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1 Introduction

Macroeconomic news comes out in a lumpy manner via scheduled news announce-

ments, especially the monthly employment report that includes both nonfarm pay-

rolls and the unemployment rate. These announcements are important for all asset

prices, but especially for bond yields (Andersen, Bollerslev, Diebold, and Vega, 2007).

Nevertheless, term structure models mostly assume that the factors driving the term

structure of interest rates are continuous diffusions, and so that news comes out con-

tinuously. Some models allow for jumps, but these are typically jumps at random

times, following a Poisson arrival process (Das, 2002; Duffie, 2001; Feldhutter, Schnei-

der, and Trolle, 2008; Jiang and Yan, 2009; Johannes, 2004). Researchers using this

approach find that many—though not all—of the jumps occur at times of news an-

nouncements (Andersen, Bollerslev, and Diebold, 2007). But, if we are thinking of

the jumps as reflecting scheduled news announcements, then they are perhaps better

viewed as jumps at deterministic times but of random magnitudes.1 In this perspec-

tive, depending on how big the surprise component of a particular announcement is,

the jump may be big or small. But every announcement leads to some jump, and its

timing is known ex ante.

This paper takes a standard affine Gaussian term structure model, but augments it

with jumps of random size at deterministic times. The closest related work is Piazzesi

(2001, 2005), but unlike in those papers, we allow all elements of the state vector to

jump, and allow the pricing kernel to jump as well.2 So jump risk is priced. We

1Throughout, when we refer to jumps of random size/magnitude, the sign of the jumps is random
too: they can be either positive or negative.

2Another difference is that Piazzesi (2005) models jumps in the federal funds target rate as Poisson
jumps with jump intensity that is high and state-dependent within windows bracketing scheduled
FOMC meeting events and low at other times (to allow for the small probability of unscheduled
FOMC move). Meanwhile, Piazzesi (2001) augments that model with jumps in state variables
corresponding to nonfarm payroll employment and CPI at deterministic times. On the other hand,
we model all jumps as jumps at deterministic times.
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show that the model implies a closed-form affine representation for yields, although

one in which the loadings vary with the time until the next jump. We fit the model

to daily data on the term structure of US Treasury yields, assuming that there are

jumps on the days of employment reports.

The state variables are all latent factors, but we think of them as being driven by

macroeconomic data. Changes in the state variables that are driven by news about

the economy might consequently have different implications for future expected rates

and term premia than other shifts in the state variables. Our model allows for this

possibility. A conventional model with latent factors that follow a diffusion does not.

Empirically, the term structure of yield volatility has a hump shape on employment

report days (low at the short maturities and peaking at about a two-year maturity),

which is not present on other days (Fleming and Remolona, 1999).3 Our term struc-

ture model is able to match this. Using the model we can also explore the daily

structure of bond risk premia variation. We find that bond risk premia are notably

bigger in absolute value on announcement days than on non-announcement days.

The announcement-day bond risk premia are also bigger in absolute value than those

that we obtain from estimation of a homogeneous (no-jump) model. These results are

consistent with Faust and Wright (2008), who find that much of the time-variation in

excess bond returns accrues during macro data release windows. We also decompose

the model-implied changes in yields bracketing employment reports into components

that are due to changes in term premia and changes to expectations, and find that

the term structure of the volatility due to expectations component has different shape

3Fleming and Remolona (1999) also build a term structure model to match the hump shape
in the term structure of yield volatility around announcements. Their model is in discrete time.
It has 2K factors corresponding to K factors for expectations processes affecting interest rates for
K different announcement types and another K factors as the “stochastic means” of these factors.
They do not model the time-inhomogeneous nature of bond yields associated with announcement
effects, and have constant bond risk premia.
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for jumps compared with non-jump (diffusion) movements in yields.

The plan for the remainder of this paper is as follows. In section 2, we report some

empirical facts about the behavior of yields on announcement and non-announcement

days. In section 3, we describe the model with jumps at deterministic times, and

derive an expression for bond prices in the model. In section 4, we discuss the

methodology for model estimation, and section 5 discusses empirical results. Section

6 concludes.

2 Yields and Macro Announcements

First, we document some empirical facts about bond yields and macroeconomic an-

nouncements using the daily yield curve data which are used in the term structure

model estimation. Table 1 shows the standard deviation of three-month, two-year and

ten-year zero-coupon US Treasury daily yield changes, from the dataset of Gürkaynak,

Sack, and Wright (2007), on the days of nonfarm payrolls announcements, on the

days of certain other announcements, and on non-announcement days.4 We see that

employment report days show substantially higher volatility of interest rates than

non-announcement days, or indeed days of any other types of macroeconomic an-

nouncements, consistent with earlier studies.5 The difference between the volatility

on employment report days and non-announcement days is overwhelmingly statisti-

cally significant.

Figure 1 plots the standard deviation of yield changes on employment report and

non–announcement days against the maturity. On non-announcement days, the curve

4By non-announcement days, we mean days that have no employment report, CPI, durable goods,
FOMC, GDP, PPI or retail sales announcement.

5For example, Fleming and Remolona (1997) document (in their Table 5) that among all kinds
of announcements, the employment report has strongest effect on Treasury yields, and the results
in Balduzzi, Elton, and Green (2001) (their Table 2) also indicate strongest response of bond yields
to the employment report.
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is fairly flat in maturity, reflecting the well-known fact that the vast majority of yield

curve shifts are level shifts (Litterman and Scheinkman, 1991). But on employment-

report days, the level of volatility is higher, but it is also hump-shaped in maturity—

the most volatile yields on employment report release days are intermediate-maturity

yields, and the volatility is notably lower at the short end of the yield curve (such

as three months). This was earlier found by Fleming and Remolona (1999) and

Piazzesi (2001). It can also be seen in Table 1 for each of the announcement types

separately. This is an empirical fact that a standard diffusive term structure model

cannot capture. It represents the effects of news today on expectations of future

monetary policy, and also on risk premia. A more stark way of documenting this

stylized fact is to look at the volatility in yield changes caused by employment report

announcements, assuming that the only difference between employment report and

non-announcement days is the existence of the employment report news6. We also

show this in Figure 1. The jump-induced volatility has a particularly pronounced

hump shape.

Faust and Wright (2008) document that excess returns on long-maturity bonds

over their short-maturity counterparts on announcement days are predictable. This

is another empirical fact that we attempt to capture.

6If σm,A and σm,NA are the standard deviations of bond yields at maturity m on employment
report and non-announcement days, respectively, then we define the standard deviation of yields

owing to the employment report as
√
σ2
m,A − σ2

m,NA.
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3 The Model and bond pricing

3.1 The Model

Our model specifies that xt is an n-dimensional latent state vector. Under the physical

measure, xt, follows the jump-diffusion:

dxt = K(θ − xt)dt+ ΣdWt + ξtdNt (3.1)

where Wt is an n-dimensional vector of independent standard Brownian motions, Nt

is a counting process with jumps at deterministic times t = Ti, i = 1, 2, 3, ... (dNt = 1

for t = Ti, 0 at other times), and ξTi is an n-dimensional vector of random jump

sizes.7

The random jump size vector, ξTi , is assumed to be normally distributed with

a state-dependent mean: ξTi ∼ N (µ(xTi−),Ω), where Ω = ΥΥ′, and µ is an affine

function of the state vector right before the jump, i.e.,

µ(xt−) = γ + Γxt−. (3.2)

The short-term interest rate is:

rt = ρ0 + ρ′xt. (3.3)

7For a nice pedagogical discussion of jumps at deterministic times, see Piazzesi (2009). Piazzesi
notes in Chapter 3.5.2 that jumps in deterministic times lead to bond yields that are nonstationary
(time-inhomogeneous).
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Assume that the pricing kernel is

dMt

Mt

= −rtdt− λ′tdWt + J(ξt, xt−)dNt (3.4)

J(ξt, xt−) = exp(−ψ′t−Υ−1(ξt − µ(xt−))− 1

2
ψ′t−ψt−)− 1,

where λt = λ+ Λxt and ψt− = ψ + Ψxt−.

Under the risk-neutral measure, xt, follows the jump diffusion:

dxt = KQ(θQ − xt)dt+ ΣdWQ
t + ξQt dNt

where the jump size vector ξQTi has the distribution N (µQ(xTi−),Ω), µQ(xt−) = γQ +

ΓQxt−, KQ = K + ΣΛ, θQ = K−1
Q (Kθ − Σλ), γQ = γ −Υψ and ΓQ = Γ−ΥΨ.

Apart from the deterministic jumps, this is a standard essentially affine term

structure model (model EA0(3) in the terminology of Duffee (2002)).

A few remarks are in order. First, in this paper we do not model stochastic

volatility of yields. While the time-varying volatility of yields is well known and well

documented, empirical studies such as Jones, Lamont, and Lumsdaine (1998) find that

the volatility associated with macroeconomic announcements effects are short-lived;

therefore, our model with homoskedastic yields during non-announcement period and

jumps at announcements can still be expected to capture some essential features of

yield curve response to data releases.

Second, all macroeconomic announcements give rise to movements in interest rates

that can be thought of as jumps (Andersen, Bollerslev, Diebold, and Vega, 2007). We

could in principle extend the model to allow for jumps of multiple types, i.e., introduce
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different kinds of jumps corresponding to different types of announcement:

dxt = K(θ − xt)dt+ ΣdWt + ξAt dN
A
t + ξBt dN

B
t + ... (3.5)

However, working as we do with daily frequency data, it seems reasonable to treat

employment report releases as the sole type of day on which we want to allow for

jumps, in view of the especially strong effects of employment reports on yields.

3.2 Expression for bond prices

Let the time t price of a zero-coupon bond maturing at time T be P (t, T ). Then

P (t, T ) = EQ
t

(
exp(−

∫ T

t

rsds)

)
(3.6)

Proposition 1 provides an expression for this price.

Proposition 1. Suppose that between time t and T there are p jumps at T1, T2, ..., Tp,

and that the short rate and risk-neutral dynamics of state variables are given by

equations (3.3) and (3.1), respectively. Then

P (t, T ) = exp(a(t, T ) + b(t, T )′xt) (3.7)

where

b(t, T ) = exp(−K ′Q(T1 − t))((I + Γ′Q)b1 +K−1′
Q ρ)−K−1′

Q ρ (3.8)

a(t, T ) = a1 + b′1γQ +
1

2
b′1Ωb1 + A(T1 − t; (I + Γ′Q)b1) (3.9)
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and8

ai−1 = ai + b′iγQ +
1

2
b′iΩbi + A(Ti − Ti−1; (I + Γ′Q)bi) (3.10)

bi−1 = B(Ti − Ti−1; (I + Γ′Q)bi) (3.11)

iterating backwards from the “initial” conditions

ap = A(T − Tp; 0n×1) (3.12)

bp = B(T − Tp; 0n×1), (3.13)

and A(τ ; η), B(τ ; η) given by

B(τ ; η) ≡ exp(−K ′Qτ)(η +K ′−1
Q ρ)−K ′−1

Q ρ (3.14)

A(τ ; η) ≡
∫ τ

0

[(KQθQ)′B(s; η) +
1

2
B(s; η)′ΣΣ′B(s; η)− ρ0]ds (3.15)

= (KQθQ)′
[∫ τ

0

exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)− (ρ0 + θ′Qρ)τ

+
1

2
(η +K ′−1

Q ρ)′
[∫ τ

0

exp(−KQs)ΣΣ′ exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)

−ρ′K−1
Q ΣΣ′

[∫ τ

0

exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)

−(η +K ′−1
Q ρ)′

[∫ τ

0

exp(−KQs)ds

]
ΣΣ′K ′−1

Q ρ+ τρ
′
K−1
Q ΣΣ′K ′−1

Q ρ.

The proof of Proposition 1 is in the appendix. Note that the integrals in (3.15) can

be computed analytically.9

Note that even with jumps, prices are an exponential affine function of the state

8Note that throughout this paper, we define exp(A) = I +A+A2/2 +A3/6 + · · · for any square
matrix A.

9We have
∫ τ
0

exp(−K ′Qs)ds = K ′−1Q (I − exp(−K ′Qτ)) and vec(
∫ τ
0

exp(−KQs)ΣΣ′ exp(−K ′Q
s)ds) = ((I ⊗KQ) + (KQ ⊗ I))−1vec(ΣΣ′ − exp(−KQτ)ΣΣ′ exp(−K ′Qτ)).
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vector, and consequently yields are an affine function of the state vector, but the

loadings depend not only on the time-to-maturity, but also on time itself.

When there is no state dependence in jumps (ΓQ = 0), the expressions for a(t, T )

and b(t, T ) are particularly simple:

a(t, T ) = ã(T−t) +
∑

t<Ti<T

(
− ρ′K−1

Q (I−e−KQ(T−Ti))γQ

+
1

2
ρ′K−1

Q (I − e−KQ(T−Ti))Ω(I − e−K′Q(T−Ti))K−1′

Q ρ

)
, (3.16)

b(t, T ) = b̃(T − t), (3.17)

where ã and b̃ are factor loadings for the standard affine-Gaussian model (without

jumps), and the sum in equation (3.16) denotes summation over all Ti’s between t

and T . Note that when ΓQ = 0, b(t, T ) is a continuous function of T − t (as can be

seen from equation (3.17)), thus the factor loading right after a jump, b(Ti, T ) and

the factor loading right before the jump, b(Ti−, T ) are the same.10 But in general

(ΓQ 6= 0) they differ.

3.3 Yield curve implications

The bond pricing formulae derived above have interesting implications about the

qualitative features of the yield curve. From the expression for price in equation

(3.7), it can be shown that as maturity T approaches one of the jump dates (Ti’s),

the bond price is continuous, but not its first derivative. In other words,

lim
T→Ti

P (t, T ) = lim
T→Ti−

P (t, T ) (3.18)

lim
T→Ti

∂

∂T
P (t, T ) 6= lim

T→Ti−

∂

∂T
P (t, T ). (3.19)

10Note that here and elsewhere in this paper, we denote Ti − 0+ by Ti−, and Ti + 0+ by Ti.
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This implies that the yield curve is continuous but has kinks at locations correspond-

ing to T1, T2, ..., Tp.

However, for realistic parameter values, these kink features are very slight so the

yield curves based on the model still look smooth. This is comforting, as we know

empirically that the yield curve is fairly smooth.

3.4 Economic meaning of the jumps in state variables

Many existing term structure models with jumps have focused on specifications in

which only the short rate (or the target federal funds rate) has jumps.11 A key aspect

of our model is that we allow for jumps in all the state variables.

To motivate this, it is useful to consider a few simple term structure models that

are special cases of our general specification. First, consider the following two-factor

model with physical dynamics:

rt = x2t

dx1t = κ1(θ1 − x1t)dt+ σ1dB1t + ξ1tdNt

dx2t = κ2(x1t − x2t)dt+ σ2dB2t + ξ2tdNt

Apart from the jumps, this is the so-called “central tendency” model, studied by

Balduzzi, Das, and Foresi (1998) and Jegadeesh and Pennachi (1996). In this model,

the second factor (x2t) is the short rate, while the first factor (x1t) is the time-varying

“central tendency” to which the short rate x2t mean-reverts. If there is a jump in

x1t (i.e., ξ1t), it does not affect the short end of the yield curve today, but it does

affect expected future short rates and hence the yield curve at longer maturities.12

11These include Das (2002), Johannes (2004), Jiang and Yan (2009) and Piazzesi (2005). Excep-
tions include Piazzesi (2001) and Feldhutter, Schneider, and Trolle (2008).

12This is the channel emphasized by Fleming and Remolona (1999).
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In short, a jump in x1t is like a so-called “path shock”.13

For another motivating example, consider the following two-factor model, with

physical dynamics:

rt = x2t

dx1t = κ1(θ1 − x1t)dt+ σ1dB1t + ξ1tdNt

dx2t = κ2(θ2 − x2t)dt+ σ2dB2t + ξ2tdNt

where the market price of non-jump risk is λt = [0, λ2 + Λ21x1t]
′. Apart from the

jumps, this model is similar to the 2-factor model that Duffee (2002) used as an

illustration.14 In this model, again the second factor x2t is the short rate. The other

factor x1t does not affect the (physical) path of the short term rate. However, because

the market price of risk of x2t depends on x1t, the x1t factor does affect the yield curve,

and jump in x1t will lead to a shift in the yield curve, reflecting a “risk premium”

shock.

These two illustrative models are nested in our general model (equation (3.1)). In

the general model, the state variables usually do not have simple labels, and clean

identification of various jump effects is generally not feasible. However, allowing for

jumps in state variables other than the short rate is potentially important: a surpris-

ingly good employment report may not necessitate raising the policy rate immediately

or at the next FOMC meeting, but may convince the market to price in more policy

tightenings down the road (“path shock”), and it could also lead to a sudden rise in

the term premium component of bond yields (“risk premium shock”).

13This path shock is in the same sense as in Gürkaynak, Sack, and Swanson (2005a), who have
discussed the patterns of yield/futures curve responses to FOMC announcements.

14Duffee’s example has a CIR process for x1t.
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4 Estimating the Model

4.1 Estimation approach

The model described in section 3 implies that yields are a time-inhomogenous affine

function of the latent state vector. Treating observed yields as being contaminated

with small measurement error, the model can easily be estimated by maximum like-

lihood on daily data via the Kalman filter.

Specifically, we have the following observation equation and state equation:

yτ,t = ay(τ ; δ(t)) + by(τ ; δ(t))′xt + eτ,t (4.1)

xt = xt−1 +K(θ − xt−1)∆t+ εt + ξt (4.2)

εt ∼ N (0n×1,ΣΣ′∆t), (4.3)

ξt ∼ N (0n×1,Ω) for t = T1, T2, ... (4.4)

where τ ≡ T − t is time to maturity, δ(t) = T1 − t is the time to the first jump

(employment report), ay ≡ −a(t, T )/τ , by ≡ −b(t, T )/τ , and eτ,t is measurement

error that is assumed to be i.i.d. over time and maturities. In order to simplify the

implementation, we assume that the employment reports are equally spaced (T2−T1 =

T3 − T2 = ... = ∆ = 1/12), and let δ(t) take on 22 values only (approximately

corresponding to the number of trading days in a month), ranging between 0 and

∆ = 1/12. In the state equation, ∆t is one business day, i.e., ∆t = 1/250. We

restrict ξt vector to have zero mean in the physical measure, as the more general

version ξt ∼ N(γ + Γxt−1|t−1,Ω) becomes too unwieldy for estimation (ξt is still

allowed to have a non-zero mean under the risk-neutral measure). Note that equation

(4.4) implies that the conditional variance of xt, var(xt|It−1) has a deterministically

varying pattern: it is ΣΣ′∆t+Ω on announcement days (t = T1, T2, ...) and ΣΣ′∆t on
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non-announcement days. We fit the model to daily data on 3-month, 6-month and 1,

2, 4, 7 and 10-year zero-coupon US Treasury yields, using the dataset of Gürkaynak,

Sack, and Wright (2007) for maturities of one year or greater, and T-bill yields for

3-month and 6-month yields. The data span 1990-2007 inclusive. At the zero lower

bound, short- and even intermediate-term yields become insensitive to news (Swanson

and Williams, 2014), but our model does not incorporate the zero lower bound. For

this reason, we omit recent data from our estimation. In order to help pin down

the parameters related to physical dynamics, we augment our Kalman filter based

estimation with survey forecast data, as in Kim and Orphanides (2012).

4.2 Estimated specifications

As is standard in the literature, the number of factors, n, is set to 3. We first allow

for jumps in all elements of the state vector and adopt the following normalizations

for identification: we restrict ρ to be [0, 0, 1]′ , specify K as lower triangular and θ as

a vector of zeros, and let15

Σ =


c 0 0

0 c 0

Σ31 Σ32 Σ33

 .

We shall denote this specification as the “J-Full” model.

This specification looks somewhat different from the usual specification in which K

is lower-triangular, Σ is an identity matrix (or diagonal matrix of n free parameters),

and ρ is a vector of n free parameters (or vector of ones). We chose our normalization

15c is a scale constant which we choose to be 0.01.
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to make the third element of the state vector directly interpretable as the short rate.16

In order to compare with a specification in which there is jump in the short rate

only, we also estimate a restricted model in which the Ω matrix is zero except for

Ω33. We shall denote this model as the “J-Short” model. Lastly, in order to compare

models with and without jumps, we also estimate the homogeneous model (affine-

Gaussian model), which shall refer to as the “No-Jump” model.

The parameter estimates for the three specifications (J-Full, J-Short, No-Jump)

are given in Table 2.

5 Empirical results

5.1 Term structure of volatilities

The change in the τ -period yield across an employment report release (at time Ti) is

given by

∆Jy(τ) = by(τ ; ∆)(xTi− + ξTi)− by(τ ; 0)xTi− + ay(τ ; ∆)− ay(τ ; 0). (5.1)

Because the factor loadings right before an employment report (ay, by for δ = 0) are

different from the factor loadings right after an employment report (ay, by for δ = ∆),

∆Jy contains a predictable component. However, the predictable component is small;

therefore we approximate the variance of ∆Jy as var(∆Jy) ≈ by(τ ; ∆)′Ωby(τ ; ∆). We

also compute the variance in the τ -period yield due to the diffusion (Brownian motion)

component: var(∆Dy) ≈ by(τ ; ∆)′ΣΣ′by(τ ; ∆)∆t.

16No loss of generality is incurred here, since our specification can be obtained from the “usual”
specification by applying the invariant transformation xt = Lx̃t, where x̃t is the state vector in the

“usual” specification, xt is our specification, and L is the matrix L =

 1 0 0
0 1 0
ρ1 ρ2 ρ3

 .
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A key motivation of our model is to try to match the different term structure of

interest rate volatility associated with employment reports and at other times that

is evident in the data (Figure 1). Figure 2 plots the term structure of interest rate

volatility associated with employment report jumps (
√
var(∆Jy)), along with the

term structure of daily interest rate volatility without jumps (
√
var(∆Dy)), implied

by our estimated J-Full model. Our model can match the empirical fact that these

two volatility term structures are different, and that the jump volatility term structure

has a hump shape.

Piazzesi (2001) also estimated a term structure model which has jumps in state

variables corresponding to nonfarm payroll employment and CPI at deterministic

times (i.e. times of data releases). These jumps affect the yield curve through their

effect on the intensity for the arrival of Poisson jumps that represent discrete changes

in the federal funds target rate. She found that the term structure of the sensitivity

of bond yields to nonfarm payroll surprises in her estimated model is monotonically

downward sloping (Piazzesi 2001, Figure 8, right panel). On the other hand, in our

model (J-Full) all state variables have jumps at the precise moment of data release,

and it can produce the humped shape of jump volatility because the jumps in state

variables beside the short rate captures the fact that employment report has little

effect on short-term interest rate today but contains news about future expected

monetary policy and can also shift the term premia implicit in the yield curve.

Figure 2 also shows the corresponding results from our J-Short model in dashed

lines. In this model, the jump volatility term structure looks very different from the

case where all three factors are allowed to jump. It does not have a hump shape,

and instead slopes down.17 The model with jumps in the short rate alone implies

17This is because the factor loading [by(τ ; δ(t))]3 for the short rate (the only state variable that
has jumps in J-Short model) falls monotonically with increasing time-to-maturity τ .
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that employment report announcements should have little impact on ten-year yields,

which we know to be counterfactual.

The difference between the J-Full and J-Short models can be seen from the esti-

mated Ω matrices. We obtain
√

diag(Ω) = [0.00082, 0.00063, 0.00036]′ for the J-Full

model and [0, 0, 0.00054]′ for the J-Short model. Note that the J-Short model by

design has nonzero standard deviation of jump in x3t (short rate) only. On the other

hand, in the J-Full model, the standard deviation of jump in x3t (short rate) is the

smallest of all the state variables.

We conclude that it is important to allow for jumps in more than just the short

rate.

5.2 Expected excess returns

An important departure from the existing literature on term structure modeling with

anticipated jump effects (including Fleming and Remolona (1999) and Piazzesi (2001,

2005)) is that in our model jump risk is priced. We now explore the implication of

this for bond risk premia.

To examine bond risk premia, we compute one-day expected excess bond returns,

i.e.,

Et(log(Pt+∆t,T/Pt,T )− log(1/Pt,t+∆t))/∆t = (5.2)

1
∆t
{a(t+ ∆t, T )+b(t+ ∆t, T )Et(xt+∆t)−a(t, T )−b(t, T )xt+a(t, t+ ∆t)+b(t, t+ ∆t)xt}

with daily filtered state variables (recall ∆t = 1 day). Figure 3a plots this for ten-

year bonds (expressed at an annualized rate) for the J-Full model and the No-Jump

model. For a closer look, Figure 3b shows the same plot with a magnified y-axis.

It can be seen from Figures 3a,b that expected excess returns for the No-Jump
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model vary slowly over time, being positive for most of the 1990s and around 2005, but

negative in the early 2000s. Incorporating jumps makes the expected excess returns

much larger in absolute magnitude on employment report days (as can be seen from

sharp spikes on employment report days). It can be also seen from Figures 3a,b that

the average level of spikes moves in ways similar to the expected excess returns on

non-announcement days, albeit with a different scale. Furthermore, the expected

excess returns on non-employment report days are smaller in absolute value than

the expected excess return from the homogeneous (No-Jump) model. These results

indicate that part of the bond risk premium is earned on employment report days as

compensation for jump risk. This is consistent with Faust and Wright (2008) who

do not estimate a term structure model, but who do find that bond excess returns

on days of macroeconomic news announcements are predictable. It is important

to note, however, that the expected excess returns are relatively small in absolute

magnitude, even on announcement days: a spike of typical size, say 0.25, corresponds

to 0.25/250 = 0.1% change in bond price.

Figure 3c shows the corresponding plot of one-day expected excess return based

on the J-Short model. The pattern of expected excess return from this model doesn’t

have the aforementioned properties associated with Figures 3a and 3b (J-Full). Al-

though the J-Short model still allows for jumps in the pricing kernel (short-rate jump

risk is still priced), this is not sufficient to produce the kind of jump risk premia

variation that we saw in the J-Full model.

To take a closer look, note that if there is no jump between t and t + ∆t then

the expected one-day excess returns are well approximated by b(t, T )′Σ(λ + Λxt).
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Meanwhile, around jumps:

ETi−

(
P (Ti, T )− P (Ti−, T )

P (Ti−, T )

)
=
ETi−(P (Ti, T ))

EQ
Ti−(P (Ti, T ))

−1 = eb
′
i(µ(xTi−)−µQ(xTi−))−1, (5.3)

where the last equality follows from taking the expectation in equation (A.4) in the

appendix under the risk-neutral measure and the same expectation under the physical

measure. Taking a first order Taylor series expansion of equation (5.3), the expres-

sion in that equation is approximately b′iΥ(ψ + Ψxt−). Hence, the expected one-day

annualized excess returns if there is one jump between t and t+∆t are approximately:

b(t, T )′Σ(λ+ Λxt) +
1

∆t
b(t, T )′Υ(ψ + Ψxt) (5.4)

Although the jump component in equation (5.4) is nonzero only on employment

report days, we can think of there being an underlying process b(t, T )′Υ(ψ + Ψxt)

and examine how it is related to the diffusion component b(t, T )′Σ(λ+Λxt) (for a given

time-to maturity τ = T − t).18 Table 3 shows the correlation of jump and diffusion

components implied by our estimated models and daily filtered state variables, for

two- and ten-year bonds. It also shows the correlation of daily changes in these

components. It can be seen that in the case of the J-Full model, both the level and

difference correlations are positive. This corroborates the above visual impression

that bond risk premia associated with jumps move in ways that are similar to bond

risk premia associated with diffusions. On the other hand, the J-Short model produces

negative correlation between jump and diffusion contributions, underscoring the fact

that the model with jumps in short rate alone is too restrictive to produce realistc

variation in bond risk premia.

18As noted earlier, b(t, T ) also depends on time to the next employment report, but this effect is
rather small, so we simply take the time to the next employment report δ as a fixed number (1/12).
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Lastly, it is interesting to compare the monthly average of one-day expected excess

returns for the J-Full model with the homogeneous model. As can be seen in Figure

4, the monthly averaging removes the spike patterns seen earlier, and produces bond

risk premia that are similar, in pattern of variation and in scale, to the corresponding

object from the homogeneous (No-Jump) model. This implies that the homogenous

model can be viewed as a rough approximation of more granular models (such as the

J-Full model) for longer holding periods (such as a month).

5.3 News: Term Premia and Expectations

Changes in interest rates around employment reports are large and generate a lot

of attention from central banks, investors and journalists, as there is perhaps par-

ticular potential for crafting macroeconomic explanations for yield changes at these

times. The volatility of long-term yields and forward rates surrounding macroeco-

nomic announcements may suggest that inflation expectations are poorly anchored

(Gürkaynak, Sack, and Swanson, 2005b). But it could also owe to changing expec-

tations of future real short-term rates, or to changing term premia.

Beechey (2007) used the term structure model described in Kim and Wright (2005)

and Kim and Orphanides (2012), and decomposed changes in yields on days of news

announcements into revisions to expected future rates and revisions to term premia.

Both were found to be important. But the exercise is in a certain sense internally

inconsistent in that the underlying term structure model does not treat announcement

and non-announcement days as being in any way different.

Our model allows us to decompose the model-implied term structure of interest

rate volatility associated with employment report jumps and the model-implied term

structure of the diffusive component of daily interest rate volatility into term premium
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and expected future short rate components.19 The results of this exercise are included

in Figures 5 and 6, for the J-Full model and the J-Short model, respectively. The J-

Full model results show an interesting difference between jump volatility and diffusion

volatility: The volatility of the expectations component of diffusion volatility declines

monotonically with maturity, while the volatility of the expectations component of

jump volatility first rises with maturity, peaks around 1-2 years, and then declines.

In the J-Full model, jump volatility at short maturities owes mainly to volatility of

expected future rates, but at maturities beyond about three years the majority of the

employment report jump volatility represents time-variation in term premia. On the

other hand, in the J-Short model, jump volatility comes mainly from the expectations

component at all maturities.

6 Conclusion

We treat news announcements as representing jumps in the term structure of interest

rates of known time but random magnitude. We have proposed a model with jumps

of this sort in all elements of the state vector, and with jumps in the pricing kernel as

well. Along this dimension, the model is more flexible than the existing alternatives.

This flexibility is important, because much of the variation in bond yields occurs right

around news announcements. The model implies that yields are a time-inhomogenous

affine function of the state vector.

Empirically, jumps associated with employment reports are most important for

intermediate-term yields. This is a fact that our model can replicate. Our model also

19Since the expectations component of the bond yields in our model is also affine in the state vector,
the jump in yields at employment report can be approximately expressed as ∆Jy ≈ (bEy + bTPy )ξTi .

Therefore the contribution of expectations and term premium components to the variance are bE
′

y ΩbEy
and bTP

′

y ΩbTPy , respectively. Note that these do not add up to var(∆Jy), since expectations and

term premium components are generally correlated so there is an extra term 2bE
′

y ΩbTPy .
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generates expected excess bond returns that are much more volatile on announcement

days than on other days. We conclude that in understanding higher-frequency interest

rate movements, separating out employment report and other days is both tractable

and empirically important.

Appendix: Proof of Proposition 1

Using the Feynman-Kac formula, for any interval [t, u] that doesn’t include any jump

event, we have:

EQ
t (e−

∫ u
t rsds+η′xu) = exp(A(u− t; η) +B(u− t; η)′xt) (A.1)

where B(τ ; η) and A(τ ; η) are given by equations (3.14) and (3.15).

Between time t and T there are p jumps at T1, T2, ..., Tp. Consider P (Ti, T ) and

P (Ti−, T ), where by Ti we mean Ti + 0+, and by Ti− we mean Ti − 0+. Using the

law of iterated expectations, we have:

P (Ti−, T ) = EQ
Ti−(e−

∫ Ti
Ti−

rsdsEQ
Ti

(e
−

∫ T
Ti
rsds)) = EQ

Ti−(P (Ti, T )). (A.2)

We know from equation (A.1) that at the time of the last jump:

P (Tp, T ) = exp(ap + b′pxTp).

where ap = A(T −Tp; 0) and bp = B(T −Tp; 0). Suppose that P (Ti, T ) is of the form:

P (Ti, T ) = exp(ai + b′ixTi). (A.3)

21



From this, and equation (A.2), we have:

P (Ti−, T ) = EQ
Ti−(eai+b

′
i(xTi−+ξTi )) (A.4)

= eai+b
′
ixTi−+b′i(γQ+ΓQxTi−)+ 1

2
b′iΩbi

= eai+b
′
iγQ+ 1

2
b′iΩbi+[(I+Γ′Q)bi]

′xTi− ,

where we have used the fact that the jump vector is normally distributed. For the

bond price at the time of jump i− 1, we have:

P (Ti−1, T ) = EQ
Ti−1

(e
−

∫ Ti−
Ti−1

rsdsP (Ti−, T ))

= eai+b
′
iγQ+ 1

2
b′iΩbiEQ

Ti−1
[e
−

∫ Ti−
Ti−1

rsds+[(I+Γ′Q)bi]
′xTi− ],

= eai+b
′
iγQ+ 1

2
b′iΩbieA(Ti−Ti−1;(I+Γ′Q)bi)+B(Ti−Ti−1;(I+Γ′Q)bi)

′xTi−

where we have used equation (A.1) and the fact that there are no jumps between Ti−1

and Ti in the last step. This means that P (Ti−1, T ) = eai−1+b′i−1xTi−1where

ai−1 = ai + b′iγQ +
1

2
b′iΩbi + A(Ti − Ti−1; (I + Γ′Q)bi)

bi−1 = B(Ti − Ti−1; (I + Γ′Q)bi).

We have thus proved equation (A.3) by induction over i = p, p− 1, p− 2, ...1, where

{ai} and {bi} are given by the recursions in equations (3.10), (3.11), (3.12) and (3.13).

For the bond price at time t, we have:

P (t, T ) = EQ
t (e−

∫ T1−
t rsdsP (T1−, T )).

This yields equation (3.7) and completes the proof of the Proposition.
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Table 1: Standard Deviation of Yield Changes on Announcement Days

Three-month Two-year Ten-year

Nonfarm payrolls 6.0∗ 10.1∗∗∗ 8.9∗∗∗

Durable Goods 4.7 6.3∗∗∗ 5.8

Retail Sales 4.0∗∗ 6.9∗∗∗ 7.0∗∗∗

PPI 3.8∗ 6.0 5.9

FOMC 5.9 6.7∗∗ 5.4

GDP 5.0 6.3∗∗∗ 6.3∗∗∗

CPI 6.1 6.8∗∗∗ 6.5∗∗

None 4.9 5.1 5.3

Notes: This table shows the standard deviation of three-month, two-year and ten-
year zero-coupon yield changes (in basis points) on days of selected announcements,
and on days of no announcements. For each type of announcement, cases in which
the volatility is significantly different on that type of announcement day relative to
non-announcement days at the 10, 5 and 1 percent significance level are marked with
one, two and three asterisks, respectively. Newey-West standard errors are used. The
sample period is January 1990 to December 2007.
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Table 2: Parameter estimates
J-Full J-Short No-Jump

K11 0.0102 (0.0222) 0.0241 (0.0265) 0.0170 (0.0260)
K21 -0.1463 (0.3120) -0.8381 (0.4502) -0.2318 (0.2605)
K31 -0.1173 (0.3216) 0.6595 (0.4261) -0.0294 (0.2956)
K22 2.2006 (0.5740) 3.2498 (0.4670) 1.6373 (0.6506)
K32 -2.3023 (0.4078) -3.1530 (0.3993) -1.9081 (0.4177)
K33 0.6764 (0.2035) 0.3504 (0.0338) 0.6713 (0.2660)
Σ31 0.0022 (0.0010) 0.0019 (0.0007) 0.0012 (0.0011)
Σ32 -0.0051 (0.0006) -0.0056 (0.0003) -0.0043 (0.0011)
Σ33 -0.0064 (0.0004) -0.0061 (0.0001) -0.0073 (0.0006)
ρ0 0.0171 (0.0357) 0.0120 (0.0279) 0.0187 (0.0283)
λ1 0.0635 (1.2979) -0.9730 (0.5646) -0.3967 (0.7636)
λ2 -1.0458 (1.7400) -1.0731 (1.5471) 0.1693 (0.8939)
λ3 -4.9772 (6.9200) -6.1942 (5.5682) -5.4023 (6.1607)
[ΣΛ]11 -0.1703 (0.2160) 0.1244 (0.0694) -0.0024 (0.1606)
[ΣΛ]21 0.3357 (0.1682) 0.5048 (0.2575) 0.1762 (0.1965)
[ΣΛ]31 -0.7580 (0.1884) -0.4027 (0.1804) -0.7933 (0.1834)
[ΣΛ]12 -0.3564 (0.4816) -0.2089 (0.2469) -0.0960 (0.4632)
[ΣΛ]22 -0.6992 (0.3483) -1.3224 (0.4230) -0.5947 (0.2552)
[ΣΛ]32 -0.7048 (0.3460) -0.5794 (0.3664) -0.9205 (0.2854)
[ΣΛ]13 0.2796 (0.3003) -0.0426 (0.0174) 0.0445 (0.2148)
[ΣΛ]23 -0.2888 (0.1259) 0.1022 (0.0603) -0.1466 (0.0155)
[ΣΛ]33 0.5355 (0.3151) -0.2088 (0.1102) 0.4724 (0.3826)
γQ1 -0.0006 (0.0009)
γQ2 -0.0007 (0.0008)
γQ3 -0.0003 (0.0005) -0.0005 (0.0005)
ΓQ11 0.0071 (0.0104)
ΓQ21 0.0109 (0.0072)
ΓQ31 0.0023 (0.0059) 0.0109 (0.0055)
ΓQ12 0.0228 (0.0166)
ΓQ22 0.0149 (0.0136)
ΓQ32 -0.0245 (0.0102) -0.0232 (0.0091)
ΓQ13 -0.0046 (0.0098)
ΓQ23 -0.0124 (0.0069)
ΓQ33 0.0079 (0.0058) 0.0011 (0.0031)
Υ11 0.0008 (0.0001)
Υ21 0.0005 (0.0001)
Υ31 0.0001 (0.0001)
Υ22 0.0004 (0.0001)
Υ32 0.0001 (0.0002)
Υ33 -0.0004 (0.0001) 0.0005 (0.0000)

Notes: Parameter estimates for the J-Full, J-Short, and No-Jump models. Stan-
dard errors are given in parenthesis. We impose the following normalization restric-
tions: K12 = K13 = K23 = 0, Σ11 = Σ22 = 0.01, Σ12 = Σ21 = Σ13 = Σ23 = 0,
ρ = [0, 0, 1]′, θ = [0, 0, 0]′, Υ12 = Υ13 = Υ23 = 0. In addition, for tractability we set
γ = [0, 0, 0]′, and Γ = 03×3.

24



Table 3: Correlation of jump and diffusion components of bond risk
premia

Two-year Ten-year
J-Full cov(D, J) 0.61 0.57

(0.04) (0.04)

cov(∆D,∆J) 0.90 0.96
(0.02) (0.02)

J-Short cov(D, J) -0.74 -0.87
(0.03) (0.02)

cov(∆D,∆J) -0.96 -0.98
(0.02) (0.02)

Notes: This table shows the simple correlation of the diffusion and jump compo-
nents of bond risk premia (D ≡ b(t, T )′Σ(λ+ Λxt) and J ≡ b(t, T )′Υ(ψ+ Ψxt)) based
on estimated parameters and state variables (daily series). Standard errors are in
parentheses, computed using the Bartlett formula with 8 lags.

25



Figure 1: Volatility of Yield Changes
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Note: This figure plots the standard deviation of daily changes in US Treasury zero-coupon yields
on days of employment report releases and on non-announcement days against the bond maturity. The
sample period is January 1990 to December 2007.
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Figure 2: Model-implied term structure of volatility
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Note: This figure plots the model-implied term structure of interest rate volatility associated with
employment report jumps, along with the model-implied term structure of daily interest rate volatility
without jumps, both for the model with jumps in all state variables (solid lines) and the model with
jumps in short rate alone (dashed lines).
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Figure 3: One day expected excess return on ten-year bond
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(b) Full model (y−axis magnified)
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(c) Jumps in short rate only

Note: This figure plots the one day holding period ex ante expected excess returns on holding a
ten-year bond over a one-day bond. Results are shown both for the proposed model (with deterministic
jumps) and for the corresponding homogenous model, that omits the jumps. Units are annualized
returns. Figures (a) and (b) show the results for the full model, and Figure (c) show the results for the
model with jumps in short rate alone.
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Figure 4: Monthly average of one-day expected excess return on ten-year
bond
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Note: This figure plots the monthly average of one-day expected excess returns from the J-Full
model and the No-Jump model.
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Figure 5: Model-implied term structure of volatility:
Full model
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Note: This figure plots the model-implied term structure of interest rate volatility associated
with employment report jumps, along with the model-implied term structure of daily interest rate
volatility without jumps. These volatilities are in turn decomposed into expected rate and term premium
components. Results are based on the estimated version of the full model (with jumps in all state
variables).
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Figure 6: Model-implied term structure of volatility:
Jumps in Short Rates Alone
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Note: This figure plots the model-implied term structure of interest rate volatility associated
with employment report jumps, along with the model-implied term structure of daily interest rate
volatility without jumps. These volatilities are in turn decomposed into expected rate and term premium
components. Results are based on the estimated model with jumps in the short rate alone.
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