others. While the specific
classification of mechanical ability is beyond the scope of this paper, the interest of the paper is to highlight this
dimension of ability, that might well be a dimension of cognitive ability but different from the ability measured by
conventional cognitive tests such as the ASVAB, and present its particular behavior in predicting outcomes.
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Hartog and Sluis (2010), Boehm (2013), and Prada (2014) use a measure of mechanical ability sim-

ilar to the one analyzed here to study the characteristics of entrepreneurs, the sorting into middle

skill occupations affected by polarization, and early occupational choices, respectively.

The line of research started by Autor, Levy and Murnane (2003) has influenced this research.

In particular, the literature on task and skill content of jobs has provided a theoretical foundation

for the analysis of the heterogeneity of worker’s talent and the relationship with the variety of tasks

required in the labor market. Mechanical ability can loosely be related with the type of skill needed

to perform manual work that is intensively carried out by middle-education occupations (Prada,

2014).

By analyzing the role of mechanical, cognitive and socio-emotional ability in the context of a

schooling decision model with counter factual adult wages, we continue and extend the previous

literature.

ASVAB: Technical Composites. The Armed Services Vocational Aptitude Battery (ASVAB)

is a general test measuring knowledge and skills in the following areas: arithmetic reasoning, word

knowledge, paragraph comprehension, mathematics knowledge, numerical operations, coding speed,

general science, auto and shop information, electronics information, and mechanical comprehen-

sion.8

The literature has extensively analyzed the ASVAB, but typically focusing on the computation

of the Armed Forces Qualification Test (AFQT). This construct is used by the military services to

determine basic qualification for enlistment, and its test score has been widely used as a measure

of cognitive skills in economics (see, e.g. Cameron and Heckman, 1998, 2001; Ellwood and Kane,

2000; Heckman, 1995; Neal and Johnson, 1996; Heckman and Kautz, 2013, among many others).

To measure mechanical ability we use the following three sections of the ASVAB, commonly

referred as the Technical Composites: the mechanical comprehension, auto and shop information,

and electronics information sections. These sections are not used to compute the AFQT; instead,

they are designed exclusively to compute the Military Occupational Specialty (MOS) scores.9

The questions from the mechanical comprehension section are intended to capture the ability to

8The ASVAB is administered by the United States Military Entrance Processing Command and it has been used
since 1976 to determine qualification for enlistment in the United States Armed Forces.

9The scores on these sections are used by the military to determine aptitude and eligibility for training in specific
career fields within the military. Military career areas that require high scores on these three sections of the ASVAB
include combat operations, general maintenance, mechanical maintenance, and surveillance and communications.
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solve simple mechanics problems and understand basic mechanical principles. The set of questions

deal with pictures built around basic machinery such as pulleys, levers, gears, and wedges and

ask to visualize how the objects would work together. People who understand mechanical devices

can infer the principles of operation of an unfamiliar device from their knowledge of the device’s

components and their mechanical interactions (Carpenter and Just, 1989).

Moreover, these questions also cover topics such as how to measure the mass of an object,

identify simple machines, and define words such as velocity, momentum, acceleration, and force.

Some questions ask about the load carried by people or by support structures such as beams or

bridges. For example, after showing a diagram with support structures, the question typically asks

which one is the strongest or the weakest, or which support in the diagram is bearing the lesser or

greater part of the load.

The questions from the other two sections are similar to the mechanical section in that they

require the ability to understand how objects work, but in the context of automotive and shop

practices and electronics.

The automotive and shop information section measures technical knowledge, skills, and aptitude

for automotive maintenance and repair and also for wood and metal shop practices, requiting an

understanding of how the combination of several components work together to perform a specific

function. The test covers topics commonly included in most high school auto and shop courses, such

as automotive components, types of automotive and shop tools, procedures for troubleshooting and

repair, properties of building materials, and building and construction procedures.

The electronics information section requires additional knowledge of the principles of electronics

and electricity. For example, knowledge of electric current, circuits, how electronic systems works,

electrical devices, tools, symbols, and materials is tested. As for the automotive and shop informa-

tion section, these topics are commonly covered in high school science classes. As we discuss below,

this represents a concern for our identification strategy, since it could potentially generate reverse

causality between human capital accumulation and abilities. We follow Hansen, Heckman and

Mullen (2004) and deal with this potential source of bias by restricting our analysis to the youngest

cohort of individuals in the sample as well as by controlling for the highest grade attended by the

time of the test. We describe this strategy in Section 5.

The technical composites of the ASVAB have been proven to measure abilities and skills im-
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portant to predict membership, training success, satisfaction, and job performance in the following

career fields within the military: combat operations, general maintenance, mechanical mainte-

nance, and surveillance and communications (Welsh, Kucinkas and Curran, 1990; Wise et al.,

1992). Furthermore, according to Bishop (1988), the universe of skills and knowledge sampled by

the mechanical comprehension, auto and shop information, and electronics subtests of the ASVAB

roughly corresponds to the vocational fields of technical, trades and industry measured in occu-

pational competency tests.10 Thus, the Technical Composites of the ASVAB should be viewed

as measures of knowledge, trainability, and generic competence for a broad family of civilian jobs

involving the operation, maintenance, and repair of complicated machinery and other technically

oriented jobs (Bishop, 1988).

Although the questions answered by the respondents of the NLSY79 are not available, in Figure

1 we present sample questions obtained from the mechanical comprehension section. The two other

sections are similar but they include topic specific terms and devices.11

[Figure 1 about here.]

3 Data and Exploratory Analysis

This section presents a description of our source of information, a discussion of the measure of

mechanical ability in comparison with conventional measures of ability, and the reduced-form es-

timates of the effect of mechanical ability tests on schooling choices and wages, conditional on

standard tests of cognitive and socio-emotional ability.

The insights from the descriptive analysis are used in two ways. First, to document that

mechanical ability is correlated with schooling decisions differently than standard measures of

ability. Second, to motivate the use of a model to capture the effect of mechanical ability overcoming

the main problems associated with the reduced-form estimates.

10Notable examples of occupation specific competency examinations are those developed by the National Occu-
pational Competency Testing Institute and by the states of Ohio and New York to assess the performance of their
high school vocational student. See Bishop (1988) for more detail.

11We present a list of sample questions for the three sections in Section 1 in the Web Appendix.
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3.1 Data

The National Longitudinal Survey of Youth (NLSY79) is a panel data set of 12,686 individuals

born between 1957 and 1964.12 This survey is designed to represent the population of youth aged

14 to 21 as of December 31 of 1978, and residing in the United States on January 1, 1979. It

consists of both a nationally representative cross-section sample and a set of supplemental samples

designed to oversample civilian blacks, civilian Hispanics, economically disadvantaged Non-Black/

Non-Hispanic youths, and individuals in the military. Data is collected in an annual basis from

1979 to 1994 and biannually until present day.

We use the cross-section sample of white males between the ages of 25 and 30 who were not

attending school at the time of the survey. We chose to analyze white males in order to have a

benchmark to compare our results with previous studies (Willis and Rosen, 1979; Heckman and

Sedlacek, 1985; Keane and Wolpin, 1997; Gould, 2002; Cunha and Heckman, 2007, etc). Addition-

ally, we want to abstract from influences that operate differently on various demographic groups.

The age selection responds to the interest of analyzing entry level wages abstracting from the cu-

mulative effects of ability on experience and tenure. By the age of 25, more than 97 percent of the

sample has reached their maximum level of education. Moreover, the five-year window is useful to

get a smooth average of the first part of the wage profile of the individuals.

We restrict the sample further to concentrate on individuals meeting the minimum entrance

requirements for a four-year college because that is the margin of interest in the paper. In conse-

quence, we do not include high school dropouts. As a result, our analysis is specific and cannot be

generalized to the whole population.

From the original sample of 12,686 individuals, 11,406 are civilian, 6,111 belong to the cross-

section sample. Nearly 49 percent of that sample are males (2,438 individuals), 1,999 had less

than high school complete by the time the ASVAB test was conducted (summer and fall of 1980),

out of them just 1,832 individuals are observed at least once between the ages of 25 and 30 and

finally, 1,710 were not attending school by the time the survey was conducted. The sample is

further reduced because we eliminate 244 observations corresponding to high school dropouts and

individuals with no information on schooling. The final sample contains 1,466 individuals. Table 1

122,439 white males, accounting for 21 percent of total surveyed individuals and 40 percent of the individuals in
the cross-sample.
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presents the description of the variables used.

[Table 1 about here.]

We analyze one schooling choice, 4 year college attendance. The variables used to determine

college attendance are the maximum degree attained by the age of 25 and the type of college

enrolled. The labor market outcome analyzed is the log of the average of the hourly wages reported

between 25 and 30 years old.

For the cognitive and mechanical measures we rely on the ASVAB that was conducted in the

summer and fall of 1980.13 These questions are used to compute the AFQT, a measure used by

the military services for enlistment screening and job assignment within the military. This test was

administrated to over 90 percent of the members of the NLSY panel (individuals were between 15

and 23 years old at the time of the test). The test is composed by a battery of 10 tests measuring

knowledge and skills in the following areas: arithmetic reasoning, word knowledge, paragraph

comprehension, numerical operations, coding speed, mathematics knowledge, general science, auto

and shop information, mechanical comprehension, and electronics information. The first 6 are used

as measures of cognitive ability while the last 3 are measures of mechanical ability.

Following the literature, we use two constructs to measure socio-emotional ability: the Rotter

Locus of Control Scale and the Rosenberg Self-Esteem Scale. The Rotter Locus of Control Scale

measures the degree of control individuals feel they possess over their life.14 In 1979 the NLSY

collected a total of four items selected from the 23-item forced choice questionnaire adapted from

the 60-item Rotter Adult I-E scale developed by Rotter (1966). As presented in the NLSY79

documentation; “This scale was designed to measure the extent to which individuals believe they

have control over their lives through self-motivation or self-determination (internal control) as

opposed to the extent that the environment (that is, chance, fate, luck) controls their lives (external

control). The scale is scored in the external direction-the higher the score, the more external the

individual”.15

The Rosenberg Self-Esteem Scale measures self-esteem, i.e., the degree of approval or disap-

13These questions are used to compute the AFQT that is used by the military services for enlistment screening
and job assignment within the military.

14These measures have been used in the literature as proxies of socio-emotional ability (Heckman, Stixrud and
Urzua, 2006).

15Extracted from http://www.nlsinfo.org/nlsy79/docs/79html/79text/attitude.htm.
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proval towards oneself (Rosenberg, 1965). The scale is short, widely used, and has accumulated

evidence of validity and reliability. It contains 10 statements of self-approval and disapproval with

which respondents are asked to strongly agree, agree, disagree, or strongly disagree. The scale has

proved highly internally consistent, with reliability coefficients that range from 0.87 (Menaghan,

1990) to 0.94 (Strocchia-Rivera, 1988), depending on the nature of the NLSY79 sample selected.16

3.2 Measurement of Mechanical Ability

In order to establish the relationship between our measure of mechanical ability and standard

measures of ability, we first show the correlation between all the different measures.

In particular, Table 2 shows the correlation matrix between the three technical composites of the

ASVAB (mechanical comprehension, auto and shop information and electronics information), four

tests used to compute AFQT (arithmetic reasoning, word knowledge, paragraph comprehension

and numerical operations), mathematics knowledge, coding speed, the computed AFQT, and a

composite measure of socio-emotional ability computed using Rosenberg Self-Esteem Scale and the

Rotter Internal Locus of Control Scale. The three technical composites of the ASVAB are highly

correlated with the scores in the questions used to compute AFQT, between 0.24 and 0.66, but

present a low correlation with a standard measure of socio-emotional ability, between 0.18 and 0.21.

[Table 2 about here.]

This is consistent with modern psychological theory which views ability as multidimensional

with dimensions that are positively correlated with each other (Dickens, 2008). The positive cor-

relation across abilities could be a manifestation of a general ability, sometimes referred to as the

“Spearman g” or g-factor Spearman (1904), or could be the result of overlap in the knowledge

required to answer the different tests.17

We also present the results from an Exploratory Factor Analysis (EFA) that confirms the

presence of one factor that is captured by the technical composites, but it is not captured by the

other tests. The results from the Exploratory Factor Analysis on nine subsections of the ASVAB

(the three technical composites, the four set of questions used to create the AFQT plus mathematics

16Ibid.
17More specifically, it could be explained by the fact that all the questions in the three technical composites of

the ASVAB require a certain degree of reading or verbal comprehension or that many of the problems require basic
mathematics skills.

11



knowledge and coding speed) confirm that at least two factors are needed to explain the correlation

among the scores in the nine questions.18

[Figure 2 about here.]

The results from the EFA suggest a structure where the first factor is important to linearly

reconstruct all questions but the second factor is only relevant for the three technical composites

of the ASVAB. All the loadings corresponding to the first factor are positive and statistically

significant, they range between 0.62 and 0.83. In contrast, the loadings for the second factor differ

between the questions used to compute the mechanical ability measure and the questions used to

compute AFQT. More specifically, for the three tests used to construct the mechanical measure

the loadings are high and statistically significant, they range between 0.31 and 0.48 but for the rest

of the tests, the loadings are close to zero.19 Figure 2 (Panel a) presents the original estimated

loadings for each factor, i.e., the estimated coefficients associated with each factor.

The suggested structure persists after several forms of rotation. In Figure 2 (panel b) we present

the loadings after a rotation that maximizes the variance of the squared loadings between variables

(simplicity within factors).20

In this context, the first factor is capturing all the common information that is expressed by the

high positive correlation among the tests and the second factor captures the additional component

that makes the three tests used to measure mechanical ability different from the AFQT. 21

We label the first factor, shared by all components of the ASVAB, as cognitive ability. This

factor affects the three technical composites of the ASVAB. This is expected as several of their

questions require a certain degree of reading or verbal comprehension and basic mathematics skills

associated with cognition. The second factor, which is only present for the technical composites,

can be interpreted as mechanical ability. The part of ability that is related to understanding how

18The factor analysis performed under the assumption of orthogonal factors that allows for some unique compo-
nents in the equation keeps the first four factors, because the default criteria is to keep all the factors with positive
eigenvalues. The eigenvalue for the first factor is 4.75 and 0.80, 0.22 and 0.17 for the next three factors. We focus only
on the first two factors because they account for all the shared variance. The first factor accounts for 84.8 percent of
the variance and the second factor for 14.9 percent the second factor.

19Numerical Operations is an exception because the loading for the second factor is highly negative (-0.38). The
magnitude of the loading is critical because any factor loading with an absolute value of 0.30 or greater is considered
significant (Diekhoff, 1992; Sheskin, 2004, among others).

20Rotation is important because of the indeterminacy of the factor solution in the exploratory factor analysis.
21Other studies have found the presence of two components when analyzing separate components of the ASVAB.

See Welsh, Kucinkas and Curran (1990) for a review of several factor analysis studies.
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things work but it is not captured by the AFQT. We incorporate these ideas in our empirical model.

See section 4 for more details.

3.3 Sorting into College

As previously discussed, the set of scores can be used to create a composite measure for each type of

ability. For cognitive ability this measure is constructed using the average of the standardized scores

for arithmetic reasoning, mathematical knowledge, paragraph comprehension, word knowledge,

numerical operations, and coding speed. Mechanical ability measurement is constructed as the

average of the standardized scores in mechanical comprehension, electronics information, and auto

and shop information. Finally, for socio-emotional ability the measure is created as the standardized

sum of the average of Rotter and Rosenberg scores.22

We use these composite measures to document the sorting into college. In particular, we analyze

the association between each of these observed measures and the probability of attending four-year

college after graduating from high school (or after obtaining a GED). Figure 3 shows the cumulative

distribution function (cdf) of each measure of ability by schooling choice -attending four-year college

or not. Panel (a) corresponds to the cognitive measure, panel (b) depicts the case for the socio-

emotional measure and panel (c) corresponds to the mechanical measure. For all three measures

of ability, the cdf for people with high education stochastically dominates the cumulative density

function curve for people with low schooling. As a consequence, people that score higher in these

measures of ability tend to sort into high levels of education.

This result is not surprising but in the next section we show that when we control for all three

measures, mechanical ability implies a different pattern.

[Figure 3 about here.]

To further analyze the effect of the observed tests on schooling choices we estimate probit

models for the probability of attending four-year college. All regressions include a set of family

background controls, cohort dummies and dummies for region and urban location. Table 3 presents

the marginal effects evaluated at the mean (MEM).

22We use the four-item abbreviated version of the Rotter Internal-External Locus of Control Scale and the 10-item
Rosenberg Self-Esteem Scale. We take the average of each measure before adding them because they measure two
different socio-emocional traits.
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Column (1) displays the results controlling for cognitive and socio-emotional measures while

column (2) presents the results controlling for mechanical and socio-emotional measures. The

unconditional effect of the mechanical test on college attainment is positive as it is the effect of

cognitive ability, but the magnitude is smaller. Cognitive and mechanical tests show a similar

pattern in terms of the positive impact on schooling attainment but the effect of AFQT is more

than four times the effect of the measure of mechanical ability. This result is expected given the

sorting implied by the distribution of each measure of ability (scores in the tests) as presented in

figure 3.

Column (3) displays the results controlling for the three measures of ability simultaneously. In

this case, the effect of the mechanical test on educational attainment is reversed. In particular, a one

standard deviation increase on the mechanical test decreases the probability of attending a four-year

college in 6.23 percentage points (keeping cognitive and socio-emotional measures constant). The

same increase on the cognitive test increases college attendance by 20.6 percentage points. These

effects are large considering that in the sample the probability of attending college is 32 percent.

The impact of socio-emotional ability on four-year college attendance is positive but non-significant.

[Table 3 about here.]

3.4 Reduced-form Results: Hourly Wages

To estimate the association between wages and measures of skills we estimate the following Mincer-

type regression:

lnwi = α+Xiβx + βcCogi + βsSoci + βmMeci + ui

Where wi corresponds to hourly wages, Xi basic individual characteristics including schooling,

Cog, Soc and Mec are the observed measures of cognitive, socio-emotional and mechanical skills

and ui the error term.

Table 4 presents the results. The “return” to the mechanical composite is positive and high,

even when compared to the return to AFQT. In particular, after controlling for education, one unit

increase in the mechanical test is associated with a 0.0358 increase in the log hourly wages. The

effect is similar to the effect of our socio-emotional composite test score, although less precise. The
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effect of the cognitive test on wages more than doubles this value.

[Table 4 about here.]

The reduced-form results show that mechanical abilities are rewarded by the labor market and,

opposed to standard measures of ability, reduces the probability of attending four-year college.

However, those regressions are problematic because: 1) schooling choices are endogenous and that

must be controlled for to estimate the returns to ability and 2) test scores are just proxies of abilities

and they are influenced by schooling at the time of the test, age and family background variables,

among other variables. The next section presents the model proposed to measure more accurately

the effect of mechanical ability.

4 Augmented Roy Model with Factor Structure

The model presented here deals with two of the main problems that arise when computing the

effect of abilities on wages: the endogeneity of schooling choices and the fact that test scores are

just proxies for abilities.

The strategy pursued in this paper is based on a model that integrates schooling decisions and

wages. The model proposed follows and extends the models presented in Heckman, Stixrud and

Urzua (2006), Urzua (2008) and Heckman et al. (2014) where a vector of low dimensional factors

is used to generate the distribution of potential outcomes. In the spirit of this literature, we model

cognitive and socio-emotional abilities, to which we add mechanical. Furthermore, we allow me-

chanical and cognitive abilities to be correlated. These latent abilities produce measured cognitive,

socio-emotional, and mechanical scores and the rest of the outcomes analyzed. Conditioning on

observables, these factors account for all of the dependence across choices and outcomes.

The theoretical model is static and does not consider the exact timing of the decisions. As

a result, the schooling choice model is evaluated when individual is 25 years old. Agents choose

their maximum level of schooling before the age 25 given the information they have at the time.

We assume that latent abilities are unobserved by the econometrician but the individual has full

information about his/her abilities, as well as knowledge of how they affect the potential earnings

in each education level. The agent compares the net benefits across each feasible choice and chooses

the alternative that yields the highest payoff.
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We present each of the components of the model in a separate subsection. The model estimated

considers one schooling choice (attending a four-year college or not), two potential outcomes for

hourly wages, and three dimensions of ability (three latent factors). The factor are identified from

the distribution of the scores in six cognitive tests, three tests on mechanical ability, and two tests

on socio-emotional abilities.

4.1 Model of Schooling Choice and Wages

The latent utility of getting education is given by:

Di = 1[Ii > 0]

Where D denotes a binary variable that takes the value of 1 if the individual chooses to attend a

four-year college and 0 otherwise.23 And,

Ii = Xiβ + θiλ
′

D + ei for i = 1, ...N (1)

where Xi is a matrix of observed variables that affect schooling, β is the vector of coefficients.

θi = [θc,i, θm,i, θs,i] is the vector of latent abilities where subscript c is used to denote cognitive

ability, m mechanical ability and s socio-emotional ability. λD = [λc
D, λ

m
D , λs

D] are the vectors of

returns to these abilities, these coefficients are referred in the literature as the factor loadings. ei

is the error component that is assumed to be independent of Xi and θi.

Conditional on Xi and θi the equations produce a standard discrete choice model with a factor

structure. Furthermore, given the set of assumptions exposed, this can be interpreted as the

standard probit model.

Analogously, the model of earnings can be expressed as a linear function of Xw,i and θ in the

following way:

lnwD,i = Xw,iβw,D + θiλ
′

w,D + ew,D,i (2)

for D = {0, 1}, where λw,D = [λc
w,D, λ

m
w,D, λ

s
w,D] and ew,D,i is the error term assumed to be

orthogonal to Xi and θi.

23Through all the paper we use the indicator function 1[]. This function takes a value of one if the condition inside
the parentheses is satisfied.
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4.2 Test Scores as a Measurement System and Latent Factors

To deal with the fact that ability is latent rather than observed by using test scores as an auxiliary

measurement system to identify cognitive, socio-emotional and mechanical ability.24

The empirical strategy relies on the assumption of a linear relation between the latent ability

and the observed variables. We treat observed cognitive, socio-emotional, and mechanical test

scores as the outcomes of a process that has as inputs unobserved abilities and individual observ-

able characteristics such as family background, schooling at the time of the test, among others.

Motivated by the findings of the Exploratory Factor Analysis performed in Section 3, the model

allows each cognitive and socio-emotional test scores to be a function of the corresponding latent

ability. For the mechanical tests we allow them to be a function of both cognitive and mechanical

latent factors.

In this context, the model for the cognitive measure Cj is:

Cj,i = XCj ,iβCj
+ λc

Cj
θc,i + eCj ,i (3)

for j = {1, ..., 6}. The model for the mechanical measure Mk is:

Mk,i = XMk,iβMk
+ λc

Mk
θc,i + λm

Mk
θm,i + eMk,i (4)

for k = {1, ..., 3}. And the model for the socio-emotional measure Sl is:

Sl,i = XSl,iβSl
+ λs

Sl
θs,i + eSl,i (5)

for l = {1, 2}.

In addition, all error terms {ei, ew,D,i, eC1,i, ..., eC6,i, eM1,i, ..., eM3,i, eS1,i, eS2,i} for D = {0, 1} are

mutually independent, independent of the factors and independent of all observable characteristics.

This independence is essential to the model since it implies that all the correlation in observed

choices and measurements is captured by latent unobserved factors (ability).

24More precisely, we follow use the measurement system jointly with data on educational choices to non-
parametrically identify the parameters of the distribution of the latent factors and then we draw from these dis-
tributions the realizations of the latent factors used in the model. Appendix 1 describes in detail the identification
of the model that follows Carneiro, Hansen and Heckman (2003) and Hansen, Heckman and Mullen (2004).
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Latent Factors. Latent factors, θi, are assumed to be known by the individual but unknown

to the researcher. The levels of latent factors may be the result of a combination of inherited

ability, the quality of the family environment in which individuals were raised, cultural differences,

among other dimensions. In the context of our model, they are assumed to be fixed by the time

the individual is choosing whether or not to enroll in a four-year college.

We assume that cognitive and socio-emotional factors are independent. This assumption has

been used in the literature (Heckman, Stixrud and Urzua, 2006) and table 2 provides its empirical

justification. The correlations between cognitive and socio-emotional test scores are small, and they

reduce even more once family background characteristics are controlled for (results available upon

requests from the authors). The correlations between technical composites and socio-emotional

measure are even smaller. Consequently, we also assume that mechanical and socio-emotional

factors are independent. On the other hand, given their conceptual and empirical associations, we

allow cognitive and mechanical ability to be correlated.

4.3 Estimation Strategy

Let Ti = [C1i, ..., C6,i,M1i, ...,M3,i, S1i, S2,i] be the vector of test scores for individual i, XT,i =

[XC,i, XM,i, XS,i] and θ = [θc, θm, θs] the vector of the latent factors and δ the vector of all the

parameters of the model.

In addition to the independence assumptions on the error terms, we assume that the error terms

are normally distributed. Specifically, we assume ei ∼ N(0, 1), ew,D,i ∼ N(0, σ2
w,D) for D = {0, 1},

eCj ,i ∼ N(0, σ2
Cj
) for j = 1, ..., 6, eMl,i ∼ N(0, σ2

Mk
) for k = 1, ..., 3, eSl,i ∼ N(0, σ2

Sl
) for l = 1, 2.

For latent factors (abilities) we use mixtures of normal distributions. These provide enough

flexibility, imposing a minimum number of restrictions on the underlying distributions of [θc, θm, θs]

(Ferguson, 1983). In particular, we use mixtures of two-normal distributions and assume E[θc] =

E[θm] = E[θs] = 0. Appendix 1 presents a detailed description of the empirical and identification

strategies.

Our likelihood function is:

L(X|δ0) =

N
∏

i=1

f(Di, lnwD,i, Ti|Xi, Xw,i, XT,i; δ0)
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where δ0 denotes the vector of parameters. Given that conditional on unobserved abilities all the

error terms are mutually independent, and denoting by Fθ(·) the joint distribution of θ ∈ Θ, our

likelihood can also be expressed as:

L(X|δ0, δ1) =

N
∏

i=1

∫

τ∈Θ

f(Di, lnwD,i, Ti|Xi, Xw,i, XT,i, τ ; δ0)dFθ(τ ; δ1)

where δ1 denotes the vector of parameters defining the factors’ distribution. The model is estimated

using MCMC techniques. The use of Bayesian methods in this paper is merely computational to

avoid the computation of a high order integral. In consequence, the interest is primarily on the

mean of the posterior distribution. Thus, it is viewed from a classical perspective and interpreted

as an estimator that has the same asymptotic sampling distribution as the maximum likelihood

estimator (Gourieroux and Monfort, 1995). Our statistical inference uses the Bernstein-von Mises

Theorem, which establishes that the variance of the posterior is the asymptotic variances of the

estimates. See Hansen, Heckman and Mullen (2004), and Heckman, Stixrud and Urzua (2006) and

Appendix 2 for more details.

5 Main Results

5.1 Test Scores vs. Latent Abilities

Table 5 presents the estimated coefficients from Equations 3 to 5.25 The table with the full set

of results is presented in the Web Appendix (Section 3). For identification purposes, one loading

for each unobserved ability is set to one. The remaining loadings are interpreted in relation to the

loading set as the numeraire (for details see Carneiro, Hansen and Heckman, 2003, and Appendix 1).

The selected numeraires are mathematics knowledge, mechanical comprehension and the Rosenberg

self-esteem scale for cognitive, mechanical and socio-emotional abilities, respectively.

[Table 5 about here.]

To analyze the relative importance of each dimension of ability in explaining test scores, Figure 4

presents the variance decomposition of the measurement system. The results show the contribution

25We present evidence on the goodness of fit of the model in Appendix 3. Also, we demonstrate that our proposed
three-factor model does a better job predicting log wages than a two-factor model that does not include the mechanical
factor.
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of observed variables, latent abilities and error terms as determinants of the variance of each test

score.

The variance decomposition confirms the critical role of latent ability. they explain between 11%

and 80% of the overall variance depending on the test score. On the other hand, the contribution of

observed variables to the variance of the test scores is never more than 20 percent. Notice that we

allow both cognitive and mechanical abilities to influence mechanical test scores. While cognitive

ability has lower loadings compared to mechanical ability (see Table 5), both abilities are important

determinants of the variance in the observed scores.26

[Figure 4 about here.]

5.2 Distribution of Abilities

Observed test scores and unobserved abilities differ in many dimensions. We use the estimated

parameters for the distribution of each ability to estimate the distribution of cognitive, socio-

emotional, and mechanical abilities. Table 6 displays the mean and the standard deviation of the

simulated distribution for each ability.

[Table 6 about here.]

We use these results to show that the distribution of abilities and the distribution of test scores

are not the same. For mechanical ability, these differences have profound implications in terms of

the implied sorting into schooling.

Figure 5 presents the marginal cumulative distribution functions of the latent factor by school-

ing level. For cognitive (in panel (a)) and socio-emotional ability (in panel (b)) the cumulative

distribution of the ability for people that attended college stochastically dominates the cumulative

distribution for those who did not (see Figure 5). Although the distributions between observed and

latent abilities are different, the sorting into schooling is similar. In particular, for both observed

test scores and unobserved abilities, the distribution from more educated people with high educa-

tion first-order stochastically dominates those from people with low schooling (see Figures 5 and

3).

26In a model where mechanical test scores are explained by observed variables and only the cognitive factor, the
fraction of the variance explained reduces to between a third and two thirds, depending on the test, compared with
the model in which both factors are used as explanatory variables.
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However, for mechanical ability the relationship is reversed. The distribution of the estimated

factor implies that people with high levels of mechanical ability choose low levels of education.

The marginal cumulative distribution function of the latent ability for more educated individuals is

first-order stochastically dominated by distribution obtained from those who did not attend college

(see Figure 5 panel (c)). As a consequence, for mechanical ability, the sorting to schooling implied

by the estimated factor and the observed test scores is different.27

[Figure 5 about here.]

5.3 Effect of Abilities on Schooling Choice

Figures 6 to 11 present the main results of the model. Figures 6 and 7 present the joint distributions

of the probability of attending a four-year college by deciles of cognitive and mechanical and by

the deciles of socio-emotional and mechanical, respectively.

In the first case, the opposite effects of the abilities are evident, although the positive effect of

cognitive is always stronger. In order to understand the underlying magnitude in these figures we

compare the effect of moving individuals across deciles of both cognitive and mechanical ability

on the probability of going to college. Given that cognitive has a positive effect and mechanical

a negative effect this exercise shows which effect prevails. Starting at the lowest extreme of both

distributions (first decile of both cognitive and mechanical) and moving to the next decile of the

distributions of both cognitive and mechanical abilities the estimated probability of going to college

always increases.

In fact, the estimated probability of attending four-year college for an individual at the bottom of

the distribution of both cognitive and mechanical ability is 11.3 percent, that probability increases to

30.8 percent for an individual with cognitive and mechanical abilities in the median of the respective

distribution and it increases to 51.2 percent for individuals at the top of both distributions.28

A similar exercise on the distributions of socio-emotional and mechanical shows a very flat slope.

This is a consequence of the correlation of mechanical and cognitive ability and the opposite effects

27The sorting implied by the estimated factor explains why after controlling for the three scores in the reduced-
form estimations, the coefficient of the composite mechanical test in the probit of college attendance changed its sign
(see Section 3).

28The estimated probabilities for all the combinations between the first, fifth and tenth deciles cognitive and
mechanical ability are presented in the Web Appendix (Section 3).
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of mechanical and socio-emotional ability (see Figure 7). Moving someone from the bottom to the

top of both distributions changes the probability of attending four-year college from 29.6 percent

to 39.7 percent.29

The marginal effect of cognitive ability integrating out the effect of mechanical is presented in

panel (a) of Figure 8, while panels (b) and (c) present analogous results for socio-emotional and

mechanical ability, respectively.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

Finally, Table 7 presents the effect on college attendance associated with a one standard devia-

tion increase in each of the factors. According to the estimates, a one standard deviation increase

in cognitive ability is associated with an increase of 22.9 percentage points in the probability of

attending four-year college. The same increase in socio-emotional ability is associated with a 2.4

increase in the probability, while one standard deviation increase in mechanical ability decreases

the probability in 9.5 percentage points.30

[Table 7 about here.]

5.4 Effect of Abilities on Hourly Wages

Figures 9 and 10 present the average (log) wages by deciles of cognitive and mechanical ability and

by deciles of socio-emotional and mechanical ability, respectively. Importantly, the overall effect

of ability on wages includes the direct effect on log wages holding schooling constant, the effect of

ability on the decision to attend college and the implied effect of attending college or not on log

wages. This overall effect is positive for all three dimensions of ability.

29The Web Appendix (Section 3) contains a Table with the estimated probabilities for the first, fifth and tenth
deciles of socio-emotional ability and for the first, fifth and tenth deciles of the distribution of mechanical ability.

30As a robustness check we compare our results from the results obtained using a subsample of males that have
not attended any elective course related to mechanical skills by the time of the tests according to their high school
transcript information. The results are qualitatively the same for the schooling decision and the measurement system.
However, we cannot compute labor market returns due to the small size of this very specific sample. Results are
available upon request.
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As in the case of Figures 6 and 7 we can analyze the overall impact of latent ability on (log)

hourly wages by examining the changes on averages across deciles. Moving someone from the

bottom to the top of the distribution in both cognitive and mechanical ability increases the average

(log) wage from 2.59 to 2.96 which implies more than a 40 percent increase in hourly wages. The

analogous exercise for mechanical and socio-emotional ability implies an increase in average on the

same order of magnitude.31

[Figure 9 about here.]

[Figure 10 about here.]

The marginal effect of mechanical ability is considerable small compared with the effect of

cognitive and socio-emotional ability (Figure 11).

[Figure 11 about here.]

In fact, a one standard deviation increase in cognitive ability is associated with 10.7 percent

increase in log hourly wages and 4.1 for socio-emotional ability while the average estimated effect

of mechanical is 1.4 percent. These results are presented in Table 8.

[Table 8 about here.]

The conclusions change when analyzing the returns to ability conditional on college attendance.

In the case of not attending a four-year college, the returns to cognitive and mechanical ability are

very close, 0.047 and 0.044, respectively. While in the case of attending college the returns to

cognitive ability is 0.108 compared to the -0.031 for mechanical ability.32 For socio-emotional

ability the difference in the returns is smaller although the returns are higher in the scenario of

college attendance.

31Tables with the estimated averages for the combination between the first, fifth and tenth deciles of the distribution
in each pair of dimensions of ability can be found in the Web Appendix.

32The negative return to mechanical ability for those attending four-year college might seem unconventional;
however, other authors have reported similar results when analyzing abilities related to mechanical dimensions. Willis
and Rosen (1979) find evidence of negative returns to manual dexterity. They utilize a specific sample of 3,611 high
ability male World War II veterans who applied for the Army Air Corps and then responded the NBER-Thorndike-
Hagen survey of 1968-71. The negative effect, although not significant, affects mainly college attendees which is
interpreted in the paper as supporting evidence for the comparative-advantage hypothesis. In addition, Yamaguchi
(2012) using the NLSY79 also finds a negative effect of ”motor ability” on wage growth only for individuals with
college education.

23



5.5 Implications

We now analyze the wage gains associated with four-year college attendance for individuals with

different ability profiles. In particular, we are interested in understanding the implications of having

low levels of cognitive and socio-emotional ability but high levels of mechanical ability.

Using the estimates from the model we compute the difference between the mean of (log) hourly

wages conditional on the schooling choice and the respective counterfactual wage, i.e. E[Y1−Y0|D =

0] and E[Y1 − Y0|D = 1].

Table 9 presents our results. On average, the mean of (log) hourly wages conditional on college

attendance is 0.102 higher than the respective counterfactual (i.e., the wage that would have been

received if the individual had decided not attending to college). In contrast, conditioning on not

attending college the average of (log) hourly wages is 0.038 lower than the average of the counter-

factual wage. These results suggest that, on average, attending four-year college is associated with

higher wages even for individuals that, given their observable characteristics and latent abilities,

ended up deciding not to attend four-year college.

[Table 9 about here.]

However, these results are computed for the average and may not hold for all individuals, par-

ticularly given the special behavior implied by mechanical ability. With this in mind, we investigate

the gains of not attending college conditional on the decision of not attending, E[Y0 − Y1|D = 0],

for different ability profiles.

Table 10 presents the results using the quintiles of the distribution of ability to define specific

profiles. The columns of the table correspond to the bottom, middle and top quintiles of mechanical

ability. The rows present four extreme ability profiles defined as a combination of different levels

of cognitive and socio-emotional ability. The first row corresponds to the standard low ability

profile, which means an individual in the lowest quintile of both cognitive and socio-emotional;

the second row displays the low cognitive high socio-emotional profile (in the first quintile of the

distribution of cognitive ability and fifth quintile of the distribution of socio-emotional ability); the

third row presents the opposite case, i.e., high cognitive and low socio-emotional, and the fourth

row presents the standard high ability type (highest quintile of the distribution of both cognitive

and socio-emotional ability).
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Given the high return to college education most of the cells in the table are positive. But for

individuals in the highest quintile of mechanical ability, the conditional mean of hourly wages is

higher than the alternative average (log) hourly wage when cognitive ability is low. This result

holds for both low and high levels of socio-emotional ability. In consequence, for individuals with

high levels of mechanical ability and low levels of cognitive ability, not attending four-year college

is associated with the highest expected hourly wage.33

[Table 10 about here.]

Finally, we analyze the ability profile of the individuals who benefit from not attending four-

year college which accounts for 21.5 percent of the population.34 As expected, a large proportion

of them are individuals with high levels of mechanical ability. More specifically, we find that 65

percent of the individuals who benefit from not attending four-year college are individuals above

the median of the distribution of mechanical ability, which accounts for a 14 percent of the total

population. However, as Figure 12 shows the individuals who benefit from not attending four-year

college do not come disproportionately from the group of individuals with low levels of cognitive

and socio-emotional ability.

[Figure 12 about here.]

Although the absolute percentages are useful, it is important to take into account that the

fraction of the population in each specific profile varies. More specifically, the positive correlation

between mechanical and cognitive ability implies that the number of individuals with high levels of

both abilities is always higher that the number of individuals with low levels of one and high levels

of the other. For this reason it is useful to analyze the fraction of individuals in each specific profile

33According to the estimated distributions of abilities close to 3.5 percent of the population are low cognitive, low
socio-emotional and high mechanical ability.

34In this section we compare hourly wages of individuals early in their careers, between ages 25-30. As a result,
the statement on who benefits from not attending college only applies to hourly wages at this early stage. We also
calculate the model using the log of average annual earnings between ages 25-30 and the result holds. See Section 2
in the Web Appendix for details on this result. In addition, as a robustness check we calculate the log of the present
value at age 25 of annual earnings from 25 to 55 years old. The results are qualitatively similar and we find a larger
percent of the population for whom the present value of earnings associated with not attending four-college is higher
than the present value of earnings associated with attending four-year college. Results are available upon request.
It is important to note that the results obtained using annual earnings include various margins besides the returns
to different dimensions of ability such as the effect of ability on hours worked, differential periods of unemployment,
accumulation of experience among others. For that reason we concentrate on hourly wages at a relative early age
leaving the study of the other margins for future research.
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who benefits from not attending four-year college. At the aggregate we find that 28 percent of

the individuals with high mechanical ability and 15 percent of the individuals with low mechanical

ability would obtain a positive difference between the observed hourly wage and the counterfactual

wage conditional on the decision of not attending college.

Figure 13 presents the fraction of individuals who benefit from not going to college in eight

different ability profiles. These profiles are created by classifying individuals as high or low ability

depending on their relative position with respect to the median of the distribution of each of the

three dimensions of ability. The figure shows that 40 percent of the individuals with low cognitive,

low socio-emotional and high mechanical ability benefits from not attending four-year college. This

fraction decreases progressively for the individuals as we look at profiles with higher levels of ability.

But even among the individuals with the highest level of ability in all dimensions, we find a high

fraction, 21 percent, that benefits from not attending four-year college.

[Figure 13 about here.]

6 Conclusions

This paper investigates the role of mechanical ability in explaining schooling decisions and labor

market outcomes. We show that this dimension is positively rewarded by the labor market, but in

contrast to the more conventional facets of ability, it predicts the choice of lower levels of education.

In particular, controlling for cognitive and socio-emotional aspects, mechanical ability reduces the

likelihood of attending a four-year college. As a consequence, mechanical ability comes to enrich the

set of factors explaining the observed disparities in schooling decisions and labor market outcomes.

But we do more than simply expand the range of empirically relevant dimensions of abilities.

In fact, by including mechanical ability in the analysis we alter the dichotomous paradigm of low

and high ability individuals in the context of the previously accepted symmetry of the impact of

abilities on schooling decisions and labor market productivity.

Our results suggest a new framework where individuals with low levels of cognitive and socio-

emotional ability, may have high mechanical ability and greatly benefit from it. More precisely, we

find that despite the high return associated with college attendance, these individuals could expect

higher wages by choosing not to attend a four-year college, at least in an early stage in their careers.
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This conclusion is a direct result of the high returns to mechanical ability in jobs not requiring

a four-year college degree which contrast with the negative returns to mechanical ability in jobs

requiring it. Our results compare log hourly wages between the ages of 25 and 30 but they hold

when we compare log annual earnings in the same range of ages and also when using the present

value of the stream of annual earnings from 25 to 55 years old.

The results from our empirical model highlight the importance of moving beyond the “one-size-

fits-all” college discourse and explore alternative pathways to successful careers for individuals with

a different profile of skills. This message is particularly relevant in a nation where less than half of

the students attempting to get a bachelor’s degree actually get one and where completion rates are

below 20 percent for students who score low in standardized achievement tests during high school.35

Accepting the multidimensional nature of ability must be accompanied by the implementation of

inclusive human capital development strategies with more than one pathway to success.

As a final note, this article leaves some important areas for extensions and future research.

First, the analysis of wage growth and the comparison between initial versus late returns to skill.

There are many reasons to expect a lower wage gradient for skills in early career spans and the

current model does not account for that. Second, it would be useful to incorporate experience

and some specific connection between schooling and occupations. Third, it would be interesting to

extend the model to analyze gender and race disparities.

35NCES (2013) and Rosenbaum, Stephan and Rosenbaum (2010).
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Appendix

Appendix 1: Identification of the Model

Carneiro, Hansen and Heckman (2003), Hansen, Heckman and Mullen (2004) and Heckman, Stixrud

and Urzua (2006) provide the formal non-parametric identification arguments of models with similar

characteristics to the one used here. Consequently, in this section we discuss the main assumptions

securing the model’s identification and refer the interested readers to the aforementioned papers or

our web-appendix for further details.36

The distribution of cognitive ability. From the set of six cognitive measures, we normalize the

loading associated with mathematics knowledge to 1. This anchors the scale of the cognitive factor.

The main identification argument relies on Klotarski’s Theorem.

The distribution of socio-emotional ability. For the identification of the distribution of socio-

emotional ability we normalize the loading associated with Rosenberg Self-Esteem Scale to 1. This

anchors the scale of the cognitive factor. We rely on the orthogonality of θs with respect to (θc, θm)

to ensure the non-parametric identification of the distribution of θs.

The distribution of mechanical ability. Mechanical measures depend on both θc and θm, which

are allowed to be correlated. We generate this correlation imposing the following linear association

between θc and θm:

θm = α1θc + θ2

where θ2 is an additional factor, which is assumed to be independent of θc. Thus, we can rewrite

the equation for the k-th mechanical test score using two independent factors as follows:

Mk = λc
Mk

θc + λm
Mk

θm + eMk

= λc
Mk

θc + λm
Mk

(α1θc + θ2) + eMk

= akθc + λm
Mk

θ2 + eMk

where ak = λc
Mk

+ λm
Mk

α1. In practice, we use three mechanical test scores so k = 1, ..., 3.

In this context, the identification argument is straightforward. First, given that the variance of

36Cooley, Navarro and Takahashi (2011) present an alternative identification strategy for the case in which the
distributions of all factors are asymmetric.
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the cognitive factor and the factor loadings in the system of cognitive measures are already known,

from the covariance COV (Cj ,Mk) = λc
Cj
akσ

2
θc
, where Cj denotes the j-th cognitive test score, we

recover ak for any mechanical test score k. Second, following the aforementioned literature, we

normalize one of the factor loadings λm
Mk

to one. In particular, we impose this normalization in

the equation for the mechanical comprehension score, i.e. λm
M3

= 1 . This secures the identification

of the other factor loadings in the mechanical test score system. We can then apply Klotarski’s

Theorem to secure the non-parametric identification of the distributions of θ2 and eMk
, with k =

1, ..., 3. Finally, since the system of equations for (a1, a2, a3) contains four unknowns, we need to

impose a final normalization. Specifically, we normalize λc
M1

= 0, where M1 denotes the automotive

and shop information section of the ASVAB.37 This implies that the cognitive factor θc affects the

first mechanical test score only indirectly, through its correlation with the mechanical factor θm.

In other words, M1 is a dedicated measure of θm.

Our empirical model is implemented assuming that θc and θ2 are distributed as mixture of

normal distributions:

θs,i ∼
∑2

l=1
plN

(

µl
s,
(

σl
s

)2
)

θc,i ∼
∑2

k=1
pkN

(

µk
c ,
(

σk
c

)2
)

θ2,i ∼
∑2

j=1
pjN

(

µ
j
2,
(

σ
j
2

)2
)

and, consequently, the distribution of θm is the convolution of the densities of θc and θ2:

fθm(θm) =

∫ +∞

−∞

∫ θm−θc

−∞

f(θc, θ2)dθ2dθc.

Appendix 2: Statistical Inference

Let θ be the parameter of interest, in our case θ = (α, β, λ), f(θ) the density of θ, called the prior

distribution. Y = {y1,..,yN} is the sample of N independent observations, where f(yn|θ) is the

probability of outcome yn, and f(Y ) the marginal distribution of the data (marginal over θ). The

posterior distribution is denoted by f(θ|Y ) and the probability of observing the sample outcomes

37 We selected this measure because it has the lowest loading on the cognitive factor in the preliminary factor
analysis (see Figure 2) Our current results do not depend on this assumptions, results are qualitatively similar if we
select any section on the technical composites of the ASVAB (mechanical comprehension or electronics information).
Results are available upon request.
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Y is the likelihood function of the observed choices, L(Y |θ) =
∏N

i=1
f(yn|θ).

In this context, f(Y ) =
∫

L(Y |θ)f(θ)dθ. Using the Bayes’ rule we obtain:

f(θ|Y )f(Y ) = L(Y |θ)f(θ)

f(θ|Y ) ∝ L(Y |θ)f(θ)

The mean of the posterior distribution is:

θ̄ =

∫

θf(θ|Y )dθ (6)

Since, we rely on Bayesian methods only to ease the computational burden of the estimation,

we analyze θ̄ from a classical perspective, i.e., as an estimator that has the same asymptotic

sampling distribution as the maximum likelihood estimator.38 Therefore, we need to find the

sampling distribution of the statistic θ̄. Following the Bernstein-von Mises Theorem, the variance

of the posterior is the asymptotic variance of the estimates.39 In consequence, estimation can be

performed by using the moments of the posterior where the mean of the posterior provides a point

estimate and the standard deviation of the posterior provides the standard errors.

In this paper we use MCMC as a method to obtain draws from the posterior distribution. We

generate 1,000 draws from the posterior distribution of the parameters to compute the mean, which

we denote by θ̆, and the standard errors reported in the text. To calculate the standard errors of

functions of θ̆, we follow Gelman and Shirley (2011) and carry out simulation-based inference using

a collection of 1,000 simulations of the parameter vector, summarized by a mean and standard

deviation, and 95% interval using the empirical distribution of the simulations that have been

saved.

38From a bayesian perspective, the mean of the posterior distribution is the value that minimizes the posterior loss
in the quadratic loss case. As stated in Train (2003) is the value that minimizes the expected cost of the researcher
being wrong about the parameter, if the cost is quadratic in the size of the error.

39The Bernstein-von Mises Theorem establishes the properties of the sampling distribution of θ̄ in three statements:
1.

√
N(θ − θ̄) →d N(0, (−H)−1); 2.

√
N(θ̄ − θMLE) →p 0 and 3.

√
N(θ̄ − θ∗) →d N(0, (−H)−1). See Train (2003) for

details.
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Appendix 3: Goodness of Fit and Comparison with a Two-Factor Model

Table 11 presents the results of the chi-squared goodness of fit test on the simulated distribution

of hourly wages. The first column presents a formal goodness of fit test for log wages using the

three-factor model, whereas the second column presents the results for a two factor-model (only

cognitive and socio-emotional).

For the three-factor model, the chi-squared tests cannot reject the null hypothesis that the

simulated distribution of hourly wages is statistically equivalent to the actual distribution. On the

other hand, the null hypothesis for the model of two factors is rejected.40 Consequently, our three-

factor model does a better job predicting the distribution of (log) hourly wages than a two-factor

model that does not include the mechanical factor.

[Table 11 about here.]

Finally, in Table 12 we compare the performance of our model and a model of two factors in

predicting four-year college attendance. In both cases the tests cannot reject the null hypothesis.

[Table 12 about here.]

40Heckman, Stixrud and Urzua (2006) find similar results when computing the Chi-squared test on the sample of
four-year college graduates.
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Figure 1: Sample question from the mechanical comprehension section

a

1. In the diagram, what can you tell about the load on posts A and B?

(a) Post B carries more weight.

(b) Post A carries more weight.

(c) Post A carries no weight.

(d) The load is equal on posts A and B.

2. The diagram shows a class 1 lever. Which of the following is the same kind of lever?

(a) A pair of tweezers

(b) A pair of scissors

(c) A wheelbarrow

(d) A pair of tongs

3. Which of the following would feel hottest to the touch if one end were placed in a pot of boiling water?

(a) A wooden spoon

(b) A metal fork

(c) A plastic knife

(d) A plastic cup

aExtracted from http://www.education.com/reference/article/mechanical-comprehension-quiz./
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Figure 2: Loadings from Factor Analysis-Orthogonal Factors
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Note:“mechanical” is computed by using Auto V (automotive and shop information), Mech V (mechanical

comprehension) and Elec V (electronics information). The others are used to measure the cognitive component:

Ari C (arithmetic reasoning), Math C (mathematics knowledge), Word C (word knowledge) and Para C (paragraph

comprehension) Num C (numerical operations) and Cod C (coding speed). All are used to compute AFQT except

from Cod C. In fact, the calculation of AFQT has changed considerably on time. In 1980 it was computed as the

raw sum of arithmetic reasoning, word knowledge, paragraph comprehension and 1/2 numerical operations. After

1989 numerical operations was removed and mathematics knowledge was included. The magnitude of the loading is

critical because any factor loading with an absolute value of 0.30 or greater is considered significant (Diekhoff, 1992;

Sheskin, 2004, among others).
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Figure 3: Measurement of Cognitive, Socio-emotional and Mechanical Ability
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Note: The figure shows the cumulative distribution function (cdf) of each measure of ability by schooling choice,

attending four-year college or not. The red dashed line corresponds to individuals who chose not to attend four-year

college while the grey solid line is the marginal cdf for individuals that decided to attend four-year college. Panel

(a) corresponds to the cognitive measure, panel (b) depicts the case for the socio-emotional measure and panel (c)

for mechanical. The sample of individuals under ”College” includes those with at least one year of enrollment in a

four-year college institution before age 25. ”No college” includes all those individuals in our sample who have not

attendended four-year college but excludes high school dropouts and individuals with no information on schooling.
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Figure 4: Variance Decomposition
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Note: The figure presents the variance decomposition of the measurement system.
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Figure 5: Marginal CDF: Cognitive, Socio-emotional and Mechanical Ability

(a) Cognitive (b) Socio-emotional

(c) Mechanical

Note: The data are simulated from the estimates of the model and our NLSY79 sample. The figure presents the
marginal cumulative distribution functions of each latent factor by schooling level, attending four-year college or not.
The red dashed line corresponds to individuals who chose not to attend four-year college while the grey solid line is
the marginal cdf for individuals that decided to attend four-year college. Panel (a) corresponds to cognitive ability,
panel (b) to socio-emotional ability and panel (c) to mechanical ability.
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Figure 6: Joint Distribution of College Attendance Decision by Deciles of Cognitive and Mechanical
Factors
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. In the figure we present
the joint distributions of the probability of attending a four-year college (D = 1) by deciles of cognitive (di) and
mechanical (dj) ability. We plot Pi,j =

∫
Pr(D = 1|θc ∈ di, θm ∈ dj)dF (θs) for di = 1, ..10, and dj = 1, ..10.
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Figure 7: Joint Distribution of College Attendance Decision by Deciles of Socio-emotional and
Mechanical Factors
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. In the figure we present
the joint distributions of the probability of attending a four-year college (D = 1) by deciles of socio-emotional (dk)
and mechanical (dj) ability. In particular, we plot Pj,k =

∫
Pr(D = 1|θm ∈ dj , θs ∈ dk)dF (θc) for dj = 1, ..10, and

dk = 1, ..10.

44



Figure 8: The Impact of Ability on Four-year College Attendance
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(b) Socio-emotional
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. Panel (a) of the figure
presents the marginal effect of cognitive ability integrating out the effect of socio-emotional and mechanical ability,
while panels (b) and (c) present analogous results for socio-emotional and mechanical ability, respectively. Dashed
lines demarcate the 95% confidence interval.
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Figure 9: Average (log) Hourly-Wage (ages 25-30) by Deciles of Cognitive and Mechanical Ability
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. Figures present the average
(log) wages by deciles of cognitive and mechanical ability. The lines capture the overall effect of ability on wages
which includes: the direct effect on log wages holding schooling constant, the effect of ability on the decision to attend
college and the implied effect of attending college or not on log wages.
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Figure 10: Average (log) Hourly-Wage (ages 25-30) by Deciles of Socio-emotional and Mechanical
Ability
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. Figures present the average
(log) wages by deciles of mechanical and socio-emotional ability. The lines capture the overall effect of ability on
wages which includes: the direct effect on log wages holding schooling constant, the effect of ability on the decision
to attend college and the implied effect of attending college or not on log wages.
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Figure 11: The Impact of Ability on (log) Hourly-Wages (ages 25-30)
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(b) Socio-emotional
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Mechanical on Log hourly wages

(c) Mechanical

Note: The data are simulated from the estimates of the model and our NLSY79 sample. The data are simulated from
the estimates of the model and our NLSY79 sample. Each panel presents the effect of ability taking into account:
the direct effect on log wages holding schooling constant, the effect of ability on the decision to attend college and the
implied effect of attending college or not on log wages. Panel (a) presents the effect of cognitive ability integrating out
the effect of the other two dimensions of ability, while panels (b) and (c) present analogous results for socio-emotional
and mechanical ability, respectively. Dashed lines demarcate the 95% confidence interval.
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Figure 12: Composition of the Individuals Who Benefit from not Attending Four-year College by
Ability Profile

!"#$%!"#&%

!"#$%'()*&%

'()*$%!"#&%

'()*$%'()*&%

Note: The data are simulated from the estimates of the model and our NLSY79 sample. The figure presents
the composition of the group of individuals who benefit from not attending college, i.e., Pr(Y1 − Y0|profile =
x)× Pr(profile = x) where Y1 is the (log) hourly wage corresponding to the scenario of attending four-year college,
Y1 is the analogous in the alternative scenario of not attending four-year college and x =LowC LowS, LowC HighS,
HighC LowS and LowC LowS. Given that we classify individuals as high or low depending on whether they are
above or below the median of the distribution of each latent ability, the four categories are mutually exclusive and
collectively exhaustive.
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Figure 13: Proportion of Individuals Who Benefit from not Attending Four-year College in Each
Ability Profile Group
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Note: The data are simulated from the estimates of the model and our NLSY79 sample. Figure presents the
percentage of people that benefits from not attending college in each category, i.e., P (Y1 − Y0|profile = x) where
Y1 is the (log) hourly wage corresponding to the scenario of attending four-year college, Y1 is the analogous in the
alternative scenario of not attending four-year college and x ={LowC LowS LowM, LowC HighS LowM, HighC LowS
LowM, LowC LowS LowM,LowC LowS HighM, LowC HighS HighM, HighC LowS HighM, LowC LowS HighM}.
Given that we classify individuals as high or low depending on whether they are above or below the median of the
distribution of each latent ability, the eight categories are mutually exclusive and collectively exhaustive.
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Table 1: Summary statistics

Variable Mean (Std. Dev.) Min. Max. N

LogHourly wage 25-30 2.812 (0.41) 0.628 4.053 1385
Attended 4yrcollege by age 25 0.321 (0.467) 0 1 1466
Urban residence at age 25 0.704 (0.457) 0 1 1355
Northeast residence at age 25 0.175 (0.38) 0 1 1466
Northcentral residence at age 25 0.33 (0.47) 0 1 1466
South residence at age 25 0.255 (0.436) 0 1 1466
West residence at age 25 0.158 (0.365) 0 1 1466
Cohort1 (Born 57-58) 0.126 (0.332) 0 1 1466
Cohort2 (Born 59-60) 0.19 (0.392) 0 1 1466
Cohort3 (Born 61-62) 0.334 (0.472) 0 1 1466
Cohort4 (Born 63-64) 0.351 (0.477) 0 1 1466
Family Income in 1979 (thousands) 21.878 (11.849) 0 75.001 1466
Broken home at age 14 0.193 (0.395) 0 1 1463
Number of siblings 1979 2.934 (1.887) 0 13 1466
Mother’s highest grade completed 11.442 (3.196) 0 20 1466
Father’s highest grade completed 11.535 (3.985) 0 20 1466
Living in urban area at age 14 0.726 (0.446) 0 1 1466
Living in the south at age 14 0.248 (0.432) 0 1 1466
Education at the time of the test 11.22 (1.011) 6 12 1466
AFQT 0 (1) -3.328 2.007 1466
Mechanical 0 (1) -3.348 1.985 1466
SocioEmotional 0 (1) -2.718 2.452 1466

Notes: AFQT is an average of standarized scores for arithmetic reasoning, word knowledge, paragraph
comprehension, mathematics knowledge, numerical operations and coding speed sections of the ASVAB.
socio-emotional is an average of the scores in two tests:Rotter Locus of Control Scale and Rosenberg Self-
Esteem Scale. mechanical is an average of standarized scores for auto and shop information, mechanical
comprehension and electronics information sections of the ASVAB.
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Table 2: Correlation of the Technical Composites of the ASVAB with Tests Used to Create AFQT
(cognitive) and a Composite Measure of socio-emotional

Auto Mech Elect AFQT Arith Coding Math Word Parag Num SocioE

Auto 1.00

Mechanical. C 0.68 1.00

Electronics 0.69 0.70 1.00

AFQT 0.49 0.64 0.66 1.00

Arithmetic K. 0.45 0.62 0.59 0.87 1.00

Coding S. 0.32 0.42 0.40 0.76 0.54 1.00

Math 0.31 0.53 0.51 0.85 0.78 0.54 1.00

Word K. 0.56 0.61 0.71 0.83 0.66 0.50 0.62 1.00

Paragraph C. 0.48 0.58 0.62 0.84 0.67 0.53 0.63 0.77 1.00

Numerical S. 0.31 0.41 0.42 0.81 0.62 0.67 0.61 0.55 0.57 1.00

SocioEmot. 0.23 0.25 0.26 0.31 0.26 0.21 0.23 0.33 0.28 0.25 1.00

Note: All the test scores are standardized. AFQT is the cognitive measure, it represents the standardized average

over the ASVAB score in six of the ten components: math knowledge, arithmetic reasoning, word knowledge,

paragraph comprehension, numerical speed and coding speed. Socio-emotional is the standardized average of the

scores for the Rotter and Rosenberg tests.
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Table 3: Schooling Choice: Probit of College Attendance (MEM*)

(1) (2) (3)

Cognitive (AFQT*) 0.175∗∗∗ 0.206∗∗∗

(0.0154) (0.0177)

Socio-emotional 0.0161 0.0411∗∗∗ 0.0188
(0.0133) (0.0133) (0.0134)

Mechanical 0.0351∗∗ -0.0623∗∗∗

(0.0139) (0.0163)

Observations 1466 1466 1466
Pseudo R2 0.261 0.176 0.271

Marginal effects; Standard errors in parentheses

(d) for discrete change of dummy variable from 0 to 1
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Sample: males between 25-30 years old,not attending school and up to high school complete by
the time of the test. ∗ Marginal effects at the mean. All regressions include family background
controls, cohort dummies and geographical controls for region and urban residence at the age
of 14
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Table 4: Reduced-form Results: Returns to Cognitive, Socio-emotional and Mechanical ability

(1) (2) (3)

College 0.142∗∗∗ 0.214∗∗∗ 0.151∗∗∗

(0.0378) (0.0353) (0.0380)

AFQT 0.106∗∗∗ 0.0857∗∗∗

(0.0167) (0.0200)

Socio-emotional 0.0359∗∗ 0.0433∗∗∗ 0.0338∗∗

(0.0158) (0.0158) (0.0158)

Mechanical 0.0811∗∗∗ 0.0358∗

(0.0161) (0.0192)

Observations 1355 1355 1355
R2 0.115 0.104 0.117

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Sample: males between 25-30 years old,not attending school and up to high school complete
by the time of the test. College is dummy variable for college degree or more. All regressions
include cohort dummies as well as geographical controls for region and urban residence at age
25.
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Table 5: Loadings on Test Scores

Cognitive Mechanical Socio-emotional

Auto 0 1.32 ***
Electronics 0.43 *** 0.88 ***
Mech. C 0.38 *** 1.00
Arithmetic K. 1.06 ***
Math 1.00
Word K. 0.96 ***
Paragraph C. 0.97 ***
Numerical S. 0.79 ***
Coding S. 0.73 ***
Rotter 0.26 ***
Rosenberg 1.00

* p < 0.10, ** p < 0.05, *** p < 0.01.

Notes: The table presents the estimated coefficients from equations 3 to 5. All regressions
include family background controls (mother’s and father’s education, number of siblings, a
dummy for broken family at age 14, family income in 1979), cohort dummies and geographical
controls for region and urban residence at the age of 14.
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Table 6: Simulated Parameters of the Distribution of Ability

Mean SD Covar(θc,θi) Correlation(θc, θi)

θc −0.001 0.73 0.52 1
θm 0.000 0.58 0.22 0.53
θs −0.001 0.89 0 0

Note: Results simulated from the estimates of the model and our NLSY79 sample.
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Table 7: Estimated Marginal Effects: Four-year College Attendance

Cognitive Mechanical Socio-emotional

College D = 1 0.229 -0.095 0.024
(0.002)*** (0.001) *** (0.000) ***

* p < 0.10, ** p < 0.05, *** p < 0.01.

Standard errors in parenthesis

Note: The table presents the effect on college attendance associated with a one standard
deviation increase in each of the factors. College Decision equation includes family background
controls, cohort dummies and geographical controls for region and urban residence at the age
of 14.
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Table 8: Estimated Marginal Effects: Log of Hourly Wages, Overall and by Schooling

Cognitive Mechanical Socio-emotional

Overall 0.107 0.014 0.041
(0.000)*** (0.001) *** (0.001) ***

D = 0 0.047 0.044 0.033
(0.002)*** (0.001)*** (0.000)***

D = 1 0.108 -0.031 0.047
(0.002)*** (0.001) *** (0.001) ***

* p < 0.10, ** p < 0.05, *** p < 0.01.

Standard errors in parenthesis.

Note: The table presents the effect on (log) hourly wages associated with a one standard
deviation increase in each of the factors. The ”Overall” effect of ability on wages includes the
direct effect on log wages holding schooling constant, the effect of ability on the decision to
attend four-year college and the implied effect of attending college or not on log wages. The
effects by schooling comes from the (log) hourly wage equation we have calculated separately
for the scenario with no college attendance, D = 0, and the scenario with college attendance,
D = 1. These effects do not include the effect of ability on the decision to attend four-year
college. In the (log) wage equations we control for cohort dummies as well as geographical
controls for region and urban residence at age 25.

58



Table 9: The average effect of attending four-year college on hourly wages

Parameter Estimate

E[Y1 − Y0|D = 1] 0.102***
E[Y1 − Y0|D = 0] 0.038***

* p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents the calculated average effect of attending four-year college on hourly
wages conditional on D = 1 (treatment on the treated) and D = 0 (treatment on the un-
treated). Each parameter is constructed using the estimates from our model.
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Table 10: E[Y1 − Y0|D = 0] by Quintiles of Mechanical Ability and Different Levels of Cognitive
and Socio-emotional Abilities

Mechanical Quintile 1 Quintile 3 Quintile 5

Low C - Low S 0.104 *** 0.006 -0.068 ***
Low C - High S 0.145 *** 0.048 *** -0.039 **
High C - Low S 0.246 *** 0.131 *** 0.053 ***
High C - High S 0.258 *** 0.180 *** 0.090 ***

* p < 0.10, ** p < 0.05, *** p < 0.01.

Note: The table presents the estimated gains of not attending college conditional
on the decision of not attending, E[Y0 − Y1|D = 0], for different ability profiles.
The columns of the table correspond to the bottom, middle and top quintiles of
mechanical ability. The rows present four extreme ability profiles defined as a
combination of different levels of cognitive and socio-emotional ability. ”Low”
refers to the first quintile of the distribution of Cognitive ability (C) or Socio-
emotional ability (S), while ”High” refers to the fifth quintile.
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Table 11: Goodness of Fit: Wage Distribution (Ho:Model=Data)

3 factors 2 factors

χ2 46.61 272.46
p-value 0.19 0.00

Critical at 90% 50.66 50.66
Critical at 95% 54.57 54.57

Note: The table presents a Chi-squared test computed using equiprobable bins.
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Table 12: Goodness of Fit: Schooling (Ho:Model=Data)

3 factors 2 factors

χ2 0.40 0.02
p-value 0.53 0.87

Critical at 90% 2.71 2.71
Critical at 95% 3.84 3.84

Note: The table presents a Chi-squared test.
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