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W.U.I. ON FIRE: RISK, SALIENCE & HOUSING DEMAND

SHAWN J. MCCOY† & RANDALL P. WALSH‡

Abstract. We investigate the effects of wildfires on risk perceptions by quantifying the
impact of severe wildfires on housing price and transaction dynamics. Our empirical results
are interpreted through the lens of a parsimonious model of sorting between locations that
vary in their perceived level of fire risk. The model allows us to infer the evolution of risk
perceptions among potential sellers and buyers of properties located in the proximity of large
wildfire events. Our empirical analysis is based on a multi-dimensional characterization of
the potential linkages between fire events and risk perceptions which incorporates measures
of both proximity and burn scar views as well as a properties latent wildfire risk. Our analysis
provides a connection between changes in underlying risk perceptions and the observed
differences in housing price and quantity dynamics across properties that differ in both
their spatial relationship to wild fire events (views vs. proximity) and their latent risk for
wildfire.

1. Introduction

Both the frequency and severity of natural disasters is increasing. Half of the ten most

costly disasters in history occurred in the last decade alone.1 This trend is particularly

strong in the case of wildfires which have seen a four-fold increase in their frequency and a

six-fold increase in the average size of their burn scars since 1986. (Westerling et al., 2006).

Currently, the United States experiences over 100,000 wildland forest fires each year.2 In

2012, a single Colorado fire destroyed more than 87,000 acres. Nationwide, wildfires cost

federal agencies $2.9 billion annually. (GAO, 2013).

While part of this trend may be attributed to changes in global climate, other factors in-

clude household location and risk mitigation decisions. For example, as a result of population

deconcentration, urban areas are increasingly interdigitating with wild and rural lands creat-

ing what has been called the Wildland-Urban Interface (WUI) which, as of 2005, contained

39% of the stock of residential housing across the United States. (Travis et al., 2002, Conroy

†Department of Economics, University of Pittsburgh. e-mail: sjm96@pitt.edu. 4911 WWPH, 230 South
Bouquet St., Pittsburgh, PA 15260, USA. ‡Department of Economics, University of Pittsburgh. e-mail:
walshr@pitt.edu. 4511 WWPH, 230 South Bouquet St., Pittsburgh, PA 15260, USA. Support for this
research was provided by the National Science Foundation, NSF SES-03-21566.
1Natural disasters: Counting the cost of calamities. The Economist, (2012). http://www.economist.com/
node/21542755.
2Wildfires: Dry, hot, and windy. National Geographic, (2013). http://environment.nationalgeographic.com/
environment/natural-disasters/wildfires/
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et al., 2003, Radeloff et al., 2005). The sprawling configurations of WUI developments have

modified the interactions between environmental and socio-economic dynamics leading to

a sharp increase in the likelihood of severe wildfires impacting inhabited spaces. (Radeloff

et al., 2005, Spyratos et al., 2007). Property-specific risks as well as the overall risk of fire in

forested lands may be partially offset by investing in fire-resistant building materials and in

reducing the fuel load around ones property. (Shafran, 2008). However, due to information

asymmetries and spillovers these mitigation behaviors appear to occur at much lower levels

than would be socially optimal. (Shafran, 2008, Steelman, 2008).

With the risk and impact of natural disasters on the rise, an important question is, “To

what extent do wildfires impact the salience of wildfire risk?” The degree to which disasters

affect risk perceptions and the pattern by which they evolve over time speak to the types

of policies and market interventions that may be effective at aligning risk perceptions with

risk realities, and hence, mitigation behavior. Our approach to this question is to quantify

the impact of wildfires on housing price and transaction dynamics utilizing a series of wild-

fires that occurred throughout the Colorado Front Range (COFR) between 2002 and 2012.

Exploring the impact on transaction rates is a unique feature of our analysis which is often

overlooked in papers implementing hedonic methods.

We center our analysis on 18 wildfires which occurred in 8 counties spanning the COFR

and utilize the universe of housing transactions data for 358,823 unique residential properties

between the years 2000-2012. Using geo-spatial data on wildfire burn scars and latitude and

longitude co-ordinates for each property in our sample, we implement GIS routines to produce

multiple measures reflecting potential saliency. These include proximity to wildfire and view

of wildfire burn scars – which may also capture the dis-amenity effects of fire – in addition

to property-specific indexes of latent wildfire risk. Our measures for latent risk represent the

probability of a wildfire occurring or burning into an area based on the physical attributes

of the terrain surrounding each property such as slope, aspect, elevation and vegetation fuel

type. Comparing market dynamics, in terms of both price and transaction rates, across each

saliency dimension allows us to draw inferences into the process through which individuals

update risk perceptions in the wake of natural disasters.

To better understand the link between price-capitalization, the probability of transacting

and risk-salience, we formulate a simple theoretical model of preference-based sorting in
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response to changing risk perceptions. Using this theoretical framework we can interpret

our price and quantity results in terms of differential saliency between extant residents and

potential buyers. Specifically, our model provides distinct predictions regarding the evolution

of risk perceptions, prices and quantities. Namely, if risk-saliency following a disaster doesn’t

vary across extant residents and potential buyers our model predicts a decrease in prices but

no change in the probability of transacting; all agents discount treated locations, but the

relative preference ordering of agents living in the fire prone area (as opposed to zero risk

locations) remains unchanged. In contrast, negative price shocks coincide with positive

quantity shocks when post-disaster saliency varies by the initial allocation of individuals.

These observations, which we explore formally below, allow us to draw inferences regarding

the saliency dynamics of wildfire by investigating the evolution of prices and quantities across

various treatment dimensions (proximity, view and latent risk).

There is an extant literature evaluating the effects of wildfires on house prices including

Loomis (2004), Troy and Romm (2004), Donovan et al. (2007), Mueller and Loomis (2008),

Huggett Jr et al. (2008), Mueller et al. (2009), Champ et al. (2009), Stetler et al. (2010)

and Mueller and Loomis (2014). Loomis (2004), for instance, finds that housing values in

an unburned town two miles from a major wildfire dropped on the order of 15% based on

housing transactions data five years after the fire. Mueller et al. (2009) analyze housing

market responses to repeated wildfires in Southern California which occurred at different

points in time but within a small geographic area and finds that repeated events lead to

increasingly negative effects on home prices. Donovan et al. (2007) evaluates the role of

information shocks on risk perceptions by analyzing the relationship between housing prices

and wildfire risk after a website was made available which enabled residents in the city of

Colorado Springs to view their risk-rating. They found that households generally placed a

premium on higher risk properties (largely due to positive amenity effects associated with

drivers of risk) before the website was available but not after. This finding is consistent

with the notion we advance in our paper that the provision of information may elevate risk

perceptions. These papers differ from ours in that they do not have an explicit focus on the

impact of a wildfire on risk-salience, generally study a limited geographic area with a small

number of fires, and fail to consider the connection between risk perceptions and transaction

rates.
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In terms of the price side of our analysis, our empirical work is in some ways closer to

that of Kousky (2010), Bin and Landry (2012) and Atreya et al. (2013) who analyze the

effects of major floods on flood risk perceptions using price data. Bin and Landry (2012)

compare residential housing prices for properties located in FEMA designated flood zones to

those properties located outside of flood zones before and after two major hurricanes in Pitt

County, North Carolina. The authors report a 5.7% to 8.8% hurricane-induced flood-risk

discount which lasts for 5 to 6 years. Atreya et al. (2013) perform a similar analysis after a

major flood in Dougherty County, Georgia and report a post-hurricane flood-risk discount

of 32% which lasts for 7 to 9 years. Kousky (2010) finds no significant change in property

prices in the 100-year floodplain but does report a 2% - 5% reduction in property prices in

the 500-year floodplain following the 1993 flood on the Missouri and Mississippi rivers. Each

of these studies is limited, however, by a lack of precise, geo-spatial information delineating

damaged areas. Flood damage is typically concentrated within designated risk areas. This

may obscure the interpretation of their results as evidence of heightened risk salience due to

potentially correlated dis-amenity effects associated with flooding.

Hallstrom and Smith (2005) attempt to discern the degree to which hurricanes convey risk

information to homeowners net of storm damage by comparing price differentials between

properties in and out of the 100-year flood plain following Hurricane Andrew in 1992. They

base their analysis on price data from Lee County, Florida which did not experience any

damage from the storm. These authors find a 19% decline in housing prices in Special Flood

Hazard Areas suggesting that home buyers and sellers do act on the information conveyed

by a severe storm.

In other works, the relationship between natural disasters and risk salience has been

addressed in the context of additional environmental hazards using housing price data asso-

ciated with the rupture and explosion of a major pipeline (Hansen et al., 2006), hazardous

waste (McCluskey and Rausser, 2001), levee breaks (Tobin and Montz, 1988, 1997), and

earthquakes (Naoi et al., 2009). Collectively, existing work suggests that major disasters

may heighten risk perceptions as measured through price changes, but in the absence of re-

curring events, these effects diminish, sometimes quickly, to pre-disaster levels. Overall, the

findings in the existing literature are consistent with Tversky and Kahneman’s Availability

Heuristic in which households form subjective beliefs over the likelihood of an event based on
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readily available information such as experiencing the effects of a natural disaster or hearing

about catastrophic events in the news. (Tversky and Kahneman, 1974).

As we allude to above, four distinct features of our analysis distinguish our work from

the extant literature. First, we consider the effects of multiple disasters which occurred at

different points in time over a large geographic area. Second, we utilize precise, geo-spatial

data on wildfire burn scars to account for several potential mechanisms through which forest

fires may impact risk perceptions and attempt to tease out the dis-amenity effects associated

with fire that are potentially correlated with our saliency dimensions. Third, to the best of

our knowledge, our work is the first to consider both price and quantity dynamics. Finally, we

provide a simple theoretical framework that links price and transaction changes to underlying

changes in risk perceptions.

In our empirical work, the three specific saliency dimensions we consider are: 1) properties

located within a 2km ring of a wildfire burn scar (with properties in the immediately adjacent

area used as controls); 2) properties with a view of a burn scar (with proximate homes without

a view used as controls); and, 3) properties located in high latent-risk zones (with proximate

properties in low latent-risk areas used as controls). Using hedonic property and duration

models, we then compare housing prices and transaction rates between each treatment and

control group before and after wildfires accounting for fire-specific fixed effects and underlying

regional trends in housing values.

We find that home prices in the 2km rings fall by 8.3%, 7.8% and 6.8% in the first, second

and third years following a significant wildfire. Our duration analysis predicts a lagged

increase in transaction rates in the magnitude of 21% in the third year following a wildfire

(with no significant increase predicted in years one and two). Properties with a view of a

wildfire burn scar incur an immediate loss in the range of 3% - 4%, relative to properties

without a view, which remains persistent even after three years. We find no relative change

in property turnover along this dimension. Restricting attention to properties located further

than 5km from a fire and without a view of a wildfire burn scar, we find that housing values

in high-risk zones, relative to housing values in low-risk zones, incur a loss in the range of 6%

- 9% in the year immediately following a wildfire which is associated with a 19% increase in

the likelihood of transacting. These price effects become statistically insignificant and decay

in magnitude towards the range of 1% - 5% after two years. There is no significant effect
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on transaction rates after the first year. After three-years, price differentials and turnover

rates are restored to pre-fire levels. As we discuss below, interpreted in the context of our

theoretical model, these results suggest that the evolution of risk perceptions following a

major fire depends both on the characteristics of the property itself (relationship to the fire

and latent risk) and the location of the individual whose risk perception we are considering

(potential seller, potential buyer).

We proceed as follows. We summarize our theoretical model of price-capitalization and

preference-based sorting in response to changing risk perceptions in Section (2). We then

characterize our study area and the details behind the construction of our geo-spatial data

in Section (3). We present our empirical methodology in Section (4) and our findings in

Section (5).

2. A Simple Model of Price-Capitalization, Risk-Salience and

Preference-Based Sorting

We consider an economy comprised of a continuum of individuals of measure 1 who choose

to live in one of two locations j ∈ {t, c}. We conceptualize t as a treated area and c as a

control area in order to distinguish between communities who’s residents differ in either

their experience with or their perceived likelihood of wildfire. For example, t may be an area

providing amenity values to some, but with heightened wildfire risk. Conditional on choosing

location j, each individual consumes a fixed quantity of housing at a price pj. We fix the

price level in c at p̄c such that the price level in the treated area (pt) adjusts endogenously

to clear both housing markets. All individuals are endowed with the identical income level

y and have an exogenously determined taste (ω) for living in t whose distribution in the

population can be described by a strictly increasing continuous distribution function F0 (·).

Individuals choosing to live in the control region receive utility given by:

uc = y − p̄c,

while those choosing to live in the treated area have their utility augmented by their level of

ω,

ut = y − pt + ω.
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Thus, in equilibrium, individuals sort based on their value of ω, choosing location t if,

ω ≥ pt − p̄c = ω?
0.

We assume that a unit measure of housing supply q is split across the two communities

so that qt + qc = 1 with qt, qc > 0. Since any individual with type ω < pt − p̄c prefers

the control region, in equilibrium the price level in the treated area adjusts endogenously to

satisfy the equilibrium condition:

F0 (pt − p̄c) = qc.

That is, pt adjusts such that the proportion of individuals satisfying ω < ω?
0 exactly equals

the proportion of the housing supply in c. We denote by p0t the market clearing price in the

baseline case before any risk saliency shock.

To conceptualize the salience-effects of a natural disaster, we assume that when a forest

fire happens in or near the treated area, due to heightened risk perceptions, utility realized

from living in t shifts downward by some amount, s. Assuming that the salience-effect may

be stronger for those living in t at the time of the fire, we allow for heterogeneity in the shift

across individuals based on their location in the baseline equilibrium:

st ≥ sc ≥ 0, st > 0.

Thus, after a fire, utility associated with living in t may vary by initial location:

ut|c = y − pt − sc + ω

ut|t = y − pt − st + ω.

With this framework in place, we make several observations regarding how the baseline

equilibrium changes following a fire.

OBSERVATION 1: Positive Saliency Shock Reduces pt.

The post-fire equilibrium price in t is strictly less than the pre-fire equilibrium price: p1t < p0t .

Observation 1 follows directly from the following. First, because st is greater than zero,

for any pt ≥ p0t , there exists δ > 0 such that for any ω ∈ [ω?
0, ω

?
0 +δ), y−pt +ω−st < y− p̄c.
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Because F0 (·) is strictly increasing, the set of ω ∈ [ω?
0, ω

?
0 + δ) has positive measure. Thus,

post-fire if pt ≥ p0t the set of individuals with ω ≥ ω?
0 who prefer t over c will be strictly

smaller than prior to the fire. Second, it follows immediately from the baseline equilibrium

condition that, because sc ≥ 0, any individual with ω < ω?
0 will strictly prefer community

c if pt ≥ p0t . Since there will be excess supply in t if pt ≥ p0t , under the new equilibrium it

must be the case that p1t < p0t .

OBSERVATION 2: No Resorting Under Equal Shocks to Risk Salience.

If the fire saliency doesn’t vary with baseline equilibrium location choice (st = sc = s) then

the post-fire equilibrium sorting of individuals is identical to that of the baseline equilibrium.

Further, the size of the fire-driven price drop identified in Observation 1 is increasing in s.

Specifically: ∂p1t/∂s = −1.

The first half of Observation 2 stems from the fact that when st = sc all individual

preferences for locating in t have shifted by an identical distance. We can simply re-cast

the problem in terms of a newly defined distribution of types F1 (ω1) = F0 (ω1 + s) where

each individual’s value of ω has essentially been shifted down by s. Thus, in equilibrium,

the sorting of individuals across the two locations must be preserved. The second part of

Observation 2 follows from totally differentiating the post-fire equilibrium condition:

F0

(
p1t − p̄c + s

)
= qc.

OBSERVATION 3: Unequal Shocks to Risk Salience Lead to Resorting.

If fire saliency is higher for individuals initially located in t (st > sc) then there will exist

δt, δc > 0 such that following the fire the new equilibrium reallocates individuals with ω?
0 ≤

ω < δt from t to c and all individuals with δc ≤ ω < ω?
0 from c to t.

The logic behind Observation 3 is as follows. First, note that because st > sc if it is

optimal for all individuals with ω ≥ ω?
0 to choose t post-fire then there exists δ > 0 such
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that for any ω ∈ [ω?
0 − δ, ω?

0),

y − p1t − sc + ω > y − p1t − st + ω?
0 ≥ y − p̄c.

In other words, if p1t is such that all individuals who were initially located in t choose to

remain in t post-fire, then for some values of ω < ω?
0 it will now be optimal to locate in t

post-fire as well. However, by construction, the measure of {ω|ω ≥ ω?
0 − δ} is greater than

qt and this can’t be an equilibrium because there would be excess demand in t. Thus, to

clear the housing market in the post-fire equilibrium it must be the case that over some

positive measure set of ω ≥ ω?
0 it must hold that y − p1t − st + ω < y − p̄c. Further, it is

straightforward to demonstrate that this set must be continuous and include ω?
0 as its lower

bound. The complimentary result can be derived by similar logic.

The bounds of these two sets (δt, δc) are identified by the optimality conditions. The

range of ω ≥ ω?
0 values for which region c is optimal in the post-fire equilibrium must satisfy:

y − p1t − st + ω < y − p̄c.

Thus, the relevant range for ω is:

ω?
0 ≤ ω < p1t − p̄c + st = δt.

Similarly, the set of ω < ω?
0 value for which t is optimal post-fire must satisfy:

y − p1t − sc + ω > y − p̄c.

And the relevant range for ω is:

δc = p1t − p̄c + sc ≤ ω < ω?
0.

The new market clearing price is determined by the requirement that for housing market

equilibrium to hold, it must be the case that the measure of these two sets be equal:

F0

(
p1t − p̄c + st

)
− F0 (ω?

0) = F0 (ω?
0)− F0

(
p1t − p̄c + sc

)
. (1)

Recalling that F0 (ω?
0) = qc, the new market clearing price is implicitly defined by:

F0 (p1t − p̄c + st) + F0 (p1t − p̄c + sc)

2
= qc. (2)
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Total differentiation of the market clearing condition in (2) and equation (1) indicates

that the magnitude of the price adjustment and the measure of residents who sort between t

and c vary proportionally to the magnitude of each locations salience shock. We summarize

these formally in Observations (4) and (5).

OBSERVATION 4: Characterizing Price Effects.

The post-fire price drop in t is increasing in both location’s risk-saliency. Specifically:

∂p1t
∂st

=
−F ′

0 (p1t − p̄c + st)

F ′
0 (p1t − p̄c + st) + F ′

0 (p1t − p̄c + sc)
,

and
∂p1t
∂sc

=
−F ′

0 (p1t − p̄c + sc)

F ′
0 (p1t − p̄c + st) + F ′

0 (p1t − p̄c + sc)
.

OBSERVATION 5: Characterizing Quantity Effects.

The size of the post-fire relocation – measure of {ω|δc ≤ ω < ω?
0} = measure of {ω|ω?

0 ≤ ω < δt}

– is increasing in st and decreasing in sc. Specifically, this change is given by:

F ′
0 (p1t − p̄c + st) · F ′

0 (p1t − p̄c + sc)

F ′
0 (p1t − p̄c + st) + F ′

0 (p1t − p̄c + sc)
.

To summarize our theoretical results, the treated and control regions in our model delineate

locations based on resident’s experience with or their perceived likelihood of wildfire. The

predictions of our theoretical model allow us to interpret price and quantity responses in

terms of differential saliency between extant residents and potential buyers. If risk-saliency

changes following a disaster don’t vary across extant residents and potential buyers our

model predicts a decrease in prices but no change in the probability of transacting. Negative

price shocks coincide with positive quantity shocks only when post-disaster saliency varies

between potential sellers located in the treated area and potential buyers located outside the

treated area; that is, when one group experiences a stronger shock than the other. As such,

we can approach the task of discerning saliency dynamics by investigating the evolution of

prices and quantities through the lens of our theoretical framework.
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3. Study Area and Data

The Colorado Front Range forms a barrier between the easternmost range of the Rocky

Mountains and the Great Plains regions of eastern Colorado. Its population increased by 30%

from 1990 - 2000 with the growth predominantly concentrated in the interface and intermix

communities of the WUI. (Travis et al. 2002). As depicted in Figure (1), we conduct our

analysis across 8 counties spanning the COFR: Boulder, Douglas, Larimer, Pueblo, El Paso,

Jefferson, Teller and Fremont. We identify WUI properties in these locations based on

GIS data provided by the Silvis Lab3. (Radeloff et al., 2005). The WUI is composed of

interface and intermix regions. In both types of WUI regions, housing density must exceed

one structure per 40 acres while intermix areas must also be at least 50% vegetated and lie

within 1.5 miles of an area at least 1,325 acres large that is at least 75% vegetated.

We obtained a list of wildfire incidents from FEMA’s disaster declaration web-page4. We

use FEMA as a reference point for distinguishing severe wildfires from less significant ground

or brush fires. FEMA records each fire’s start-date, end-date and the total dollars obligated

in public assistance grants. We cross-check these dates with the information contained in

each fire’s Incident Status Summary (ICS-209) report which we obtained from the National

Fire and Aviation Management Web Application5 maintained by the National Inter-agency

Fire Center6.

Spatial data-sets for each fire’s burn scar were acquired from the Geospatial Multi-Agency

Coordination Group (GeoMAC)7 and Monitoring Trends in Burn Severity (MTBS)8. We

include in our analysis any fire with a burn area exceeding 500 acres which appears in

either the GeoMAC or MTBS data-sets, regardless of whether or not it received a FEMA

declaration or not. We summarize the set of fires included in our empirical work in Table

(1)9. The spatial distribution of the wildfires in our sample are depicted in Figure (1). Their

3http://silvis.forest.wisc.edu/
4http://www.fema.gov/disasters
5https://fam.nwcg.gov/fam-web/
6http://www.nifc.gov/. A sample ICS-209 report for the Fourmile Canyon Fire of 2010 may be found here:
ICS-209 Fourmile Canyon
7http://www.geomac.gov/index.shtml
8http://www.mtbs.gov/
9Other notable fires which occurred in the COFR but whose burn areas which extend beyond either the
spatial or temporal coverage of our housing price data are the Hayman Fire of 2002, the Mason Fire of 2005
and the Wetmore fire of 2012.

http://silvis.forest.wisc.edu/
http://www.fema.gov/disasters
https://fam.nwcg.gov/fam-web/
http://www.nifc.gov/
http://fam.nwcg.gov/fam-web/hist_209/hist_r_print_209_head_2010?v_number=CO-BLX-000321&v_report_date=09/17/2010&v_hour=1800&v_gaid=RM 
http://www.geomac.gov/index.shtml
http://www.mtbs.gov/
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size varies from 606 to 87,505 acres and the costs of suppressing them range from $250

thousand to $38 million.

Our housing transactions data is provided by DataQuick Information Systems, used under

a license agreement with the Social Science Research Institute at Duke University. In the

8 counties of interest to our study, we observe repeated transaction histories for 358,823

unique residential properties between the years 2000 and 2012. The data records information

on: the type of sale (newly constructed, re-sale, refinance or equity dealings, timeshare, or

subdivision sale); the relevant transaction-level information including sale price and sale

date; building characteristics from the most recent tax assessment including square footage,

lot size, number of bedrooms, number of bathrooms and the number of stories; and the site

address. In order to obtain precise Geo-referenced locations for each property, we ran a batch

geo-coding routine10 in ArcMap10 which returns the latitude and longitude coordinates for

each properties roof-top or parcel-centroid.

We limit transactions to arms length sales of owner occupied, residential single family

residences. Properties lying in the 1st or 99th percentile with respect to square footage or

sale price, or the 99th percentile with respect to the number stories, baths, beds, units or

rooms were dropped. Houses with a negative age11 were removed as well.

To determine the portion of the landscape visible from each property in our sample,

we perform a Viewshed Analysis12 in GIS. This method has been used in hedonic models

to address the visual impacts of shale gas wells (Muehlenbachs et al. 2014) wind turbines

(Sunak and Madlener, 2012), natural landscapes (Walls et al., 2013) and wildfire (Stetler

et al., 2010). Given a Digital Elevation Model (DEM) of the terrain which we obtained

from the National Map13, we compute the visible area from each property as determined

by the line-of-sight between each observer point and every cell in the DEM. To determine

fire-visibility, we overlay and intersect each property’s viewshed with each fire’s burn scar.

This process is depicted in Figure (2).

10The 10.0 North America Geocode Service Locator, updated as of June 2012, was used to generate latitude
and longitude coordinates.
11We calculate age as year sold minus year built.
12To increase the computational speed of this algorithm, we limit the search over the DEM to a radius of
20km of each property.
13http://nationalmap.gov/
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We measure latent wildfire risk with the Wildfire Threat Index (WTI) developed by the

Colorado Wildfire Risk Assessment Project (CO-WRAP14) which represents the likelihood of

a wildfire occurring or burning into an area. (CO-WRAP, 2013). The WTI takes as inputs:

surface fuels, canopy characteristics, land cover, terrain, slope, and elevation. The threat

index is compiled to a resolution of 30m and allows for consistent comparison of wildfire risk

between different parts of the State. The WTI ranges from “Lowest Threat” to “Highest

Threat” and is depicted in Figure (3).

4. Empirical Methodology

Our basic empirical approach entails hedonic models of residential housing prices and du-

ration models of housing transaction rates estimated along multiple dimensions of potential

salience. Contemporaneous shifts in local and macroeconomic housing markets complicate

our task of identifying the causal effects of a natural disaster from housing transaction

data. To overcome this empirical challenge, we implement a difference-in-differences esti-

mation strategy which identifies treatment groups based upon multiple geo-spatial measures

of saliency and compares market dynamics in each group to the outcomes of properties in

control groups that do not receive said treatment, but that are otherwise influenced by the

same contemporaneous factors. Our treatment groups include properties located within a

2km ring of a wildfire (with immediately adjacent properties used as controls), properties

with a view of a burn scar (with neighboring properties without a view used as controls),

and properties located in high latent risk-zones (with proximate homes located in low latent

risk areas used as controls). We motivate our use of a 2km cutoff in sections (5.2.1).

To implement our estimation procedure, we assign each property i to its nearest fire

m ∈ M . To minimize the potential confounding effects of exposure to multiple fires we

then drop from our sample any observations that lie within 7 km of multiple fires. For each

treatment group, our hedonic models take the form:

ln pitm = α · Postitm + β · Treatim × Postitm + γm · Treatim

+δm · τt + πm · Treatim × τt + Z ′
iω1

+G′
itω2 + εitm, (3)

14http://www.coloradowildfirerisk.com/

http://www.coloradowildfirerisk.com/
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where Postitm is a post-fire dummy and Treatim is a treatment group indicator. For each

treatment definition, we are interested in the estimate on the coefficient of the treatment-

group by post-fire interaction term, β. Moreover, in order to understand how our estimate

for β varies in each year following a wildfire, we replace Postitm with 1, 2 and 3-year post-fire

indicator variables
{
Y earkitm

}3
k=1

. This transforms the baseline specification in (3) into:

ln pitm =
3∑

k=1

(
αk · Y earkitm + βk · Treatim × Y earkitm

)
+ γm · Treatim

+δm · τt + πm · Treatim × τt + Z ′
iω1

+G′
itω2 + εitm, (4)

Thus, the estimate of βk may be interpreted as the difference-in-differences estimate of β

restricting attention to post-fire transactions which occur between k − 1 and k years of a

wildfire. To control for composition effects, we allow our main effects to vary by fire by

including a full-set of group by fire interaction terms, γm ·Treatim. To account for trends in

housing prices which may vary over time and space, we fit fire-specific trends which can vary

by treatment group, δm · τt + πm · Treatim × τt. Our set of structural controls, Z ′
i, include:

second-order polynomials in square footage and age; basement square footage; indicator

variables for number of bathrooms and bedrooms; and a variable indicating if a property has

a swimming pool. Our set of geographic characteristics, G′
i, include second-order polynomials

in viewshed size, slope, county fixed effects, year by quarter fixed effects, and, in our most

robust specifications, year by quarter by fire fixed effects.

For transaction rates, the probability that a property sells at any given point in time

is conditional on whether it sold in the previous period. Moreover, properties which fail to

transact in the time-fame of our property data are censored. For these reasons, we model the

conditional probability of a property transacting as a continuous time duration process and

estimate the relative increase or decrease in the transaction-hazard between each treatment

and control group following a wildfire. In addition to our data being censored from the right,

which we account for in our maximum likelihood estimation, a second issue is left censoring

which occurs whenever ownership of a property initiates prior to the window of our sample.

Archer et al. (2010), who estimate a Cox model of ownership duration to understand the

effects of household characteristics, neighborhood factors and tenure on housing turnover
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rates, are also restricted by left-censored data. They argue in their paper, as do we in ours,

that to the extent that the window of our transactions data is random, left censoring should

not lead to biased estimates.

Letting t denote the elapsed time since property i last sold and λ0(t) the non-parametric

baseline hazard function at time t, we estimate the coefficients of:

λ (t|zi(t)) = λ0(t)e
zi(t). (5)

where,

zi(t) =
3∑

k=1

(
αk · Y earkitm + βk · Treatim × Y earkitm

)
+ γm · Treatim

+Z ′
iω1 +G′

it · ω2 + εitm. (6)

In this specification, λ (t|zi(t)) represents the probability a property turns over at t con-

ditional on its time-varying co-variates zi(t) and the non-parametric baseline hazard rate

λ0(t).

5. Results

5.1. Visual Evidence and Identification. The difference-in-differences estimates of equa-

tion (4) will represent the causal effects of wildfire if the average change in housing prices

for treated properties would have been proportional to the average change in outcomes for

the non-treated in the absence of treatment. In addition, wildfires must not coincide with

any other shock differentially affecting each group. We are less concerned with the second of

these assumptions since we consider the effects of multiple disasters which occur at different

points in time and space; however, since we do not observe counter-factual outcomes, we

cannot explicitly test for the first. Instead, we provide graphical evidence that the evolution

of prices in the periods immediately preceding wildfire are similar between treated and non-

treated properties. After limiting our analysis to the WUI, we regress log-prices on a set of

year-by-quarter fixed effects, county fixed effects, and structural control variables. For each

treatment definition outlined in Section (4), Figure (4) fits group-specific, kernel-weighted

local polynomials on the residuals of these regressions15.

15These regressions vary with respect to the sample definition for each model. The residual plot for proximity
is limited to properties within 10km of a wildfire while the plots for visibility and latent risk are restricted
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In the visibility and risk plots presented in Figure (4), the pre-fire trends of each treatment

group are generally similar to each control group, but we do detect a slight upward price

trend for properties located in 2km wildfire rings which we account for in our empirical

analysis by fitting fire-specific trends which which vary by treatment group. The visibility

plot suggests that homeowners pay a premium to have a view of fire-prone landscapes prior

to a wildfire. The risk plots also suggest a pre-fire premium for properties located in fire-

prone areas. These results suggest a positive amenity value for being situated in an area with

or that has a view of ridge lines, dense vegetation and other determinants of wildfire threat.

Donovan et al. (2007) report a similar finding. Their estimates of the hedonic valuation

of property-specific risk and vegetation ratings are positive and significant. Moreover, in a

related paper, Champ et al. (2009) surveyed 898 households throughout the WUI in Colorado

Springs and found that 75% of homebuyers were not concerned about wildfire risk at the

time of purchase and that only 27% of were even aware that their properties were in at-risk

areas.

These graphs also provide visual evidence of the short and long term effects of wildfire on

home values. In the years following a wildfire, we observe that each control group continues

on their pre-existing trend while each treatment group experiences a sharp drop. Following

the initial decline, prices of properties in high latent risk zones decay quickly toward their

pre-fire level. Housing values in 2km rings are also initially discounted, but subsequently

return to their pre-fire trend. In contrast, properties with a view of a burn scar incur

immediate and persistent losses.

5.2. Hedonic Property Models. We begin our formal analysis by estimating equation

(4) along two key dimensions: Proximity to wildfire and view of wildfire burn scars. These

variables measure potential saliency effects as well as the dis-amenity effects of fire. We

determine the extent to which our difference-in-differences estimates diminish towards zero

along these scales. We then estimate our models of latent risk on the spatial extent where

the potentially correlated amenity effects of wildfire are attenuated.

5.2.1. Proximity . Table (2) presents coefficient estimates of equation (4) comparing the

outcomes of treated properties located within a 2km ring of a wildfire to control properties

properties within 5km and 30km, respectively. The graphical results using other sample definitions are
qualitatively similar.
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in the immediately adjacent area. Assuming that the set of adjacent properties represent a

valid control group, the causal effect of wildfire is reflected in the coefficients on the 2km,

post-fire interaction terms: (2km Ring)×(Year k). The coefficient estimates in column 1

indicate an immediate and highly significant -8.7% post-fire discount one year out. This

effect decreases in magnitude towards -7.5% in two years and to approximately -6.7% in year

three. As reflected in columns (2) and (3), these results are robust to year by quarter by fire

fixed effects and to a smaller set of control properties. They are also qualitatively similar

to Mueller et al. (2009) who finds that house prices located within 1.75 wildfire buffers drop

approximately -9.7% in the year immediately following a wildfire.

To test the sensitivity of our model to the cutoff delineating treated and non-treated

areas, we limit our sample to properties within 30km of a wildfire burn scar and, starting

with a 1km ring, estimate equation (4) as we increase the size of the treatment ring in

250m increments. Figure (5) plots the first-year coefficient estimates together with their

95% confidence intervals. We take note that the magnitudes of these effects are pronounced

and increase into the range of -15% within 1km. Beyond 2km, our coefficient estimates and

our confidence in them rapidly diminish to zero and beyond 5km they are zero.

5.2.2. Visibility. Table (3) presents the coefficient estimates of equation (4) comparing prices

between properties with and without a view of a wildfire burn scar. By default, each prop-

erty’s Viewshed calculation will extend to the limits of our DEM. As shown in the first panel

of Figure (2) which depicts a viewshed for a sample WUI property, visible areas may include

portions of the terrain that are in the observers line-of-sight, but too distant for the observer

to be able to discern temporal variations in the landscape. To account for this potential

issue, we limit our analysis to properties located within 5km of each fires burn scar. Refer-

ring to the coefficient estimates for the view of fire, post-fire interaction terms in columns

(1) and (2) of Table (3), (View of Fire)×(Year k), we find that having a view of a burned

area results in a highly significant 4% drop in price immediately following a wildfire. This

effect remains unchanged even after three years have passed and is robust to year by quarter

by fire fixed effects. Stetler et al. (2010) conduct a hedonic analysis of wildfire in northwest

Montana between June 1996 and January 1997. In particular, they estimate the effect of

having a view of a burned area after excluding wildfires that burned after the sale date of

the homes in their sample. While not estimated in a difference-in-differences framework, the
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authors find that properties with a view of a wildfire sell for 2.5% less than homes without

a view.

It is important to note that a property’s view of a burn area may very well correlate with

its distance to the fire. To address this concern, in column (3) we include second order

polynomials in distance to fire. Including these variables reduces our coefficient estimates on

view by approximately 1 percentage point in all three years; however, the effects of view still

remain persistent over time. The linear terms for distance are positive and significant while

the cubic terms are negative which suggests that prices for homes following a wildfire fall

proportionally with their distance to the burn area. To see that these results are consistent

with our findings in Table (2) in addition to our sensitivity analysis in Figure (5), note that

the critical points of the first, second and third year effects all occur at approximately 3km.

Finally, to test the sensitivity of our model to the 5km cutoff we impose, we re-estimate

Column (2) of Table (3) in 250m increments starting with a 1km cutoff and ending with

a 14km cutoff. The coefficient estimates for each of these regressions together with their

95% confidence intervals are plotted in Figure (6). The figure shows that the effect of view

diminishes gradually with distance but remains at approximately -4% between 1km and 5km.

5.2.3. Latent Wildfire Risk. The price adjustments with respect to proximity and visibility

are only weak evidence that households update risk perceptions following a natural disaster;

these estimates may be conflated with the dis-amenity effects of fire. We take a more direct

approach to estimating the salience effects of a wildfire by estimating their impact on the

price differential between properties in high and low risk areas that are not immediately

proximate to a fire (i.e > 5km). We report the estimation results of our latent risk models,

which are also based on equation (4), in Table (4). The coefficients of interest are the

estimates of the latent risk, post-fire interaction terms, (High Latent Risk)×(Year k).

We point out here that Atreya et al. (2013) use a similar framework and estimate the

value for flood risk following a hurricane by comparing home values between properties in

100-year and 500-year flood zones to properties located outside of the floodplain. They

find a sharp decline in prices in the 100-year flood zone but detect no significant effects in

the 500-year zone which they argue is consistent with flood damages being localized in the

100-year floodplain. This is not surprising as their measure of latent risk strongly predicts

flooding potential. However, with a lack of geo-spatial data on inundated areas, the authors
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had difficulty accounting for these contemporaneous dis-amenity effects. To account for this

bias, as an additional control, we exclude any observation with a view of burn scar or located

within 5km of a wildfire.

Column (1) in Table (4) presents our model estimates based on the entire sample. In

columns (2) and (3) we drop any observation which lies within 5km of a wildfire; portions of

the landscape where the price effects with respect to proximity and visibility are significant.

We drop any observation with a view of a burn scar in columns (4) - (6). Referring to

column (4), we find a -7.2% latent risk discount in the year immediately following a wildfire.

This effect is significant at the 5% level and equates to an approximately $25,000 discount

for an average-priced home in our sample. The magnitude of this effect remains significant

and increases toward -9% when we limit our sample cutoff to 10-20km. However, in each

case these coefficients decrease in magnitude towards zero and become insignificant in the

second year.

5.3. Duration Analysis. The conceptual model presented in section (2) allows us to draw

inferences regarding the saliency dynamics of wildfire by investigating the evolution of prices

and quantities. We now turn to the quantity side of the market. As discussed above, we

analyze transaction rates using a proportional hazards model. In what follows, we report

hazard ratios corresponding to each of our three treatment definitions with p-values – relative

to a no-effect level of one – reported in brackets.

Results for proximity are reported in Table (5). The estimated hazard ratios for (2km

Ring)×(Year 1) and (2km Ring)×(Year 2) are insignificant despite corresponding to years

which experienced negative price shocks. However, we find that a 21% increase in transaction

probability occurs in year three after price effects are to be attenuated. Our theoretical

analysis (Observation 2) predicts that prices fall with quantities remaining unchanged when

sellers and buyers both experience the same shift in risk perceptions. Through this lens,

our empirical results suggest that the spatial effects of wildfire – which may ultimately

incorporate amenity changes – are highly salient to both extant residents in close proximity

to a wildfire and to potential buyers in the control regions; but only in the first few years.

Further, the model (Observation 3) predicts price decreases in association with transaction

rate increases when negative saliency shocks are greater for those located in the treated area.

Thus, the subsequent increase in housing transaction probabilities in the third year provides
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evidence that the spatial effects of fire become relatively less pronounced for individuals not

living in immediate proximity of the fire after two years have elapsed.

Turning our attention to the effect of view as presented in Table (6), the estimated hazard

ratios (View of Fire)×(Year k) are insignificant in all years suggesting that view of wildfire

has no measurable effect on transaction probabilities. However, we do find persistent price

effects over this time frame. From the perspective of the model, this finding suggests that

the visual-effects of wildfire are as relevant for a potential buyer as they are for an existing

homeowner even after three years have passed.

The price and quantity results for proximity to a wildfire suggest that, immediately follow-

ing a fire, both potential sellers and potential buyers experience a similar negative shock to

their perception of the risk associated with owning a home close to the burn scar. The fact

that price decreases attenuate over time and that transaction rates are at first unaffected

and then accelerate over time suggest that the saliency of the recent fire recedes more quickly

for potential buyers than for potential sellers. In contrast, for homes that have a view of

the burn scar, the constant price decline and complete lack of a transaction effect suggest

no decay in saliency for either buyers or sellers – perhaps because the view of the burn scar

provides a consistent information signal regarding fire risk.

One confounding issue that may partially explain the failure of prices to return quickly to

their pre-fire levels is the potential dis-amenity associated with close proximity to, or view

of, a burn scar. By focusing on the effect of fire on high-risk and low-risk properties located

between 5 and 30 km our final treatment dimension seeks to estimate a pure saliency effect.

To the extent that dis-amenity effects exist, both control and treatment groups in this final

set of analyses should experience identical amenity impacts. Table (7) presents transaction

rate results for high latent risk properties relative to low latent risk properties.

The estimated hazard ratio for (High Latent Risk)×(Year 1) shows a significant, 19%

increase in transaction probabilities one year out. However, the coefficient estimates for year

2 and 3 are substantially lower in magnitude and are statistically insignificant. Recall that

we detect no measurable effects on prices after the first year. This short –run price decline

which is associated with a similarly short-lived increase in transaction rates suggests that,

following a wildfire, potential buyers located on high risk lots that are in the general area of

the fire but not so close as to be directly affected by the fire experience an increase in their
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perception of the fire risk associated with their house which exceeds that experienced by

potential buyers. Without immediate proximity to, or view of, the burn scar to re-enforce

this shock the increase in fire saliency attenuates quickly.

5.4. Discussion and Summary of Findings. In this paper we develop a parsimonious

model that links underlying changes in location-specific risk perceptions to housing market

dynamics. In particular, given estimates of both the price and quantity effects associated

with significant wildfire events the model allows us to draw inferences about the underlying

changes in risk perceptions that gave rise to the observed housing market impacts. This

approach is an advance over the existing literature which has focused almost exclusively on

the price effects of natural disasters and is thus limited in terms of the inferences it can draw

regarding the impact of these events on underlying risk perceptions. Further, by considering

several different dimensions along which the saliency effects of wildfire may vary, we are

able to more clearly identify a pure saliency effect which in most previous work has been

confounded with potentially co-varying dis-amenity effects associated with the destructive

impacts of natural hazards.

Our empirical results suggest that, for properties located very close to a fire, both potential

buyers and sellers experienced increases in the perceived fire risks associated with these

locations. For close locations with no view of a burn scar we find evidence that after two

years have elapsed, these heightened risk perceptions attenuate for potential buyers – relative

to those of potential sellers. However, for locations with a burn scar view, no such relative

attenuation in risk perception occurs, even 3 years out – perhaps because the presence of a

burn scar serves to reinforce an initial saliency shock. Of course, in this case, we can’t rule

out the possibility that agents are responding to a dis-amenity effect as well. Finally, by

focusing on differences in housing dynamics that are driven by variation in a given locations

underlying latent fire risk, we are able to identify a pure saliency effect. Here our empirical

results suggest that potential sellers in high risk locations experience an increase in perceived

risk that is not shared by potential buyers. This short-lived (one year) increase in relative

risk saliency experienced by households living in the general vicinity of, but not immediately

proximate to, a wildfire suggests that households in high risk areas may be particularly

sensitive to information shocks about fire risk.
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These results provide insight into the potential for information treatments to impact risk

perceptions and market behavior in the context of risks associated with natural hazards.

Our work provides evidence suggesting that households update their risk beliefs and market

behavior in response to information shocks – with households living in high risk areas being

more responsive than those in low risk areas. However, the impact of these information

treatments may be short lived. For the Colorado wildfires considered in our study, the

saliency effects appear to attenuate over the course of a single year in locations that aren’t

located in immediate proximity to a burn scar. Unexplored in this study, and a fruitful

avenue for future work, is the impact of large natural disasters on individual mitigation

behaviors that have the potential to reduce the impact of these events when they do occur.
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Figure 1. Study Area and Wildfire Burn Scars
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1) INPUT: Digital Elevation Model & W.U.I. Property 2) GENERATE:  Viewsheds using ArcMAP

3) INTERSECT:  Viewshed with Burn Scars 4) COMPUTE:  Fire Visibility

Figure 2. Viewshed Analysis
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Figure 3. Latent Risk: Wildfire Threat Index
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Figure 4. Residual Plots
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Figure 5. Proximity: Sensitivity to Treatment / Control Boundary
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Table 1. Colorado Wildfires

Received Total Public 

FEMA Assistance

Declaration Grants

Big Elk 7/17/2002 7/26/2002 y 373,067        4,344   12 3 290 6 1 3,700,000     

Overland 10/29/2003 10/30/2003 y -               3,230   0 0 276 9 62 400,000        

Cherokee Ranch 10/29/2003 10/31/2003 y 59,933          1,042   3 0 45 1 3 300,000        

Picnic Rock 3/30/2004 4/7/2004 y 519,746        9,006   7 0 61 2 2 2,200,000     

Olde Stage 1/7/2009 1/8/2009 y -               3,167   2 0 5 0 3 -              

Quarry 3/6/2009 3/9/2009 n -               5,137   0 0 9 0 4 250,000        

Parkdale Canyon 6/21/2010 6/25/2010 n -               606     0 0 117 1 4 1,400,000     

Cow Creek 6/24/2010 7/3/2010 n -               969     0 0 189 3 0 2,100,000     

Reservoir 9/12/2010 9/16/2010 y 1,890,446      778     1 0 375 8 6 2,000,000     

Four Mile Canyon 9/13/2010 9/17/2010 y 4,009,529      5,861   4 0 907 20 172 9,500,000     

Indian Gulch 3/20/2011 3/25/2011 y 1,274,397      1,570   0 0 275 4 0 2,100,000     

Burning Tree 3/24/2011 3/25/2011 n -               1,662   0 0 200 1 0 -              

Crystal 4/1/2011 4/11/2011 y 1,216,363      2,937   3 0 126 2 13 2,800,000     

Duckett 6/12/2011 6/24/2011 y 987,749        4,610   1 0 26 1 0 6,600,000     

Lower North Fork 3/26/2012 4/2/2012 y -               3,218   1 3 0 0 27 4,400,000     

Hewlett 5/14/2012 5/22/2012 n -               7,685   2 0 202 3 0 3,400,000     

High Park 6/9/2012 6/30/2012 y 3,122,300      87,505 3 1 686 5 371 38,400,000   

Waldo Canyon 6/23/2012 7/10/2012 y -               18,248 5 2 67 1 347 15,700,000   

Personnel 

Involved

Fire 

Crews

Structures 

Lost

Suppression 

Costs
Fire Name Start Date End Date Acres FatalitiesInjuries
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Table 2. Difference-in-Differences: Proximity

(1) (2) (3)

ln(price) ln(price) ln(price)

Sample Restrictions: <30km <30km <10km

(2km Ring) x (Year 1) -0.0870*** -0.0849*** -0.0829***

(0.0241) (0.0238) (0.0219)

(2km Ring) x (Year 2) -0.0756*** -0.0759*** -0.0779***

(0.0266) (0.0263) (0.0249)

(2km Ring) x (Year 3) -0.0674** -0.0667** -0.0677**

(0.0340) (0.0338) (0.0319)

Observations 90,955 90,955 53,904

R-squared 0.729 0.730 0.767

Fire x Treatment Group Trends: Yes Yes Yes

Year x Quarter x Fire FE: No Yes Yes
Note:  Robust standard errors in parentheses.  ***p<.01, **p<0.05, *p<0.1.  Geographic controls include: 

Second order polynomials in viewshed size, slope and elevation in addition to county fixed effects.  

Structural controls include second order polynomials in square footage and building age as well as 

basement square footage and indicators for number of bedrooms, number of bathrooms.  Models  are 

limited to  W.U.I. properties located within 30km of wildfire burn scars which transact within (+/-) 3 years 

of the fire in their region unless otherwise noted.
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Table 3. Difference-in-Differences: Visibility

(1) (2) (3)

ln(price) ln(price) ln(price)

(View of Fire) x (Year 1) -0.0415*** -0.0396** -0.0313**

(0.0156) (0.0156) (0.0148)

(View of Fire) x (Year 2) -0.0475** -0.0445** -0.0350*

(0.0203) (0.0200) (0.0193)

(View of Fire) x (Year 3) -0.0509* -0.0473* -0.0396

(0.0265) (0.0262) (0.0251)

(Distance) x (Year 1) - - 0.000243***

- - (4.83e-05)

(Distance SQ.) x (Year 1) - - -4.04e-08***

(8.12e-09)

(Distance) x (Year 2) - - 0.000280***

- - (5.64e-05)

(Distance SQ.) x (Year 2) - - -4.65e-08***

(9.45e-09)

(Distance) x (Year 3) - - 0.000363***

- - (6.98e-05)

(Distance SQ.) x (Year 3) - - -6.30e-08***

(1.17e-08)

Observations 15,911 15,911 15,911

R-squared 0.818 0.824 0.834

Fire x Treatment Group Trends: Yes Yes Yes

Year x Quarter x Fire Fixed Effects: No Yes Yes

Note:  Robust standard errors in parentheses.  ***p<.01, **p<0.05, *p<0.1.  Geographic controls include: 

Second order polynomials in viewshed size, slope and elevation in addition to county fixed effects.  

Structural controls include second order polynomials in square footage and building age as well as 

basement square footage and indicators for number of bedrooms, number of bathrooms.  Models  are 

limited to  W.U.I. properties located within 5km of wildfire burn scars which transact within (+/-) 3 years of 

the fire in their region unless otherwise noted.
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Table 4. Difference-in-Differences: Latent Risk

(1) (2) (3) (4) (5) (6)

ln(price) ln(price) ln(price) ln(price) ln(price) ln(price)

<30km <30km <30km <30km <20km <10km

(>5km) (>5km) (>5km, No View) (>5km, No View) (>5km, No View)

(High Latent Risk) x (Year 1) -0.0594*** -0.0735*** -0.0660*** -0.0716** -0.0917** -0.0878**

(0.0225) (0.0244) (0.0247) (0.0320) (0.0357) (0.0430)

(High Latent Risk) x (Year 2) -0.0368 -0.0543 -0.0287 -0.0604 -0.0422 -0.0359

(0.0321) (0.0374) (0.0377) (0.0439) (0.0493) (0.0585)

(High Latent Risk) x (Year 3) 0.0540 -0.0318 -0.00910 0.0155 0.0384 -0.0123

(0.0494) (0.0645) (0.0637) (0.0757) (0.0854) (0.0886)

Observations 30,493 23,565 23,565 15,712 12,733 6,987

R-squared 0.684 0.656 0.656 0.693 0.692 0.655

Fire x Treatment Group Trends: Yes Yes Yes Yes Yes Yes

Year x Quarter x Fire FE No No Yes Yes Yes Yes

Sample Restrictions: 

Note:  Robust standard errors in parentheses.  ***p<.01, **p<0.05, *p<0.1.  Geographic controls include: Second order polynomials 

in viewshed size, slope and elevation in addition to county fixed effects.  Structural controls include second order polynomials in 

square footage and building age as well as basement square footage and indicators for number of bedrooms, number of bathrooms.  

Models  are limited to  W.U.I. properties located within 30km of wildfire burn scars which transact within (+/-) 3 years of the fire in 

their region unless otherwise noted.
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Table 5. Duration Analysis: Proximity

Cox Model:  Hazard Ratios

(2km Ring) x (Year 1) 1.053

[0.442]

(2km Ring) x (Year 2) 1.107

[0.225]

(2km Ring) x (Year 3) 1.215**

[0.046]

Observations 598,956

Sample Restrictions <30km

Note:  P-values are reported in brackets, ***p<.01, **p<0.05, *p<0.1.  

Standard errors clustered at property level.   Geographic controls 

include: Second order polynomials in viewshed size, slope and 

elevation in addition to year-quarter-fire, county, and fire by treatment 

group fixed effects.  Structural controls include second order 

polynomials in square footage and building age as well as basement 

square footage and indicators for number of bedrooms, number of 

bathrooms.  Models  are limited to  W.U.I. properties located within 

30km of wildfire burn scars unless otherwise noted.
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Table 6. Duration Analysis: Visibility

Cox Model:  Hazard Ratios

(View of Fire) x (Year 1) 0.896

[0.159]

(View of Fire) x (Year 2) 0.882

[0.147]

(View of Fire) x (Year 3) 0.924

[0.421]

Observations 97,916

Sample Restrictions <5km

Note:  P-values are reported in brackets, ***p<.01, **p<0.05, 

*p<0.1.  Standard errors clustered at property level.   Geographic 

controls include: Second order polynomials in viewshed size, 

slope and elevation in addition to year-quarter-fire, county, and 

fire by treatment group fixed effects.  Structural controls include 

second order polynomials in square footage and building age as 

well as basement square footage and indicators for number of 

bedrooms, number of bathrooms.  Models  are limited to  W.U.I. 

properties located within 30km of wildfire burn scars unless 

otherwise noted.
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Table 7. Duration Analysis: Latent Risk

Cox Model:  Hazard Ratios

<30km

(>5km, No View)

(High Latent Risk) x (Year 1) 1.19*

[0.071]

(High Latent Risk) x (Year 2) 1.088

[0.521]

(High Latent Risk) x (Year 3) 0.884

[0.517]

Observations 280,739

Sample Restrictions

Note:  P-values are reported in brackets, ***p<.01, **p<0.05, 

*p<0.1.  Standard errors clustered at property level.   Geographic 

controls include: Second order polynomials in viewshed size, 

slope and elevation in addition to year-quarter-fire, county, and 

fire by treatment group fixed effects.  Structural controls include 

second order polynomials in square footage and building age as 

well as basement square footage and indicators for number of 

bedrooms, number of bathrooms.  Models  are limited to  W.U.I. 

properties located within 30km of wildfire burn scars unless 

otherwise noted.
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